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Background: Understanding and extracting valuable information from electronic health records (EHRs) is
important for improving healthcare delivery and health outcomes. Large language models (LLMs) have
demonstrated significant proficiency in natural language understanding and processing, offering promises for
automating the typically labor-intensive and time-consuming analytical tasks with EHRs. Despite the active
application of LLMs in the healthcare setting, many foundation models lack real-world healthcare relevance.
Applying LLMs to EHRs is still in its early stage. To advance this field, in this study, we pioneer a generation-
augmented prompting paradigm “GAPrompt” to empower generic LLMs for automated clinical assessment, in
particular, quantitative stroke severity assessment, using data extracted from EHRs.

Methods: The GAPrompt paradigm comprises five components: (i) prompt-driven selection of LLMs, (ii)
generation-augmented construction of a knowledge base, (iii) summary-based generation-augmented re-
trieval (SGAR); (iv) inferencing with a hierarchical chain-of-thought (HCoT), and (v) ensembling of multiple
generations.

Results: GAPrompt addresses the limitations of generic LLMs in clinical applications in a progressive manner.
It efficiently evaluates the applicability of LLMs in specific tasks through LLM selection prompting, enhances
their understanding of task-specific knowledge from the constructed knowledge base, improves the accuracy of
knowledge and demonstration retrieval via SGAR, elevates LLM inference precision through HCoT, enhances
generation robustness, and reduces hallucinations of LLM via ensembling. Experiment results demonstrate the
capability of our method to empower LLMs to automatically assess EHRs and generate quantitative clinical
assessment results.

Conclusion: Our study highlights the applicability of enhancing the capabilities of foundation LLMs in medical
domain-specific tasks, i.e., automated quantitative analysis of EHRs, addressing the challenges of labor-intensive
and often manually conducted quantitative assessment of stroke in clinical practice and research. This approach
offers a practical and accessible GAPrompt paradigm for researchers and industry practitioners seeking to
leverage the power of LLMs in domain-specific applications. Its utility extends beyond the medical domain,
applicable to a wide range of fields.

1. Introduction

Hospitals and medical practices around the world have increasingly
adopted electronic health record (EHR) systems, resulting in massive
amounts of electronic patient data in both structured (e.g., disease
codes, medication codes) and unstructured (i.e., clinical narratives
such as progress notes) formats. The advancements in Al techniques,
including machine learning, deep learning, and natural language pro-
cessing (NLP), have provided researchers with powerful techniques
to automate the methods and process of secondary data analysis to
support clinical decisions and research based on these massive amounts
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of EHR data [1-4]. Currently, the EHR data analytic methods encounter
several significant limitations. These include the requirement for large
volumes of labeled datasets for model training, the necessity for entity
(health terms) and relationship annotation, labor-intensive preprocess-
ing procedures, and inadequate quantitative assessment capabilities [1,
3,51.

The recent large language models (LLMs) hold remarkable capa-
bility in natural language understanding (NLU) and natural language
inference (NLI) [6,7]. They can comprehend and answer questions
directly for a given text, surpassing the classical machine learning and
deep learning methods, which require sentence-by-sentence or word-
by-word processing and annotation [8]. Therefore, these LLMs are
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highly promising Al techniques for enhancing EHR analytic technolo-
gies to improve the quality and productivity of healthcare services.
However, it remains a challenge to directly apply these LLMs in real-
world domain-specific tasks [9,10], because most generic LLMs are
trained on general language data and lack domain-specific knowl-
edge [11], while the very few medical domain LLMs are proprietary
and not publicly available [12-14]. Also, there is little report about
the application of LLMs in quantitative clinical assessment tasks.

Previous studies have demonstrated that with appropriately de-
signed prompting strategies, generic LLMs can achieve comparable
performance to domain-specific LLMs without the time-consuming and
costly training or fine-tuning of LLMs [15-17]. Therefore, we explored
the feasibility of applying prompting techniques to enable generic
LLMs to complete our clinical assessment task of stroke severity. How-
ever, our initial research has found that there are several main chal-
lenges of applying generic LLMs directly for automated stroke assess-
ment. These include the evaluation of the applicability of foundation
LLMs, the lack of stroke assessment knowledge, the limited context
length in processing large EHRs, the inaccuracy of reasoning quan-
titative assessment results, and the inevitable hallucination during
the generation. By leveraging the in-context learning (ICL) ability
of LLMs, in this paper, a series of prompting strategies, including
prompt-driven LLM selection, generation-augmented knowledge base
construction, summary-based generation-augmented retrieval (SGAR),
hierarchical chain-of-thought (HCoT), and an ensembling mechanism,
are developed to tackle these issues, empowering LLMs for automated
quantitative clinical assessment from EHRs (see Fig. 1).

First, with the popularity of LLMs, a plethora of new models are con-
tinuously emerging. However, their applicability and performance need
to be carefully evaluated in quantitative clinical assessment tasks. Thus,
in this paper, first and foremost, an effective and efficient prompting-
based LLM selection approach is developed. Next, to enhance the
LLM’s knowledge of stroke assessment, generation-augmented retrieval
(GAR) is a suitable solution [18,19]. This process first constructs an
external knowledge base compromising stroke assessment guidelines
and demonstrations, using the well-established National Institutes of
Health Stroke Scale (NIHSS) [20] as the quantitative stroke assess-
ment standard, and generating demonstrations from expert-validated
assessment results on a labeled EHR dataset CSCR [21]. We further
develop an innovative summary-based GAR (SGAR) method to enhance
the retrieval of corresponding assessment criteria and demonstrations,
thereby facilitating LLMs’ generation process and reasoning perfor-
mance. Subsequently, a novel HCoT prompting strategy that integrates
the document-level macro sequential chain [22] and sentence-level mi-
cro CoT [23], is proposed to overcome the challenges of LLM’s limited
context length in processing large EHRs, and improve the performance
of LLM inference. Using the popular Langchain library [22], large EHRs
are split into short sentences and sequentially processed by the macro
chain. Meanwhile, the micro CoT is capable of significantly improving
the performance of LLM inference through logical steps provided in the
demonstrations. Finally, an ensembling strategy is applied to integrate
multiple generation results to control the impact of LLM’s hallucination
in generation.

