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ABSTRACT
Bike-sharing systems (BSSs) have recently become important in 
urban transportation due to several factors, such as their cost- 
effectiveness and environmental considerations. The BSS pro-
vides an enormous amount of data that is recorded regarding 
trips. This huge volume of bike sharing data raises various 
challenges and opportunities. Many research studies have 
used bike sharing datasets to understand the geographical, 
social, financial, and behavioral aspects of bike user behaviors. 
While existing literature primarily focuses on predicting the 
number of rentals and returns per station, this study addresses 
the complementary aspect of predicting the trip duration and 
distance of the trip. Accurate prediction of ride duration allows 
a better estimate of bike availability at stations, while distance 
predictions assist in maintenance planning based on bike usage 
patterns. The contribution of this work is twofold. First, the 
proposed work clusters the BSS dataset into k sub-datasets 
based on similarity of dataset instances. Then, the predictive 
model is trained to predict the data of each sub-dataset sepa-
rately. Thus, there will be k models for the k sub-dataset. Next, 
the performance of the proposed method, the average score of 
the k models, will be compared to the performance of a model 
trained on the complete dataset on predicting BSSs ride dura-
tion and distance of the trip. The rationale for splitting the 
dataset into k sub-datasets is to separate similar patterns in 
one sub-dataset. Second, the utilization of the dynamic time 
warping (DTW) algorithm on the BSSs data was proposed for the 
clustering purpose, as the DTW usage is very limited in the 
current literature of BSSs. The dataset clustering is based on 
the similarity of the curves representing the number of trips 
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between each pair of bike stations throughout the day hours. 
Then, the DTW algorithm is used to measure the curve similarity 
between these bike station pairs’ curves. These two contribu-
tions of the proposed approach complement existing prediction 
models for rentals and returns, providing a comprehensive solu-
tion for BSS optimization. The proposed method was thor-
oughly evaluated on two real datasets of different sizes. For 
the two datasets, the obtained results show that the best 
improvements of the predictive model’s accuracy are 30% and 
42% on average for predicting trip duration and distance of the 
trip, respectively.

Introduction

Recent exponential growth in the transformation industry has enabled 
researchers to develop effective programs to maintain pace with this develop-
ment. Specifically, bike riding is regarded as an essential and inexpensive 
means of transportation on which people used to rely. Meanwhile, the bike- 
sharing concept has been applied globally to reduce traffic congestion, pro-
mote physical activity, and combat climate change. Starting in 2016, at least 
one thousand bike-sharing systems are in use in sixty various countries, with 
economic returns reaching $7.7 billion by 2022. The bike-sharing market is 
anticipated to have 930 million consumers in 2026 (Albuquerque, Sales Dias, 
and Bacao 2021; Otero, Nieuwenhuijsen, and Rojas-Rueda 2018). The surging 
demand for carbon-neutral bike-sharing has exacerbated mismatches in urban 
transportation. As a consequence of the growing need for carbon-neutral 
environments, there has been an increase in the demand for bike-sharing 
systems (Zhou et al. 2022).

In a variety of practical domains, machine learning methods are considered 
powerful tools (Adel et al. 2022; Ali et al. 2021; Indah Lestari et al. ; Salah et al.  
2023). In the context of BSSs, one of the well-studied problems using machine 
learning is forecasting travel demand and create dynamic forecasting models. 
Determining the optimal number of bikes to be rented at different locations 
and predicting citywide bike utilization for the next period is another well- 
studied problem that can be achieved using machine learning methods (Li and 
Zheng 2019; Wang and Kim 2018; Zhou et al. 2022) While most existing 
research in bike-sharing systems focuses on predicting the number of rentals 
and returns at stations (Rudloff and Lackner 2014; Wang 2016; Yang et al.  
2018), there are other crucial aspects where machine learning can provide 
valuable insights. In this context, predicting trip duration and distance of the 
trip, which is the focus of the current work, provides complementary informa-
tion that is essential for system optimization. The proposed approach comple-
ments existing rental prediction models by providing insights into individual 
trip characteristics (e.g., trip distance and trip duration), which are crucial for 
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maintenance scheduling and capacity planning. These metrics improve the 
station-centric models by exposing the system strain and user behavior pat-
terns invisible to counts alone.

The Toronto bike share dataset has been observed in numerous studies 
(Butt et al. 2023; Caggiani et al. 2021; Cheng et al. 2020). The utilization of 
real-time data commonly serves multiple goals, including investigating the 
factors that influence bike rides (i.e., temperature), the assessment of bike 
stations’ effectiveness, and establishment of operational approaches for public 
BSS. A study was proposed to estimate the fluctuating bike counts at each 
station within the San Francisco Bay Area, utilizing the Ford GoBike dataset 
(Ashqar et al. 2022). The primary objective of this study is to enhance the 
predicting precision for the number of accessible bikes at a designated bike- 
sharing station. The same dataset was trained using the Long Short-Term 
Memory (LSTM) model to predict the bike density at road intersections in San 
Francisco (Dubey et al. 2019). The Divvy Trips dataset is a real-world dataset 
collected in Chicago and evaluated using machine learning in Kumar Das, 
Manoj Joshi, and Dhal (2020) and Zhang et al. (2019). Using machine learning 
techniques, one of the proposed studies based on the Divvy dataset seeks to 
assist riders in selecting a suitable bicycle based on their travel needs. 
A subsequent analysis was conducted on the same dataset to determine the 
bike-sharing system’s catchment area. Using the New York bike-sharing 
dataset (Chen et al. 2020), the recurrent neural network (RNN) algorithm is 
utilized for forecasting rental and return demand to provide online balancing 
plans. The forecasting of the short-term usage of bikes using the LSTM was 
also investigated using the New York bike-sharing system in Li et al. (2021).

