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A B S T R A C T

Deep learning models are prevalently employed for image classification, but significant opportunities remain
within the domain of feature engineering. This study introduces FlexiCombFE, a novel, flexible, combination-
based feature engineering framework for brain tumor detection using various fixed-size patch divisions. This
framework employs three distinct feature extractors (Local Phase Quantization, Local Binary Pattern, and Py-
ramidal Histogram of Oriented Gradients) to generate a total of seven primary feature vectors. By using four
types of fixed-size patch divisions, 28 feature vectors are generated. Then, three feature selectors (Chi-squared,
Neighborhood Component Analysis, and ReliefF) create 84 selected feature vectors. In the classification phase K-
nearest neighbors and support vector machine classifiers yield 168 classifier-specific outcomes. An information
fusion generates 166-voted outcomes, with the most accurate classification outcome selected as the final output.
This self-organizing feature engineering model achieved a classification accuracy of 99.35% on a brain tumor
image dataset, outperforming several deep learning approaches. The modular design of the proposed framework
allows for detailed analysis of the classification effects of individual methods, providing optimal feature engi-
neering strategies for medical image classification tasks.

1. Introduction

Brain tumors occur when unusual cells grow in the brain, especially
due to age [1]. As these tumors grow in the cells, the brain’s pressure
may increase, which can negatively affect human health and even cause
permanent damage [2]. Brain tumors can be benign or malignant.
Benign tumors usually do not spread and grow slowly with clear edges.
Malignant tumors spread and grow rapidly and can damage brain
functions [3]. Factors such as genes, environment, age, gender, immune
problems, chemicals, and lifestyle can cause brain tumors [4,5] . How-
ever, brain tumors can also occur in people who do not have these risk
factors [6,7]. According to World Health Organization data, 246

thousand people die from brain tumors every year in the world. At the
same time, according to WHO, when mortality rates are examined, it
ranks 12th among all cancer types [8]. Brain tumors can be seen in
different types depending on the starting point and cell type. Primary
brain tumors arise from brain tissue. Common primary brain tumors are
meningiomas, pituitary adenomas and gliomas [9,10].

Just like with all types of cancer, early diagnosis of brain tumors is
crucial in diagnosing and treating the disease [11]. Brain tumors are
complex illnesses that are difficult to diagnose and treat. Diagnosing
brain tumors requires a multidisciplinary approach [12]. Additionally,
parallel to the advancement of technology, the data obtained by medical
imaging systems play a vital role in diagnosing the disease [13,14].
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However, the abundance of data obtained and the necessity for rapid
analysis indicate the need for reliable computer-aided diagnosis systems
[15]. Manually examining these images by expert doctors is time-
consuming and complex [16]. Every day, new machine-learning ap-
proaches are being suggested for the automatic, quick, and error-free
evaluation of these diseases [17].

Despite the prevalence of deep learning models in image classifica-
tion, there remains a significant gap in the development of advanced
feature engineering techniques. Most existing approaches rely on fixed
descriptors and patterns, lacking the flexibility to adapt to varying image
characteristics. Furthermore, there is a scarcity of feature engineering
models that can compete with the performance of deep learning ap-
proaches while maintaining interpretability. These limitations highlight
the need for a more versatile and powerful feature engineering
framework.

In this study, the FlexiCombFE model introduced a novel feature
engineering framework specifically tailored for brain tumor detection.
By employing a unique combination of patch-based feature extraction
methods, including Pyramidal Histogram of Oriented Gradients (PHOG)
[18,19], Local Phase Quantization (LPQ) [20] and Local Binary Pattern
(LBP) [21], this research proposed a flexible and comprehensive
approach to handling image data. The model’s architecture allowed for
generating 28 distinct feature vectors through various fixed-size patch
divisions, further refined by three feature selectors (NCA [22], Chi2
[23], and RF [24] to produce 84 selected feature vectors. Applying k-
nearest neighbors (kNN) [25] and support vector machine (SVM) [26]
classifiers on these vectors led to an expansive set of 168 classifier-
specific outcomes, ultimately synthesized through an information
fusion process to select the most accurate classification result.

This framework significantly filled a gap in the literature by offering
a deep-learning-competitive, yet inherently flexible, approach to feature
engineering in the context of brain tumor image classification. This
framework demonstrates the untapped potential of combining tradi-
tional feature engineering methods with modern classification tech-
niques. The FlexiCombFE model demonstrated a high classification
accuracy of 99.35 % on a public brain tumor image dataset, providing a
compelling alternative to deep learning models, especially in scenarios
where interpretability is crucial.

1.1. Related works

Table 1 summarizes recent studies on the classification of brain tu-
mors, showing the diversity of approaches in this field. These studies
typically aim to distinguish between two to four tumor classes,
employing various methodologies from traditional machine learning to
advanced deep learning techniques. While some researchers utilize
classic approaches like gradient boosting and Support Vector Machines
(SVM), the field is increasingly dominated by deep learning methods,
particularly Convolutional Neural Networks (CNN) [27,28]. Perfor-
mance is typically evaluated using metrics such as accuracy, precision,
recall, and F1 score. Most methodologies achieve high accuracy rates,
often exceeding 95 %.

Data augmentation techniques are frequently employed to enhance
model performance, and various data-splitting strategies are used across
studies. The choice of dataset and the number of classes varies, affecting
result comparability. Recent approaches also focus on model interpret-
ability, addressing a critical need in medical applications [29].

1.2. Literature gaps

• Most recent research has focused on deep learning models for image
classification, leaving a scarcity of innovative feature engineering
approaches in the literature.

• Existing feature engineering models generally use fixed descriptors
and patterns. While deep learning models have employed multilevel
or patch-based feature extraction methodologies, there are limited

feature engineering models that incorporate such flexible
approaches.

• There is a notable lack of feature engineering models that can match
or exceed the performance of deep learning models while main-
taining interpretability and efficiency.