We highlight the following contributions of our research:

(1) A GAPrompt Paradigm for Clinical Assessment: We develop an
overarching generation-augmented prompting paradigm (GAPrompt),
which effectively extends the capabilities of generic LLMs, empowering
them in clinical domain-specific applications, enabling automated and
quantitative assessment of stroke severity with enhanced accuracy and
efficiency.

(2) A Prompt-Driven LLM Selection Method: We propose an effec-
tive and efficient prompting-based LLM selection process to evaluate
and identify the most suitable LLM for quantitative clinical assessment
tasks.
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(3) A Summary-based Generation-Augmented Retrieval (SGAR)
Method: We develop an SGAR method based on LLM-generated sum-
maries of assessment guidelines, demonstrations, and query EHRs to
improve performance.

(4) A Hierarchical Chain-of-Thought (HCoT) Prompting Strategy:
We propose a novel HCoT prompting strategy to address the limitations
of the context length of LLMs by integrating a macro sequential chain
at the document level with a micro-coT at the sentence level, breaking
down the task step by step and improving reasoning performance.

(5) An Ensembling Strategy for Enhanced Robustness: We apply
an ensembling strategy that integrates multiple generation results to
mitigate the impact of LLM hallucinations, enhancing the reliability of
LLM-generated outputs by ensembling diverse inferences into a robust
final result.

The remainder of this paper is organized as follows: Section 2
provides a concise overview of existing LLM, GAR and HCoT prompting
strategies. Section 3 details our methods of the GAPrompt paradigm, in-
cluding the prompt-driven LLM selection, generation-augmented
knowledge base construction, summary-based generation-augmented
retrieval, hierarchical chain-of-thought, and the ensembling approach.
The experiment design and results are presented in Sections 4 and 5,
respectively, followed by a discussion and conclusion in Section 7.

2. Related works

The techniques used in this research include state-of-the-art LLMs,
cutting-edge techniques on generation-augmented retrieval and prompt-
ing strategies, especially the hierarchical chain-of-thought and ensem-
bling.

2.1. Large language models (LLMs)

Large language models (LLMs) refer to the foundation language
models that can understand and generate natural language. They
are based on the transformer architecture [24] and pre-trained on
a large amount of data, typically containing hundreds or billions of
parameters [25]. These include GPT-3.5 [7], GPT-4 [26], Meta’s Llama
model [27], Google’s PaLM model [13], etc.

Many advanced proprietary LLMs have exhibited versatility in han-
dling a wide array of tasks, including those in the field of health
and medicine [28-30]. Furthermore, specific LLMs have been metic-
ulously fine-tuned for medical applications, such as Med-PaLM [13],
and Med-PaLM 2 [14]. This dual capability of general applicability and
domain-specific refinement underscores the potential of LLMs in health
and medicine.

Currently, some open-source LLMs have demonstrated excellent
performance even comparable to state-of-the-art (SOTA) proprietary
LLMs across various tasks [31,32]. These models include LlaMa2 [27],
BLOOM [33], Falcon [34], Alpaca [35], MedAlpaca [36], and many
notable open-source Chinese LLMs, such as Baichuan [37], Qwen [38]
and XVERSE [39]. Some LLMs with fewer parameters are specifically
fine-tuned on Chinese medical data, such as DoctorGLM [40] and
HuatuoGPT [41].

Performance assessments of these models are typically conducted on
datasets of specific tasks, such as MMLU [42], MBPP [43], GSM8K [44],
and Math [45], to test the model’s multilingual knowledge capabilities,
translation, mathematical reasoning, coding, and other capabilities [46,
47]. However, these evaluations may not be adequate for identifying
the applicability and performance of LLMs in real-world applications
such as clinical assessment using EHRs. To address this, we designed
a set of prompt-driven LLM selection templates to effectively identify
a foundation LLM that aligns with specific task requirements (see
Section 3.1).
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Fundamental LLMs: HuatuoGPT2, LlaMa2 (selected), Falcon, Qwen2
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Fig. 1. The architecture of our proposed GAPrompt paradigm. Green color: prompt-driven LLM selection; blue color: generation-augmented knowledge base construction; orange
color: summary-based generation-augmented retrieval (SGAR); red color: hierarchical chain-of-thought (HCoT); purple color: ensembling of multiple generations. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.2. Generation-augmented retrieval (GAR)

Retrieval is a technique aimed at enhancing the performance of
LLM generation by retrieving valuable information and demonstrations
from an external knowledge base. This external knowledge base can be
existing databases or structured resources with domain-specific knowl-
edge [48,49]. However, building and maintaining a knowledge base
suitable for LLMs is labor-intensive and demands significant human and
time resources. This effort is also susceptible to errors and omissions,
subsequently impacting the effectiveness of the generated content in
various tasks [50]. Leveraging the powerful generation capability of
LLMs, the technique of generation-augmented construction of the exter-
nal knowledge base has been proposed to address the above challenges
and proved to be very effective [30,51].

Various retrieval methods can be employed to extract content rel-
evant to the query from the knowledge base. These include classic
statistical matching methods such as BM25 [52], and embedding-driven
retrieval mechanisms, like KNN [30] and dense representation-based
retrieval (DPR) [53]. However, our preliminary research indicates that
these retrieval methods often treat each word in the query equally,
resulting in failure to precisely identify records most relevant to the
“keywords”. Generation-augmented retrieval (GAR) is thus introduced
to mitigate these limitations by enhancing the semantics of queries,
leading to a substantial improvement in retrieval accuracy [19].

This study employs a generation-augmented approach to construct
an external knowledge base for stroke assessment. By leveraging the

generative capabilities of LLMs and referencing dataset labels, our
approach ensures the efficient generation of a high-quality external
knowledge base. Furthermore, to ensure a high retrieval accuracy, we
develop an innovative summary-based GAR method to replace the full-
text embeddings with LLM-generated summary indexes that extract
and embed only the critical terms. This effectively enhances retrieval
accuracy and the overall task performance.

2.3. Prompting strategies

Prompt engineering entails the strategic design of effective prompts
to guide LLMs in accomplishing downstream tasks. It plays a pivotal
role in successful LLM generation. Existing prompting strategies include
few-shot learning, chain-of-though (CoT), and ensembling methods.

