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A B S T R A C T

The extreme weather caused by climate change can easily impact the supply chain network (SCN) of industrial 
sectors, and its direct effects can spread along the SCN to other regions, thereby indirectly affecting the normal 
production and transactions of industrial products. This study integrates multi-region input-output analysis 
(MRIO), complex network analysis, and the technique for order preference by similarity to an ideal solution 
based on entropy weight method (TOPSIS-Entropy) to systematically assess the climate vulnerability of industrial 
sectors in 31 provinces of China from the perspective of SCN. The results reveal that, in resource-intensive in-
dustrial sectors, provinces exerting significant influence on SCN are mainly those rich in natural resources or 
those achieving economic development despite a lack of resources. These provinces exhibit relatively high 
climate change vulnerability index (CCVI). In contrast, for manufacturing sectors, the influential provinces on the 
SCN are primarily those with robust economic growth and substantial trade flows. These provinces display 
relatively high CCVI. Based on these findings, provinces should develop climate change management plans for 
industrial supply chains, implement demand-driven inventory strategies in resource-scarce areas, create 
collaborative platforms to enhance supply chain reliability, and establish mitigation measures for key 
manufacturing and resource-exporting provinces to manage risks and minimize the impacts of climate change 
effectively.

Abbreviations

Nomenclature
Trs

l The trade flow of products of industrial sector l from province r to 
province s

Xro
l The total products from industrial sector l flowing out from province 

r to all other provinces
Xos

l The total products of industrial sector l from other provinces 
flowing into province s

f
(
drs

l
)

The trade barriers between provinces
drs

l The economic distance
αs

l The distance decay coefficient

ds The average transportation distance
Crs

l Total products from industrial sector l sent from province r to 
province s

Ks Proportional coefficient
G A directed weighted network
V The nodes of a network
E The edges of a network
W The weight of edges in a network

(continued on next column)

(continued )

TDr Trade dependence
Abbreviations
CCVI Climate change vulnerability index
SCN Supply chain network
MRIO Multi-region input-output analysis
Xr The total consumption of province r
γs Response coefficient
δr Influence coefficient
In(r) All nodes pointing to node r
Out(r) All nodes pointed to by node r
yij The jth indicator in the ith province
pij The proportion of ith province relative to all provinces under jth 

indicator
enj The entropy value for the jth indicator
weij The weight of indicators
dis+i The positive ideal solution
dis−i The negative ideal solution
yʹmax

j The maximum values of indicators
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(continued )

yʹmin
j

The minimum values of indicators

Ii The relative closeness of each research object to the ideal solution
TOPSIS- 

Entropy
An ideal solution based on entropy weight method

HITS Hyperlink-Induced Topic Search
IPCC Intergovernmental Panel on Climate Change

1. Introduction

Over the past few years, the unprecedented increase in extreme 
weather events, such as floods, droughts, storms, and hurricanes, caused 
by climate change has multiplied fivefold over the past 50 years (Ghadge 
et al., 2019). Against a backdrop of climate change, these extreme 
weather events significantly impact the efficiency and quality of in-
dustrial products, including industries sectors such as energy, con-
struction, mining, and transportation (Miao et al., 2018). The energy 
sector, in particular, has been frequently affected by extreme weather 
events such as blizzards and floods in recent years. Large-scale damage 
to power supply facilities has resulted in interruptions to electricity 
supply, substantially affecting industrial production (Matko et al., 
2017). Ali and Gölgeci emphasized that climate change events have 
resulted in unprecedented annual global economic losses amounting to 
$215 billion(Ali and Gölgeci, 2020). Climate change has become one of 
the most critical factors affecting societal and business operations 
(Ghadge et al., 2019). Many developing countries face the challenge of 
climate change in the context of industrial restructuring, unbalanced 
development among different regions within their borders and resource 
shortage under rapidly developing economies. For developing countries 
currently undergoing industrialization and urbanization, addressing 
climate change becomes critically important at this historical stage. 
Spatial analysis of industrial sector vulnerability to climate change can 
help countries understand the differences in vulnerability to climate 
change between industries and regions and help them respond to climate 
change in their regions.

With the continuous advancement of economic globalization, pro-
duction in industrial sectors is exhibiting an increasingly networked 
trend(Habibi et al., 2023).The production and trade processes of in-
dustrial products can be conceptualized as an aggregation of network 
nodes (regions) and edges (trade flows)(Borgatti and Li, 2009). Against 
the backdrop of climate change, it is widely acknowledged that un-
foreseen extreme events and disruptions are inherently integral to the 
supply chain network (SCN) (Zavala et al., 2019). The global community 
has observed an unparalleled surge in extreme events linked to climate 
change, leading to diverse magnitudes of disruption within supply 
chains (Ali et al., 2023). Due to the complexity of the networked 
structure and the interconnected nature of nodes(Roque Júnior et al., 
2023), the adverse effects on one node can rapidly diffuse throughout 
the network(Belhadi et al., 2021), they can lead to the paralysis of the 
entire sector’s supply network(Kim et al., 2015; Lim-Camacho et al., 
2017). In this context, some scholars have increasingly focused on 
supply chain issues within the energy sector, recognizing the in-
terdependencies among energy production, transmission, and distribu-
tion. For instance, Wang et al. analyzed the transmission sector supply 
chain using a betweenness-based approach to provide a supplementary 
perspective, evaluating provincial-level CO₂ emissions and CO₂ emission 
intensity in China in 2017(Wang et al., 2023). Feng et al. identified 
critical transmission sectors within energy supply chains, proposing 
sustainable energy development strategies for specific energy types at a 
regional level in China(Feng et al., 2023). Additionally, some scholars 
have explored sectoral emissions from a supply chain perspective, such 
as CH₄ emissions across the supply chain from production to distribution 
of biomethane and biogas(Bakkaloglu et al., 2022), and carbon emis-
sions associated with remanufacturing(Ullah, 2023).