1.3. Motivation and study outline

Accurate classification of brain tumors is crucial for precise diagnosis
and treatment planning. Moreover, accurate classification is vital for
clinical decision-making processes. A reliable classification model re-
duces diagnostic errors and increases confidence in medical decisions.
The results obtained support radiologists and clinicians by providing
early detection, which is essential for improving survival rates and
reducing complications. Intelligent systems contribute to personalized
treatment strategies by enhancing diagnostic accuracy. These systems
help patients receive targeted treatments based on specific tumor
characteristics. Therefore, in this research, we aimed to propose a
lightweight and accurate automated brain tumor classification
framework.

Variable deep learning models in the literature have been used in
different methods to achieve high classification performances
[30,31,32]. Since 2017, transformers have become a very popular
research area in deep learning, particularly for natural language pro-
cessing (NPL) applications [33]. Vision transformers (ViT), proposed by
Dosovitskiy [34], demonstrated that transformers can be effectively
utilized for image classification. ViT achieved higher classification
performance compared to convolutional neural networks (CNN) [35].
After that, transformers have dominated the field of computer vision
[36,37]. Initially, ViT has used fixed-size patches of 14× 14, 16× 16, or
32 × 32, with patch sizes significantly affecting the classification per-
formances of the model [38]. To solve this problem, researchers have
proposed FlexiViT models, which employ multiple patch sizes to solve
image classification problems more effectively.

In this work, we have been inspired by the FlexiViT.We have used
four fixed-size patches to generate different local features. To extract
features, we used three feature extractors to get different feature vectors:
(i) LBP, (ii) LPQ, and (iii) PHOG. Using the combinations of these feature
extractors, we have extracted 7 (=23-1) feature vectors for each patch
size. Thus, the proposed FlexiCombFE extracted a total of 28 (=7 × 4)
feature vectors.

In the feature selection phase, we used three feature selection func-
tions since each feature selection function had its individual feature
selection ability. Herein, we employed three commonly used feature
selectors: (1) NCA, (2) Chi2, and (3) ReliefF. By applying these feature
selectors, we have created 84 (=28 × 3) selected feature vectors. For
classification results, we used two classifiers: (1) kNN and (2) SVM. Our
proposed FlexiCombFE generates 168 (=84 × 2) classifier-wise out-
comes in the classification phase. Then, we have analyzed the methods’
classification performances using these classifier-wise outcome results.
The final phase of the presented FlexiCombFE is information fusion. In
this phase, we used iterative majority voting (IMV) [39] to obtain the
voting results. Moreover, we selected the best outcome by employing a
greedy algorithm.

Based on the above aspects, our main motivations are:

• Proposing a flexi-based feature engineering model;
• Demonstrating the high classification effect of the flexi and
combination-based feature extraction;

• Obtaining a feature engineering framework;
• Testing the presented FlexiCombFE using a public image dataset.

1.4. Novelties and contributions

The proposed FlexiCombFE framework introduces several key in-
novations in feature engineering for medical image analysis, with the

I. Tuncer et al.
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Table 1
Related works.

Study Method Classifier Dataset / Number of classes Split
ratio

Augmentation The results
(%)

Ghosh and Kole [41] Feature extraction Gradient Boosting,
XGBoost

Dataset A
1465 images. 2 classes (brain tumor, no-tumor)
Dataset B
2870 images. 4 classes (glioma, meningioma, pituitary, no
tumor)

75:25 No Dataset A
Acc: 92.40
Pre: 85.00
Rec: 94.40
F1: 89.50
Dataset B
Acc: 90.00
Pre: 90.00
Rec: 90.00
F1: 90.00

Rahman and Islam [27] Parallel deep CNN Softmax Dataset A
253 images.2 classes (brain tumor, no-tumor)
Dataset B
3064 images. 3 classes (glioma, meningioma, pituitary)
Dataset C
2870 images. 4 classes (glioma, meningioma, pituitary, no
tumor)

90:10 Yes Dataset A
Acc: 97.33
Dataset B
Acc: 97.60
Dataset C
Acc: 98.12

Patil and Kirange [28] Ensemble deep CNN Softmax 3064 images. 3 classes (glioma, meningioma, pituitary) 10-fold
CV

Yes Acc: 97.77
Pre: 96.66
Rec: 98.30
Sen: 96.66
Spe: 98.33
F1: 97.47

Saeedi et al. [42] CNN Softmax 3264 images. 3 classes (glioma, meningioma, pituitary) 90:10 Yes Acc: 96.47
Pre: 94.75
Rec: 95.75
F1: 95.00

Aamir et al. [43] Deep feature extraction SVM 3064 images. 3 classes (glioma, meningioma, pituitary) 5-fold CV Yes Acc: 98.98
Hossain et al. [44] IVX16 MLP 3264 images. 3 classes (glioma, meningioma umor,

pituitary)
80:10:10 No Acc: 96.94

Mahjoubi et al. [45] CNN Softmax 7022 images. 4 classes (glioma, meningioma, pituitary, no
tumor)

80:20 No Acc: 95.44
Rec: 95.00
F1: 95.36

Mahmud et al. [46] CNN Softmax 3264 images. 3 classes (glioma, meningioma, pituitary) 80:10:10 Yes Acc: 93.30
Rec: 91.19

Kumar et al. [47] ResNet50 Softmax 1731 images. 2 classes (brain tumor, no-tumor) 90:10 No Acc: 96.80
Pre: 94.50
Rec: 92.32
F1: 92.12

Abdusalomov et al.
[48]

CNN Softmax 10288 images. 4 classes (glioma, meningioma, pituitary, no
tumor)

80:20 Yes Acc: 99.50
F1: 99.40

Ozkaraca et al. [49] CNN Softmax 7021 images. 4 classes (glioma, meningioma, pituitary, no
tumor)

80:20 No Pre: 96.00
Rec: 96.50
F1: 96.00

Sharma et al. [50] Modified ResNet50 Softmax 50 images. 2 classes (brain tumor, no-tumor) 5-fold CV Yes Acc: 88.00
Pre: 80.00
Spe: 100.0
Sen: 100.0

Asif et al. [51] Xception + deep dense block Softmax Dataset A
3064 images. 3 classes (glioma, meningioma, pituitary)
Dataset B
3264 images. 4 classes (glioma, meningioma, pituitary, no
tumor)

80:20 Yes Dataset A
Acc: 99.67
Pre: 99.69
Spe: 99.83
Sen: 99.54
F1: 99.62

(continued on next page)
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following major novelties:

• Our model introduces FlexiViT-inspired multiple fixed-size patches
(30 × 30, 35 × 35, 42 × 42, and 70 × 70) into traditional feature
engineering, enabling efficient local feature extraction from different
image regions.

