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ABSTRACT
The gut microbiota is a crucial link between diet and cardiovascular disease (CVD). Using 
fecal metaproteomics, a method that concurrently captures human gut and microbiome 
proteins, we determined the crosstalk between gut microbiome, diet, gut health, and CVD. 
Traditional CVD risk factors (age, BMI, sex, blood pressure) explained < 10% of the proteome 
variance. However, unsupervised human protein-based clustering analysis revealed two dis
tinct CVD risk clusters (low-risk and high-risk) with different blood pressure (by 9 mmHg) and 
sex-dependent dietary potassium and fiber intake. In the human proteome, the low-risk 
group had lower angiotensin-converting enzymes, inflammatory proteins associated with 
neutrophil extracellular trap formation and auto-immune diseases. In the microbial proteome, 
the low-risk group had higher expression of phosphate acetyltransferase that produces 
SCFAs, particularly in fiber-fermenting bacteria. This model identified severity across pheno
types in heart failure patients and long-term risk of cardiovascular events in a large popula
tion-based cohort. These findings underscore multifactorial gut-to-host mechanisms that may 
underlie risk factors for CVD.
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Introduction

According to the latest Global Burden of Disease 
Study, both high blood pressure (BP) and dietary 
risks were among the leading global risk factors for 
death, as they are both recognized as risk factors for 
the development of cardiovascular diseases 
(CVDs).1,2 The relationship between BP and diet 
is well-established,3 with dietary changes listed as 
first-line therapy for hypertension treatment in 
international guidelines.4 The Dietary Approaches 
to Stop Hypertension (DASH) and Mediterranean 
diets are examples of how diet can be successfully 
manipulated to reduce BP.4 These diets are char
acterized by a high intake of potassium- and fiber- 
rich foods, such as fruits, vegetables, legumes, 
whole grains and nuts, and a low intake of red 
meat, saturated fat, refined sugar, processed 
foods, and sodium.

Mounting evidence in the past decade has 
underscored the pivotal role of gut dysbiosis (i.e., 
changes to the gut microbiome and gut barrier) in 
the development of hypertension5 and CVDs.6,7 

Unhealthy diets directly impact human health 
through metabolic8 and gene expression changes9 

and indirectly affect host health, including BP and 
cardiovascular health, by interacting with the gut 
microbiome and responding to downstream 
signaling.10,11 However, the intricate mechanisms 
underlying the host and gut microbiome interplay 
in CVD development remain largely unknown.

Through the assessment of microbial DNA 
using amplicon (e.g., 16S) or shotgun sequencing, 
metagenomic analyses have revealed changes in gut 
microbiome taxonomy associated with CVDs.5–7 

Functional profiling and differential abundance 
analyses of gene families can indicate shifts in gut 
microbiome functions. However, metagenomic 
analyses are limited to estimating the presence of 
microbial genes, which may differ from the actual 
protein levels expressed by the microbial commu
nities. Moreover, metagenome analyses cannot elu
cidate interactions between the host and gut 
microbiome. This is due to their inability to pro
vide insights into human protein expression in the 
gut lumen. Thus, functional omics, such as fecal 
metaproteomics, have been suggested as an alter
native technique to address the limitations of meta
genomic studies. Fecal metaproteomics is an 

emerging technique capable of capturing all types 
of proteins in a fecal sample, including human, 
microbial, and food proteins,12 along with the bio
mass of different types of gut microbiome.13 This 
makes fecal metaproteomics suitable for elucidat
ing the functional crosstalk between the host and 
gut microbiome, holding enormous potential. 
However, it remains to be explored in most disease 
settings, including in cardiovascular research.

In this study, we aimed to understand the func
tional crosstalk between the host and gut micro
biome to CVD risk. We hypothesized that 
differences in human and microbial fecal proteins 
would be observed in healthy participants at higher 
risk of CVD and that these would influence CVD 
outcomes. We performed metaproteome analysis on 
fecal samples from healthy individuals whose BP was 
measured by ambulatory BP monitoring (ABPM) 
and patients with heart failure with preserved ejec
tion fraction (HFpEF), diagnosed with cardiac cathe
terization. We further employed machine learning 
to establish connections between the expression pro
file of human proteins in the gut lumen, the compo
sition and expression profile of gut microbial 
proteins, and cardiovascular risk factors. We then 
assessed these proteins in a subset of the UK 
Biobank cohort, where proteomics data is available, 
to validate that these proteins increased the long- 
term risk of cardiovascular events. Our results sug
gest that cardiovascular risk factors have a combined 
impact on the metaproteome, and that the resulting 
human and microbial protein changes may drive 
some mechanisms behind the development of CVD.