For policymakers, it is challenging to identify the structural char-
acteristics of SCN in various sectors and their climate change 

vulnerability index (CCVI)(Park et al., 2021; Zhao et al., 2019). CCVI is a 
composite measure used to assess the susceptibility of regions, countries, 
sectors, or specific areas to the impacts of climate change. It evaluates 
vulnerability by combining factors such as exposure, sensitivity, and 
adaptive capacity. Currently, there is a greater abundance of research on 
supply chains in developed countries compared to the limited research 
conducted on developing nations. Despite facing more significant im-
pacts from supply chain risks due to deficiencies in social, political, or 
human resource structures, research in developing countries remains 
scarce (Tukamuhabwa et al., 2015). It is undeniable that more and more 
research has been done on the vulnerability of supply chains to climate 
change. Vafadarnikjoo et al. identified and assess the climate risks 
associated with the electric power supply chain in the United Kingdom 
(Vafadarnikjoo et al., 2022). Pizarro et al. assessed the climate change 
vulnerability of Australia’s two largest uranium mine supply chains 
(Pizarro et al., 2018).In addition, discussions on climate change 
vulnerability in supply chain have increasingly encompassed a broader 
range of sectors.(IPCC, 2014), such as fisheries, agriculture, and mining 
(Fleming et al., 2014; Loechel et al., 2013; Malek et al., 2022; Ridoutt 
et al., 2016). However, despite concerns about the potential widespread 
impact of climate change on industrial SCN (Hofmann et al., 2013; 
Linnenluecke et al., 2011), research on industrial SCN has received 
limited attention (Fleming et al., 2014; Lim-Camacho et al., 2014; 
Meinel and Abegg, 2017). Furthermore, a notable research limitation in 
existing studies on SCN is the concentration on individual components, 
particularly at the primary production stage, rather than considering the 
entire SCN (Lim-Camacho et al., 2017).Climate change not only affects 
industrial production but also has direct and indirect impacts on many 
other stages within SCN (van Putten et al., 2015). Currently, there is a 
lack of research on the interdependence within the entire SCN and its 
implications for climate-induced shocks(Ridoutt et al., 2016), as well as 
for studying climate change vulnerability and adaptation within SCN 
(Fleming et al., 2014; Lim-Camacho et al., 2014; Ridoutt et al., 2016).

This study focuses on 25 industrial sectors in 31 provinces of China 
and combines the multi-region input-output analysis (MRIO) with a 
complex network method to develop an assessment system for the 
vulnerability of the industrial sector to climate change from the 
perspective of SCN. Our contribution is twofold. 

(1) Utilize MRIO analysis for quantifying the interdependence be-
tween industrial sectors. This paper integrated economic in-
terdependencies by capturing inter-industry linkages and 
quantify the indirect impacts of climate risks across entire supply 
chains, providing a comprehensive evaluation of sectoral 
vulnerability that accounts for both direct and cascading effects 
of climate change.

(2) Introduce directed weighted network to evaluate industrial sector 
significance in SCN. We first establish a directed weighted 
network based on inter-provincial trade flows of industrial 
products to explore the importance of the industrial sector in the 
SCN. Based on this, we build a CCVI assessment system including 
supply chain characteristics, and use the technique for order 
preference by similarity to an ideal solution based on the entropy 
weight method (TOPSIS-Entropy) to estimate it.

The rest of this study is organized as follows. Section 2 introduces the 
methodology. Section 3 describes the selection and attributes of in-
dicators of CCVI. In section 4, we empirically analyze the vulnerability 
of 25 industrial sectors in 31 provinces. Section 5 concludes the paper 
and proposes policy implications.

2. Methodology

2.1. Multi-region input-output analysis

MRIO is a model developed on the basis of input-output tables for 
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multiple regions, utilizing inter-regional trade data to connect and 
adjust the inflows and outflows of goods and services across various 
areas. The MRIO model allows for a detailed tracking of the flow of 
resources and products within the industrial sector’s supply chain, sys-
tematically and comprehensively reflecting the output and distribution 
relationships among provinces. This helps identify critical supply chain 
links and potential risks within the industrial sector, revealing the vul-
nerabilities of these supply chains under the impacts of climate change.