Current bike-sharing systems are frequently based on machine learn-
ing and deep learning techniques. To predict or classify bike trips, 
datasets such as Toronto Bike Share, Divvy Trip, Ford Gobike, and 
New York City Bike Share have been utilized. The Toronto bike share 
dataset has been utilized in numerous studies, including Caggiani et al. 
(2021); Dong et al. (2016); and El-Assi, Salah Mahmoud, and Nurul 
Habib (2017). This real-time data is used for a variety of purposes, such 
as investigating the factors affecting bicycle trips, such as temperature, 
evaluating the efficiency of bicycle stations, and determining an opera-
tional strategy for public bike-sharing systems. The Divvy Trips dataset 
is a real-world dataset collected in Chicago and evaluated using machine 
learning in Kumar Das, Manoj Joshi, and Dhal (2020) and Zhang et al. 
(2019). Using machine learning techniques, one of the proposed studies 
based on the Divvy dataset aims to assist riders in selecting a suitable 
bicycle based on their travel needs. Another study analyzed the same 
data to determine the bike-sharing system’s catchment area. The LSTM 
model was employed on the Ford GoBike dataset to predict the bike 
density at road intersections in San Francisco (Dubey et al. 2019). Using 
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the New York bike sharing dataset (Chen et al. 2020), the recurrent 
neural network (RNN) algorithm is utilized for forecasting rental and 
return demand to provide online balancing plans. The forecasting of the 
short-term usage of bikes using the LSTM was also investigated using 
the New York bike-sharing system in Li et al. (2021).

This study addresses the understudied aspect of trip duration and dis-
tance of the trip prediction in BSSs, complementing the existing body of 
work that focuses on rental and return predictions. Particularly, a new 
clustering method to divide the BSS data into k subsets using DTW to 
measure similarity between temporal demand curves of station pairs. 
Training specific models on each subset isolates latent behavioral patterns, 
improving prediction accuracy over suitable approaches. The initial appli-
cation of DTW to BSS data addresses the issue of temporal misalignment in 
station-pair usage patterns where there is a critical gap in prior distance- 
based clustering. Experiments demonstrate that the proposed ensemble of k 
models outperforms single-model benchmarks, validating the value of tem-
poral alignment for BSS optimization. The proposed work has two main 
objectives. First, this work proposed clustering bike station pairs with 
similar patterns over the day hours. To achieve this goal, the DTW 
(Berndt and Clifford 1994) was utilized to find the distance matrix between 
all pairs of bike stations. The rationale for using DTW is its ability to 
compare two temporal sequences and drive similarity among the raw data 
being compared. Due to this rationale, the DTW algorithm has been 
applied in several applications, including the performance analysis of karate 
skills (Fathalla et al. 2023). Another use of DTW is to translate real-time 
hand gestures captured by Kinect sensors (Kowdiki and Khaparde 2021). It 
has also been used as a preliminary procedure to recognize speech in 
machine translation (Jiang and Chen 2023). BSS dataset clustering can 
divide the dataset into smaller datasets where each sub-dataset includes 
similar data points, i.e., trip data. Predicting data with similar patterns is 
easier than predicting data with different patterns. Thus, the second pur-
pose of this work is to improve the trip information prediction, i.e., trip 
distance and duration of the trip, by training the predictive model on 
a sub-dataset of similar data patterns which can improve the overall pre-
diction accuracy. Predicting the duration of the trip should help the 
operators to estimate when a bike will arrive at different stations that 
allows them to plan the number of bikes at stations and guarantee an 
equitable number of bikes across the network. Prediction of the distance 
traveled by each bike helps, by monitoring usage patterns. It is valuable 
information for taking care of maintenance and scheduling: replacement of 
worn-out parts or the decision to discard a bike, which will raise the overall 
effectiveness and help the bike-sharing system to last longer.

The list of contributions of this work is as follows:
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(1) To the best of the authors’ knowledge, this is the first work to utilize the 
DTW algorithm to improve the prediction of BSS data (the datasets and 
source code are available online)1

(2) The current method proved that training the predictive model on each 
cluster individually produces an overall prediction accuracy better than 
training the same predictive model on the full BSS dataset.

(3) The proposed method was thoroughly evaluated and tested on two real 
datasets.

The rest of the paper is organized as follows. In Section 2, some of the existing 
methods are discussed. Section 3 exposes the proposed methods. The results 
are presented and discussed in Section 4. Finally, the paper is concluded in 
Section 5.

Literature Review

There is a very limited utilization of the DTW algorithm with the BSS data. 
The literature has few conducted research works in this direction with 
a limited use of clustering BSS datasets only to improve the predictive models’ 
accuracy. This discussion will delineate the constrained studies to identify the 
research gap that inspired the present work.

In many cities across the world, bike-sharing systems have recently emerged 
as one of the most well-liked modes of transportation. These systems provide 
an affordable and convenient way for people to travel within the city. 
Consequently, a vast quantity of data is produced that describes the users’ 
trips. Therefore, it is imperative to examine and comprehend this data to 
enhance the overall effectiveness and operation of bike-sharing systems.

The authors in Chabchoub and Fricker (2014) used the DTW distance 
metric along with the K-means clustering method to assess the similarity 
among stations. This study aimed to identify patterns and group stations 
based on their similarities. This approach was used to anticipate the avail-
ability of free docks and bikes at Velib stations in Paris. The similarity among 
stations is comprehended through clusters, and the centers of each cluster are 
elected using the DTW Barycenter Averaging (DBA) technique. In this study, 
the clusters are classified into three classes: balanced, overloaded, and 
unloaded. The bike loads during the working days and weekends are taken 
into account when analyzing the dataset; however, the authors only take into 
account the bike loads during working days. The study examined 121,709 
journeys, encompassing 1,225 Velib stations during a single day. Nevertheless, 
this work lacks the analysis of bike loads during the weekends or the manage-
ment of bike distribution to control the BSS systems.