• This research utilizes LBP, LPQ, and PHOG feature extractors in a
unique combinatorial approach, creating a new-generation feature
extraction model that leverages both textural and directional char-
acteristics across different patch sizes.

• The presented FlexiCombFE incorporates self-organizing mecha-
nisms, through iterative majority voting and greedy algorithm-based
selection, enabling automatic optimization of feature selection and
classification processes.

The practical impact and scientific contributions of our work can be
summarized as follows:

• In this research, a self-organized feature engineering framework has
been presented, inspired by deep learning models. In this regard, the
introduced FlexiCombFE offers a competitive alternative to deep
learning by utilizing traditional feature extraction functions.

• The FlexiCombFE achieved a 99.35 % classification accuracy on a
public brain tumor dataset due to its self-organized structure and
effectiveness. The modular design of the proposed FlexiCombFE
opens new possibilities, similar to deep learning models, as various
feature extraction, feature selection, and classification methods can
be integrated into the framework. This allows for the development of
many new-generation flexible and combinational feature engineer-
ing models.

2. Brain image dataset

In this study, we utilized a publicly accessible dataset [40]
comprising two categories: (i) brain tumor and (ii) control. The dataset
includes magnetic resonance (MR) images of varying dimensions, which
we resized to a uniform resolution of 210× 210 pixels. Additionally, the
dataset encompasses images in various file formats, including.jpg,.tif,
and.png. The dataset is available for download from the following URL:
https://www.kaggle.com/datasets/preetviradiya/brian-tumor-dataset.
The distribution of the dataset is illustrated in Table 2. Fig. 1 shows some
sample images from this dataset for each class.

3. The FlexiCombFE

In this research, we have presented a new feature engineering model
called FlexiCombFE. Our proposed framework contains four main pha-
ses, and these phases are:

• Feature extraction: In this phase, the images have been converted to
grayscale and resized to 210 × 210 pixels. To generate features, we
have used four types of fixed-size patches (30× 30, 35× 35, 42× 42
and 70 × 70 pixels) and three feature extractors (LBP, LPQ, and
PHOG). This phase generates 28 feature vectors.

• Feature selection: In this phase, we have used three feature selectors:
NCA, Chi2, and RF. By deploying these feature selectors, the best 256
features were selected from each feature vector, resulting in 84
selected feature vectors.

Table 2
The distribution of the used brain image dataset.

Class Number of images

Brain tumor 2513
Control 2087
Total 4600Ta
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• Classification: This phase has used two classifiers (kNN and SVM).
The selected feature vectors in the feature selection phase have been
utilized as input for these classifiers. In this phase, 168 classifier-
based outcomes have been generated.

• Information fusion: The IMV algorithm has been used to generate 166
voted outcomes, resulting in a total of 334 outcomes. Then, a greedy
algorithm has selected the most accurate outcome.

Fig. 2 presents a graphical outline of the proposed FlexiCombFE
model to provide a better explanation of its structure and functionality.
In the next subsection, a detailed description of the presented

FlexiCombFE is provided.

3.1. Feature extraction

The initial phase of the proposed framework focuses on feature
extraction, during which 28 feature vectors are generated. Fig. 3 dem-
onstrates the presented feature extraction method.

The specifics of this phase are detailed as follows:
Step 1: Conversion of each image to grayscale and resize to 210× 210

pixels.

Fig. 1. Sample images of the used dataset.

Fig. 2. Overview of the proposed FlexiCombFE. Here, P: patch, f: individual feature vector, LBP: local binary pattern, LPQ: local phase quantization, PHOG: py-
ramidal histogram oriented gradient, F: merged feature vector, NCA: neighborhood component analysis, Chi2: Chi-squared, RF: ReliefF, s: selected feature vector
kNN: k-nearest neighbors, SVM: support vector machine, c: classifier-specific outcome, IMV: iterative majority voting, v: voted outcome.

I. Tuncer et al.
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Gray = RGB2Gray(Im)
Gray = R(Gray,210× 210) (1)

where Im: image, Gray: grayscale image, RGB2Gray(.): grayscale trans-
formation function and R(.): resizing function. We have used 210 × 210
for resizing since 210 is the multiplication of the first four prime number
(210 = 2 × 3 × 5 × 7).

Step 2: Generation of fixed-size patches using 30 × 30, 35 × 35, 42 ×

42 and 70 × 70 pixel sizes.

Ptj = Gray(m : m+ win(t) − 1, n : n+ win(t) − 1), t ∈ {1,2, 3,4},

win ∈ {30,35,42,70},m, n ∈ {1,win(t) + 1,⋯, 210 − win(t)},

j ∈ {1,2,⋯,
210
win(t)

2

}

(2)

here, P: fixed-size patch. We have generated for types patches, with the
number of these patches being 49, 36, 25, and 9, respectively.

Step 3: Feature extraction from the generated patches and raw images
and patches to create individual feature vectors. We used LBP, LPQ, and
PHOG feature extractors in this step. LBP and LPQ generate textural
features, while PHOG generates directional features. We have created 7
(=23-1) feature vectors for each input by deploying combinations of
these feature extractors. First, we have defined the presented
combination-based feature extractor.

feat1 = LBP(In),
feat2 = LPQ(In),
feat3 = PHOG(In),

feat4 = concat(feat1, feat2)
feat5 = concat(feat1, feat3)
feat6 = concat(feat2, feat3)

feat7 = concat(feat1, feat2, feat3)

(3)

where In: input, feat: the generated feature vectors, and concat(.): the
concatenation function. Using this combination feature extractor, we
have generated seven feature vectors for each input. We have applied
this feature extraction function to the generated patches and raw images
to create individual feature vectors.