Based on the interregional input-output analysis proposed by 
Anderson in 1955 and the spatial distribution model derived by Wilson 
in 1967 based on the gravity model (Anderson, 1955; Wilson, 1967). 
This study can estimate trade flows among multiple provinces for in-
dustrial sectors. The trade flow matrix Trs

l can be represented by the 
following formula: 

Trs
l =

⎡

⎢
⎢
⎣

t11
l ⋯ t1s

l

⋮ ⋱ ⋮
tr1
l ⋯ trs

l

⎤

⎥
⎥
⎦=Ar

l B
s
l X

ro
l Xos

l f
(
drs

l
)

(1) 

Ar
l and Bs

l are the Gravity model coefficient, which are: 

Ar
l =

[
∑

r
Bs

l X
os
l f

(
drs

l
)
]− 1

(2) 

Bs
l =

[
∑

r
Ar

l X
ro
l f

(
drs

l
)
]− 1

(3) 

Where, l is the industrial sector, l = 1, 2,⋯, 25, r is the province from 
which products flow out, r = 1,2,⋯,31, and s is the province from which 
products flow in, s = 1,2,⋯,31. trs

l is the trade flow of products of in-
dustrial sector l from province r to province s. Additionally, Xro

l is the 
total products from industrial sector l flowing out from province r to all 
other provinces, while Xos

l is the total products of industrial sector l from 
other provinces flowing into province s. f

(
drs

l
)

is the "trade barriers" 
between provinces and is associated with distance between provinces. 
The calculation equation is expressed as follows: 

f
(
drs

l
)
=
(
drs

l
)− αs

l (4) 

Where, drs
l is the economic distance for the products of industrial sector l 

transported from province r to province s. αs
l is the distance decay co-

efficient, reflecting the strength of spatial distance in hindering trade 
spatial activities between provinces. αs

l is determined through the uti-
lization of linear programming. The average transportation distance ds 

for products from various provinces to province s can be computed using 
the following formula: 

ds =

∑
l,rCrs

l drs
l∑

l,r
Crs

l
(5) 

Crs
l are total products from industrial sector l sent from province r to 

province s. Crs
l ≥ 0, Crs

l can be expressed using the following gravity 
model: 

Crs
l =Ks • Xro

l • Xos
l •

(
drs

l
)− αs

l (6) 

Ks is a proportional coefficient. In this model. Substituting Eq (6) into 
Eq (5) can obtain the following formula: 

ds
l =

∑

r
Xro

l • Xos
l •

(
drs

l

)(1− αs
l)

∑

r
Xro

l • Xos
l •

(
drs

l

)(− αs
l )

(7) 

αs
l can be calculated through Eq (7), and subsequently, the computed 

result is inserted into Eq (4) to obtain f
(
drs

l

)
. Then, by substituting f

(
drs

l

)

into Eq (1), Trs
l can be estimated.

2.2. The complex network model based on input-output analysis

This study establishes a directed weighted network G = (V,E,W)

composed of sets of nodes V, edges E, and weights W. V comprises 31 
provinces in China. E is constituted by the connections between nodes, 
and W is the trade flow between multiple provinces. Subsequently, this 
study describes the network characteristics of SCN through the 
following parameters. 

(1) Trade dependence

Trade dependence usually refers to the dependence degree of a 
country or region on trade. In this study, trade dependence is defined as 
the proportion of the sum of imports and exports of an industrial sector 
to the total local consumption. The calculation formula is expressed as 
follows: 

TDr
l =

(
Xro

l + Xos
l

)

Xr
l

(8) 

Where, Xr
l is the total consumption of industrial sector l in province r.

(2) Response and influence coefficients

To unveil the degree of inter-sectoral linkages, this study draw upon 
the research by Chenery and Watanabe(Chenery and Watanabe, 1958), 
establishes response coefficient γs and influence coefficient δr. A higher 
response coefficient indicates a greater extent to which a node is influ-
enced by other nodes, thereby exerting a stronger economic support. 
Nodes with higher influence coefficients play a more prominent role in 
driving economic growth in other nodes. The calculation formulas are as 
follows: 

γs =

∑n

r=1
trs

1
n
∑n

r=1

∑n

s=1
trs

(9) 

δr =

∑n

s=1
trs

1
n
∑n

r=1

∑n

s=1
trs

(10) 

(3) Network centrality

This study draws upon the concepts of Hubs and Authorities cen-
trality from the Hyperlink-Induced Topic Search (HITS) algorithm to 
construct centrality indicators, Authorities denote the significance of 
nodes connected by other nodes, while Hubs represent the importance of 
nodes connecting to other nodes. The formula for calculating the values 
of Authorities and Hubs is expressed as follows: 

Authoritiesr =
∑

r∈In(r)

Hubr (11) 

Hubr =
∑

r∈Out(r)

Authoritiesr (12) 

Where, In(r) is all nodes pointing to node r, Out(r) is all nodes pointed to 
by node r.

2.3. TOPSIS-entropy method

The TOPSIS is a commonly used multi-criteria decision-making 
method (Tzeng and Huang, 2011). Based on the raw data information of 
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multiple criteria, TOPSIS standardizes the data and identifies the 
optimal and worst solutions, then calculates the distance between each 
research object and the optimal and worst solutions to assess the supe-
riority or inferiority of each research object (Ertuğrul and Karakaşoğlu, 
2009). In the calculation process, the entropy weight method is intro-
duced to determine the weights of each indicator. The steps of the 
TOPSIS-Entropy Method can be outlined as follows. 