Few-shot learning is a key in-context learning (ICL) capability of
LLMs [8]. It teaches an LLM to learn from only a small number of
labeled examples to generate a new, unseen but similar result. Chain-of-
thought learning encourages an LLM to “think step by step”, entering a
mode of reasoning where it systematically breaks down complex tasks
into a sequence of ordered steps. This prompting method has improved
the accuracy and coherence of the generated output [23,50], and is
entitled CoT to provide a vivid portrayal of the model’s sequential
thinking process. As for ensembling, it combines the outputs of multiple
individual models or multiple generations by one model with different
degrees of randomness to produce a more accurate and reliable result,
instead of relying on a single reasoning output [30,54]. Well-designed
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prompting strategies have demonstrated comparable or even superior
performance than specific fine-tuning methods [30,55]. However, to
date, there is little report on the successful implementation of the
emerging prompt strategies in clinical assessment tasks using the EHR
data.

To address the methodology gap, in this study we have developed
a set of generation-augmented prompting strategies and formulated a
prompting paradigm entitled “GAPrompt”. This paradigm is designed
to empower generic foundational LLMs to quantitatively assess clinical
EHRs.

3. Methods

We propose GAPrompt that progressively enhances the capabilities
of the generic LLMs for our stroke assessment application. It specifically
addresses the limitations of LLMs, including their uncertain applica-
bility, lack of stroke assessment knowledge, limited context length,
inaccuracy in quantitative reasoning, and the issue of hallucination.

As shown in Fig. 1, our proposed GAPrompt paradigm comprises
five process components: (i) prompt-driven LLM selection (in green),
(ii) generation-augmented knowledge and demonstration construction
(in blue), (iii) SGAR (in orange), (iv) HCoT (in red), and (v) ensembling
of multiple generations (in purple). The right part of Fig. 1 illustrates
the automated NIHSS scoring process using GAPrompt with specific
examples and step-by-step reasoning.

3.1. Prompt-driven LLM selection

To evaluate the applicability of candidate generic LLMs for our
specific application scenario, we first devise a prompt-driven LLM
selection strategy (see Fig. 1). In this strategy, we create six prompt
templates to evaluate the capabilities of candidate LLMs in the fol-
lowing six aspects: the foundational knowledge required for stroke
assessment (‘“Knowledge”), comprehension of stroke-related knowledge
and memory capacity (“Comprehension”), learning from the few-shot
examples about stroke (“Learning”), chain-of-thought (CoT) reasoning
(“Reasoning”), ensuring consistency in the generated outputs (“Con-
sistency”), and controlling hallucinations (“Anti-hallucination”). Fig. 2
presents examples of the detailed format of each prompt template.

In these examples, the Knowledge prompt, “Tell me the defini-
tion of the National Institute of Health Stroke Scale (NIHSS) and its
scoring criteria”, requires a highly specialized response. It assesses an
LLM’s foundational knowledge in stroke assessment using NIHSS. In the
Comprehension prompt, we first present a comprehensive definition
of NIHSS along with its scoring criteria, afterwards we pose a similar
question to evaluate the LLM’s comprehension based on the given
context. The Learning prompt presents examples in a question—answer
format and concludes with a similar question to check if the LLM can
learn from these examples. In the Reasoning prompt, we provide a
logical reasoning demonstration in question-answer form, followed by a
similar question to assess the LLM’s capability to learn logical reasoning
from examples. The Consistency prompt repeats a question using
different expressions to examine the consistency of the LLM’s responses.
Finally, in the Anti-hallucination prompt, we pose an initial question
and then ask an unrelated one (e.g, “The patient’s speech is unclear. So,
what is the patient’s muscle strength level on the left leg?”) to evaluate
the LLM’s hallucination control ability.

While these prompts may not comprehensively assess an LLM’s
capabilities, they establish a fast and systematic method to evaluate
the performance of generic LLMs in the specific context of stroke
severity assessment and identify the foundation LLM that meets our
task requirements. To quantitatively compare the selection results, we
utilize the widely adopted Exact Match (EM) method and employ the
EM score as the evaluation metric [53]. Detailed explanations of this
approach are provided in Sections 4.1.1 and 4.2. With this process, we
have identified the most suitable model from four candidate LLMs (see
Section 5.1 for details).
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3.2. Generation-augmented knowledge base construction

Two types of external knowledge are required for LLMs to ef-
fectively perform the task of quantitative assessment of stroke using
EHRs: task-specific knowledge and highly relevant demonstrations. The
former refers to the measurable NIHSS assessment criteria, and the
latter are the examples given to the LLMs for task execution.

Task-specific Knowledge. In our evaluation of LLM performance dur-
ing the prompt-driven LLM selection process (Section 3.1), we have
observed that, while LLMs possess a fundamental understanding of
stroke assessment, they struggle with consistently identifying assess-
ment items and assigning precise NIHSS scores in reasoning. Therefore,
we integrate an explicit NIHSS assessment guideline! as an exter-
nal task-specific knowledge to improve the performance of the foun-
dation LLM in this task. The NIHSS assessment protocol comprises
11 components, each with distinct assessment objectives and scoring
criteria.

LLM-generated Demonstrations. Previous research works have fea-
tured the significance of using demonstrations to improve the per-
formance of LLMs in text generation tasks [14,23]. They have also
explored the potential of substituting manually composed examples
with LLM-generated demonstrations. In accordance with the findings
that LLMs can automatically generate CoT examples and make correc-
tions based on the given ground truth [15,30,50], we introduce the
following prompt template, as shown in Fig. 3, for LLMs to generate
demonstrations.

3.3. Summary-based generation-augmented retrieval (SGAR)

Retrieval is a pivotal step in our prompting approach. Previous re-
search has shown that dynamic retrieval, which takes into account the
content of each query to accurately retrieve highly relevant demonstra-
tions, significantly improves the overall quality of CoT prompting [30,
50]. Furthermore, the GAR method [19] that uses LLMs to augment the
query content has proven effective in enhancing retrieval accuracy. In
light of these insights, we propose an innovative summary-based GAR
(SGAR) approach that employs LLM-generated summaries to improve
the retrieval accuracy.

Unlike previous methods that focused solely on enhancing the input
query, our approach introduces the concurrent LLM-generated summa-
rization of both the input query and the external knowledge base. This
dual summarization approach enables the query to capture essential
information in the sentence-level queries, and compress the information
at the document or paragraph level in the knowledge base.

