
Biomedical Signal Processing and Control 104 (2025) 107458 

A
1

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

EEG_GLT-Net: Optimising EEG graphs for real-time motor imagery signals
classification✩

Htoo Wai Aung a , Jiao Jiao Li a , Bin Shi b,∗, Yang An c,∗, Steven W. Su c ,∗

a University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, NSW, Australia
b Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical
Sciences, Jinan, China
c College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China

A R T I C L E I N F O

Keywords:
Brain-computer interfaces (BCIs)
Electroencephalography motor imagery (EEG
MI)
Spectral graph convolutional neural networks
(GCNs)
EEG_GLT (EEG graph lottery ticket)
Graph pruning

A B S T R A C T

Brain-Computer Interfaces (BCIs) connect the brain to external control devices, necessitating the accurate
translation of brain signals such as from electroencephalography (EEG) into executable commands. EEG MI
classification has numerous applications, including neurorehabilitation for stroke patients, control of assistive
robotic devices, and advancements in neurofeedback systems. Graph Neural Networks (GCN) have been
increasingly applied for classifying EEG Motor Imagery (MI) signals, primarily because they incorporates
the spatial relationships among EEG channels, resulting in improved accuracy over traditional convolutional
methods. However, existing methods for constructing adjacency matrices, such as Geodesic distances, Pearson
Correlation Coefficient (PCC), and others, often rely on predefined inter-channel relationships. These methods
not only demand high computational resources during inference but often achieve limited performance
accuracy, particularly for single time-point EEG MI classification where rapid interpretation is crucial.

To address this, our paper introduces the EEG Graph Lottery Ticket (EEG_GLT) algorithm, an innovative
technique for constructing adjacency matrices for EEG channels. This method does not require pre-existing
knowledge of inter-channel relationships, and it can be tailored to suit both individual subjects and GCN
model architectures. We conducted an empirical study with 20 subjects and six different GCN architectures to
compare the performance of our EEG_GLT adjacency matrix against both Geodesic and PCC adjacency matrices
on time-resolved EEG MI dataset, PhysioNet dataset. Our EEG_GLT method consistently exceeded performance
accuracy benchmarks. Additionally, we compared our model with state-of-the-art models, achieving superior
results. EEG_GLT algorithm marks a breakthrough in development of optimal adjacency matrices, effectively
boosting both computational accuracy and efficiency, making it well-suited for single time point classification
of EEG MI signals that demand intensive computational resources.
1. Introduction

Brain Computer Interfaces (BCIs) form an interdisciplinary bridge
between engineering and neuroscience, enabling direct communication
between the human brain and control devices. Originally designed
to aid those with motor impairments [1], BCIs have expanded their
applications to neurofeedback, gaming, and rehabilitation. Essentially,
BCIs convert neural signals into actionable commands. The primary
means of brain signal acquisition include electrocorticography (ECoG)
and electroencephalography (EEG). Although ECoG boasts superior
spatial resolution due to directly placing electrodes on the cortex, its

✩ This document is the results of the research project funded by the University of Technology Sydney and the Major Science and Technology Innovation Project
of Shandong Province, China (2022CXGC020510, 2021SFGC0502)
∗ Corresponding authors.
E-mail addresses: htoowai.aung@student.uts.edu.au (H.W. Aung), jiaojiao.li@uts.edu.au (J.J. Li), bshi@sdfmu.edu.cn (B. Shi), an.yang1229@outlook.com

(Y. An), suweidong@sdfmu.edu.cn, Steven.Su@uts.edu.au (S.W. Su).

invasive native limits its applications [2]. In contrast, EEG uses scalp
placed electrodes to capture brain activity, making it more popular due
to non-invasiveness and portability. This method captures various brain
signals, from event-related to spontaneous and stimulus-evoked [3].

Motor Imagery (MI) pertains to the mental simulation of motor
actions, such as moving one’s hands or feet, without performing the
actual movement [4,5]. As highlighted by [6], action execution and
its imagination share neural pathways. MI has prominent applications
in rehabilitation and neuroscience. When paired with EEG, it captures
neural signals generated from the intention to move. Integrating this
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with BCIs allows decoding EEG MI signals to control external devices
uch as a robotic exoskeleton. This technology is pivotal for those with
otor impairments, especially stroke survivors, with the potential to

estore quality of life and ability to perform daily activities. By accu-
ately decoding EEG MI signals, BCIs can provide real-time feedback
nd communicate with assistive devices, to facilitate patient-intended
ovements [7].

Convolutional Neural Networks (CNNs) have consistently show-
ased superior results in computer vision tasks [8–10]. However, their

effectiveness is largely constrained to regular Euclidean data, such
as 2-dimensional grids and 1-dimensional sequences [10]. A drop in
capability is experienced with non-Euclidean data, primarily because
CNN cannot accurately capture the intrinsic structure and connec-
tivity of this data. Graphs serve as powerful tools for representing
relationships among entities, and are employed in diverse application
areas including traffic systems, social networks, e-commerce platforms,
biological structures, and trade networks. These graphs can highlight
complex structures and be variable in nature such as being might be
homogeneous or heterogeneous, having weight or not, and being signed
or unsigned [11]. The Graph Convolutional Neural Network (GCN) is an
daptation of CNN operations that is, tailored for graphs. GCN excel in
anaging non-Euclidean data, incorporating topological relationships
uring convolution.

With the help of GCNs, the inherent connections among electrodes
an be integrated through the adjacency matrix, a capability beyond
he reach of traditional CNNs. Establishing relationships between nodes
s essential before deploying the GCN method. Studies [12–14] have

utilised Geodesic distances between electrodes to form the adjacency
matrix, while others [15–19] have employed the Pearson Coefficient
Correlation (PCC) to assess correlations between EEG channels. Addi-
tionally, [20] have utilised the Phase Lag Index (PLI) in the adjacency
matrix construction in their CSGNN model. Notably, [15,21] explored
ptimal adjacency matrices in EEG classification through a trainable

matrix. [22] introduced a unified GNN sparsification technique (UGS),
iving rise to a Graph Lottery Ticket (GLT) by pruning both the original
djacency matrix and GNN weights. This method decreases the Multiply
ccumulate (MAC) inference, thus reducing computational overhead.

Existing methods for constructing adjacency matrices in EEG signal
classification rely on prior knowledge of inter-channel relationships,
which can be a limitation. This dependency is especially challenging
for single time point classification of EEG motor imagery (MI) signals,
where rapid signal interpretation at intervals as brief as 1

160 s is critical.
To address this, our study proposes EEG_GLT which is a novel method
or constructing adjacency matrices for GCNs specifically for EEG MI
ingle time point classification, without requiring predefined inter-
hannel knowledge while enhancing both classification accuracy and
omputational efficiency.

2. Related work

Traditional EEG MI classifiers typically rely on machine learn-
ng techniques that classify signals based on manually crafted fea-
ures, such as wavelet transforms or analytic intrinsic mode func-
ions [23,24]. One widely used method is the filter bank common spa-

tial pattern (FBCSP) [25], which applies common spatial patterns (CSP)
across various frequency bands in EEG signals to extract discriminative
features.