The authors in Gao et al. (2020) classified the public bike stations of 
Yangcheng City using the DTW algorithm to study the spatial dynamics of 
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the bike-sharing system. To evaluate data with non-time series properties, the 
authors expanded the proposed method by identifying the data points of 
interest and developing a set of data format conversion rules. These aid in 
uncovering the correlation between the spatial and temporal attributes of 
cyclists and the types of land use. The dataset, which was obtained from the 
Yancheng local government’s transport department, includes 424,581 valid 
trip records from 420 public bicycle stations, or one month’s worth of travel. 
The dataset is partitioned into weekday and weekend data to examine both the 
temporal and spatial patterns of bike activities. However, this study does not 
examine the spatial distribution of stations, which is subject to user dispersion 
and meteorological conditions. Similarly, Lee and Leung (2023) examined the 
spatial and temporal patterns and the land usage of BSS in urban regions, 
mainly NYC. In addition, they employed machine learning models to forecast 
stations by analyzing the local characteristics. The data is obtained from the 
Citi Bike dataset, which displays distinct temporal patterns and is categorized 
into eight clusters. Extended travel times between stations and destinations, 
which impact the use of bike sharing, were not taken into account in this 
study, but only the shortest distance between a station and points of interest.

The authors in Li, Zhao, and Li (2019) conducted a study that analyzed 
a dataset of bike sharing over 3 months. The dataset included information 
from 572 bike stations obtained from the BSS in Chicago. Nevertheless, they 
focused on reducing the dimensionality of the raw data and identifying patterns 
from the time-series representations. The Discrete Wavelet Transform was 
utilized to eliminate errors generated from the raw time series. The DTW 
algorithm was subsequently employed to measure similarity among the clus-
tered time series, thereby unveiling the fundamental features of the raw time 
series. The experimental results demonstrated that the DWT algorithm effec-
tively reduced the overall size of the raw dataset by a factor of 4. This implies that 
there were only six data points representing daily usage as opposed to the 24 data 
points in the raw dataset. The clustering and analysis of the significant features of 
the multi-seasonal time series should be considered.

The emergence of free-floating (i.e., dockless) has increased the growth of 
shared bike fleets in China. These systems offer users a higher degree of freedom 
by eliminating the need to rent and return bikes at designated stations. In this 
study, Xu et al. (2019) employed time-series analysis and DTW approaches to 
investigate the issue of parking in the free-floating bike-sharing system (FFBS). 
The primary goal is to achieve a substantial spatial dispersion of Beijing’s subway 
stations with varying levels of density. The time series was utilized to analyze 
parking densities, identify the FFBS parking pattern, and categorize these sta-
tions. The dataset used in this study comprises the rental data of 297 subway 
stations obtained from the Chinese Municipal Commission of Transport.

The authors in Tong et al. (2023) proposed using a DTW distance-based 
approach to identify the spatiotemporal patterns required to organize the use 

e2474786-6 A. ALI ET AL.



of dockless station usage in a BSS. Additionally, the authors employed explain-
able-boosting machine learning to determine common factors among the 
various patterns. They examined urban regions in Wuhan that exhibit 
a significant volume of cycling activity, specifically roughly 88% of the city’s 
overall utilization of shared bicycles. The dataset was derived from seven-day 
data collected between November 1 and November 7, 2019. The data was 
gathered during a period of favorable weather conditions and the absence of 
any notable events. The dataset was divided into six patterns for weekdays and 
four patterns for weekends that aid in the identification of issues, such as the 
inability to satisfy users’ requests, to prioritize efforts, and to determine well- 
rounded bike usage strategies. Both studies require exploring correlations 
between specific events or activities happening in proximity to popular biking 
routes or stations during favorable weather periods outlined in the dataset 
collection period.

Similarly, the bike usage patterns are also studied for the Guangdong 
province, especially small and medium cities as reported in Wang, Wu, and 
Li (2019). The authors utilized a hierarchical clustering algorithm using DTW 
to extract the spatial data from station-based data, along with a random forest 
algorithm to evaluate the significant factors.

The authors in Zhao et al. (2019) introduced a methodology called density- 
based spatial clustering of applications with noise (DBSCAN) to determine 
patterns of bike usage using DTW. To analyze the spatiotemporal datasets, 
a data mining approach was utilized to find patterns of bike users’ behavior in 
urban areas. The main goal was to change the dataset from space-time 
sequences to time-series sequences using time-series data mining techniques. 
This would then help sort the users’ travel needs into groups. The Lambert 
equal-area grid was employed to partition the BSS into groups. Subsequently, 
demands in distinct areas were represented as a system where bike users can 
get incentives known as “bouns bikes,” which would effectively mitigate bike 
accumulation in certain locations. However, further research is needed to 
enhance the analysis of data dimensionality and extract multiple features 
from the generated clusters. The authors in Hulot, Aloise, and Dominik Jena 
(2018) proposed building a specific model per station, not a cluster of station. 
The authors utilized a predictive model, i.e., ML-model, at the station level and 
then utilized a statistical model to produce the final prediction. This work of 
Hulot, Aloise, and Dominik Jena (2018) predicts the number of trips while 
ours predicts the trip’s distance and time.

Clustering Techniques for BSS Datasets

Clustering datasets is an essential activity in BSS to get insights into utilization 
trends, enhance operational efficiency, and elevate service quality. Current 
approaches for clustering BSS datasets mostly rely on quantitative variables, 
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such as distance between stations, to redistribute the bikes. The efforts can be 
classified into seven main clustering criteria which are discussed in the follow-
ing text.

First, temporal criteria include the process of grouping data based on various 
time intervals, such as different times of the day, weekdays vs weekends, and 
seasonal fluctuations. This approach aims to capture and analyze temporal use 
trends. The work in Li, Zhao, and Li (2019) conducted research that created 
a sophisticated pattern recognition model employing time-use data. This model 
was able to detect groups with similar daily activity patterns. This approach 
successfully captures the temporal dynamics of bike-sharing use, allowing for the 
identification of peak usage hours and seasonal fluctuations.

Second, geographical factors prioritize the physical positions of bike sta-
tions, and distance-based metrics are used to categorize stations that are near 
one another. The authors in Brown, Scott, and Páez (2022) used GPS trajec-
tories to create a model for bike share traffic volumes, with a focus on spatial 
autocorrelation and the influence of physically segregated cycling infrastruc-
ture on traffic volumes. This spatial clustering methodology facilitates the 
optimization of station locations and infrastructure planning.