The detailed process of SGAR includes the following steps: (1) De-
fine Summarization Criteria: We establish summarization criteria that
prioritize extracting information related to anatomy, inspection, and
symptoms, focusing on key terms relevant to stroke severity assessment.
(2) Generate Summaries with LLMs: Using the defined criteria, we
instruct the LLM to generate summaries for the knowledge, demon-
strations and the EHR. For knowledge and EHR records, we apply
LLM-based summarization to each record. For demonstrations, we sum-
marize only the question portion to enable effective query matching.
(3) Embed Summaries as Metadata: After summarization, both the
knowledge summaries and demonstration summaries are embedded
using sentence-transformers [56]. These embeddings are saved as meta-
data in the knowledge base, corresponding to their respective records.
(4) Retrieve and Match Metadata: During the retrieval process, the
algorithm searches for and matches the summarized query with the
metadata of the knowledge and demonstrations in the database. (5) Re-
turn Demonstrations and Knowledge: Upon successful matching, the
algorithm retrieves and returns the raw knowledge and demonstrations,
ensuring that no information is lost from the knowledge base during
this process.

1 https://www.ninds.nih.gov/health-information/public-education/know-
stroke/health-professionals/nih-stroke-scale
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Knowledge )

## Instruction: Tell me the definition of the
National Institutes of Health Stroke Scale (NIHSS)
and its assessment criteria.

## Input: None.

Comprehension )

## Instruction: Tell me the definition of NIHSS and its
assessment criteria based on the given information.
## Input: {{assessment criteria}}

Learning )

## Question: Which NIHSS component is for the
assessment of Dysarthria?

## Answer: The 10th component of NIHSS.

## Question: What does the 10th component of
NIHSS assess?

Reasoning )

## Question: Muscle strength levels 1 to 5 score 4 to
0 in NIHSS, respectively. What does level 3 score?
## Answer: Let's think step by step. Level 3 is the
3rd level, thus it scores the third value in the range
of 4 to 0, which is 2.

## Question: what is the Level 1's score?

Consistency )

## Question: NIHSS has 11 assessment
components. What is the 11th component?
## Question: What is the last component of NIHSS?

Anti-hallucination )

## Question: Tom has unclear speech. What is his
limb muscle strength level?
## Answer: []

Fig. 2. The six prompt templates applied to select the optimal foundation LLM. Six capabilities of LLMs, including Knowledge, Comprehension, Learning, Reasoning, Consistency,

and Anti-hallucination, are evaluated using these defined prompts.

Prompt Template for LLMs to Generate Demonstrations)

## Context:{{Knowledge (assessment criteria)}}

## Instruction: Please follow the assessment criteria to assess the scores of
each NIHSS component from the following report.

{{EHR sentence}}

Let's think step by step.

1. If the report is not in English, translate it to English first.

2. Determine which components of NIHSS are related to the report, and
assess the score.

3. Not mentioned components score 0.

4. Correct the answer according to the ground truth for each component:
{{Ground truth}}

Fig. 3. The template for LLMs to generate demonstrations.

3.4. Hierarchical chain-of-thought

To address the limitations of the foundation LLMs that we have
encountered, including limited context length and inference errors, we
introduce two techniques — macro sequential chain and micro CoT,
and encapsulate them in our method entitled Hierarchical Chain-of-
Thought (HCoT) (see Fig. 1). Chain-of-thought prompting has been
empirically validated as an effective method for prompting LLMs. It
enables systematic reasoning in alignment with the logic flow of the
few-shot examples [23,50].

In our proposed HCoT mechanism, the macro sequential chain is
employed to decompose the complex assessment tasks into a series
of sequential steps, breaking down EHRs at the page or paragraph
level into manageable sentence-level reasoning. The micro CoT then
performs sentence-level generation, effectively overcoming the context
length limitation while improving the accuracy of the responses (see
the red components in Fig. 1).

3.4.1. Macro sequential chain

Leveraging the Langchain platform [22], we traverse each EHR data
through four sequential chains, i.e., splitting, translation, retrieval, and
micro CoT (see Fig. 4). The output of one chain serves as the input
for the next chain. Distinct prompt templates are applied at different
chains to achieve each one’s intended purpose.

The EHR dataset used in this study, i.e., the CSCR dataset [21], is
provided by a hospital in China, thus in Chinese language. First, the

Micro Chain-of-Thought Template )

## Context:{{Knoledge (assessment criteria)}}

## Demo: {{Demostrations}}

## Input: {{EHR sentence}}

## Instruction: Please follow the assessment criteria to assess
the scores of each NIHSS component from the given report.
Let's think step by step.

1. If the report is not in English, translate it to English first.

2. Determine which components of NIHSS are related to the
report, and assess the score.

3. Not mentioned components score 0.

Fig. 4. An example of the micro CoT prompting template.

splitter splits the paragraphs in the EHR dataset into short sentences.
Then, the translator translates each sentence into English. During the
retrieval process, each input sentence is processed by the foundation
LLM to first summarize the content (as described in Section 3.3).
Then, the compressed content is fed into the retriever to retrieve the
relevant contextual knowledge and demonstrations from the external
knowledge base. Finally, the raw sentences, the retrieved knowledge
and demonstrations are all fed into the next chain for micro CoT
learning.

3.4.2. Micro Chain-of-Thought (CoT)

Micro CoT is the core step of our proposed GAPrompt prompting
paradigm (see Fig. 1 in red). Fig. 4 provides a detailed illustration of
the micro CoT prompting template. Unlike the existing CoT methods
that use a fixed set of examples for few-shot prompting [13,23], our
sentence-level micro CoT is underpinned by an external knowledge
base in addition to the demonstrations. We first incorporate the stan-
dard NIHSS assessment criteria into the prompt template as contextual
knowledge, addressing inconsistencies caused by LLM’s potential un-
certainty and hallucination. Then, given the limited context length
of the foundation LLM, we employ a three-shot prompting approach,
restricting the number of demonstrations to three instances. Further-
more, our inference process aligns with the CoT logic shown in the
demonstrations. Experiment results show the effectiveness of CoT to
improve LLMs’ EHR analyzing performance.
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Table 1

The performance of candidate LLMs with six prompting templates, using the evaluation metric of exact match (EM).
LLMs Knowledge Comprehension Learning Reasoning Consistency Anti-hallucination Overall
LlaMa2-70B [27] 0.48 0.73 0.46 0.71 0.89 0.67 0.66
Qwen-72B [38] 0.37 0.48 0.37 0.65 0.90 0.66 0.57
Falcon-40B [34] 0.38 0.43 0.35 0.60 0.85 0.70 0.47
HuatuoGPT2-34B [41] 0.40 0.36 0.28 0.56 0.80 0.57 0.50

3.5. Ensembling

We implement an ensembling strategy inspired by prior research
[31]. This approach involves varying the LLM’s temperature parameter
to generate diverse outputs across multiple inference runs. Specifically,
for each input EHR dataset, the LLM is independently prompted five
times, producing multiple outputs. These outputs are then aggregated
through a majority voting process, ensuring robustness and reducing
the likelihood of errors in the final result.