Deep neural networks (DNNs) have advanced EEG motor imagery
MI) classification by leveraging end-to-end architectures that combine
eature extraction with classifier learning, eliminating the need for
anual feature engineering. CNN-based models, such as those pro-
osed by [26,27], excel at extracting temporal features from 1D and
D Euclidean data, achieving high accuracy. Further refinements, as
een in [28–30], incorporate LSTM blocks to capture temporal de-

pendencies effectively in EEG signals. The EEGProgress model [31]
dopts a unique approach by applying CNN operations to individual
2 
brain regions for EEG MI signal classification, focusing on regional
processing rather than all channels simultaneously. The ConTraNet
model [32] combines Transformer and CNN blocks to capture both
ong- and short-term dependencies, fixed spatial patterns, and applies

attention to non-stationary, time-varying inputs, resulting in improved
performance for EEG-based emotion recognition. However, a common
imitation of the methods discussed above is that they are applicable
nly to window-based EEG classification and not to single time-point
lassification.

Graph convolutional networks (GCNs) have become increasingly
popular in EEG signal classification due to their ability to encode
non-Euclidean data, offering flexibility in analyzing graph-structured
information [11,33]. GCNs can be applied across various graph analysis
tasks:

• Node-Level Tasks: Predicting properties of individual nodes,
used for both regression and classification.

• Edge-Level Tasks: Predicting edge properties, mainly for classi-
fication.

• Graph-Level Tasks: Classifying entire graphs based on their
structure and properties.

Two main categories of GCNs are the spectral method [34–36]
and the spatial method [37–40]. Studies [15,41] indicate challenges
associated with the spatial method, particularly for matching local
neighbourhoods. GCNs have an important application in classifying
EEG signals at the graph level, where EEG readings from individual
electrodes are treated as node attributes. EEG feature extraction is
roadly categorised into time and frequency domain features. Building
n the work of [42], time-domain metrics such as Root Mean Square,

skewness, minmax, variance, kurtosis, Hurst Exponent, Higuchi, and
Petrosian fractal dimensions are derived within predefined time win-
dows by [17]. Within the frequency domain, emphasis is placed on
ower spectral density (PSD) and power ratio (PR) across specific

frequency bands: 𝛿[0.5–4 Hz], 𝜃[4–8 Hz], 𝛼[8–13 Hz], 𝛽[13–30 Hz],
nd 𝛾[30–110 Hz]. This is supplemented by other metrics such as
otal power, spectral entropy, and peak frequency, all captured within
hosen time windows.

The DG-HAM [43] and EEG-ARNN [44] models classify EEG tasks
sing raw EEG signals within a specified window length, without
xtracting graph-based features, such as time-domain or frequency-

domain features. In contrast, [19] introduced the state-of-the-art GCNs-
Net for time-point classification, which treats each time point as an
independent feature, enabling a more detailed time-resolved analysis
of EEG MI signals. Although GCNs-Net performs well in classifying
EEG MI single time points, it only considers the functional connec-
tivity of EEG channels during GNN operations, which can limit its
accuracy. Additionally, its fully dense adjacency matrix requires high
multiply-accumulate (MAC) operations, making it less efficient for
single time-point EEG classification.

In this study, we propose the EEG_GLT method for adjacency ma-
trix construction, integrated with a spectral GNN-based EEG_GLT-Net
architecture, to classify EEG MI at the single-time-point level. Using the
aw EEG MI single-time-point signals from the time-resolved PhysioNet

dataset. The primary contributions of this study can be summarised as:

• EEG Graph Lottery Ticket (EEG_GLT): We present a novel
method to construct an optimal adjacency matrix for EEG MI
signal classification. Achieved through the iterative pruning of
relationships among EEG channels, the EEG_GLT introduces a new
direction in EEG adjacency matrix design.

• Channel Relationship Optimisation: Our approach reveals the
most advantageous relationship between EEG channels. It is tai-
lored for catering to individual subjects and the architecture of
GCN models, eliminating the need for prior knowledge about the
inter-relationships among EEG channels.
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Fig. 1. Our model: (a) Overall architecture (classifying EEG MI of one time point 1
160

𝑠 of signals from 64 EEG electrodes). Note that EEG Graph adjacency matrix can be 𝐴𝐺 𝑒𝑜𝑑 𝑒𝑠𝑖𝑐 ,
𝐴𝑃 𝐶 𝐶 or 𝐴𝐸 𝐸 𝐺_𝐺 𝐿𝑇 , (b) Components inside the spectral graph convolution block, (c) Chebyshev spectral graph convolution.
• Computational Efficiency: Recognising the computational inten-
sity of classifying EEG at single time points, our strategy mitigates
the high demand for computational resources, proving especially
beneficial for real-time applications.

• Performance Validation: We benchmark the accuracy of our
EEG_GLT method against two well-established techniques: the
Geodesic method and the leading PCC method employed in the
state-of-the-art GCNs-Net. This evaluation spans across six distinct
spectral GCN models. Each model is distinguished by its unique
specifications, including variations in GCN layer structures, poly-
nomial degrees of filters, numbers of Fully Connected (FC) lay-
ers, and the amount of hidden nodes. Additionally, we compare
the performance of our model with seven other state-of-the-art
models to demonstrate its effectiveness.

3. Methodology

3.1. Overview

As shown in Fig. 1, the project framework was as follows:

• EEG signals from 64 channels were captured at each time point
1

160 𝑠 and used as input features for the EEG_GLT-Net.
• Additionally, the EEG_GLT-Net accepted the graph representation

as another form of input. This representation included the graph
Laplacian, derived using three different methods: Pearson Corre-
lation Coefficient (PCC) between EEG channels, Geodesic distance
between EEG electrodes, and our newly proposed EEG Graph
Lottery Ticket Adjacency Matrix Mask (𝑚𝐸 𝐸 𝐺_𝐺 𝐿𝑇 ).

• The EEG_GLT-Net processed these inputs to decode the EEG MI
time point signal, which was then categorised into one of the four
MI types.

3.2. Dataset description

This paper utilised the PhysioNet EEG Motor Imagery (MI) dataset
[45] encompassing over 1500 EEG recordings sourced from 109 par-
3 
ticipants. The recordings were captured using 64 EEG electrodes, con-
sistent with the international 10-10 system, with the exclusion of F9,
Nz, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10 channels. Each
participant executed 84 trials, broken down into 3 runs with, 7 trials
per run, spanning 4 distinct tasks. The tasks included:

• Task 1: Imagining the act of opening and closing the left fist.
• Task 2: Imagining the act of opening and closing the right fist.
• Task 3: Imagining the act of opening and closing both fists simul-

taneously.
• Task 4: Imagining the act of opening and closing both feet.

Recordings in the dataset were originally sampled at 160 Hz and each
recording had a duration of 4 s. Our study employed time point samples
for classification, and our analysis was strictly conducted at the subject
level. Although the original dataset comprised 109 participants, our
study focused solely on 20 subjects, labeled 𝑆1 to 𝑆20.