Step 1: Construct normalized evaluation matrix

Assuming there are n research subjects and m evaluation indicators, 
where yij is the jth indicator in the ith province (i = 1,2,⋯,n,j = 1,2,⋯m), 
the original evaluation matrix is defined as follows: 

Y =

⎡

⎣
y11 ⋯ y1m
⋮ ⋱ ⋮

yn1 ⋯ ynm

⎤

⎦ (13) 

To ensure accurate comparison and analysis of these indicators, we 
performed data standardization, resulting in the transformation of the 
data into Yʹ. 

Step 2: Determine the entropy weight of the indicator.

In the context of computing the proportion of ith province relative to 
all provinces under jth indicator, the calculation formula of pij is 
expressed as follows: 

pij =
yʹ

ij
∑n

i=1yʹ
ij

(14) 

The entropy value for the jth indicator is calculated as follow: 

enj = −
1

ln(n)
∑n

i=1
pij ln

(
pij

)
(15) 

Where enj ≥ 0. If pij = 0,then enj = 0. 

Step 3:Determine the weight of the indicator.

A larger weight weij assigned to jth indicator indicates a higher 
informational significance of that particular indicator. This implies that 
the indicator holds greater importance in the assessment process. The 
formula of weij is expressed as follows: 

weij =
1 − enj

∑m

j=1

(
1 − enj

) (16) 

Step 4:Calculate the relative closeness of each research object to the 
ideal solution.

The distance between ith province and the positive ideal solution is: 

dis+i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1
wei2j

(
yʹmax

j − yʹ
ij

)2
√

(17) 

The distance between ith province and the negative ideal solution is: 

dis−i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1
wei2j

(
yʹ

ij − yʹmin
j

)2
√

(18) 

Where, the positive ideal solution ý max
j is composed of the maximum 

values from each indicator, the negative ideal solution ý min
j is composed 

of the minimum values from each indicator. Ii is the relative closeness of 
each research object to the ideal solution, the formula is expressed as 
follows: 

Ii =
dis−i

dis−i + dis+i
(19) 

3. Establishment of the indicator systems

3.1. Selection of the indicator

According to the 4th Assessment Report (AR4) of the Intergovern-
mental Panel on Climate Change (IPCC), vulnerability refers to the de-
gree to which a system is susceptible to adverse impacts of climate 

Table 1 
The Attribute of indicators.

Categories Indicators Definition Attribute

Exposure Labors Workforce in the province –
Gross capital 
formation

Provincial gross fixed capital 
formation and inventory 
changes

–

Sensitivity Direct economic loss 
from natural disasters

Provincial economic losses 
due to natural disasters

+

Adaptation Hubs The importance of provinces 
connecting to other nodes

+

Authorities The importance of provinces 
being connected by other 
nodes

+

Response coefficient The degree to which a 
province is affected by other 
provinces

+

Influence coefficient The degree to which a 
province affects other 
provinces

+

Trade dependency The province’s dependence on 
trade

+

Turnover in the 
technology market

Technical turnover of each 
industrial sector in the market

–

Table 2 
Industrial sectors and their codes.

Categories Code Industrial sectors

Mining industries 2 Mining and washing of coal industry
3 Oil and gas extraction products
4 Metal ore mining products
5 Non-metallic ore and other mining 

products
Manufacturing industries 6 Food and tobacco

7 Textile
8 Textiles, clothing, shoes, hats, leather, 

down and their products
9 Wood products and furniture

10 The goods of papermaking, printing, 
culture, education, and sport

11 Petroleum, coking, nuclear fuel 
processing products

12 Chemical products
13 Nonmetal mineral products
14 Metal smelting and rolling products
15 Metal product
16 General equipment
17 Special equipment
18 Transport equipment
19 Electrical machinery and equipment
20 Communications equipment, 

computers and other electronic 
equipment

21 Instruments and apparatus
22 Other manufacturing products and 

waste materials
23 Metal products, machinery and 

equipment repair services
Production and supply of 

electricity, gas and water 
industries

24 Production and supply of electric 
power and heat power

25 Production and supply of gas
26 Production and supply of water
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change, including the extent to which it is unable to cope with the effects 
of climate variability and extreme events. The critical parameters for 
assessing vulnerability include the system’s exposure, sensitivity, and 
adaptive capacity (IPCC, 2007; Kc et al., 2015). This study aims to assess 
the climate change vulnerability of industrial supply chains, with a 
particular focus on key indicators specific to different industrial sectors. 
The selection of exposure and sensitivity indicators follows the principle 
of prioritizing the most essential factors, ensuring a targeted and rele-
vant analysis.

Exposure refers to the presence of people, livelihoods, species or 
ecosystems, environmental functions, services, and resources, infra-
structure, or economic, social, or cultural assets in places and settings 
are susceptible to adverse impacts(de Sherbinin et al., 2019; Filho et al., 
2019). For industrial sectors, labor and capital constitute primary inputs 
and are highly vulnerable to the effects of climate change. For example, 
from July 17 to 23, 2021, Henan experienced historically unprecedented 
heavy rainfall, leading to multiple disasters such as river floods and 
mountain torrents, resulting in significant loss of life and property 
damage. In total, 14.78 million people suffering, 398 deaths or disap-
pearances, and a direct economic loss of 120.06 billion. Therefore, this 
study selects the total population of labor and gross capital formation at 
various provinces in SCN of the industrial sector as the exposure in-
dicators of climate change, aiming to measure the CCVI of the industrial 
sector.