In summary, the GAPrompt paradigm starts with identifying the
most suitable LLM for the task and constructing an external knowledge
base with LLM augmentation. Afterward, the paradigm retrieves the
task-specific knowledge, i.e., NIHSS assessment criteria, and demon-
strations according to the input EHR report. Based on the retrieval
outputs, the LLM inference is conducted using HCoT prompting and
an ensembling strategy. The assignment of the NIHSS score for each
component is finally carried out.

4. Experiment design

In this section, we first introduce the experiment datasets, which in-
clude the samples for LLM selection, the generation-augmented knowl-
edge base, and the test dataset for stroke severity assessment, followed
by evaluation metrics.

4.1. Datasets

4.1.1. Samples for selecting the foundation LLM

As detailed in Section 3.1, we have designed six task-specific prompt
templates to evaluate the capabilities of LLMs in our stroke assessment
use case. Each prompt template contains a specified query paired
with a corresponding ground truth answer. The candidate LLMs are
individually loaded and presented with each prompt in sequence. Their
performance is assessed by comparing the outputs to the respective
ground-truth answers using the EM score [53].

4.1.2. Generation-augmented knowledge base

We construct a knowledge base composing both task-specific knowl-
edge and demonstrations (see Section 3.2, with its detailed distribution
of the knowledge base for each NIHSS component shown in Appendices
Table A.1). The knowledge is referred to as the detailed definitions
and scoring criteria for the 11 NIHSS components, which are further
decomposed into 15 sub-components.

The LLM-generated demonstrations utilize the original EHR data
from the CSCR datasets [21], which contains EHRs from 1931 patients.
These EHRs are split into sentences, each with expert-validated NIHSS
scores. After removing duplicate sentences and unrelated items, we are
left with 3314 sentence-level demonstrations generated by the LLM
prompt templates illustrated in Fig. 3.

We employ a commonly used sentence-transformer embedding, “all-
mpnet-base-v2” [56], to convert both the assessment criteria of each
NIHSS component and the demonstrations into sentence vectors and
then store these vectors as a knowledge base, where the LLM-generated
summaries are stored as metadata indexes for subsequent retrieval.

4.1.3. Test dataset for stroke severity assessment
Our test dataset [21] comprises ground-truth stroke assessment
scores for 33 patients, including both macro and micro-level ground

truth. Table A.2 shows the detailed distribution of the test dataset for
all NIHSS components. The micro-level samples represent the sentence-
level inferencing result generated by LLMs with the micro CoT. The
macro-level ground truth refers to the patient-level assessment scores
from the given 33 EHRs. The macro chain summarizes the micro
sentence-level results of the same patient.

4.2. Evaluation metrics

Following prior research [53], we utilize the Exact Match (EM)
score to assess the performance of the LLM selection and evaluate
the retrieval performance using Top-k retrieval accuracy. To evalu-
ate the performance of quantitative stroke assessment, we adopt the
widely-used F1 score metric [57].

EM score is the proportion of the predicted answer texts that are
identical to the ground-truth answer, after string normalization such as
article and punctuation removal.

Top-k Retrieval Accuracy is defined as the proportion of questions for
which the top-k retrieved records contain at least one correct answer.
This metric sets up the upper bound of how many relevant questions
are extracted by the retriever.

F1 score is the harmonic mean of precision and recall, offering a
balanced assessment of a model’s performance. Precision measures the
proportion of true positive predictions made by the model. Recall, on
the other hand, quantifies the proportion of actual positive instances
that the model identified. By combining precision and recall, the F1
score considers both false positives and false negatives, providing a
comprehensive measure of the model’s performance.

5. Results
5.1. Evaluation of LLM selection

In Section 3.1, we have devised six prompting templates for select-
ing a candidate pool of LLMs. Table 1 shows the results of LLM selection
using the EM score (see Section 4.2).

From Table 1, we can see that LlaMa2-70B and Qwen-72B exhibit
superior overall abilities compared to their competitors. Notably, they
demonstrate a strong ICL ability for learning knowledge from the
external knowledge base and understanding the logic from the demon-
strations. In contrast, the specifically fine-tuned medical domain LLM
HuatuoGPT2 does not perform well, especially in the learning ability.
This may be attributed to the nature of our task, which goes beyond a
simple medical Q&A task but fully utilizes ICL and CoT to comprehend
in-context knowledge and infer from the retrieved knowledge and
demonstrations. This test result leads to our selection of the most
powerful foundation LLV, i.e., LlaMa2-70B, for our task.

5.2. Evaluation of SGAR

Table 2 shows the comparison results of adopting different retrieval
methods to retrieve both task-specific knowledge and the demonstra-
tions from our constructed knowledge base (see Table A.1), using Top-k
retrieval accuracy as the evaluation metric. Two retrieval methods, the
statistical BM25 [52] and vector database as retriever (Vdb) [22], are
evaluated and compared with the adoption of SGAR.