3.3. Data pre-processing and feature extraction

In the initial pre-processing phase, raw signals underwent only
a notch filter at the 50 Hz power line frequency, foregoing typical
filtering or denoising steps to maximise data integrity. Although each
task lasted for a 4-second duration, only the time period from 𝑡 = 1 s
to 𝑡 = 3 s was considered in our experiments. This is because subjects
typically exhibited greater readiness post 𝑡 = 1 s. All 64 EEG channels
were incorporated into our model. We utilised the signal values from
each EEG channel at each time point as features for individual nodes.
The construction methods of the adjacency matrix, which captures
brain connectivity, are elaborated in Sections 3.4 and 3.5. The training
data underwent normalisation, ensuring a mean 𝜇 = 0 and a standard
deviation 𝜎 = 1 for each channel. Following this, both the test and
validation sets were adjusted in alignment with the normalisation
parameters established from the training data.

3.4. Graph preliminary

3.4.1. Graph representation
Consider a directed weighted graph represented as 𝐺 = {𝑉 , 𝐸}.

Here, |𝑉 | = 𝑁 denoted the number of nodes and |𝐸| was the count
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of edges connecting the nodes. The node set was defined as 𝑉 =
{𝑣1, 𝑣2,… , 𝑣𝑛} and the node feature matrix of the entire graph was
represented by 𝑋 ∈ R𝑁×𝐹 . The adjacency matrix, denoted as 𝐴 ∈
R𝑁×𝑁 , captured the graph’s overall topology. Specifically, if an edge
xisted between nodes 𝑣𝑖 and 𝑣𝑗 (i.e., (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸), then 𝐴[𝑖, 𝑗] ≠ 0.
therwise, 𝐴[𝑖, 𝑗] = 0.

The adjacency matrix for the PCC method was defined in Eq. (2),
where 𝐼 was the identity matrix and |𝑃 | was the absolute PCC matrix as
in Eq. (1). This PCC matrix, |𝑃 | ∈ [0, 1], captured the linear correlations
among EEG channel signals.

𝑃𝑖𝑗 =
𝑐 𝑜𝑣(𝑥𝑖, 𝑥𝑗 )

𝜎𝑖𝜎𝑗
(1)

𝐴𝑃 𝐶 𝐶 = |𝑃 | − 𝐼 (2)

For the Geodesic-distance adjacency matrix method, the configura-
ion of 64 electrodes into a unit sphere acted as a stand-in for spatial
rain connectivity. This allowed the computation of geodesic distances
etween the electrodes placed on a sphere of radius 𝑟. If two electrodes

have Cartesian coordinates (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 ), the geodesic
distance for the adjacency matrix was calculated using Eq. (3). These
distances were standardised into the [0, 1] range.

𝐴𝐺 𝑒𝑜𝑑 𝑒𝑠𝑖𝑐
𝑖𝑗 = 𝑎𝑟𝑐 𝑜𝑠( (𝑥𝑖 𝑥𝑗 + 𝑦𝑖 𝑦𝑗 + 𝑧𝑖 𝑧𝑗 )

𝑟2
) (3)

The degree matrix, 𝐷, was a diagonal representation of 𝐴, where
he 𝑖th diagonal element of 𝐷 was computed as 𝐷𝑖𝑖 =

∑𝑁
𝑗=1 𝐴𝑖𝑗 . The

ombinatorial Laplacian matrix, 𝐿 ∈ R𝑁×𝑁 , was described as 𝐿 = 𝐷−𝐴.
 normalised version of this combinatorial Laplacian can be obtained

using:

𝐿 = 𝐼𝑁 −𝐷−1∕2𝐴𝐷−1∕2 (4)

3.4.2. Spectral graph filtering
The eigenvectors of the graph Laplacian matrix can be expressed

as graph Fourier modes, with {𝑢𝑙}𝑁−1
𝑙=0 ∈ R. The diagonal matrix of

these Fourier frequencies, 𝛬, is given by 𝑑 𝑖𝑎𝑔[𝜆0,… , 𝜆𝑁−1] ∈ R𝑁×𝑁 .
e defined the Fourier basis, 𝑈 = [𝑢0,… , 𝑢𝑁−1] ∈ R𝑁×𝑁 , which allows

for the decomposition of the Laplacian matrix, 𝐿, into 𝐿 = 𝑈 𝛬𝑈𝑇 .
he signal 𝑥 can be transformed by graph Fourier into 𝑥̂ ∈ R𝑁 using
̂ = 𝑈𝑇 𝑥, while the inverse graph Fourier transform is given by 𝑥 = 𝑈 ̂𝑥.
he convolution operation on graph 𝐺 is defined as:

𝑥 ∗𝐺 𝑔 = 𝑈 ((𝑈𝑇 𝑥)⊙ (𝑈𝑇 𝑔)) (5)

where 𝑔 represents the convolutional filter and ⊙ denotes the Hadamard
product. Given that 𝑔𝜃(𝛬) = 𝑑 𝑖𝑎𝑔(𝜃), where 𝜃 ∈ R𝑁 represents the
vector of Fourier coefficients, the Graph convolution operation can be
implemented as follows:

𝑥 ∗𝐺 𝑔𝜃 = 𝑈 𝑔𝜃(𝛬)𝑈𝑇 𝑥 (6)

where 𝑔𝜃 is a non-parametric filter, and polynomial approximation is
employed to mitigate the excessive computational complexity. Cheby-
shev graph convolution, a specific instance of graph convolution,
utilises Chebyshev polynomials for filter approximation, thereby re-
ucing computational complexity from 𝑂(𝑁2) to 𝑂(𝐾 𝑁) [35]. The
pproximation of 𝑔𝜃(𝛬) under the 𝐾th order Chebyshev polynomial
ramework is given by:

𝑔𝜃(𝛬) =
𝐾−1
∑

𝑘=0
𝜃𝑘𝑇𝑘(𝛬̂) (7)

̂ = 2𝛬
𝛬𝑚𝑎𝑥

− 𝐼𝑁 (8)

Normalising 𝛬 can be achieved by using Eq. (8), where 𝛬𝑚𝑎𝑥 denotes
he largest entry in the diagonal of 𝛬, and 𝐼𝑁 represents the diagonal
atrix of the scaled eigenvalues. In the equation above, 𝜃 refers to
𝑘 m

4 
Fig. 2. EEG graph (𝑚𝑔) pruning using Algorithm 1: At each 𝑁𝑒𝑝 iteration, the bottom
𝑔% are pruned, reducing density from 100% until the lowest density 𝑠𝑔%. Solid lines
ndicate remaining edges, while red-dashed lines depict removed edges.

the Chebyshev polynomial’s coefficients, and 𝑇𝑘(𝛬̂) is obtained by the
following equations:

{𝑇0(𝛬̂) = 1, 𝑇1 = (𝛬̂), 𝑇𝑘(𝛬̂) = 2𝛬̂𝑇𝑘−1(𝛬̂) − 𝑇𝑘−2(𝛬̂)} (9)

Finally, the signal 𝑥 can be convolved with the defined filter 𝑔𝜃 as
follows:

𝑥 ∗𝐺 𝑔𝜃 = 𝑈
𝐾−1
∑

𝑘=0
𝜃𝑘𝑇𝑘(𝛬̂)𝑈𝑇 𝑥 (10)

𝑥 ∗𝐺 𝑔𝜃 =
𝐾−1
∑

𝑘=0
𝜃𝑘𝑇𝑘(𝐿̃)𝑥 (11)

The normalised Laplacian matrix, denoted as 𝐿̃ can be computed
sing the following Eq. (12).