Sensitivity refers to the extent to which a system is affected by 
climate change, including both adverse and beneficial impacts. The in-
dustrial sector faces both direct and indirect impacts from climate 
change. Direct impacts involve resource or production losses directly 
attributable to climate change. Indirect impacts stem from damages 
caused by various natural disasters intensified by climate change. 
Although some studies have attempted to quantify climate change’s 
effects on industrial output, differences in measurement methods and 
approaches add complexity and result in varied outcomes. This study 
primarily focuses on indirect losses, using the direct economic loss from 
natural disasters in each province as a sensitivity indicator to represent 

climate change’s adverse indirect effects on the industrial sector. This 
approach captures a range of negative impacts, including transmission 
disruptions in the power industry and production interruptions in the 
mining industry.

Adaptive capacity refers to the self-regulation of a system in response 
to climate change, mitigating potential losses, and the capacity to 
capitalize on favorable opportunities to cope with the consequences of 
climate change. For industrial sectors’ SCN, the self-regulation capa-
bility in the face of interruptions caused by extreme events is crucial for 
addressing climate change. This study selects Hubs, Authorities, 
response coefficient, influence coefficient, and trade dependence, all of 
which are representative features of the industrial sector’s SCN. Prov-
inces occupies significant positions in the industrial sector’s supply hi-
erarchy, have more inputs or outputs in terms of provinces. 
Consequently, when the SCN in such a province is disrupted, it must 
contend with numerous upstream or downstream interruptions, neces-
sitating urgent adjustments. In addition, technological progress can 
enhance the potential and capability of industrial sectors in addressing 
climate change. For instance, technological progress can optimize pro-
duction processes, making industrial production more efficient and 
energy-saving, thereby mitigating climate change intensification. This 
study selects the turnover in the technology market for various indus-
trial sectors in each province as an indicator of adaptive capacity.

3.2. Attribute of indicator

When the SCN of the industrial sector needs to cover a broader 
regional scope, long and complex SCN often exhibit a slow response to 
changes(Tang and Tomlin, 2008). They are more susceptible to the 
impacts of natural and man-made disasters (Manuj and Mentzer, 2008; 
Singh Srai and Gregory, 2008), as well as vulnerable to the effects of 
climate change. Therefore, the indicator reflecting the characteristics of 
SCN, which are Hubs, Authorities, response coefficient, influence coef-
ficient, and trade dependence, reflecting the characteristics of SCN, are 
established as positive indicators of climate change vulnerability. In 

Fig. 1. The industrial sectors’ CCVI of provinces in North and Northeast China. 
Note: The circle with a red border is the CCVI of the resource-intensive industrial sectors, and the circle without a border are the CCVI for manufacturing sectors. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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addition, direct economic loss from natural disasters is considered as a 
positive indicator. Because a greater magnitude of economic loss sig-
nifies a more severe impact of natural disasters on the industrial sector, 
indicating a higher level of climate change vulnerability.

Technological progress can enhance the industrial sector’s capacity 
to address climate change. As technology advances, the industrial sector 
becomes less vulnerable to the effects of climate change. Therefore, 
turnover in the technology market serves as a negative indicator. In 
addition, increased capital and labor resources facilitate the industrial 
sector in allocating and responding to the losses incurred due to climate 
change. Consequently, this study sets labor and gross capital formation 
as negative indicators, with the attributes of each indicator outlined in 
Table 1.

3.3. Data collection

(1) Selection of industrial sectors

The industrial sector, classified as a secondary sector in the economy, 
comprises businesses that provide support to other enterprises engaged 
in manufacturing, shipping, or production activities. This classification 
aligns with the industry categorization outlined in the Classification of 
National Economic Industries (GB/T4754-2017). For the purpose of our 
study, we have selected industrial sectors with codes 02–26 from the I- 
level classification of the 2017 ′Input-Output Table of China’ Specif-
ically, industrial sectors 02–05 pertain to mining industries, 06–23 to 
manufacturing industries, and 24–26 to the production and supply of 

electricity, gas, and water industries. Details can be found in Table 2. 

(2) Selection of trade flow indicators for industrial sectors

We collected empirical data on domestic inflow and outflow, spatial 
economic distances between provinces, and average transportation 
distances for 25 industrial sectors across 31 provinces. The aggregate 
data for domestic inflow and outflow were derived from the 2017 ″China 
Input-Output Table", encompassing interprovincial movements. The 
actual distances between provinces were used as approximate proxies 
for the spatial economic distances between provinces. Additionally, the 
data on average transportation distances were sourced from the National 
Bureau of Statistics, with the average distance recorded as 410.78 km in 
the year 2017. The data on direct economic losses from natural disasters, 
turnover in the technology market, and the labor are all sourced from 
the National Bureau of Statistics.