Third, the clustering method used in Hafezi, Liu, and Millward (2019), 
which is based on use patterns, encompasses factors such as the length of trips, 
the frequency of trips, and the intensity of usage. Dynamic Time Warping 
(DTW) is used to quantify similarities in time series data of Blind Source 
Separation (BSS). They employed k-means clustering and DTW barycenter 
averaging (DBA) for clustering. This approach efficiently decreases the num-
ber of dimensions and eliminates noise, revealing significant use patterns that 
are essential for optimizing the system.

Fourth, in Brandtzag, Heim, and Karahasanovi´c (2011), the authors con-
cluded that user’s characteristics, such as user classification, age, and gender, 
substantially impact the clustering of BSS information. A cluster analysis is 
conducted using survey data from Eurostat to identify five distinct user 
categories in Europe. This method emphasizes how individuals use the 
Internet, drawing a parallel to the various ways different demographic groups 
utilize bike-sharing systems. This comparison helps identify specific areas 
where service enhancements may be made.

Fifth, characteristics of the Station: Effective system management necessi-
tates clustering based on station characteristics such as capacity, accessibility, 
and attractiveness. The authors in Lin, He, and Peeta (2018) conducted a study 
to examine the impact of weather conditions and calendar events on the 
utilization of bike-sharing services at various stations in Daejeon. The study 
showed that station-specific factors need to be taken into account to predict 
demand better and manage the system. This was done by putting stations with 
similar consumption patterns together and looking at how their different 
external influences affect them.
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Sixth, characteristics of the trip, understanding user behavior relies 
heavily on trip features, such as origin-destination pairings and trip rea-
sons. The work in Nair et al. (2019) examined urban cycling behavior by 
using GPS traces and available datasets to deduce trip aims and scrutinize 
route selections. This approach offers a comprehensive comprehension of 
riders’ preferences, hence improving route design and optimizing system 
efficiency.

Finally, factors outside of a certain situation or context, weather conditions, 
and special events have a substantial impact on the utilization of bike-sharing. 
The authors in Kim (2018) proposed a method using a graph convolutional 
neural network to forecast the hourly demand at the station level, by consider-
ing the spatial and temporal relationships. The research emphasized the need 
to include weather and other external variables in demand forecast models.

The theoretical weakness in the current methods is two-fold. First, there is 
a lack of evidence in the literature investigating the impact of clustering BSS 
datasets on the prediction accuracy of predictive models. Second, there is no 
documented research on clustering BSS information by analyzing graphical 
patterns representing the frequency of travels between station pairs. This 
research gap motivated the current study, highlighting the need for 
a focused analysis using the DTW algorithm for clustering purposes. 
Consequently, addressing this gap is the primary aim of this work.

Methodology

The main motivation of this work is to improve the prediction accuracy of 
a given model. The justification is that the complete BSS dataset includes many 
patterns; thus, simplifying this complete dataset by separating different patterns 
would help improve the prediction accuracy. In this context, separating data 
with similar patterns into different clusters was proposed. Then, the predictive 
model will train and predict the cluster data separately. This idea should ease the 
predictive model’s task, as the patterns to be used in training are similar. In 
theoretical machine learning, this approach is known as Mixture of Experts 
which was published in the highly cited paper (Jordan and Jacobs 1994). Thus, 
the idea is to divide the BSS dataset into subsets, each with similar patterns, and 
then one expert, i.e., model, will train on each subset.

To achieve this goal, presenting the number of trips over day hours 
between two stations with a curve was proposed. Then, a set of curves is 
obtained as each pair of stations will result in one curve. Next, the DTW 
was used to calculate the similarity between each two curves, i.e., two 
station pairs. This step will produce the distance matrix to be used to 
cluster the curves. In the following subsections, this proposed methodology 
will be exposed in detail.
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Overview

This method primarily examines the trip patterns between pairs of bike 
stations and measures their similarity by employing DTW. The DTW method 
is employed for this comparison, resulting in a quantification of similarity, i.e., 
distance matrix, between the curves of the station pair. Finally, the distance 
matrix is used to cluster the curves, as depicted in Figure 1. The approach 
efficiently groups the pairs of stations according to their usage patterns, which 
can subsequently be employed for predictive modeling. Through the exam-
ination of these trends, a more comprehensive comprehension of the 
dynamics of the utilization of bike-sharing systems in urban areas was gained.

In the proposed method, the BSS data are collected from a genuine BSS 
repository to ensure their quality and usability. The utilized dataset contains 
information about the user, including age and gender, as well as trip details. 
Subsequently, the proposed method divides the dataset-based calculated DTW 
distance matrix. This stage of data clustering permits the identification of 
distinct tendencies and patterns within each sub-dataset. In Table 1, 
a statistical summary is provided for the outcomes features, i.e., trip duration 
and trip distance.

The proposed methodology can be summarized into the following phases:

● Curve Formulation: - In phase 1 of Figure 1a, the flow of bicycles 
between each pair of bike stations is shown by a time series curve, 
illustrating the movement throughout the day, i.e., 24 h. The curves are 
derived from bike trip data obtained from the BSS dataset, which records 
the number of bicycles traveling between any two stations over time. In 
the depicted curves, the x-axis represents the number of day hours, i.e., 0 
to 23, and the y-axis represents the number of trips from station a to 
station b, where a and b can be any station number, e.g., 1, 2, etc.

● DTW for curve similarity: - In phase 2 of Figure 1b, the DTW algorithm 
is used to assess the similarity between these time series curves. DTW, 
unlike other algorithms, permits an elastic adjustment of the time axes, 
enabling the alignment of two sequences that may differ in speed or 
encounter time shifts. The DTW technique computes the distance 
between two curves by allowing one curve to be temporally stretched or 
compressed to align with the other curve. This is seen in the magnified 
inset, where the lines connecting the curves illustrate the process of 
“warping” that aligns corresponding points on the curves, even if they 
are temporally moved. Thus, the results of measuring the DTW distance 
between all possible pairs of stations are known as the distance matrix.