𝐿̃ = 2𝐿
𝜆𝑚𝑎𝑥

− 𝐼𝑁 (12)

3.5. EEG Graph Lottery Ticket (EEG_GLT)

In the process of executing a forward pass with the spectral GNN
function, symbolised as 𝑓 (., 𝛩), and given a graph denoted as 𝐺 =
{𝐴, 𝑋}, the method presented in UGS method [22] aims to search the
djacency matrix mask 𝑚𝑔 ∈ {0, 1} with the maximum sparsity that
oncurrently maintained the highest prediction accuracy. In our model,
he original matrix 𝐴𝑜𝑟𝑖𝑔 𝑖𝑛𝑎𝑙_𝑖𝑗 = {0, 𝑖𝑓 𝑖 = 𝑗; 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} in the shape
f |𝑉 |× |𝑉 | was not trainable. The adjacency matrix mask in our model
𝑔 ∈ R|𝑉 |×|𝑉 | was trainable.

𝐴 = 𝐴𝑜𝑟𝑖𝑔 𝑖𝑛𝑎𝑙 ⊙ 𝑚𝑔 (13)

Once the model had undergone 𝑁 epochs, the lowest 𝑝𝑔% (𝑝𝑔 =
0%) of the values in the trained 𝑚𝑔 at highest accuracy of the validation
ataset were pruned. These values were set to 0, while the remaining
alues were set to 1 as shown in Fig. 2. Concurrently, the spectral
ilter weights, represented as 𝛩, were reset to their initial state, 𝛩0.
he trained 𝑚𝑔 that yielded the highest accuracy of the validation set
ithin the span of 𝑁 epochs was designated as the Graph Lottery Ticket

GLT) and duly noted. This process continued, and a GLT was recorded
for each level of graph sparsity until the sparsity of 𝑚𝑔 fell below the
pre-determined final sparsity level, 𝑠𝑔 . The EEG_GLT was ultimately
identified as the GLT that achieves the highest accuracy alongside the
highest level of graph sparsity. Moreover, it delineated the optimal
adjacency matrix capable of producing the highest accuracy.

3.6. General model architecture

A GCN structure was designed to classify EEG MI signals. This
architecture comprised three primary blocks: the GCN block, the Global
Mean Pooling Block, and the Fully Connected Block. In the GCN Block,
generalised graph features for each EEG electrode were extracted.
Subsequently, the features from all 64 channels were consolidated using
a mean in the Global Mean Pooling Block. The Fully Connected Block

as employed for the final prediction. A detailed representation of this
odel architecture is provided in Fig. 1 and Table 1.
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Table 1
Generalised architecture of GCN model.

Layer Type Input size Polynomial order Weights Bias Output Activation

Input Input 𝑁 × 1 – – – – –

Block A - GCN Block

C1 Graph Convolution 𝑁 × 1 𝐾1 1 × 𝐹1 ×𝐾1 𝑁 × 𝐹1 𝑁 × 𝐹1 –
BNC1 Batch Normalisation 𝑁 × 𝐹1 – 𝐹1 𝐹1 𝑁 × 𝐹1 ReLU
C2 Graph Convolution 𝑁 × 𝐹1 𝐾2 𝐹1 × 𝐹2 ×𝐾2 𝑁 × 𝐹2 𝑁 × 𝐹2 –
BNC2 Batch Normalisation 𝑁 × 𝐹2 – 𝐹2 𝐹2 𝑁 × 𝐹2 ReLU
C3 Graph Convolution 𝑁 × 𝐹2 𝐾3 𝐹2 × 𝐹3 ×𝐾3 𝑁 × 𝐹3 𝑁 × 𝐹3 –
BNC3 Batch Normalisation 𝑁 × 𝐹3 – 𝐹3 𝐹3 𝑁 × 𝐹3 ReLU
C4 Graph Convolution 𝑁 × 𝐹3 𝐾4 𝐹3 × 𝐹4 ×𝐾4 𝑁 × 𝐹4 𝑁 × 𝐹4 –
BNC4 Batch Normalisation 𝑁 × 𝐹4 – 𝐹4 𝐹4 𝑁 × 𝐹4 ReLU
C5 Graph Convolution 𝑁 × 𝐹4 𝐾5 𝐹4 × 𝐹5 ×𝐾5 𝑁 × 𝐹5 𝑁 × 𝐹5 –
BNC5 Batch Normalisation 𝑁 × 𝐹5 – 𝐹5 𝐹5 𝑁 × 𝐹5 ReLU
C6 Graph Convolution 𝑁 × 𝐹5 𝐾6 𝐹5 × 𝐹6 ×𝐾6 𝑁 × 𝐹6 𝑁 × 𝐹6 –
BNC6 Batch Normalisation 𝑁 × 𝐹6 – 𝐹6 𝐹6 𝑁 × 𝐹6 ReLU

Block B - Global Mean Pooling Block

P Global Mean Pool 𝑁 × 𝐹6 – – – 𝐹6 –

Block C - Fully Connected Block

FC1 Fully Connected 𝐹6 – 𝐹6 ×𝐻1 𝐻1 𝐻1 –
BNFC1 Batch Normalisation 𝐻1 – 𝐻1 𝐻1 𝐻1 ReLU
FC2 Fully Connected 𝐻1 – 𝐻1 ×𝐻2 𝐻2 𝐻2 –
BNFC2 Batch Normalisation 𝐻2 – 𝐻2 𝐻2 𝐻2 ReLU
FC3 Fully Connected 𝐻2 × 𝑂 – 𝐻2 × 𝑂 𝑂 𝑂 –
S Softmax Classification 𝑂 – – – 𝑂 –

𝑁 = Number of EEG Channels (i.e. 64); 𝑂 = Number of EEG MI Classes (i.e. 4)
Algorithm 1 Finding EEG Graph Lottery Ticket
Input: Graph 𝐺 = {𝐴, 𝑋}, GNN 𝑓 (𝐺 , 𝛩), GNN initialisation

𝛩0, 𝐴𝑜𝑟𝑖𝑔 𝑖𝑛𝑎𝑙_𝑖𝑗 = {0, 𝑖𝑓 𝑖 = 𝑗; 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒},
initial Adjacency Matrix Mask 𝑚0

𝑔 = 𝐴𝑜𝑟𝑖𝑔 𝑖𝑛𝑎𝑙,
learning rate 𝜂 = 0.01, pruning rate 𝑝𝑔 = 10%,
pre-defined lowest Graph Density Level 𝑠𝑔 = 13.39%.

Output: EEG Graph Lottery Ticket (𝑚𝑔_𝐸 𝐸 𝐺_𝐺 𝐿𝑇 ) − 𝑚𝑠,𝑖
𝑔

at the highest accuracy with the highest sparsity
possible.