[f4(t− 1)+11 , f4(t− 1)+21 ,⋯, f4(t− 1)+71 ] = CombFE(Gray)
[f4(t− 1)+1j+1 , f4(t− 1)+2j+1 ,⋯, f4(t− 1)+7j+1 ] = CombFE(Ptj)

(4)

Then, we have extracted features from both raw images and patches. In
this case, we have generated 50 (=49 + 1), 37 (=36 + 1), 26 (=25 + 1)
and 10 (=9 + 1) features using the 30 × 30, 35 × 35, 42 × 42 and 70 ×

70 sized patches respectively.
Step 4:Merge the features according to feature types and generate 28

(= 7 feature vectors × 4 patches) merged feature vectors.

Fq = concat
(
fq1 , f

q
2 ,⋯, fqj+1

)
, q ∈ {1,2,⋯,28}, (5)

Fig. 3. Overview of the feature extraction method. The process used four different fixed-size patch division to extract local features from different image regions.
Three feature extractors (LBP, LPQ and PHOG) are applied to these patches and the original image, generating 28 feature vectors through various combinations.

I. Tuncer et al.
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where F defines the merged feature vector. To clarify Step 1–4, we have
provided the pseudocode of the proposed feature extraction methodol-
ogy in Algorithm 1. By deploying these steps (Algorithm 1 explained
these steps), our model generates 28 feature vectors.

Algorithm 1 Pseudocode of the presented combination-based flexible
feature extraction.

Input: Image

Output: Merged feature vectors
01: Apply preprocessing by deploying Eq. (1).
02: win ∈ {30,35,42,70};
03: c = 1; // Counter definition
04: for t = 1 to length(win) do
05: [Fc(1 : l1), Fc+1(1 : l2),⋯, Fc+6(1 : l7) ] = CombFE(Gray)
06: c1 = 1; // The second counter definition for feature concatenation
07: for w = 1 to 210 step by win(t) do
08: for h = 1 to 210 step by win(t) do
09: patch = Gray(w : w+win(t) − 1, h : h+win(t) − 1 );
10: Fc(c1*l1 +1 : (c1 + 1)*l1 ),Fc+1(c1*l1 +1 : (c1 + 1)*l1 ),⋯
Fc+6(c1*l7 +1 : (c1 + 1)*l7 )] = CombFE(patch);
// Herein, feature extraction and concatenation stages are merged.
11: c1 = c1 + 1;
12: end for h
13: end for w
14: c = c + 7;
15: end for t

3.2. Feature selection

In this phase, we utilized NCA, Chi2, and RF as feature selectors to
generate 84 selected feature vectors from the initially created 28 feature
vectors. The objective of this phase was twofold: to augment the number
of feature vectors and to standardize their lengths. Consequently, we
selected the top 256 features from each of the 28 generated feature
vectors. The schematic diagram of the presented feature selection is
depicted in Fig. 4.

The procedural steps of the feature selection phase are as follows:
Step 5: Creation of the qualified indices of the feature vectors by

utilizing NCA, Chi2, and RF feature selectors.

idxq = NCA(Fq, y),
idxq+28 = Chi2(Fq, y),
idxq+56 = RF(Fq, y)

(6)

where idx: the qualified indices (84 qualified indices have been created)
and y: actual/real output.

Step 6: Definition of the qualified indices of the feature vectors by
utilizing NCA, Chi2, and RF feature selectors.

sq(d, g) = Fq(d, idxq(g)), g ∈ {1,2,⋯, 256}, d ∈ {1,2,⋯,NI}
sq+28(d, g) = Fq(d, idxq+28(g)),
sq+56 = Fq(d, idxq+28(g))

(7)

where s: selected feature vector and NI: number of images.

3.3. Classification

In this study, we aimed to demonstrate the high classification ability
of the features generated by the proposed FlexiCombFE framework. To
achieve this, we utilized two shallow classifiers, kNN and SVM. These
classifiers were selected based on their performance within the MATLAB
Classification Learner Toolbox. This toolbox provides over 30 traditional
and ensemble classifiers for evaluation. After conducting an extensive
performance analysis, kNN and SVM emerged as the top-performing
classifiers for the given dataset. Hence, we chose these classifiers for
our study. While we acknowledge that advanced deep learning models
might offer competitive performance, our focus was to showcase the

Fig. 4. Feature selection process overview. Three feature selectors (NCA, Chi2,
and ReliefF) are applied to the 28 generated feature vectors, producing 84
selected feature vectors (28 × 3).

Fig. 5. Classification phase workflow. The 84 selected feature vectors are
processed using kNN and SVM classifiers, generating 168 (84 × 2) outcomes.
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strength of the feature engineering approach. The classification phase of
the introduced Fig. 5.

The SVM and kNN classifiers were applied to the selected feature
vectors as inputs, generating 168 classifier-specific outcomes. The steps
involved in the classification phase are as follows:

Step 7: Creation of the qualified indices of the feature vectors by
utilizing NCA, Chi2, and RF feature selectors.

cp = kNN(sp, y), p ∈ {1,2,⋯,84}
cp+84 = SVM(sp+84, y),

(8)

where c: classifier-specific outcome.

3.4. Information fusion

The IMV method was used to produce the voted result by combining
the strengths of individual classifiers using an iterative majority voting
mechanism. This approach ensures that the collective decision utilizes
reliable results, thereby reducing the effect of poorly performing
classifier-based outcomes. Following this, a greedy algorithm was
applied to determine the single best classification result from the ob-
tained outcomes. The greedy algorithm allowed us to achieve the opti-
mum outcome by selecting the result with the highest accuracy and
identifying the best combination of feature extraction, feature selection,
and classification models. The graphical depiction of the introduced
information fusion has been depicted in Fig. 6.