● Clustering: - In phase 3 of Figure 1c, the resultant similarity measures, 
i.e., DTW distance matrix, which assesses the degree of similarity in 
number of trip patterns between each pair of stations serves as the 

e2474786-10 A. ALI ET AL.



distance matrix for clustering the BSS dataset. This should facilitate the 
identification of clusters of station pairs exhibiting comparable use pat-
terns, a critical factor for operational planning, such as the redistribution 
of bicycles to ensure supply and demand equilibrium. The technique uses 
the adaptability of DTW to examine intricate time-dependent patterns in 
BSS data, offering insights that are not immediately evident with more 

Figure 1. The proposed methodology for enhancing the predictive performance of machine 
learning models in bike-sharing systems.
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inflexible, linear approaches. The objective is to enhance the efficiency 
and user satisfaction of bike-sharing systems by improving their admin-
istration and planning.

Once the data has been clustered, three machine learning models, 
namely Random Forest, CatBoost, and Bagging, and a deep learning 
model (i.e., GRU model) are trained on each sub-dataset to predict the 
trip’s distance and duration. This procedure entails the development of 
predictive models that are tailored to the particular characteristics of 
each sub-dataset. Following the model training phase, the performance 
of the proposed method is evaluated on each sub-dataset by testing the 
trained models to identify discrepancies and inconsistencies. Then, the 
most accurate model for each sub-dataset is reported, ensuring the most 
reliable and accurate outcomes possible. Then, the same machine learn-
ing models are trained on the complete dataset, and the trained models 
are evaluated as well. It is worth mentioning that, the reason behind 
choosing the aforementioned machine and deep learning models is that 
they achieved state-of-the-art performance in numerous applications 
(Fathalla et al. 2021; Fathalla, Salah, and Ali 2023; Indah Lestari et al.  
2021; Salah et al. 2023, 2023).

Finally, the performance of the model trained on the full data set is 
compared to that of the same machine learning model trained separately on 
each sub-dataset. Comparing the two training approaches, if the model trained 
on the sub-dataset obtained higher prediction rates, then the proposed method 
enhanced the prediction task. The objective of this methodology is to enhance 
the predictive performance of machine learning models in bike-sharing sys-
tems. The proposed method contributes to more accurate and reliable predic-
tions of journey distance and trip duration by taking into account the unique 
characteristics of different observation groups.

Problem Formulation

This sub-section provides a detailed and formal description of the problem 
concerning the computation of the distance between two temporal sequences. 
The problem is primarily focused on analyzing the utilization of a bike-sharing 
system throughout the day.

Table 1. Statistical summary of the trip distance and trip 
duration of the utilized dataset.

Trip distance Trip duration

Mean 1.11e+03 9.34e+02
Standard Deviation 2.023e+04 4.06e+04
Min 0.00e+00 6.10e+01
Max 8.67e+06 2.03e+07
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Problem Setup
Consider two vectors a and b, each of length n, which represent the number of 
bike journeys taken throughout each hour of the day. Therefore, the value of n 
is 24, and both vectors have equal dimensions. The main objective is to reduce 
the Euclidean distance between these two curves that are aligned in time using 
the DTW algorithm. The vectors a and b can be described as follows: 

where ai and bi denote the number of trips during the ith hour of the day for 
vectors a and b, respectively.

Objective Function
The objective is to minimize the distance between these curves as aligned via 
DTW, represented formally as follows: 

where Dða; bÞ is the total path cost to align the trajectories of a and b.

DTW Distance
The DTW algorithm computes the optimal match between two provided 
sequences under specific constraints. The sequences are non-linearly “warped” 
in the time dimension to find a measure of similarity unaffected by specific 
non-linear fluctuations in the time dimension. This is especially beneficial 
when comparing time series with dynamic speeds.

For two time series a and b, the DTW distance is defined by the recursive 
function: 

where Dði; jÞ is the distance up to the ith element of a and the jth element of b, 
dðai; bjÞ is the Euclidean distance between the ith and jth elements of a and b, 
respectively. The recursion begins from Dðn; nÞ and proceeds backward to 
Dð1; 1Þ, and Dð0; 0Þ ¼ 0 serves as the boundary condition. The calculated 
DTW distance between daily usage curves can help identify similar trends 
across many stations or days, which facilitates more accurate demand predic-
tion and optimal resource distribution.

A Motivational Example for Curve Similarity in BSS

The DTW algorithm is a useful tool as it can collect and compare the changes 
in bike-sharing usage over time between different pairs of stations. This 

APPLIED ARTIFICIAL INTELLIGENCE e2474786-13



provides valuable information for improving the efficiency and user experi-
ence of bike-sharing systems. In Figure 2 the DTW algorithm’s main two steps 
are visually depicted into two sub-figures.

The graphic in Figure 2a displays the concept of DTW applied to two-time 
series; the graph includes two-time series shown on a two-dimensional plane. 
First, the vertical axis, which represents one-time series, and second, the 
horizontal axis, which represents the other. According to the determination 
by DTW, the lines linking the points on these axes represent the ideal path of 
alignment that minimizes the total distance between these two series. Moving 
to Figure 2b, which illustrates a typical warping path associated with DTW. 
The figure shows the alignment of individual data points from two time series, 
accommodating differences in time scale and sequence. This includes aligning 
numerous points from one series to a single point in the second series.

To demonstrate the idea of curve similarity between bike stations, Figure 
3 and 4 depict two curves with high and low similarity on the DTW 
distance, respectively. In Figure 3, the red line represents the number of 
trips over the day hours, i.e., 0 to 23, between two stations, namely, “City 
Hall” and “MLK Light Rail” while the green line represents the same data 
for two different stations (i.e., “Baldwin at Montgomery” and “Lafayette 
Park”). The proposed method includes measuring the distance, i.e., curve 
similarity, between the red and green curves of Figure 3, where each curve 
representing the number of trips between two stations over the day hours. 
Thus, the proposed method applies the DTW method to calculate the 
distance between the two time-series curves, i.e., the red and green curves 

Figure 2. The two main steps of the DTW algorithm.
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of Figure 3. The DTW similarity method measures the non-linear align-
ment between the curves by minimizing the cumulative distance of their 
points. The score obtained from the DTW algorithm represents how similar 
or different the two time-series curves are, with a lower score indicating 
higher similarity and a higher score indicating greater dissimilarity. The 
distance scored for the two curves of Figure 3 is 48 which indicating a very 

Figure 3. Two curves with low DTW distance and high similarity.