1: while
||𝑚𝑠

𝑔 ||0
||𝐴𝑜𝑟𝑖𝑔 𝑖𝑛𝑎𝑙 ||0 ≥ 𝑠𝑔 do

2: for for iteration 𝑖 = 0, 1, 2, ..., 𝑁𝑒𝑝 do
3: Forward 𝑓 (., 𝛩𝑖) with 𝐺𝑠 = {𝑚𝑠,𝑖

𝑔 ⊙ 𝐴𝑜𝑟𝑖𝑔 𝑖𝑛𝑎𝑙 , 𝑋}
to compute Cross-Entropy Loss, 𝐿

4: Backpropagate and update, 𝛩𝑖 and 𝑚𝑠,𝑖
𝑔 using Adam Opti-

miser
5: end for
6: Record 𝑚𝑠,𝑖

𝑔 with the highest accuracy in validation set during
the 𝑁𝑒𝑝 iteration

7: Set 𝑝𝑔 = 10% of the lowest absolute magnitude values in 𝑚𝑠
𝑔 to

0 and the others to 1, then obtain a new 𝑚𝑠+1,0
𝑔

8: end while

3.7. Model setting

Let 𝐹𝑖 represent the number of filters at each GCN level, given by
𝐹𝑖 ∈ [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6]. Similarly, 𝐾𝑖 denotes the polynomial order
of the filter for each 𝑖th layer, and is defined as 𝐾𝑖 ∈ [𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5,
𝐾6]. 𝑂 indicates the number of MI classes for prediction. Due to the
large volume of instances in the training set, we employed a mini-batch
size 𝐵 of 1024. A batch normalisation (BN) layer was incorporated
after both the spectral GCN and Fully Connected layers. This BN
layer re-scales and re-centres normalised signals to match the original
distribution within the mini-batch, addressing the internal covariate
shift issue and helping to mitigate the gradient vanishing/exploding
problem. Additionally, 50% dropout layers were integrated after the
ReLU layers (Eq. (14)) within the Fully Connected Block for regularisa-
tion. The details of the model settings can be found in Table 2, while
5 
Fig. 3. Geodesic distance adjacency matrix (𝐴𝐺 𝑒𝑜𝑑 𝑒𝑠𝑖𝑐 ).

the hyperparameter settings are provided in Table 3.

𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (14)

𝑆 𝑜𝑓 𝑡𝑚𝑎𝑥(𝑦𝑖) = 𝑒𝑦𝑖
∑𝑂

𝑖=1 𝑒
𝑦𝑖

(15)

where 𝑦𝑖 represent the predicted probability of an instance for each
class, ranging over 𝑦𝑖 ∈ [𝑦1,… , 𝑦𝑂]. 𝑂 denotes the total number of
classes. The loss function employed was the cross-entropy loss.

𝐿𝑜𝑠𝑠 = − 1
|𝐵|

𝐵
∑

𝑏=1

𝑂
∑

𝑖=1
𝑦𝑖.𝑙 𝑜𝑔(𝑦𝑖) (16)

Both accuracy and F1 score evaluation metrics were employed to
assess the performance of models.

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝐹 𝑃 + 𝑇 𝑁 + 𝐹 𝑁 (17)

𝑅𝑒𝑐 𝑎𝑙 𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 (18)

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (19)

𝐹1 𝑆 𝑐 𝑜𝑟𝑒 = 2 × 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐 𝑎𝑙 𝑙
𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐 𝑎𝑙 𝑙 (20)
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Table 2
Model setting.

Model Model framework Number of GCN filters GCN filter
polynomial order

Number of FC
hidden nodes

A (𝐶−𝐵 𝑁 𝐶) × 6 −𝑃 − (𝐹 𝐶−
𝐵 𝑁 𝐹 𝐶) × 2 − 𝐹 𝐶 − 𝑆

16, 32, 64, 128, 256, 512 5, 5, 5, 5, 5, 5 1024, 2048, 4

B (𝐶−𝐵 𝑁 𝐶) × 6 −𝑃 − (𝐹 𝐶−
𝐵 𝑁 𝐹 𝐶) × 2 − 𝐹 𝐶 − 𝑆

16, 32, 64, 128, 256, 512 2, 2, 2, 2, 2, 2 1024, 2048, 4

C (𝐶 − 𝐵 𝑁 𝐶) × 5 − 𝑃 −
(𝐹 𝐶 − 𝑆)

16, 32, 64, 128, 256 5, 5, 5, 5, 5 4

D (𝐶 − 𝐵 𝑁 𝐶) × 5 − 𝑃 −
(𝐹 𝐶 − 𝑆)

16, 32, 64, 128, 256 2, 2, 2, 2, 2 4

E (𝐶−𝐵 𝑁 𝐶) × 5 −𝑃 − (𝐹 𝐶−
𝐵 𝑁 𝐹 𝐶) × 2 − 𝐹 𝐶 − 𝑆

64, 128, 256, 512, 1024 5, 5, 5, 5, 5 512, 128, 4

F (𝐶−𝐵 𝑁 𝐶) × 5 −𝑃 − (𝐹 𝐶−
𝐵 𝑁 𝐹 𝐶) × 2 − 𝐹 𝐶 − 𝑆

64, 128, 256, 512, 1024 2, 2, 2, 2, 2 512, 128, 4
Fig. 4. PCC Adjacency matrix (𝐴𝑃 𝐶 𝐶 ) of Subject 𝑆6 and 𝑆14.

Fig. 5. Representations of 𝑚𝑔_𝐸 𝐸 𝐺_𝐺 𝐿𝑇 for Subject 𝑆6 at 13.39% density. (a) Adjacency
Matrix - Model A (Accuracy: 78.13%) (b) Graph - Model A (c) Adjacency Matrix -
Model E (Accuracy: 73.55%) (d) Graph - Model E.
6 
Table 3
Hyperparameter setting.

Hyperparameter Value

Training Epochs (𝑁𝑒𝑝) 1000
Batch Size (𝐵) 1024
Dropout Rate 0.5
Optimiser Adam
Initial Learning Rate (𝜂) 0.01

4. Results and discussion

4.1. Geodesic vs PCC adjacency matrix construction method

The Table 4 presents the mean performance accuracy and F1 score
across various models for different adjacency matrix construction meth-
ods, including Geodesic, PCC, and EEG_GLT, for each subject. Among
the existing methods (PCC and Geodesic), the PCC adjacency method
consistently outperformed the Geodesic method, enhancing the accu-
racy by 0.98%–22.60% and the F1 score by 0.99%–22.86%. Table 5 and
Fig. 6 detail the mean accuracies and F1 scores for 20 subjects (𝑆1 - 𝑆20)
across different matrix construction methods for each model setting.
Notably, the PCC method outperformed the Geodesic method across
all model settings, improving accuracy by 9.76% and the F1 score by
9.63%. The superiority of the PCC method in EEG MI adjacency matrix
construction over the Geodesic method stems a major limitation in the
latter: it considers only the geodesic distance between EEG electrodes,
leading to identical adjacency matrices for all 20 subjects (Fig. 3). In
contrast, the PCC method produces unique matrices for each subject,
offering tailored matrices that are better suited for subject-based EEG
MI classification (Fig. 4). Our experiment revealed that using the rela-
tive physical distance between EEG electrodes was suboptimal due to
limited accuracy. Since EEG electrodes do not have direct connections
to brain tissue, electrical signals produced by large neuron groups that
fire simultaneously or synchronously need to traverse multiple tissue
layers such as the cerebral cortex, cerebrospinal fluid, skull, and scalp
before detected by EEG electrodes. Given that the skull attenuates these
signals, and causes a smearing effect [46], coupled with individual
differences in skull thickness, scalp conductivity, and MI task approach,
it was the most logical to use unique adjacency matrices for each
individual.