The experiment results reveal that the Vdb method outperforms the
traditional BM25 with higher retrieval accuracy on all top-k settings.
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Table 2

Top-k retrieval accuracy (%) on both task-specific knowledge and the demonstrations.
Method Knowledge Demonstrations

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

BM25 [52] 6.76 38.12 49.23 35.26 47.88 54.52
BM25+SGAR 22.83 43.88 53.13 48.76 54.64 61.74
Vvdb [22] 60.71 73.92 78.61 71.46 82.64 88.12
Vdb+SGAR 67.48 76.34 80.25 79.84 87.81 93.51

When applying SGAR to both retrieval methods, the summarized key
terms including anatomy, inspection and symptoms, are extracted from
the raw EHR as queries, thus yielding more accurate retrieval outcomes
compared with using the whole EHR as queries. On the other side,
SGAR significantly reduces the context length occupied by retrieval and
LLM inferencing. Compared to retrieving the entire knowledge base,
the summarized indexes save a large portion of context occupancy,
highlighting the efficiency and effectiveness of SGAR.

5.3. Evaluation of micro cot

Table 3 shows the F1 scores of LLM inferencing with micro CoT
on the micro-level testing dataset. The temperature parameter is set to
0.01 for all four LLMs for fair comparison.

Four foundation LLMs, including LlaMa2-70B [27], Qwen-72B [38],
Falcon-40B [34] and HuatuoGPT2-34B [41], are tested to quantita-
tively assess EHR sentences and generate the scores for each NIHSS
component. All models demonstrate excellent accuracy of above 80%
in assigning NIHSS scores for each assessment component based on
sentence-level EHRs, demonstrating the effectiveness of micro CoT in
enhancing the performance of generic LLMs in our clinical domain-
specific tasks. Among these LLMs, LlaMa2-70B shows the best per-
formance with a 94.64% F1 score, slightly surpassing Qwen-72B and
largely superior to the Falcon-40B and HuatuoGPT2-34B. The result
is consistent with the LLM selection results presented in Section 5.1,
reaffirming the effectiveness of our fast but efficient prompt-driven LLM
selection approach.

A comprehensive error analysis revealed that most errors occurred
when NIHSS assessment components that should have been assigned
a score of “Not mentioned” (scored 0) were instead assigned a non-
zero value by the LLM generation. This issue arises due to the LLM’s
tendency to infer scores for multiple components based on symptoms
relevant to just one. Although our micro CoT process manages to
control this through detailed instructions and demonstrations, it still
cannot completely eliminate the inherent randomness and hallucina-
tion of the LLMs. To mitigate this issue, leveraging more advanced
LLMs, refining prompts, and incorporating post-processing strategies
such as ensembling may serve as effective solutions.

5.4. Evaluation of macro sequential chain

In this section, we evaluate the F1 score of the macro sequential
chain using the macro-level testing dataset (see Table A.2). The macro
chain consists of five steps, including splitting, translation, retrieval,
micro CoT and summarization (see Section 3.4.1). Utilizing micro CoT
for LLM inference, the micro-level results associated with the same
patient are aggregated to produce the macro-level outcome.

Table 4 shows the results of the macro sequential chain obtained on
the basis of the LLM inferencing using micro CoT with four foundation
LLMs. It indicates that macro results closely align with the micro
CoT results, albeit slightly lower, achieving an F1 score of 82.56%
for the best-performing LlaMa2-70B model at a temperature of 0.01.
This occurs because, as revealed by the error analysis in Section 5.3,
incorrect non-zero values may appear in the micro-level results. These
non-zero errors may override the correct zero-value results through
macro-level aggregation, resulting in a cumulative effect of errors that
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Table 3
Comparison of the F1 scores (%) obtained from different foundation LLMs with micro
CoT (temperature = 0.01).

NIHSS LlaMa2- Qwen- Falcon- HuatuoGPT2-
component 70B [27] 72B [38] 40B [34] 34B [41]
la 94.21 94.63 84.62 88.16

1b 95.87 93.60 85.14 84.33

1c 98.69 98.34 85.66 85.00

2 95.05 94.49 81.22 80.88

3 96.38 95.57 83.34 80.43

4 91.83 94.18 79.25 80.61

5a 96.57 96.70 86.15 84.25

5b 94.73 94.44 77.12 81.54

6a 97.17 97.28 80.53 78.27

6b 95.18 94.71 77.84 77.52

7 86.05 86.56 70.53 72.28

8 86.14 86.24 70.11 74.63

9 94.84 93.84 78.62 82.22

10 97.95 97.67 84.51 82.79

11 98.99 98.90 85.12 83.93
Overall 94.64 94.48 80.65 81.12

Table 4

Comparison of the F1 scores (%) of macro sequential chain obtained with different
foundation LLMs (0.01 temperature).

NIHSS LlaMa2- Qwen- Falcon- HuatuoGPT2-
component 70B [27] 72B [38] 40B [34] 34B [41]
la 78.37 70.44 63.12 65.28
1b 75.88 54.36 62.56 58.55

lc 89.47 87.88 60.44 61.23

2 90.71 90.71 67.20 72.65

3 95.24 98.46 71.33 71.44

4 62.07 82.44 72.05 74.64

5a 85.27 89.22 78.60 84.22

5b 81.77 91.02 77.97 91.24

6a 80.67 85.07 70.23 85.72

6b 76.16 83.24 71.54 81.84

7 77.44 85.72 81.35 80.88

8 69.03 63.30 50.51 69.63

9 81.82 56.57 65.54 68.75

10 97.11 94.43 87.88 92.51

11 98.46 96.88 66.40 70.35
Overall 82.56 81.98 69.78 75.26

ultimately reduces the patient-level assessment accuracy. To mitigate
this issue, we implemented an ensembling strategy (see Section 5.5),
which has demonstrated promising improvements.

5.5. Final results with ensembling

Finally, after obtaining the initial assessment results with the prompt-
ing strategies including the SGAR and HCoT, the ensembling strategy
is conducted through a voting process that selects the most common
score among multiple LLM generations. We use the best-performing
LlaMa2_70B as the foundation model and set five different temperature
values for the generation. Table 5 shows the final result, an F1 score
of 84.78%, of the quantitative stroke assessment after ensembling the
five independent generations.

From Table 5, we can witness an overall 2.91% improvement in
ensembling compared with the mean F1 score 81.87% of the five
individual generations. The dramatically changing standard deviations
from 0.77% to 10.15% illustrate severe fluctuations in the LLM gen-
erations under different temperature values, which is in line with the
inevitable randomness and hallucination in LLM generations. Ensem-
bling has proven to be highly effective in addressing issues where there
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Table 5

The final result of the stroke assessment in NIHSS after ensembling (F1 score with
%). Five independent generations are conducted based on LlaMa2-70B with different
temperatures.