Materials and methods

Study population

This study complied with the Declaration of 
Helsinki and was approved by the human research 
ethics committee of the Alfred Hospital, 
Melbourne, Australia (approval 415/16 and 477/ 
17). All participants provided informed consent 
and were recruited between October 2016 and 
January 2020. The study was registered in the 
Australian New Zealand Clinical Trials Registry 
under ACTRN12620000958987. The recruitment
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and inclusion/exclusion criteria of the healthy 
cohort (VicGut) and HFpEF patients were 
described previously.14,15 Briefly, for the VicGut, 
healthy participants were 40–70 years of age, either 
sex, had body mass index (BMI) 18.5–30 kg/m2, 

were not using BP-lowering medication, and were 
recruited in two sites across Melbourne and 
Shepparton (Figure 1a). These participants were 
healthy, without diabetes or gastrointestinal disor
ders. The HFpEF patients were diagnosed by

Figure 1. Overview of fecal metaproteome data from the VicGut cohort and the influence of conventional cardiovascular risk factors. 
(a). Geographic distribution of sample collection sites depicted on a map of Australia and Victoria. Fecal samples were collected from 
participants at the Baker Heart and Diabetes Institute in metropolitan Melbourne and Shepparton, a regional town in Victoria. 
(b). Graphical representation illustrating the distribution of detected proteins in the metaproteome dataset and their origins. Among 
the 22,709 detected proteins 21,594 were of microbial origin, 1,072 were human proteins, and 43 proteins originated from other 
sources such as food. Some icons are from SciDraw and Bioicons program (CC-BY). (c). PCA plot illustrating the influence of traditional 
cardiovascular risk factors on gut lumen human protein expression profiles. (d-e). Percentage of variation in d. human and 
(e). microbial proteins could be explained by four conventional cardiovascular disease risk factors: sex, BMI, age, and blood pressure. 
The ‘shared model’ represents an additive model incorporating all four risk factors, while the ‘unique model’ indicates separate 
analyses of individual risk factors. Sample size n = 63.
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a right heart catheterization (RHC), which con
firmed a resting pulmonary capillary wedge pres
sure (PCWP) ≥15 mmHg or exercise PCWP 
≥25 mmHg and a left ventricular ejection fraction 
(LVEF) >50% according to recognized diagnostic 
criteria for HFpEF. Exclusion criteria included, 
amongst others, intake of antibiotics or probiotics 
in the last 6 months.

Blood pressure measurement and hypertension 
diagnosis

In the VicGut cohort, office BP was measured using 
an automatic BP monitor (Omron), and 2–3 mea
surements were taken.15 Twenty-four-hour BP was 
measured using a calibrated ambulatory ABPM 
device (AND or SpaceLabs).15 Hypertension was 
diagnosed based on 24-hour systolic BP 
>130 mmHg and/or diastolic BP >80 mmHg.16

Exercise right heart catheterisation protocol

Exercise RHC was performed using supine cycle 
ergometry, as described previously.14 A 7-F Swan- 
Ganz catheter was inserted through the brachial or 
internal jugular vein with the patient under local 
anesthesia. End-expiratory measurements were 
taken from the right atrium, right ventricle, pul
monary artery, and pulmonary capillary wedge 
pressure (PCWP) was measured.

Food frequency questionnaire

Dietary intake over a period of 12 months was 
assessed using the Dietary Questionnaire for 
Epidemiological Studies (DQES) version 3.2, 
a self-administered and validated food frequency 
questionnaire (FFQ) developed by the Cancer 
Council Victoria that reflects the dietary intake 
of the Australian population.17 Dietary intake 
estimates of 98 nutrients were derived from two 
Australian databases, AUSNUT 200718 and 
NUTTAB 2010.19 Out of these, the following 
nutrients were assessed due to their relevance to 
BP and/or gut microbiome: sodium (mg/day), 
potassium (mg/day), fiber (g/day), fat (g/day), 
protein (g/day), fruit (g/day), vegetables (g/day), 
whole grains (g/day). Dietary fiber intake was 
classified as adequate or inadequate based on 

a threshold of 25 g/day, defined according to 
a meta-analysis on fiber intake and CVD preva
lence and mortality.20

Protein extraction from samples and enzymatic 
digestion

Metaproteomic analyses were performed on the 
fecal samples of 63 healthy participants and 
26 HFpEF patients – these participants still had 
fecal samples available. Samples were cryo- 
pulverized and solubilized in 5% sodium dodecyl 
sulfate (SDS) 10 mm Tris HCL, with heat inactiva
tion at 95°C for 10 minutes followed by centrifuga
tion at 13,000 rcf for 5 minutes. Samples were 
cleaned by additional three times centrifugation at 
13,000 rcf for 5 minutes then processed using the 
S-trap (Protifi) protocol as per the manufacturer’s 
instructions.21 Briefly, samples were reduced and 
alkylated using 10 mm TCEP (Thermo, #77720) 
and 40 mm chloroacetamide (Sigma, C0267-100  
G) with incubation at 55°C for 15 minutes. 
Enzymatic digestion was performed using Trypsin 
(Promega, V528X) at a 1:50 wt:wt ratio alongside 
Lys-C at a 1:25 wt:wt ratio (Promega, VA1170) at 
37°C for 16 hours. Digestion efficiency was greater 
than 89% for this analysis.