In the 𝐴𝐺 𝑒𝑜𝑑 𝑒𝑠𝑖𝑐 adjacency matrix construction, we adopted a unit
sphere assumption because the PhysioNet dataset lacks data on indi-
vidual head shapes. Given natural variations in head structure, 𝐴𝐺 𝑒𝑜𝑑 𝑒𝑠𝑖𝑐
values could potentially differ for each subject.

4.2. EEG_GLT method vs PCC method in adjacency matrix construction

Our EEG_GLT method consistently surpassed the PCC method in
both accuracy and F1 score. As shown in Table 4, EEG_GLT demon-
strated substantial increase in accuracy and F1 score compared to
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Table 4
Accuracy comparison across different methods of adjacency matrix construction for each subject.

Subject Accuracy (Mean±Std) F1 score (Mean±Std)

Geodesic PCC EEG_GLT (our method) Geodesic PCC EEG_GLT (our method)

𝑆1 66.19% ± 4.17% 76.47% ± 9.94% 98.51% ± 0.77% 66.53% ± 4.36% 76.91% ± 9.78% 98.53% ± 0.78%
𝑆2 46.53% ± 1.33% 69.13% ± 7.05% 76.18% ± 5.53% 46.47% ± 1.46% 69.34% ± 7.37% 76.19% ± 5.52%
𝑆3 76.18% ± 4.98% 87.28% ± 9.19% 99.17% ± 0.32% 76.12% ± 5.00% 87.43% ± 8.97% 99.19% ± 0.31%
𝑆4 96.41% ± 1.97% 99.13% ± 1.01% 99.97% ± 0.06% 96.44% ± 1.98% 99.10% ± 1.12% 99.97% ± 0.05%
𝑆5 37.05% ± 1.04% 43.19% ± 3.03% 50.95% ± 3.80% 36.66% ± 0.97% 43.28% ± 2.73% 50.86% ± 3.85%
𝑆6 44.37% ± 1.59% 58.23% ± 5.19% 69.60% ± 5.67% 44.29% ± 1.65% 58.25% ± 5.49% 69.50% ± 5.70%
𝑆7 40.44% ± 1.19% 50.98% ± 3.80% 59.45% ± 3.00% 40.30% ± 1.23% 51.10% ± 3.49% 59.34% ± 2.99%
𝑆8 89.03% ± 7.04% 95.06% ± 5.96% 99.95% ± 0.07% 88.84% ± 6.88% 95.14% ± 5.81% 99.96% ± 0.07%
𝑆9 87.26% ± 14.26% 97.64% ± 3.33% 99.95% ± 0.08% 87.41% ± 14.49% 97.70% ± 3.78% 99.95% ± 0.08%
𝑆10 98.26% ± 0.31% 99.24% ± 0.19% 99.99% ± 0.01% 98.25% ± 0.32% 99.25% ± 0.20% 99.99% ± 0.01%
𝑆11 97.18% ± 1.12% 99.48% ± 0.70% 99.99% ± 0.01% 97.18% ± 1.13% 99.49% ± 0.74% 99.99% ± 0.01%
𝑆12 71.54% ± 3.44% 78.07% ± 8.95% 99.69% ± 0.32% 71.40% ± 3.37% 77.94% ± 8.76% 99.70% ± 0.31%
𝑆13 36.52% ± 0.32% 41.35% ± 1.23% 44.50% ± 2.23% 36.49% ± 0.45% 41.01% ± 1.34% 44.47% ± 2.23%
𝑆14 40.21% ± 1.80% 55.97% ± 6.47% 72.39% ± 6.43% 40.10% ± 1.88% 56.05% ± 6.57% 72.71% ± 6.13%
𝑆15 46.16% ± 1.28% 52.11% ± 3.96% 67.55% ± 9.26% 45.92% ± 1.93% 52.20% ± 3.66% 67.52% ± 9.27%
𝑆16 95.62% ± 3.87% 96.75% ± 5.00% 99.98% ± 0.03% 94.94% ± 5.25% 96.72% ± 5.07% 99.98% ± 0.03%
𝑆17 92.07% ± 8.10% 98.83% ± 2.33% 99.98% ± 0.03% 91.95% ± 8.31% 98.66% ± 2.76% 99.98% ± 0.03%
𝑆18 71.24% ± 5.96% 86.19% ± 10.95% 99.92% ± 0.12% 73.28% ± 3.28% 85.98% ± 11.10% 99.93% ± 0.13%
𝑆19 33.18% ± 0.40% 38.38% ± 2.27% 41.41% ± 1.44% 32.85% ± 0.32% 38.35% ± 2.32% 41.27% ± 1.34%
𝑆20 93.77% ± 2.08% 98.44% ± 0.68% 99.94% ± 0.11% 93.76% ± 2.06% 98.45% ± 0.72% 99.95% ± 0.12%
c
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Table 5
Accuracy comparison across different methods of adjacency matrix construction for
each model.

Model Adj method Avg. Accuracy Avg. F1 score

Model A
Geodesic 70.70% 70.14%
PCC 79.82% 79.77%
EEG_GLT 85.90% 85.89%

Model B
Geodesic 70.70% 70.65%
PCC 78.69% 78.32%
EEG_GLT 83.84% 83.80%

Model C
Geodesic 65.49% 65.43%
PCC 74.13% 74.41%
EEG_GLT 83.27% 83.28%

Model D
Geodesic 62.97% 63.08%
PCC 68.13% 68.05%
EEG_GLT 81.52% 81.48%

Model E
Geodesic 69.20% 69.16%
PCC 78.90% 78.88%
EEG_GLT 85.91% 85.88%

Model F
Geodesic 69.34% 69.28%
PCC 76.89% 77.26%
EEG_GLT 83.26% 83.36%

Fig. 6. Comparison of model accuracy across different adjacency matrix construction
methods.
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the PCC method, by 0.52%–22.04% and 0.50%–21.76%, respectively.
Unlike the PCC method, our EEG_GLT adjacency matrix is dynamic with
the ability to adapt to both the individual subject and the model settings
of GCNs (Table 2), as shown in Fig. 5.

According to Table 5 and Fig. 6, our EEG_GLT method improved
the mean accuracies and F1 scores for 20 subjects by 13.39% and
13.43%, respectively compared to the PCC method. This underscores
the necessity of model-specific adjustments, in addition to subject-
based tailoring in the adjacency matrix construction, to attain the best
possible outcomes. Distinctly, our EEG_GLT matrix is asymmetrical due
to the iterative pruning process detailed in Algorithm 1, which refines
the matrix until the optimal EEG Graph Lottery Ticket is identified.