4. Results and discussion

4.1. The CCVI of industrial sectors in 31 provinces

This study categorizes 31 provinces based on geographical locations 
into North China (Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia), 
Northeast China (Liaoning, Jilin, Heilongjiang), East China (Shandong, 
Jiangsu, Anhui, Zhejiang, Fujian, Shanghai, Jiangxi), Central-South 
China (Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan), South-
west China (Chongqing, Sichuan, Guizhou, Yunnan, Tibet), and 

Fig. 2. The industrial sectors’ CCVI of provinces in East and Central-South China.
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Northwest China (Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang). In 
addition, this study divides all industrial sectors into two categories 
according to their dependence on resources: resource-intensive indus-
trial sectors (Sectors 2–5 and 24–26) and manufacturing sectors (Sectors 
6–23).

In North China, Beijing exhibits the highest CCVI across multiple 
resource-intensive industrial sectors, which are Sectors 2, 4, 5, and 24 
(Fig. 1). Hebei and Shanxi ranked in the top three for CCVI in Sector 2 
and are lower in all other industrial sectors. Inner Mongolia has the 
second highest CCVI in Sector 22. In the Northeast, Jilin has the highest 
CCVI in Sectors 13 and 18, and the CCVI in Sectors 9, 23 and 26 ranks in 
the top three among all provinces. Liaoning’ CCVI ranks third in Sector 
23, with lower vulnerability observed in other industrial sectors. Hei-
longjiang ranks second in climate change vulnerability in Sector 24, 
with lower vulnerability in other industrial sectors.

In the East China, Fujian, Jiangxi, and Shandong demonstrate 
vulnerability to climate change that falls below the provincial average 
across 25 industrial sectors (Fig. 2). Shanghai exhibits climate change 
vulnerability ranking within the top three provinces in Sectors 2 and 18. 
Jiangsu consistently ranks among the top three for climate change 
vulnerability in Sectors 2, 12, and 25. Similarly, the vulnerability of 
Zhejiang to climate change consistently ranks among the top three 
provinces in Sectors 7, 16, and 21. Anhui displays the highest climate 
change vulnerability among all provinces in Sectors 9 and 21, and 
consistently ranks among the top three provinces in Sectors 16, 19, and 
26. In the Central-South, Guangxi and Hainan show low CCVI that falls 
below the provincial average across 25 industrial sectors. Henan ex-
hibits the highest climate change vulnerability in Sectors 23, 25, and 26, 
ranks in the top three in Sectors 13, 14, and 17. Hubei exhibits the 
highest climate change vulnerability in Sectors 11, 14, 17, and 20. 
Hunan ranks in the top three for climate change vulnerability in Sectors 
4, 7, 8, 10, 13, 16, 17, 19, and 21. Guangdong exhibits the highest 
climate change vulnerability in Sectors 8, 10, 12, 16, 19, and 22, ranks in 
the top three in Sectors 7, 9, and 20.

In the Northwest, Qinghai and Xinjiang respectively rank second in 
climate change vulnerability in Sectors 22 and 3 (Fig. 3), while Shaanxi, 
Gansu, and Ningxia exhibit low climate change vulnerability across 25 
industrial sectors. In the Southwest, Sichuan, Guizhou, Yunnan, and 
Tibet demonstrate low climate change vulnerability across 25 industrial 
sectors. Chongqing exhibits the highest climate change vulnerability in 
Sectors 3 and 15.

It can be observed that the CCVI of resource-intensive industrial 
sectors in multiple provinces of North China are higher compared to 
other provinces, whereas manufacturing sectors in several areas of East 
China and Central-South China exhibit higher CCVI than other prov-
inces. For northern provinces, where resource-intensive industries are 
prominent, a shift toward green transformation and energy-saving 
technologies, and encourage resource-dependent provinces to diversify 
into service industries and high-value-added manufacturing can help 
lower vulnerability. For the eastern and central-southern provinces, 
where manufacturing is concentrated, efforts should prioritize 
innovation-driven growth and the adoption of environmentally friendly 
and energy-efficient technologies. Furthermore, collaboration between 
manufacturing-intensive provinces and those with lower climate 
vulnerability can facilitate resource sharing and supply chain coordi-
nation, reduce the impacts of extreme climate events on production and 
supply chains. For the southwestern and northwestern provinces, low- 
vulnerability provinces can play a crucial role in supporting more 
vulnerable regions by sharing expertise and technology to bolster 
adaptive capacity.

4.2. The CCVI of resource-intensive industrial sectors

The trade flows affect the CCVI of industrial sectors in each province. 
In addition, the local population density, industrial structure, natural 
resource endowment and industrial scale have a significant impact on 
CCVI. The trade flows of resource-intensive industrial sectors are in big 
ways and small in 31 provinces, their outward trade flow is primarily 

Fig. 3. The industrial sectors’ CCVI of provinces in Northwest and Southwest China.
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determined by the natural resource endowment of the province, while 
the inflow provinces are also closely related to local population density 
and industrial structure.