Figure 4. Two curves with high DTW distance and low similarity.
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high level of similarity. In contrary, applying the same explanation to 
Figure 4, the obtained distance between the two curves, i.e., red and 
green curves, is 22,435 which show a huge level of dissimilarity between 
the two curves of Figure 4.

Thus, Figure 3 shows that the two curves of Figure 3 will likely fall under the 
same sub-dataset (i.e., cluster) while the two curves of Figure 4 will likely to fall 
in different sub-datasets/clusters because of the high distance values of 
Figure 4’s two curves. Of note, the DTW similarity score is calculated using 
the “similaritymeasures” library (https://pypi.org/project/similaritymea 
sures/).

The Proposed Algorithm

The proposed algorithm is listed in Algorithm 1. The main function in 
Algorithm 1 consists of four nested loops to iterate between all possible station 
pairs. Besides, the algorithm has two auxiliary functions, namely, 
StationPairCurve and DTWDistance. The StationPairCurve function calcu-
lates the curve representing the trips flow between stations x and y while 
The DTWDistance function calculates the DTW distance between two curves;                         

Algorithm 1: Analyzing Bike-Sharing System Data using the DTW.
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each curve represents the trips flow between two stations. The main steps of 
Algorithm 1 can be summarized as follows:

● Step 1: In the first loop, the algorithm travels through each station. Let us 
designate s as the present station.

● Step 2: In the second loop, the algorithm iterates through each second 
station t and links it to station s to form the station pair ðs; tÞ. In 
the second loop, a curve representing the trip flow pattern for the station 
pair ðs; tÞ is calculated.

● Step 3: In loops 3 and 4, the trip flow pattern for the station pair ða; bÞ is 
calculated as well. Then, for each station pair ðs; tÞ and ða; bÞ, the DTW 
distance should be measured, in the fourth loop.

● Step 4: The distance matrix is updated with the distance value of ðs; tÞ and 
ða; bÞ which indicates the similarity between these pairs of stations.

Implementation Details

In this study, three machine learning models were used, namely Random 
Forest, CatBoost, Bagging, and one deep learning model (i.e., GRU), to predict 
trip distance and trip duration in BSSs. The selection of these models is due to 
their superior performance reported in recent works such as Guidon, Reck, 
and Axhausen (2020); Aydin, Erdem, and Cicek (2023); Tekouabou et al. 
(2021); Zhou et al. (2022) for Random Forest, CatBoost, Bagging, and GRU, 
respectively. The Random Forest model is known for being reliable and able to 
handle many different kinds of data. It is made up of many decision trees that 
work together to make accurate predictions. CatBoost is an innovative gradi-
ent-boosting model that excels at categorical features and generalization 
performance. The bagging model employs an ensemble of base learners 
trained on random subsets of the dataset to improve stability and reduce 
overfitting. By employing these cutting-edge machine learning models, the 
proposed approach ensures accurate predictions tailored to the unique char-
acteristics of each user group, thereby enhancing the overall performance and 
reliability of predictive models in the context of bike-sharing systems.

The default Random Forest model hyperparameters are the number of trees 
in the forest, the maximum tree depth, and the minimum sample size needed 
to split an internal node. CatBoost model’s default hyperparameters are the 
learning rate, the depth of the trees, and the number of iterations of the 
gradient boosting process. The Bagging model’s default hyperparameters 
include the number of base estimators, the maximum number of samples for 
each base estimator, and the way the predictions of the base estimators are 
added together. Although set to their default values, these hyperparameters 
provided a solid foundation for the models and aided in achieving the desired 
level of predictive accuracy in the study.
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The Mean Absolute Error (MAE) was employed as the accuracy metric 
for evaluating the performance of the machine learning models. In regres-
sion problems, MSE is a commonly employed metric for measuring the 
difference between the predicted and actual values. It computes the square 
root of the mean squared differences between the predicted and actual 
values, providing an interpretable and scale-sensitive performance metric 
for the model. Using RMSE, the study was able to compare the outcomes 
of the proposed approach to those of the standard training approach, 
ultimately demonstrating the superior performance of the proposed 
method in predicting trip distance and trip duration for bike-sharing 
systems.

The MAE is denoted for a set of N observations as follows: 

where xi represents the predicted value and the yi represents the true value.

Results and Discussion

Experimental Setup

The experiments were conducted on a computer running a 64-bit Windows 10 
OS with two 2.6 GHz Intel 6-core processors. All of the utilized predictive 
models were implemented in the Python programming language version 
3.9.16. Moreover, two Python packages are utilized to implement machine 
learning models, namely, Scikit-learn (Pajankar and Joshi 2022) and CatBoost 
(Dorogush, Ershov, and Gulin 2018) packages. Furthermore, the following 
libraries are utilized in the proposed work: pandas (Bantilan 2020), Numpy 
(Unpingco 2021), Matplotlib (Cao et al. 2021), and similaritymeasures 1.1.0. 
The utilized clustering algorithm is KMedoids (Schubert and Rousseeuw  
2019).

Dataset

In this paper, two datasets were utilized. The first dataset is the New York 
CityBike Share Dataset. It is a publicly available dataset that affords bike trips 
throughout the boroughs of New York City (NYC). This dataset (New York 
City Bike Share Dataset, 2023) contains information on 735,502 anonymized 
trips collected between January 2015 and June 2017. In the following text, this 
dataset is called “dataset-1.”

Dataset-1 consists of 17 features. Four of these features (i.e., Start time, End 
time, Trip duration, and Trip duration in minutes) were used to label the first 
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predictive task, i.e., trip duration. For the trip distance label generation, 
another four features were utilized, namely, start station latitude, start station 
longitude, end station latitude, and end station longitude. Then, the dataset 
includes the station ID and station name features; a station’s name was picked 
to represent these two features in data splitting. The user type, gender, and 
birth year features were selected to split the data as well. The only unused 
feature in data splitting was Bike ID, as it can produce a huge number of 
groups.