NIHSS Mean-F1 Standard Ensembled Improvement
component score deviation F1 score

la 75.07 3.24 78.37 3.30
1b 66.59 9.38 77.78 11.19
1c 89.14 1.17 89.47 0.33
2 87.90 2.88 90.71 2.81
3 95.11 3.77 95.24 0.13
4 70.93 7.25 77.56 6.63
5a 83.74 3.59 85.27 1.53
5b 82.27 6.10 86.53 4.26
6a 82.42 1.77 82.39 —-0.03
6b 75.55 4.23 73.84 -1.71
7 81.17 4.79 77.44 -3.73
8 69.35 6.14 73.51 4.16
9 75.98 10.15 85.19 9.21
10 95.41 3.93 100.00 4.59
11 97.51 0.77 98.46 0.95
Overall 81.87 1.25 84.78 291

are significant differences in the results of multiple LLM generations.
For instance, NIHSS components 1b and 9, which exhibit large stan-
dard deviations of 9.38% and 10.15%, respectively, show significant
improvements of 11.19% and 9.21%, respectively after ensembling.
For certain NIHSS components such as 10, the foundation LLM has
achieved high F1 scores of 95.41%. After ensembling, the performance
has reached an F1 score of 100%.

5.6. The effectiveness of individual components

Fig. 5 illustrates the effectiveness of each GAPrompt component,
based on the overall F1 score of the quantitative assessment using
LlaMa-70B on the test dataset.

Our proposed GAPrompt paradigm consists of generation-augmented
knowledge base construction (represented as “Knowledge” in Fig. 5),
the SGAR method to retrieve the knowledge and the demonstrations,
the HCoT strategy that integrates micro CoT with macro sequential
chain, and the ensembling strategy to incorporate the inference results
from five generations. From Fig. 5, we can find how much each
component of GAPrompt contributes to the overall results.

The blue bar shows the inferencing performance of the foundation
LLM, with a moderate F1 score of 56.84%. It is not surprising since
the inferencing largely relies on the basic knowledge of the foundation
LLM, which is not entirely accurate as described in Section 3.1.

The green bar represents the performance improvement (+7.10%
F1 score) achieved by importing task-specific knowledge during LLM
inferencing. Two factors lead to this enhancement. The first is the inclu-
sion of domain-specific knowledge, i.e., the detailed NIHSS assessment
criteria in this study, which clearly defines the assessment components
of NIHSS. The second is the provision of the detailed scoring criteria,
which enables the LLM to better understand the given EHR and conduct
quantitative assessment.

The orange bar indicates the improvement (+3.85% F1 score) when
employing our proposed GAR method based on the LLM-generated
summary index. This improvement is compared with the performance
using the full-text-based retrieval method. It is consistent with the
findings in Section 5.2, indicating higher retrieval accuracy of our
proposed SGAR on both knowledge and demonstration retrieval.

The most significant improvement of our GAPrompt falls on the
HCoT strategy (+14.81% F1 score). It indicates that our designed
promptings on both the macro sequential chain and the micro CoT
contribute the most to empowering the foundation LLM in complet-
ing our task. This finding is consistent with the previous works, ie.,
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Fig. 5. The effectiveness of the individual GAPrompt components. The results are
generated by LlaMa2-70B with a temperature value of 0.01 before the ensembling
stage.

CoT [23] and AutoCoT [50], demonstrating that the few-shot step-by-
step demonstrations are the most important factor in improving the
LLM inference performance.

Finally, we apply ensembling to further boost GAPrompt perfor-
mance (+2.91% F1 score), minimizing the influence of randomness
and hallucination of LLM generation. As detailed in Section 5.5, we
set up five different temperatures for the foundation LLM generations
and conduct five independent LLM inferences on the test dataset.
Finally, the results of these inferences are integrated, producing the
final outcome of a quantitative clinical assessment for stroke.

Table A.3 in Appendices summarizes the statistical significance test
results for each component of the GAPrompt paradigm using paired
sample r-tests. The results presented in this table are evaluated using
a pairwise comparison based on the design of our ablation study.
Starting with the fundamental LLM as the baseline, each GAPrompt
component is incrementally added, and the significance of its impact
is assessed. All the p_values are below 0.05, confirming that the incre-
mental improvements achieved by adding each component to the base
LLM are statistically significant. These results collectively validate the
effectiveness of each component in improving the overall performance
of the GAPrompt paradigm.

6. Discussion
6.1. Principal findings

In this study, we have proposed a comprehensive prompting
paradigm, GAPrompt, to enhance the performance of generic foun-
dation LLMs in completing clinical domain-specific tasks, specifically
the automated clinical assessment based on EHRs. Our contributions
include the following:

(1) We developed a GAPrompt paradigm comprising prompt-driven
selection of LLMs, generation-augmented knowledge base construction,
summary-based generation-augmented retrieval, hierarchical chain-of-
thought, and ensembling. It effectively addresses the limitations of
generic LLMs in clinical applications in a progressive manner.

(2) We designed a prompt-driven LLM selection process to select the
foundation LLM effectively and efficiently. This is a fast and systematic
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method to evaluate LLMs’ applicability in fulfilling our specific task
requirement through specifically designed prompting templates.

(3) Through LLM augmentation, we automatically constructed an
external knowledge base, consisting of both the task-specific knowl-
edge, i.e., the NIHSS assessment criteria in this study, and the demon-
strations corresponding to the EHRs. It provides clear definitions of
clinical assessment criteria and enhances the performance of LLM
inferencing from highly relevant, logical demonstrations.

(3) We proposed a summary-based generation-augmented retrieval
(SGAR) method to retrieve task-specific knowledge and demonstrations
dynamically. Through LLM-extracted summaries, this method helps the
retriever focus on the critical terms of the queries, including anatomy,
symptom, and inspection, to accurately retrieve the relevant assessment
criteria and demonstrations.

(4) We developed a hierarchical chain-of-thought (HCoT) prompt-
ing strategy integrating macro sequential chains with micro chain-of-
thought. The HCoT breaks down the complex tasks with large EHRs into
progressive steps with short sentences and provides logical demonstra-
tions for LLMs, significantly improving LLM inferencing accuracy.