The IMV method and a greedy algorithm were applied in the final
phase. Utilizing IMV, we produced voted outcomes based on the 168
classifier-specific outcomes, resulting in 166 voted outcomes. The steps
of this phase are detailed below:

Step 8: Generation of the voted outcomes by deploying IMV and
classifier-specific outcomes.

ac = ψ(ca, y), a ∈ {1,2,⋯, 168},
ix = Sort(ac),

vb = ω(cix(1), cix(2),⋯, cix(b+2)), b{1,2,⋯, 166}
(9)

where ac: classification accuracy, ψ(.): classification accuracy calcula-
tion function, ix: the qualified indices of the classifier-specific outcomes
per classification accuracy by descending, Sort(.): sorting function, v:
voted outcome and ω(.): mode function.

Step 9: Selection of the best outcome as the ultimate outcome.

ac(a) = ψ(ca, y),

ac(168+ n) = ψ(vn, y), n ∈ {1,2,⋯, 166},

[maxi, x] = max(acc),

ult = {
cx, x ≤ 168

vx− 168, x > 168

(10)

where ac: classification accuracy, maxi: the maximum classification
accuracy, x: index of the maximum classification accuracy, and ult: ul-
timate outcome.

In this phase, Step 8 delineates the implementation of the IMV al-
gorithm, while Step 9 outlines the application of the greedy algorithm.
These steps collectively constitute the methodology of the proposed

FlexiCombFE framework.

4. Experimental results

In this section, the performance evaluation results of the presented
FlexiCombFE have been presented and the details of these results are
given below.

4.1. Time complexity of the FlexiCombFE model

The FlexiCombFE is a lightweight model based on feature engi-
neering. This model consists of four main phases, and their time
complexity computations using Big O notation are provided below.

Feature Extraction: The feature extraction phase employs fixed-size
patch with different combinations. We have employed simple feature
extraction functions: (i) LBP, (ii) LPQ, and (iii) PHOG. The time
complexity of these functions is O(S), where S represents the size of the
patch. Therefore, the time complexity of the feature extraction phase is
O(3SP + C) = O(SP + C), where P defines the number of patches and C
represents the time complexity of the combination process.

Feature Selection: Three different feature selectors have been used in
this phase: NCA, ReliefF, and Chi2. The time complexity is O(RF + NF +

CF), where R,N, and C are the time complexity coefficients of ReliefF,
NCA, and Chi2, respectively, and F represents the number of features.

Classification: Two shallow classifiers, kNN and SVM, are used to
generate classification outputs. The time complexity of this phase is
O(TK + TV), where T represents the number of selected feature vectors,
K is the time complexity coefficient of kNN, and V is the time complexity
coefficient of SVM.

Information Fusion: This phase uses IMV and the greedy algorithm to
choose the best classification outcome. The time complexity is O(I + G),
where I represents the time complexity coefficient of IMV and G repre-
sents the time complexity of the greedy algorithm.

Total: The total time complexity of the FlexiCombFE is
O(SP+C+F(R+ N+ C)+T(K+ V)+I+G ). This result demonstrates the
linear time complexity of the proposed model.

4.2. Classification performance of the FlexiCombFE model

In this section, we detail the classification performance of the Flex-
iCombFE framework. The FlexiCombFE framework was developed
within the MATLAB (2023a) programming environment. For classifi-
cation, the selected features were processed using the Classification
Learner Toolbox (MATLAB version 2024a). We chose the two most
effective shallow classifiers: kNN and SVM.

The FlexiCombFE framework was executed on a personal computer
equipped with 32 GB of RAM and a 3.2 GHz processor, and it ran the
Windows 11 operating system. The implementation was carried out in
CPUmode, highlighting the framework’s nature as a hand-crafted model
designed for high-performance computational tasks. The transition table
of the proposed model, detailing the process flow and outcomes, is
presented in Table 3.

To assess the performance of the proposed FlexiCombFE framework,
we employed a 10-fold cross-validation strategy. We utilized a
comprehensive set of performance metrics, including classification

Fig. 6. Information fusion phase overview. The process takes 168 classifier-specific outcomes as input. IMV produces 166 additional voted outcomes, resulting in 334
total outcomes. The final step selects the best outcome among these.
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Table 3
Transition table of the presented FlexiCombFE.

Phase Methods Parameters Output

Feature
extraction

Grayscale
conversion

Input: RGB image,
Multipliers:R: 0.2989, G:
0.5870 and B: 0.1140

Grayscale
image

Image resizing Bilinear interpolation 210 × 210
sized image

Patch division Patch sizes: 30 × 30, 35
× 35, 42 × 42 and 70 ×

70.

Number of
patches:
For 30 × 30:
49,
For 35 × 35:
36,
For 42 × 42:
25,
For 70 × 70: 9.

Feature extraction
deploying LBP,
LPQ, PHOG and
combinations of
them

Feature extractor 1: LBP,
Feature extractor 2: LPQ,
Feature extractor 3:
PHOG,
Feature extractor 4: LBP
+ LPQ,
Feature extractor 5: BLP
+ PHOG,
Feature extractor 6: LPQ
+ PHOG,
Feature extractor 7: LBP
+ LPQ + PHOG

Number of
features:
Feature vector
1: 59,
Feature vector
2: 256,
Feature vector
3: 168,
Feature vector
4: 315,
Feature vector
5: 227,
Feature vector
6: 424,Feature
vector 7: 483,

Generation 28
feature vectors

Feature extraction from
raw image and the
generated patches.
Merge the features per
the used patch and
feature extractors

Number of
features:
For 30 × 30:
1: 2950, 2:
12800, 3: 8400,
4: 15750, 5:
11350, 6:
21200, 7:
24150.
For 35 × 35:
8: 2183, 9:
9472, 10: 6216,
11: 11655, 12:
8399, 13:
15688, 14:
17871.
For 42 × 42:
15: 1534, 16:
6656, 17: 4368,
18: 8190, 19:
5902, 20:
11024, 21:
12558.
For 70 × 70:
22: 590, 23:
2560, 24: 1680,
25: 3150, 26:
2270, 27: 4240,
28: 4830.