The second dataset is the Citi Bike Sharing of New York City over the 
period of January 2020 to April 2021. This dataset includes 15 features, and the 
number of records is 393,312. In the following text, this dataset is called 
“dataset-2.” By utilizing two datasets, the aim of this study is to try two datasets 
of different numbers of features and different sizes to evaluate the proposed 
method. Dataset-2 is utilized to analyze the BSS usage patterns during the 
abnormal period of the COVID-19 pandemic. Thus, the two datasets include 
covering the normal and abnormal patterns of bike usage.

In all of the experiments, the following features were utilized as an input to 
the predictive models: trip start station, time stamp of trip’s starting time, user 
type, user’s age, and user’s gender. The “User type” attribute’s value can be 
customer or subscriber. The intuition of including the users’ gender and age as 
input features to the model is that they can help the model in the prediction 
task. These features can significantly influence riding patterns, trip duration, 
and preferred routes (i.e., distance). For instance, age may correlate with 
varying levels of physical activity and stamina, impacting the length and 
frequency of bike trips. Similarly, gender differences can shed light on distinct 
preferences and behaviors in cycling, such as the choice of biking routes or trip 
timing. Both datasets users have age and gender data.

The utilized data split rate for all experiments is 80%–20% for the training 
and test sets, respectively. All of the reported results are for the test sets only. 
The baseline results used to report the achieved improvements are the predic-
tion evaluation metrics of the predictive models trained on the complete 
dataset. For the proposed method results, the reported improvements were 
calculated by taking the average evaluation scores of the k models trained on 
the k clusters/sub-datasets and then comparing them to the evaluation score of 
the model trained on the complete dataset.

Results

The obtained results outline the changes in the predictive accuracy of trip 
duration and distance. Hence, various machine learning models were utilized 
(RF, Bagging Regressor, CatBoost, and GRU) to examine the performance of 
the proposed method due to the superior performance in relevant machine 
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learning applications (Akilandesvari Ramesh et al. 2021; Ve and Cho 2024; 
Zhou et al. 2022).

The changes include the MAE metric values and the percentage of the 
change, where the positive values mean an improvement and the negative 
values mean a decline of the predictive model. The results listed in 
Table 2 show the improvement of baseline MAE values for three ML 
models, namely, RF, Bagging Regressor, and CatBoost, and a deep learn-
ing model (GRU). Of note, the best MAE value was achieved with five 
clusters for the ML models and four clusters for the GRU model. The 
changes in the MAE values of predicting the bike trip duration are listed 
as percentages in Table 3 and the same percentages are depicted in 
Figure 5.

Table 4 lists four MAE values of four baseline models for predicting the bike 
trip distance, in the second column. In the third to 11th columns, the MAE 
values for each model are listed, but using different numbers of clusters 
varying from 2 clusters to 10 clusters. Then, the percentage of changes in the 
MAE values using different numbers of clusters relative to the baseline MAE 
values are listed in Table 5 and depicted in Figure 6.

In Figure 6, the number of clusters, k, is a parameter in the proposed 
method that significantly impacts the overall performance of this proposed 
method. The k is a hyperparameter that should be tuned based on the nature of 
the dataset. Changing the number of clusters alters the dataset’s structure, 
which subsequently affects the final results. Just as a dataset can have multiple 
local optima and one global optimum of improvement, the number of peaks in 
a clustering analysis can vary. Figure 6 with two peaks aims to visually identify 
and select the global peak for optimal clustering.

Table 2. A comparison of the trip duration prediction on the MAE metric for different ML models 
on different numbers of clusters for dataset-1.

Number of Clusters

Model Baseline 2 3 4 5 6 7 8 9 10

RF 11.02 7.93 6.23 5.96 6.67 6.56 7.58 6.54 6.07 9.44
BaggingReg 11.43 8.09 6.46 6.15 6.43 6.29 7.52 6.71 6.52 8.60
CatBoost 18.49 15.15 12.53 10.77 12.50 16.33 18.20 17.00 14.57 20.29
GRU 12.94 12.85 10.50 9.20 10.81 12.29 11.04 13.16 12.16 15.32

Table 3. Percentage improvement of trip duration prediction on the MAE metric using the 
proposed method for dataset-1.

Number of Clusters

Model 2 3 4 5 6 7 8 9 10

RF 28% 43% 46% 39% 40% 31% 41% 45% 14%
BaggingReg 29% 44% 46% 44% 45% 34% 41% 43% 25%
CatBoost 18% 32% 42% 32% 12% 2% 8% 21% −10%
GRU 1% 19% 29% 16% 0% 0% −2% 6% −18%
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Table 4 presents a comparison of the MAE for several ML models as the 
number of clusters varies for dataset-1. The Random Forest (RF) model 
initially has a baseline MAE of 97.75. As the number of clusters rises, the 
model consistently improves, reaching its lowest MAE of 62.37 when using 10 
clusters. The Bagging Regressor (BaggingReg) model has a larger initial MAE 

Figure 5. Percentage improvement of trip duration prediction on the MAE metric using the 
proposed method for dataset-1.

Table 4. A comparison of the trip distance prediction on the MAE metric for different ML models 
on different number of clusters for dataset-1.

Number of Clusters

Model Baseline 2 3 4 5 6 7 8 9 10

RF 97.75 78.33 67.72 58.94 53.93 67.78 66.65 65.89 62.35 62.37
BaggingReg 106.06 84.82 72.82 62.41 57.44 71.67 70.03 69.16 65.39 65.47
CatBoost 223.23 184.05 158.31 132.59 122.38 150.06 148.22 146.61 143.67 145.91
GRU 310.68 292.63 256.60 233.94 238.43 272.43 284.10 292.08 310.93 315.08

Table 5. Percentage improvement of trip distance prediction on the MAE metric using the 
proposed method for dataset-1.

Number of Clusters

Model 2 3 4 5 6 7 8 9 10

RF 20% 31% 40% 45% 31% 32% 33% 36% 36%
BaggingReg 20% 31% 41% 46% 32% 34% 35% 38% 38%
CatBoost 18% 29% 41% 45% 33% 34% 34% 36% 35%
GRU 6% 17% 25% 23% 12% 9% 6% 0% −1%
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compared to the RF model. However, it shows a similar pattern of improve-
ment and achieves its lowest MAE of 65.47 when using 10 clusters. CatBoost 
model’s initial MAE is 223.23, which serves as the baseline. As the number of 
clusters rises, there is a notable decrease in MAE. The optimal performance is 
achieved when there are five clusters, resulting in an MAE of 122.38. However, 
adding additional clusters leads to a minor increase in error.