(5) An ensemble strategy is utilized in the final stage to enhance
the robustness and performance of GAPrompt through integrating mul-
tiple LLM generations, which helps to mitigate the randomness and
hallucinations of LLMs.

The methods and models developed in this research are highly
versatile and can be seamlessly applied to other clinical disease as-
sessment tasks with comparable structures. By utilizing advanced LLMs
and prompting techniques, our approach establishes a scalable frame-
work for a wide range of applications. Future research could explore
extending this methodology to multiple levels of clinical practice and
automated evaluation of other diseases.

6.2. Limitations

This study highlights the effectiveness of our proposed GAPrompt
in empowering the capabilities of generic foundation LLMs for clin-
ical assessment tasks. However, it is essential to recognize certain
limitations.

Firstly, our model relies on a robust foundation LLM to achieve
a high accuracy, which is also the fundamental reason limiting our
method’s ultimate performance. As publicly available LLMs continue
to evolve, we anticipate stronger LLMs and enhanced performance for
our solutions.

Secondly, the current limitation on LLM context length imposes
restrictions on the amount of knowledge and the number of demonstra-
tions that can be integrated during LLM inferencing, which essentially
limits LLMs’ performance. Recently, research efforts have focused on
extending the context length of LLMs, with expectations that this
limitation will be addressed in the near future.

Lastly, the performance of LLMs is typically proportional to their
size, ie., the number of parameters they contain. While lightweight
models offer limited capabilities, more powerful LLMs often require
substantial hardware resources, posing challenges for their practical
application in real-world scenarios. Balancing performance with hard-
ware requirements remains a crucial challenge in LLM development and
deployment.

7. Conclusions

In conclusion, our study underscores the transformative potential
of leveraging foundation LLMs for automating the intricate analy-
sis of EHRs in the medical domain. Focused on quantitative clinical
stroke assessment as a use case, the proposed GAPrompt, incorporating
LlaMa2-70B and innovative methods including generation-augmented
retrieval and hierarchical chain-of-thought, demonstrates the capacity
to automatically assess and quantify EHRs. This approach not only
overcomes the challenges of labor-intensive and manually conducted
quantitative assessments but also extends its applicability beyond the
medical domain.
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Appendix A. Distribution of the generation-augmented knowledge
base

Table A.1 provides the distribution of the generation-augmented
knowledge base, encompassing both task-specific knowledge (assess-
ment criteria) and LLM-generated demonstrations (reasoning examples)
related to NIHSS components. The assessment criteria are evenly dis-
tributed, with each NIHSS component represented by one entry, ac-
counting for 6.67% of the total knowledge base. In contrast, the reason-
ing examples show a varied distribution, with a total of 3314 examples.
Components 1b (Orientation Questions), 5a (Left Arm Motor), and 5b
(Right Arm Motor) exhibit higher percentages of reasoning examples,
at 7.18%, 12.91%, and 12.97%, respectively. This table highlights the
comprehensive coverage of the knowledge base and the variability in
demonstration examples across different NIHSS components.

Appendix B. Distribution of the assessment dataset

We show the distribution of the NIHSS quantitative assessment
dataset at both micro and macro levels in Table A.2. It highlights the
count and percentage of each NIHSS component across the two levels,
with a total of 305 entries at the micro level and 234 at the macro level.
Prominent components include 1a (Level of Consciousness), 7 (Limb
Ataxia), and 9 (Best Language), which show higher percentages. This
distribution provides a clear overview of how assessment criteria are
represented and emphasizes the alignment between the two levels.
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Table A.1

The distribution of the generation-augmented knowledge base, including the task-
specific knowledge and the LLM-generated demonstrations. The count of samples related
to each NIHSS component and their percentages (%) are reported.

Demonstrations
(Reasoning examples)

Knowledge

NIHSS t
componen (Assessment criteria)

Count Percentage Count Percentage
la 1 6.67 95 2.87
1b 1 6.67 238 7.18
1c 1 6.67 13 0.39
2 1 6.67 32 0.97
3 1 6.67 30 0.91
4 1 6.67 169 5.10
5a 1 6.67 428 12.91
5b 1 6.67 430 12.97
6a 1 6.67 361 10.89
6b 1 6.67 385 11.62
7 1 6.67 207 6.25
8 1 6.67 226 6.82
9 1 6.67 641 19.34
10 1 6.67 54 1.63
11 1 6.67 5 0.15
Total 15 100 3314 100
Table A.2

The distribution of the quantitative assessment dataset. Both micro and macro level
ground truth of each NIHSS component and their corresponding percentage (%) are
reported.

Micro Level Macro Level

NIHSS component

Count Percentage Count Percentage
la 35 11.47 30 12.82
1b 29 9.51 20 8.55
1c 3 0.98 3 1.28
2 7 2.30 2.99
3 1 0.33 1 0.43
4 31 10.16 25 10.68
5a 10 3.28 10 4.27
5b 29 9.51 27 11.54
6a 11 3.61 10 4.27
6b 28 9.18 27 11.54
7 47 15.41 24 10.26
8 41 13.44 23 9.83
9 24 7.87 19 8.12
10 8 2.62 7 2.99
11 1 0.33 1 0.43
Total 305 100 234 100
Table A.3

The statistical significance test results of GAPrompt. In the table, “LLM” represents the
results generated by the base LLM without any prompting strategies; “KB” refers to the
Knowledge Base; “SGAR” denotes the Summary-based Generation-Augmented Retrieval;
“HCoT” stands for Hierarchical Chain-of-Thought; and “ES” represents the Ensembling
strategy.

GAPrompt LLM LLM LLM LLM
components + KB + KB + KB + KB
vs +SGAR +SGAR +SGAR
LLM vs + HCoT + HCoT
LLM vs + ES
+ KB vs
LLM LLM
+ KB + KB
+ SGAR + SGAR
+ HCoT
t_value -81.18 -56.97 -5.10 -3.02
p_value 3.01E-21 6.01E-19 1.31E-4 8.66E—3
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Appendix C. Statistical significance test results

The table presents the statistical significance test results for each
component of our GAPrompt paradigm. The p-values from paired sam-
ple t-tests are reported.

Data and code availability

The data in this study can be available upon reasonable request from
the corresponding author of the existing work [21]. The code of this
study can be available upon reasonable request from the corresponding
author.
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