Feature
selection

Feature selection
with NCA, Chi2
and RF

Input: Generated 28
feature vectors. Three
feature selectors were
used with default
setting.

The lengths of
the selected
feature vectors
256.
Selected
feature vectors
1–28 have been
generated
using NCA.
Selected
feature vectors
29–56 have
been generated
deploying
Chi2.
Selected

Table 3 (continued )

Phase Methods Parameters Output

feature vectors
57–84 have
been generated
utilizing RF.

Classification Classification with
kNN and SVM

Input: 84 selected
feature vectors.
kNN: k:1, distance: L1-
norm, voting: none,
validation: 10-fold cross-
validation.
SVM: Kernel: 3rd degree
polynomial, box
constraint: 1, coding:
one-vs-one, validation:
10-fold cross-validation.

Outcomes 1–84
have been
created by the
kNN.
Outcomes
85–168 have
been produced
using SVM.

Information
fusion

Voted outcomes
generation with
IMV

Range of iteration: from
3 to 168,
Sorting criteria:
Accuracy by descending,
Voting function: Mode.

The number of
generated
voted
outcomes: 166

Greedy algorithm Input: 334
outcomesSelection
criteria: Maximum
accuracy

The best
outcome

Fig. 7. Confusion matrix of the best classifier-based outcome. 1: Brain Tumor,
2: Control. Blue cells indicate correctly predicted observations, while beige cells
show incorrect predictions. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 4
The computed classification performances of the best
classifier-specific outcome of the FlexiCombFE.

Performance metric Result (%)

Accuracy 98.83
Sensitivity 99.24
Specificity 97.51
Geometric mean 98.37
Precision 98.62
F1-score 98.93
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accuracy, sensitivity, specificity, geometric mean, precision, and F1-
score.

The FlexiCombFE framework produced outcomes on an individual
classifier basis and through a voting mechanism, with the ultimate de-
cision derived from the voted outcome. The most effective classifier-
based outcome was identified as the 27th outcome, generated accord-
ing to the following configuration: the feature extraction method com-
bined LPQ with PHOG (LPQ + PHOG), the feature selection was
conducted using NCA, and kNN performed the classification. The
confusion matrix for this optimal classifier-based outcome, depicted in
Fig. 7, served as the basis for calculating the classification performance
metrics. Based on the confusion matrix results, the framework achieved
an impressive classification accuracy of 98.83 %, with only 54 mis-
classified cases out of 4600 total images.

Utilizing the data from Fig. 7, the classification performance metrics
for the optimal classifier-based outcome are systematically compiled in
Table 4.

Table 4 reveals that the optimal classifier-based outcome achieved
an accuracy of 98.83%, a geometric mean of 98.37%, and an F1-score of
98.93 %. The final result from the FlexiCombFE framework is derived
from a voted outcome. To calculate the performance metrics of this ul-
timate outcome, we referred to the confusion matrix corresponding to
the ultimate output, as presented in Fig. 8. The final outcome demon-
strates superior performance with an accuracy of 99.35 %, showing
significant improvement through information fusion with only 30 mis-
classified cases out of 4,600 total images.

According to Fig. 8, the performance metrics calculated for the final
outcome are summarized in Table 5. This table shows that the proposed
FlexiCombFE model achieved a classification accuracy of 99.35 %, a
geometric mean of 99.34 %, and an F1-score of 99.40 %. This ultimate
outcome, identified as the 13th-voted outcome, was derived from voting
among the top 15 classifier-specific outcomes.

A comparison of the results in Table 4 and Table 5 demonstrates the
effectiveness of the information fusion phase in enhancing the classifi-
cation performance of the proposed model. Fig. 9 further illustrates
these improvements by comparing the performance metrics before and
after the information fusion phase. As shown in Fig. 9, the application of
information fusion significantly enhanced all classification performance
metrics of the proposed model. This improvement underscores the
effectiveness of the information fusion phase in boosting the model’s
overall accuracy and reliability.

4.3. Comparative analysis of model components

We have evaluated the classification performance of the feature ex-
tractors, feature selectors, and classifiers based on the 168 classifier-
specific outcomes. We used box plot analysis to present these
methods’ statistical properties graphically. The graphical results for the
utilized methods are illustrated in Fig. 10.

These analyses were conducted using classifier-specific results, with
an evaluation of the employed methods based on average classification
accuracy. The key findings from this analysis are:

• PHOG was identified as the most effective feature extractor,
achieving an average classification accuracy of 98.12 %. However,
the highest classifier-specific outcome was produced using a com-
bination of the LPQ and PHOG feature extractors.

• The optimal patch size was identified as 70 × 70, which yielded an
average classification accuracy of 98.02 %.

• The most effective feature selector was NCA, which achieved an
average classification accuracy of 98.01 %.

• In terms of classifiers, the average classification accuracies for kNN-
based and SVM-based outcomes were 98.15 % and 97.43 %,

Fig. 8. Confusion matrix of the final outcome. Here, 1: Brain Tumor, 2: Control.
Blue cells indicate correctly predicted observations, while beige cells show
incorrect predictions. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 5
The computed classification performance of the proposed
FlexiCombFE.

Performance metric Result (%)

Accuracy 99.35
Sensitivity 99.40
Specificity 99.28
Geometric mean 99.34
Precision 99.40
F1-score 99.40

Fig. 9. Performance comparisons of the best classifier-based and voted out-
comes. Herein, 1: Accuracy, 2: Sensitivity, 3: Specificity, 4: Geometric mean, 5:
Precision, 6: F1-score.
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respectively, indicating that the kNN classifier outperformed the
SVM classifier.

In addition to the above analysis, the classification accuracies of the
computed classifier-specific outcomes are depicted in Fig. 11.