Apart from Sector 5 (Non-metallic ore and other mining products), 
products from other resource-intensive industrial sectors exhibit a con-
centration of trade flows, both inflow and outflow, clustering predom-
inantly in a few provinces (Fig. 4). For example, products from Sector 2 
(Mining and washing of coal industry) mainly flow from Shanxi, 
Shaanxi, and Inner Mongolia to Beijing and Hebei. This is due to the 
distribution of coal resources in China, which shows a "rich in the north, 
poor in the south, more in the west and less in the east" pattern. Northern 
provinces like Shanxi and Inner Mongolia, as well as western province 
Shaanxi, are major coal-producing provinces in China, with their coal 
output consistently ranking top three nationwide. Consequently, there is 
a higher coal outflow from Shanxi, Inner Mongolia, and Shaanxi. 
Products from Sector 2 primarily flow into Beijing and Hebei, owing to 
Beijing’s large population (ranking 2nd nationally in population density 
in 2017) and high energy demand, Beijing’s power and heating supply 
have primarily relied on four major coal-fired thermal power plants for a 
long time, resulting in high energy dependency. In recent years, Beijing 
has continuously promoted the development of high-tech and advanced 
industries, which can significantly reduce the city’s CCVI. Hebei’s pillar 
industry is steel (with crude steel production consistently ranking first 
nationwide since 2002), leading to substantial coal consumption, hence 
the large inflow of coal into these two provinces. It is evident that Beijing 
exhibits the highest CCVI, followed by Hebei, Shanxi, and Inner 
Mongolia.

The main outflow provinces of Sector 26 (Production and supply of 
water) are Jilin and Guangdong, while the main inflow provinces are 
Henan and Anhui. Jilin is the source of rivers, as of the end of 2013, the 
province had surveyed and identified 396 natural drinking mineral 
water sources, with a total allowable extraction volume of 470,000 tons 
per day, ranking first in China.1 Henan and Anhui are one of the prov-
inces in China lacking in water resources. According to reports from the 
China Water Resources Network, the spatial and temporal distribution 
of water resources in Henan is uneven, with the total water resources of 
the province accounting for only 1.42% of the national total, and per 
capita water resources less than one-fifth of the national average. The 
contradiction between supply and demand for water resources is 
becoming increasingly acute, necessitating the transfer of large amounts 
of water resources from other provinces to ensure water supply for 
production, living, and agricultural use in Henan. The per capita water 
resources in Anhui are only half the national average, and its uneven 
distribution of precipitation, exacerbation of drought, and increased 
water pollution have also led to water scarcity in Anhui. It can be 
observed that Henan has the highest CCVI, followed by Anhui, with Jilin 
and Guangdong also exhibiting relatively high CCVI.

4.3. The CCVI of manufacturing sectors

The scale of provincial industrial development has a significant 

Fig. 4. The trade flows of resource-intensive industrial sectors in 31 provinces. 
Note: BJ-Beijing, TJ-Tianjin, HeB-Hebei, SX-Shanxi, IM-Inner Mongolia, LN-Liaoning, JL-Jilin, HLJ-Heilongjiang, SH-Shanghai, JS-Jiangsu, ZJ-Zhejiang, AH-Anhui, 
FJ-Fujian, JX-Jiangsi, SD-Shandong, HeN-Henan, HuB-Hubei, HuN-Hunan, GD-Guangdong, GX-Guangxi, HaN-Hainan, CQ-Chongqing, SC-Sichuan, GZ-Guangzhou, 
YN-Yunnan, SXI-Shaanxi, GS-Gansu, QH-Qinghai, NX-Ningxia, TB-Tibet, XJ-Xinjiang.

1 https://xxgk.jl.gov.cn/szf/gkml/201812/W020150513580909938307.pdf.
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positive impact on the trade flow of manufacturing sectors, while also 
influencing the CCVI of industrial sectors in the province. For example, 
Zhejiang and Guangdong have the highest CCVI in sector 7 and 8, 
respectively. Products from Sectors 7 and 8 mainly flow to Zhejiang and 
Guangdong (Fig. 5a). In particular, Zhejiang and Guangdong have the 
largest trade flows in sectors 7 and 8, respectively. Because the textile 
and garment industry are a traditional pillar industry and an important 
consumer industry in Guangdong and Zhejiang, both of which are sig-
nificant provinces in the textile industry. Fig. 5b According to data from 
the China Economic Information Network (CEIdata), since 2000, 
Guangdong has consistently ranked among the top four provinces in 
China in terms of the number of industrial enterprises above designated 
size. In contrast, Zhejiang has consistently been among the top two, 
securing the top position since 2013.2 In 2017, there were 4573 indus-
trial enterprises above designated size in the textile industry in Zhejiang, 
accounting for 24.4% of the country, ranking first, and 1464 in 

Guangdong, ranking third. The number of industrial enterprises above 
designated size in Guangdong’s textile and garment industry is 2,784, 
accounting for 19.17% of the country, ranking first, and Zhejiang is 
2,472, ranking second. Chongqing has the highest CCVI in sectors 11 and 
15. As one of China’s old industrial bases, Chongqing features a pre-
dominantly heavy industrial structure. Its primary industries include 
automobile manufacturing, military industry, steel production, and 
aluminum industry, resulting in Chongqing’s large demand for the 
production of metals and petroleum.