The GRU model has the greatest initial MAE value of 310.68. However, the 
MAE lowers with an increase in the number of clusters, albeit not as much as 
the other models. The enhancement reaches a peak at around five clusters, 
after which further increases in the number of clusters only lead to negligible 
improvements in MAE.

Table 5 displays the percentage improvement achieved in predicting trip 
distance for dataset-1. Table 5 displays the percentage enhancement in the 
MAE metric for the same models, in comparison to the baseline for dataset-1. 
The RF: model demonstrates a consistent enhancement, with the percentage 
rising as more clusters are used, reaching 45% at five clusters, and retaining 
a comparable improvement as the number of clusters increases to 10. The The 
Bagging Regressor, like the Random Forest, exhibits a 46% improvement with 
5 clusters and maintains a steady 38% improvement with 10 clusters. The 
CatBoost model has the greatest percentage enhancement at 4 and 5 clusters, 
with improvements of 41% and 45%, respectively. However, the degree of 
increase diminishes gradually with the addition of additional clusters. Finally, 
the GRU model’s degree of enhancement is less significant compared to other 
models, beginning at 6% with two clusters and reaching its highest point of 
25% with four clusters. Furthermore, the enhancement diminishes and 
becomes negative when there are 10 clusters, suggesting a decline in perfor-
mance compared to the initial state. Thus, the best achieved improvements in 

Figure 6. Percentage improvement of trip distance prediction on the MAE metric using the 
proposed method for dataset-1.
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the prediction accuracy are 44% and 46% for both trip duration and distance, 
respectively.

The reported results for dataset-2 are for the RF, CatBoost, and Bagging 
models only; the GRU model was excluded due to the smaller dataset size 
relative to dataset-1. For dataset-2, the percentages of improvements in the 
MAE metric for trip duration and distance prediction were depicted in Figure 
7 and 8, respectively. In Figure 7, the improvement of the MEA value started 
from six clusters. The performance of the three models was close except for 10 
clusters, the CatBoost clearly outperformed the other two methods. In 
Figure 8, the pattern of trip distance prediction improvement is increasing 
as the number of cluster increases. The Bagging and RF models have slightly 
performed better than the CatBoost model.

For dataset-2, the conclusion reached was that the proposed method 
achieved the lowest improvement for predicting the trip duration, out of the 
two datasets especially for a small number of clusters. This may be linked to 
varying levels of impact on bike riders due to health issues related to the 

Figure 7. Percentage improvement of trip duration prediction on the MAE metric using the 
proposed method for dataset-2.

Figure 8. Percentage improvement of trip distance prediction on the MAE metric using the 
proposed method for dataset-2.
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COVID-19 virus. On the other hand, the improvements in the trip distance 
prediction for the MAE metric are similar to dataset-1, as the distance is fixed 
between stations for the two datasets. The best achieved improvements for 
predicting trip duration and distance for dataset-2 are 17% and 38%, respec-
tively. Thus, the average best achieved improvements of the two datasets are 
30% and 42% for trip duration and distance, respectively.

Based on these aforementioned results in tables and figures, the following 
findings can be deduced:

Impact of Clustering
Integrating clustering often enhances the performance of all models. However, 
the proper number of clusters should be carefully selected, as for certain cases 
the improper number of cluster can negatively impact the results.

Optimal Number of Clusters
The proposed method shows varying levels of improvement based on the 
patterns in the dataset. The selection of the appropriate k value, i.e., the 
number of clusters, significantly impacts the improvement achieved by the 
proposed method.

Comparing Complex Models to Simple Models
The GRU model, a more complex model, has worst performance compared to 
simpler models such as RF and Bagging Regressor. This implies that the 
dataset may not need the complex capabilities provided by GRU to achieve 
accurate prediction.

Model Selection
When choosing a deployment model, it is essential to take into account not 
only the percentage of improvement but also the MAE values. An ideal model 
would have a reduced baseline error and demonstrate steady progress as more 
clusters are added. These findings are significant for individuals seeking to 
enhance bike-sharing operations since they emphasize the efficacy of cluster-
ing approaches in combination with diverse machine learning models for 
forecasting trip lengths.

Different Patterns of Datasets
Dataset-2 includes different bike riding patterns due to the COVID-19 pan-
demic in comparison with to dataset-1. Thus, the pattern of improvements for 
dataset-2 is slightly different relative to dataset-1. This emphasizes the finding 
of the research work (Basak et al. 2023; Heydari, Konstantinoudis, and Wahid 
Behsoodi 2021; Nikiforiadis, Ayfantopoulou, and Stamelou 2020).
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Conclusion

To improve the trip distance and duration prediction accuracy of the bike- 
sharing systems, this work proposed utilizing the DTW method to split the 
BSS dataset into sub-datasets based on the similarity of curves representing the 
time-series curve of the number of trips between station pairs. In other words, 
the primary objective of this study was to investigate whether predictive 
models for BSS could benefit from training on a set of sub-datasets with 
more similar data patterns, yielded by the proposed method, rather than 
training on the complete dataset. To achieve this goal, the proposed method 
was thoroughly tested on two real datasets of New York City BSS at different 
periods of time. Several predictive models were trained on the complete BSS 
dataset, and then those baseline models were compared with the predictive 
models trained on divided BSS sub-datasets by the proposed method. The 
metric utilized to assess accuracy was the MAE. The results demonstrate 
significant improvements in trip duration and distance prediction accuracy 
rates. In addition, the obtained results demonstrate that the proposed method 
significantly reduces the average MAE values of the used predictive models for 
both the trip duration and distance prediction. These findings hold promise 
for enhancing the predictive capabilities of bike-sharing systems, potentially 
leading to more efficient and user-friendly services. Future research directions 
include evaluating the proposed method in free-floating bike-sharing systems 
and exploring its applicability in other domains.

Note

1. https://github.com/Ahmed-Fathalla/BSS-using-DTW.
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