According to Fig. 11, the optimal outcome was identified as the 27th,
achieving an accuracy of 98.83 %. This result was produced using a
combination of the LPQ + PHOG feature extractor with a 70 × 70 patch
division, the NCA feature selector, and the kNN classifier. Conversely,
the least accurate outcome was the 86th (which reached 93.91 %

classification accuracy), generated with the LBP feature extractor using
a 30 × 30 patch division, the NCA feature selector, and the SVM clas-
sifier. Notably, the NCA feature selector was involved in both the highest
and lowest classifier-specific outcomes.

With the application of IMV, the voted outcomes within the Flex-
iCombFE framework were generated, showcasing classification accu-
racies of 99 % or higher. The classification accuracies of these voted
outcomes are illustrated in Fig. 12.

Fig. 10. Evaluation of the used methods.

Fig. 11. The classification accuracies of the classifier-based outcomes.

Fig. 12. The classification accuracies of the generated 166 voted outcomes.
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The data presented in Fig. 12 shows that the 13th-voted outcome
represents the outcome. The top 15 classifier-based outcomes (=13 +

3–1) were utilized to generate this particular outcome. The composition
of this ultimate outcome was scrutinized using a counting-based anal-
ysis. Through an analysis of the methodologies listed in Table 6, our
objective was to identify the most frequently utilized methods contrib-
uting to the generation of the ultimate result. This analysis, based on
histogram representations, facilitates the identification of ’hotspot’
methods. The histograms derived from this analysis are illustrated in
Fig. 13.

Fig. 13. The frequency analysis of the used method to create ultimate
outcome. Based on the analysis presented in Fig. 13, the following in-
sights were identified:

• The top-performing feature extractor combinations are LPQ+ PHOG
and LBP + LPQ + PHOG. Furthermore, it has been observed that it is
not necessary to incorporate the LBP feature extractor alone to
generate the ultimate outcome.

• The optimal patch size for achieving the best results is determined to
be 70 × 70.

• The NCA feature selector is superior to the Chi2 and RF feature se-
lectors in contributing to the ultimate outcome.

• The kNN classifier demonstrates better performance than the SVM
classifier.

4.4. Comparison with state-of-the-art

To illustrate the classification efficiency of the presented

Table 6
The used classifier-based outcomes to generate ultimate outcome.

No Feature extractor Patch size Feature selector Classifier

27 LPQ + PHOG 70 × 70 NCA kNN
12 LBP + PHOG 35 × 35 NCA kNN
28 LBP + LPQ + PHOG 70 × 70 NCA kNN
34 LPQ + PHOG 30 × 30 Chi2 kNN
14 LBP + LPQ + PHOG 35 × 35 NCA kNN
23 LPQ 70 × 70 NCA kNN
55 LPQ + PHOG 70 × 70 Chi2 kNN
6 LBP + PHOG 30 × 30 NCA kNN
25 LBP + LPQ 70 × 70 NCA kNN
96 LBP + PHOG 35 × 35 NCA SVM
79 LPQ 70 × 70 RF kNN
16 LPQ 42 × 42 NCA kNN
31 PHOG 30 × 30 Chi2 kNN
112 LBP + LPQ + PHOG 70 × 70 NCA SVM
168 LBP + LPQ + PHOG 70 × 70 RF SVM

Fig. 13. Frequency analysis of the methods used to create ultimate outcome.

Table 7
The comparative results with cutting-edge models.

Study Method Split
ratio

Accuracy
(%)

Bala et al. [57] Local binary patterns 10-fold
CV

99.12

Jain and
Jaidka [58]

SVM + CNN 66:34 98.90

Chmiel et al.
[59]

ResNet50 80:20 98.99

Valero Gómez
[60]

MobileNet 80:20 98.59

Ads et al. [61] Multi-limb split learning 80:20 90.69
Chen [62] EfficentNet 67:33 91.00
Our study The proposed FlexiCombFE 10-fold

CV
99.35

The best classifier-specific outcome
of the FlexiCombFE

98.83
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FlexiCombFE framework, we have conducted a comparison with state-
of-the-art models. The comparative results are detailed in Table 7. Ac-
cording to Table 7, our proposed FlexiCombFE framework achieved
higher classification accuracy than existing deep learning models. This
achievement underscores our success in developing a competitive
feature engineering model that can rival the performance of deep
learning approaches.

5. Discussions

In this study, we introduced a novel framework named FlexiCombFE,
designed to showcase its classification capabilities. We utilized an open-
access (publicly available) biomedical image dataset comprising 4600
brain tumor images previously employed by deep learning models. Our
main goal was to develop a hand-crafted (feature engineering) approach
that achieves classification performance comparable to, or even sur-
passing, deep learning models.

The FlexiCombFE framework incorporates a unique combination of
feature extraction techniques (LBP, LPQ, and PHOG), feature selection
methods (NCA, Chi2, and RF), and classification algorithms (kNN and
SVM). By using information fusion techniques (IMV and greedy algo-
rithm), the presented model is converted to a self-organized form since it
selected the best outcome among to the generated 334 outcomes.

One of the key strengths of FlexiCombFE is high classification ac-
curacy and the introduced FlexiCombFE has often outperformed deep
learning models. The high classification ability shows that the intro-
duced FlexiCombFE can be used in the critical medical scenarios.

The information fusion technique based on IMV and greedy algo-
rithm plays a crucial role in its performance. The IMV and greedy-based
information fusion method combine classifier outcomes to obtain voted
outcome and the voted outcomes have generally yielded higher classi-
fication performance than classifier-wise outcomes.

The utilized machine learning methods were analyzed, and the ob-
tained findings are given as below. Among the evaluated feature ex-
tractors, PHOG achieved the highest average classification accuracy of
98.12 %, demonstrating its effectiveness in capturing directional and
edge-related features essential for tumor distinction. Additionally, the
combination of LPQ and PHOG highlights the importance of combining
texture and directional features for comprehensive image analysis; the
best classifier-wise result was obtained with this feature extraction
combination (LPQ + PHOG). The optimal patch size was found to be 70
× 70 pixels, achieving an average accuracy of 98.02 %, as it effectively
balances image detail and computational efficiency. In terms of model
components, NCA proved to be the most effective feature selector, while
the kNN classifier consistently outperformed the SVM classifier in clas-
sification tasks.