Provinces with larger industrial development scales and higher trade 
flows tend to have higher CCVI. This is attributed to the positive cor-
relation between supply chain density, complexity, and critical nodes 
with the severity of supply chain disruptions (Craighead et al., 2007). On 
one hand, in the event of a climate-induced disruption at a node within a 
long and intricate supply chain, the multi-regional involvement of the 
supply chain often results in slow and incomplete responses to the 
changes in supply chain nodes (Tang and Tomlin, 2008), hindering 
timely and comprehensive implementation of effective response mea-
sures. On the other hand, when disruptions occur at critical nodes, the 

Fig. 5a. The trade flows of Sectors 6–14 in 31 provinces

2 https://ceidata.cei.cn.
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adverse effects generated increase proportionally with the number of 
nodes directly or indirectly linked to them, thereby amplifying the 
vulnerability of the supply chain. With industrial sectors covering more 
nodes and handling greater trade volumes, they become more suscep-
tible to the impacts of more frequent and severe extreme weather events 
(e.g., hurricanes, floods, and droughts) caused by climate change. These 
events not only affect the availability and costs of raw materials for 
industrial sectors, but also disrupt the distribution of goods and services, 
potentially damage infrastructure, disrupt supply networks, and halt 
production, thereby increasing the costs associated with maintenance, 
insurance, and productivity losses. Provinces with higher trade volumes 
experience broader impacts from climate change, leading to higher 
CCVI. For example, Guangdong, it has consistently held the position of 
China’s leading manufacturing province since 1996. In 2021, The 
province boasts ten strategically vital industrial clusters for stable eco-
nomic development, including next-generation electronics and infor-
mation technology, light industry and textiles, software, and 
information services. Therefore, as a major manufacturing province, 
Guangdong exhibits the highest CCVI across multiple industrial sectors 
(Sectors 8, 10, 12, 16, 19, 22).

5. Conclusions and policy implications

This study assesses the CCVI of 25 industrial sectors across 31 
provinces in China from the perspective of SCN. Using MRIO analysis, 
the study estimates the trade flows among 25 industrial sectors across 31 
provinces. Based on this, an assessment framework for climate change 
vulnerability of industrial sectors is constructed. The paper employs the 
TOPSIS-Entropy method to assess the climate change vulnerability of 25 
industrial sectors across 31 provinces. The findings reveal that, for the 
manufacturing industry, provinces with higher levels of industrial 
development and larger trade flows tend to exhibit higher climate 
change vulnerability. Conversely, provinces with lower levels of indus-
trial development and smaller trade flows demonstrate lower vulnera-
bility. Regarding resource-based industrial sectors, provinces with 
abundant resources and high outflows to other provinces, or provinces 
with resource scarcity and significant inflows from other provinces, tend 
to have greater climate change vulnerability.

Based on the above analysis, we believe that improvements in the 
following aspects would contribute to reducing the climate change 
vulnerability of the industrial sector from the perspective of SCN. 

Fig. 5b. The trade flows of Sectors 15–23 in 31 provinces.
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(1) In resource-scarce provinces with high dependency, inventory 
management is conducted on a demand-driven basis. On one 
hand, it is essential to formulate effective strategies to address 
climate change, ensuring the stability and continuity of resource 
supply by establishing collaborative relationships with multiple 
suppliers, thereby mitigating risks associated with reliance on a 
single supplier or province. On the other hand, implement an 
appropriate mechanism for inventory management. This entails 
flexible inventory management based on market demands and 
the actual conditions of the supply network, aiming to avoid 
excessive or insufficient inventory levels.

(2) Establish a collaborative platform to promote coordinated 
regional development. A multi-provincial collaborative platform 
can enable participants in SCN to collaborate more effectively, 
share information, and enhance the reliability and efficiency of 
SCN. In addition, risks associated with climate change can be 
mitigated by introducing new technologies. For instance, the 
Internet of Things (IoT) and blockchain technologies can enhance 
the traceability and transparency of SCN, contributing to the 
better management of complex networks.

(3) Establish climate change mitigation measures for key provinces 
in the SCN. This is particularly pertinent for manufacturing- 
intensive provinces such as Guangdong and Zhejiang, as well as 
resource-exporting provinces like Inner Mongolia and Shaanxi, 
which occupy central positions in the industrial SCN. Regular 
monitoring and assessment of key provinces are conducted to 
comprehend local climate change trends and potential environ-
mental risks, to alleviate potential disaster risks.

This study is an exploration of assessing the vulnerability of the in-
dustrial sector to climate change from the perspective of SCN. As the 
input-output tables are compiled every five years, our analysis was 
limited to the data of the year 2017, making it challenging to achieve a 
continuous analysis. Future research could be extended along the tem-
poral dimension, unfolding dynamic analyses of climate change 
vulnerability. For instance, evaluating the performance of the industrial 
sector in a particular province regarding climate change vulnerability 
over a period of time, or assessing the climate change vulnerability of a 
specific industrial sector across various provinces over time. In addition, 
this research has the potential for extension to other industries. Future 
studies can draw inspiration from our analytical framework to examine 
climate change vulnerability in other industries from the perspective of 
SCN, particularly those significantly impacted by climate change, such 
as agriculture, forestry, and fisheries. Subsequently, informed by such 
analyses, effective and industry-specific climate change mitigation 
strategies can be formulated.
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