Fig. 7 presents the classification accuracy across various adjacency
matrix densities for Subjects 𝑆1, 𝑆3, 𝑆6, 𝑆12, 𝑆14 and 𝑆15. The data indi-
ates an upward trend in classification accuracy with iterative pruning.
ost importantly, the accuracy is notably lower at an adjacency matrix

density of 100% in comparison to other densities. This observation
suggests that some initial connections between EEG electrodes might
e unnecessary, or even counterproductive, for achieving optimal clas-

sification. Removing these redundant links may boost the classification
accuracy. Hence, a fully connected model between EEG channels may
not be the most effective approach.

Table 5 displays the optimal EEG_GLT adjacency matrix
(𝑚𝑔_𝐸 𝐸 𝐺_𝐺 𝐿𝑇 ) density for each subject. The transformation of the adja-
cency matrix mask 𝑚𝑔 for the subjects 𝑆6 and 𝑆14 at different densities
is shown in Figs. 8 and 9 respectively. For subjects 𝑆5, 𝑆7, 𝑆13, and
𝑆19, their optimal 𝑚𝑔_𝐸 𝐸 𝐺_𝐺 𝐿𝑇 were identified early at a 100% density.
In contrast, other subjects attained their best results at densities below
22.53% for 2nd order models. When considering 5th order models, such
as Model B, Model D, and Model F, the optimal EEG_GLTs emerged at
densities of 59.00% or lower (see Table 6).

While our approach enhanced the accuracy for subjects 𝑆5, 𝑆7, 𝑆13,
nd 𝑆19, the results for both accuracy and F1 score lingered below
0.00%. A potential explanation is that relying on a single time point
eature from EEG channels might not be adequate for MI tasks in these
ubjects, since there is inherent variability in the time required (or tem-
oral dynamics) to execute the MI task among different individuals, as
eferenced in [47]. This variability might also explain why eliminating

edges between EEG channels does not necessarily lead to improved
performance accuracy for those subjects.

4.3. Model setting vs Adjacency matrix construction methods

Based on Table 5, for the Geodesic method, 2nd order GCN filters
classify with higher average accuracy and F1 score than 5th order fil-
ters. However, for the PCC and EEG GLT methods, 5th order GCN filters
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Fig. 7. Performance accuracy across different 𝑚𝑔 densities using different models for Subjects 𝑆1, 𝑆3, 𝑆6, 𝑆12, 𝑆14 and 𝑆15 Accuracy vs 𝑚𝑔 Densities.
Fig. 8. EEG_GLT Adjacency matrix mask (𝑚𝑔 ) of Subject 𝑆6 at different densities using Model A. The 𝑚𝑔 density at 13.39% produces the highest accuracy of 78.13%.
perform better. As highlighted in Section 4.2, our EEG_GLT method
consistently achieves better accuracy than both the PCC and Geodesic
methods. This remains the case even when the EEG_GLT adjacency
matrix is paired with Model D, characterised by its minimal complexity,
8 
encompassing just five spectral GCN layers with 2nd order filters and a
singular FC layer. These findings suggest that optimising the adjacency
matrix is more importance than refining the GCN architecture when
aiming for enhanced performance accuracy.
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Fig. 9. EEG_GLT Adjacency matrix mask (𝑚𝑔 ) of Subject 𝑆14 at different densities using Model A. The 𝑚𝑔 density at 13.39% produces the highest accuracy of 79.06%.
.

Table 6
Optimal EEG_GLT adjacency matrix (𝑚𝑔_𝐸 𝐸 𝐺_𝐺 𝐿𝑇 ) density of each subject across models

Subject Model A Model B Model C Model D Model E Model F
𝑆1 18.43% 13.39% 31.30% 28.15% 18.43% 13.39%
𝑆2 16.57% 13.39% 13.39% 28.15% 18.43% 25.32%
𝑆3 18.43% 25.32% 34.80% 31.30% 25.32% 20.49%
𝑆4 13.39% 13.39% 14.91% 20.49% 14.91% 13.39%
𝑆5 100.00% 31.30% 100.00% 100.00% 100.00% 100.00%
𝑆6 13.39% 20.49% 100.00% 14.91% 14.91% 20.49%
𝑆7 100.00% 28.15% 100.00% 31.30% 100.00% 59.00%
𝑆8 20.49% 18.43% 13.39% 14.91% 31.30% 14.91%
𝑆9 13.39% 16.57% 16.57% 14.91% 13.39% 13.39%
𝑆10 13.39% 13.39% 22.77% 20.49% 13.39% 13.39%
𝑆11 13.39% 13.39% 16.57% 13.39% 13.39% 13.39%
𝑆12 14.91% 13.39% 34.80% 28.15% 16.57% 13.39%
𝑆13 80.98% 34.80% 100.00% 20.49% 100.00% 22.77%
𝑆14 13.39% 13.39% 18.43% 13.39% 13.39% 22.77%
𝑆15 14.91% 13.39% 28.15% 13.39% 22.77% 14.91%
𝑆16 14.91% 13.39% 20.49% 18.43% 13.39% 13.39%
𝑆17 14.91% 13.39% 20.49% 22.77% 13.39% 13.39%
𝑆18 14.91% 13.39% 28.15% 20.49% 22.77% 31.30%
𝑆19 100.00% 59.00% 100.00% 22.77% 100.00% 31.30%
𝑆20 25.32% 22.77% 34.80% 16.57% 20.49% 34.80%

4.4. MACs saving using EEG_GLT method

The MACs inference for classifying a single-time-point EEG MI
signal is influenced by several model settings, including the model
framework, the number and polynomial order of GCN filters, and the
specifications of FC layers as the number of layers and the node count.
Among these, the count and polynomial orders of GCN filters at the
GCN layers are the primary determinants of the MACs requirement.
Both 𝐴𝐺 𝑒𝑜𝑑 𝑒𝑠𝑖𝑐 and 𝐴𝑃 𝐶 𝐶 maintain 100% densities in their adjacency
matrices. Consequently, the MACs inference for a single-time-point EEG
MI signal, when using models A to F, are as follows: 81.89M, 42.26M,
22.64M, 11.32M, 291.62M, and 146.10M, respectively.
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Table 7
MACs savings (%) for each subject: PCC’s best model accuracy vs. EEG_GLT accuracy
from models with adjacency matrix densities just surpassing PCC’s best accuracy.