Another advantage of FlexiCombFE is its modular architecture. Un-
like many deep learning models that operate as “black boxes,” Flex-
iCombFE maintains distinct feature extraction and classification stages.
This transparency is particularly advantageous in applications
demanding high interpretability, such as medical diagnosis and risk
assessment, where understanding the model’s reasoning is paramount.

The introduced FlexiCombFE model tested achieved 99.35 % of
classification accuracy and the used methods in this framework are
analyzed in the previous section.

In the feature extraction phase, errors primarily arise from subopti-
mal patch sizes or inefficient feature extractors. To solve this problem,
we diversified features using multiple patch sizes (30 × 30, 35 × 35, 42
× 42, and 70 × 70) and three complimentary feature extractors (LBP,
LPQ, and PHOG). In addition, we generated multiple feature vectors
using combination-based feature vector generation methods. Given that
feature selection methods in the literature exhibit distinct selection ca-
pabilities, we employed three well-established feature selectors: NCA,
Chi2, and ReliefF. These selectors not only reduce selection errors but
also minimize errors in the generated feature vectors by eliminating
redundant features.

For classification, we selected kNN and SVM classifiers based on their
superior performance in the MATLAB Classification Learner tests. The
implementation of both classifiers helps minimize classification errors
through complementary decision-making approaches. In the informa-
tion fusion stage, the IMV algorithm combines the classifier-specific
results to reduce the impact of low performing models while mini-
mizing errors propagation. The IMV generates robust outputs by laver-
aging the strengths of multiple classifiers, followed by a greedy
algorithm that selects the most accurate result, thereby compensating
for the errors introduced in the previous stages.

The modular architecture of FlexiCombFE facilitates error contain-
ment at each processing stage. The combination of multiple methods
and IMV minimize error propagation and increase the reliability of the
final classification result. Moreover, our experimental results (Figs. 10-
13) demonstrate the individual classification performance of each
method, confirming that the framework enhances the classification ca-
pabilities of the constituent models. This validates our approach of
utilizing optimal configurations for each component.

Our research introduces a new image classification framework
termed FlexiCombFE, consisting of four main phases: patch-based
feature extraction, multiple selectors-based feature selection, kNN and
SVM-based classification, and IMV and greedy-based information
fusion. The framework achieved 99.35 % classification accuracy on a
public brain tumor dataset, outperforming existing deep learning
models. FlexiCombFE generates 28 feature vectors, 84 selected feature
vectors, 168 classifier-specific outcomes, and 166 voted outcomes,
making it self-organized by selecting the best outcomes from 334
generated results.

Analysis of the framework revealed several key findings: Flex-
iCombFE maintains linear time complexity as a lightweight model; the
combination of LPQ + PHOG proved most effective for feature extrac-
tion; 70 × 70 pixels emerged as the optimal patch size; NCA showed
superior performance in feature selection; and kNN consistently out-
performed SVM. The modular structure of our framework enables
integration of various feature engineering methods, while the IMV and
greedy algorithm fusion phase enhanced overall accuracy.

The FlexiCombFE framework has several advantages that highlight
its usefulness in applications related to medical imaging. The light-
weight design allows for deployment on embedded devices, and its
modular structure helps during the integration of various feature engi-
neering techniques. Unlike typical “black-box” deep learning models,
the system offers interpretability thanks to the use of traditional feature
engineering techniques.

It is important to recognize that the FlexiCombFE architecture has
some limitations despite its excellent performance. First, the frame-
work’s efficacy is largely dependent on the careful selection of suitable
feature extractors, classifiers, patch sizes, and feature selectors. These
settings might need to be modified for other medical imaging applica-
tions, even if our experimental findings show the best combinations for
brain tumor detection. Second, to show the framework’s wider appli-
cation in clinical settings, more validation across various medical im-
aging datasets would be beneficial. These limitations offer chances for
future studies to improve the framework’s versatility across a range of
medical imaging applications. Future work will focus on the automation
of parameter selection to present a fully automated version of Flex-
iCombFE. The framework exhibits potential for a number of medical
applications, such as the detection of brain tumors in MRI or CT images,
the categorization of cancer subtypes, the identification of lung condi-
tions, the study of skin lesions, and the detection of cardiac abnormal-
ities utilizing a variety of imaging modalities.

From a radiological perspective, FlexiCombFE offers valuable sup-
port to clinical practice. Its patch-based approach aligns with radiolo-
gists’ analytical methods, while its high accuracy and interpretability
build trust in clinical settings. The lightweight design ensures accessi-
bility in low-resource settings, and its versatility enables application
across various medical imaging tasks, supporting radiologists with
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accurate and clear diagnoses.
As illustrated in Fig. 14, the FlexiCombFE-based medical imaging

pipeline processes various medical images (MRI, X-ray, CT scan, ultra-
sound) through its detection system, providing reports that aid doctors
in making informed clinical decisions.

6. Conclusions

The introduced FlexiCombFE framework has showcased exceptional
adaptability and precision in handling diverse image characteristics for
brain tumor classification. Our analysis validated the effectiveness of
combining LPQ and PHOG as feature extractors, which significantly
contribute to generating the most accurate outcomes. The use of the
NCA feature selector consistently supported the identification of the
most relevant features, contributing to the framework’s high classifi-
cation accuracy. The choice of a 70 × 70 patch size proved optimal,
capturing sufficient image detail while maintaining computational ef-
ficiency. The incorporation of IMV and greedy algorithms in the infor-
mation fusion phase further improved classification accuracy. These
strategies ensured that the final classification decision leveraged the
strengths of individual classifiers. The FlexiCombFE framework’s per-
formance, characterized by its 99.35 % accuracy, exemplifies the po-
tential of combining traditional feature engineering techniques with
innovative classification and fusion methods. This success in brain
tumor image classification sets a precedent for applying similar frame-
works to other complex image classification tasks, offering a promising
direction for future research.
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