Subj PCC EEG_GLT MACs

Model Acc. MACs Model (Adj%) Acc. MACs Saving

𝑆1 A 87.66% 81.89M D (13.39%) 97.04% 8.76M 89.30%
𝑆2 B 75.43% 42.26M B (13.39%) 78.09% 36.97M 12.52%
𝑆3 A 94.89% 81.89M D (13.39%) 98.22% 8.76M 89.30%
𝑆4 A 99.88% 81.89M B (13.39%) 99.98% 36.97M 54.85%
𝑆5 B 46.90% 42.26M B (13.39%) 48.73% 36.97M 12.52%
𝑆6 E 62.92% 291.62M B (13.39%) 70.17% 36.97M 87.32%
𝑆7 E 55.04% 291.62M B (13.39%) 57.68% 36.97M 87.32%
𝑆8 B 98.71% 42.26M D (13.39%) 99.78% 8.76M 79.27%
𝑆9 A 99.86% 81.89M B (13.39%) 99.98% 36.97M 54.85%
𝑆10 E 99.44% 291.62M D (13.39%) 99.97% 8.76M 97.00%
𝑆11 E 99.90% 291.62M D (13.39%) 99.98% 8.76M 97.00%
𝑆12 A 86.76% 81.89M D (13.39%) 99.05% 8.76M 89.30%
𝑆13 A 42.79% 81.89M B (13.39%) 43.57% 36.97M 54.85%
𝑆14 B 63.58% 42.26M D (13.39%) 66.25% 8.76M 79.29%
𝑆15 E 57.01% 291.62M D (13.39%) 57.72% 8.76M 97.00%
𝑆16 B 99.80% 42.26M D (13.39%) 99.85% 8.76M 79.27%
𝑆17 A 99.98% 81.89M B (13.39%) 100.00% 36.97M 44.93%
𝑆18 A 96.05% 81.89M D (16.57%) 99.58% 8.76M 76.14%
𝑆19 A 41.62% 81.89M A (89.98%) 41.78% 80.67M 1.49%
𝑆20 B 99.17% 42.26M D (13.39%) 99.68% 8.76M 79.27%

Our EEG_GLT method presents varied 𝐴𝐸 𝐸 𝐺_𝐺 𝐿𝑇 densities due to the
pruning employed by Algorithm 1. As elaborated in Section 4.2, the
EEG_GLT approach enhances classification accuracy through pruning,
which in turn decreases the MACs. Table 7 illustrates the percentage of
MACs savings for each subject, comparing the top accuracy value from
the PCC method to the EEG_GLT accuracies from models with adjacency
matrix densities slightly exceeding PCC’s best.

For performance equivalent to or surpassing PCC’s optimal accu-
racy, only Models D and B with the sparsest adjacency matrix density
(13.39%) are necessary. The PCC method requires between 42.26M
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Table 8
Performance comparisons state-of-the-art models.

Method Avg. Accuracy Avg. F1 score

FBCSP [25] 59.56% 60.04%
EEGNet [27] 72.20% 72.10%
CasCNN [28] 63.30% 63.18%
DG-HAM [43] 76.15% 76.08%
EEG-ARNN [44] 82.39% 82.17%
SSDA [29] 83.73% 83.24%
GCNs-Net [19] 80.16% 80.05%

Proposed EEG_GLT-Net 86.43% 86.23%

to 291.62M for one-time-point inference across 20 subjects to reach
peak accuracy. In contrast, our EEG_GLT approach needs only 8.76M
o 80.67M to achieve equal or better accuracy, translating to savings

in MACs of up to 97.00%.

4.5. Comparison with current state-of-the-art models

In this paper, we compare our proposed method, EEG_GLT-Net,
with seven other state-of-the-art (SOTA) models listed in Table 8,
including FBCSP [25], EEGNet [27], CasCNN [28], DG-HAM [43],
EEG-ARNN [44], SSDA [29], and GCNs-Net [19]. Our comparisons
begin with the traditional FBCSP approach, which leverages CSP to
extract features across multiple frequency bands and utilises SVM for
classification. We then compare with EEGNet, a widely used model
based solely on a CNN structure. Further, we assess CasCNN and SSDA,
both of which combine CNN and LSTM networks. Finally, we evaluate
our method against DG-HAM, EEG-ARNN, and GCNs-Net, which are
GNN-based networks.

The traditional FBCSP method achieves 59.56%, the lowest accu-
racy among the SOTAs, likely due to its reliance on SVM as the classi-
ier. The popular EEGNet achieves 72.20% accuracy, outperforming the

CasCNN model, which achieves only 63.30%. Within the CNN-based
OTA models, SSDA reaches the highest accuracy at 83.73%. Among
he GNN-based SOTA models, EEG-ARNN achieves the highest accuracy
t 82.39%, followed by GCNs-Net and DG-HAM with accuracies of
0.16% and 76.15%, respectively.

From the perspective of adjacency matrix construction methods, the
trainable adjacency matrix in EEG-ARNN outperforms the geodesic-
based DG-HAM and PCC-based GCNs-Net. Our proposed EEG_GLT-Net,
using single time-point classification at intervals of ( 1

160 )s, achieves the
highest overall accuracy of 86.43% among all SOTAs. Notably, GCNs-

et is the only other model employing single time-point classification;
owever, while the GCNs-Net accuracy falls short of our EEG_GLT-
et using the EEG_GLT adjacency matrix, it surpasses our model when

using a PCC-based adjacency matrix, reaching 79.82% which may be
attributed to the application of pooling layer after every GNN layer

ithin GCNs-Net.

4.6. Limitations and future works

In this paper, we introduced a novel method for constructing an
djacency matrix in GNNs to classify single time-point EEG motor
magery (MI) signals. While the single time-point classification at ( 1

160 s)
sing the EEG_GLT-Net architecture performs well for MI tasks with
istinct neural patterns, such as those in the PhysioNet dataset, it is less

effective for more subtle and overlapping motor imagery patterns with
inherent temporal information, as seen in datasets like BCICIV_2a. In
such cases, using longer signal segments typically exceeding one second
and incorporating feature extraction are essential to capture meaningful
temporal and spatial patterns for accurate classification.

However, the proposed EEG_GLT adjacency matrix construction
method is not restricted to single time-point classification. In future

ork, we plan to extend EEG_GLT to other benchmark EEG MI datasets,
10 
such as BCICIV_2a, and EEG movement datasets, including the High-
Gamma dataset. This extension will involve adapting the model ar-
chitecture to incorporate temporal data embeddings suitable for each
dataset.

5. Conclusion

Our EEG_GLT approach, developed for optimal adjacency matrix
construction in EEG MI time-point signal classification, consistently
outperforms both the Geodesic and PCC methods in accuracy and
F1 score. It is important to note that the PCC method is currently
employed in the state-of-the-art EEG time-point classification model,
GCNs-Net. Specifically, our EEG_GLT method enhances accuracy and
F1 score by margins ranging from 0.52% to 22.04% and 0.50% to
21.76%, respectively, compared to PCC. Furthermore, it improves the
average accuracy across 20 subjects by 13.39%. With this method,
optimal outcomes emerge when the adjacency matrix densities remain
below 22.53%. Our study emphasises the pivotal role played by the
configuration of the adjacency matrix in performance accuracy, over-
shadowing even model settings. In addition, our EEG_GLT approach has
much higher computational efficiency, demanding between 8.76M and
80.67M MACs, which is significantly less than the 42.26M to 291.62M
required by the PCC method for comparable or superior results.

While this research primarily focuses on identifying the optimal
djacency matrix, with pruning confined to the adjacency matrix,
pcoming studies will explore pruning GNN and FC layers weights to

further streamline computational costs. Additionally, we plan to expand
he number of time points used for feature extraction, especially for

subjects 𝑆5, 𝑆7, 𝑆13, and 𝑆19. In future work, we will refine Algorithm
1 to seamlessly integrate pooling layers within the GCN blocks under
the EEG_GLT method, to further optimise computational efficiency. To
achieve a more generalised understanding of the inter-relationships
between EEG channels, it is essential to incorporate a broader range
of tasks into models.
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