TMT labeling and fractionation

Labeling was performed using TMTpro 16plex 
reagent set (Lot:WD314806, Thermo Scientific) 
according to the manufacturer’s instructions and 
utilized a singular reference channel (126) for each 
fecal sample set utilizing (two per tissue type). 
Pooled plexes were then fractionated utilizing 
high-pH RP-HPLC generating 36 fractions that 
were concatenated into 12 to ameliorate low com
plexity issues during acquisition. Additionally, 
a global pooled sample was fractionated into six 
fractions using the same method, specifically for 
generating a data-specific database. Each plex has 
been acquired individually by LC-MS/MS to max
imize identifications. For each sample set, labeling 
efficiency was determined to be greater than 88%, 
utilizing data-dependent analysis of individually 
labeled samples.
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Liquid chromatography mass spectrometry protocol

Liquid chromatography-mass spectrometric (LC- 
MS) analysis was conducted using the Mass 
Spectrometer and Nano LC system (Dionex 
Ultimate 3000 RSLCnano). The samples were 
loaded in an Acclaim PepMap RSLC (75 μm 
x 50 cm, nanoViper, C18, 2 μm, 100Å; Thermo 
Scientific) analytical column. The peptides were 
separated by increasing concentrations of buffer 
B (80% acetonitrile/0.1% formic acid) and ana
lyzed via 2 kV nano-electrospray ionization with 
an Orbitrap Eclipse Tribrid mass spectrometer 
(Thermo Scientific, Bremen, Germany) operated 
in data-dependent acquisition mode using in- 
house optimized parameters with 120 minutes of 
chromatographic separation used for each frac
tion. Briefly, the acquisition used three FAIMS 
compensation voltages (−40, −55, −70) operated 
under standard resolution with an ion transfer 
tube temperature of 300°C with a carrier gas 
flow rate of 4.6 L/min. Survey scans were per
formed at a resolution of 120,000 from 
400–1,600 m/z, with a 250% AGC target and ion 
injection time set to auto. Fragmentation for pep
tide identification and reporter tag quantification 
were performed synchronously (10 per duty cycle 
per compensation voltage) with the fragmentation 
spectra generated in the ion trap using CID with 
turbo scan rate; MS3 reporter ion measurements 
were performed in the orbitrap with a resolution 
of 50,000. Dynamic exclusion was applied for 60  
seconds across all compensation voltages with 
only one charge state per precursor selected for 
fragmentation.

Assembly of a sample-specific database

The sample-specific database was generated 
using MetaLab software (HGM1.0).22 Initially, 
spectral clustering was applied to the MS/MS 
spectra from the pooled global fecal samples to 
reduce dataset redundancy by removing redun
dant or inferior spectra. This refined list was 
then searched against a gut microbial gene cat
alog database, tailored for human microbiomes 
by MetaLab, to create a candidate protein list for 
database construction.

Mass spectrometric data analysis

The raw data files were analyzed using Proteome 
Discoverer (v2.5.0.400, Thermo Scientific) to 
obtain protein identifications and their respective 
reporter ion intensities using in-house standard 
parameters with sequest. The sample-specific 
database generated by MetaLab was used for 
protein identification at a 1% false discovery 
rate (FDR) alongside a common contaminants 
database. Reporter ion quantifiers used a unique 
plus razor with analysis centered on protein 
groups for shared peptide sequences using all 
peptides for abundances determination, value 
output and quantitative values were corrected 
against stable isotope label impurities according 
to the manufacturer’s values as per the lot 
number.

Metaproteomic downstream analysis

The abundance of proteins was scaled to the sum of 
the total protein abundance and multiplied by 105 

to facilitate subsequent analysis. The abundance of 
all detected proteins under the corresponding tax
onomy was summed and log-transformed before 
differential analysis to measure biomass of different 
microbial taxonomies. Only proteins present in >  
50% of samples were kept for protein-level analysis. 
This resulted in 373 gut lumen human proteins and 
7,519 high-quality microbial proteins detected in >  
50% of samples that were considered as high- 
quality proteins and were used for the following 
analyses. Scaled abundance was then log- 
transformed, and missing values that remained 
were imputed by the K-nearest neighbor (KNN) 
method, widely used in current metaproteomic 
data analysis.23,24 K-mean unsupervised clustering 
was performed using R 4.3 with the default setting.

Limma (v3.56.2)25 was used to analyze the pro
tein expression differences or the biomass of 
microbial taxonomies between different groups. 
Pathway overrepresentation analysis of human 
protein was performed using an online tool 
Enrichr.26 The protein-protein interaction network 
was constructed using the online STRING 
database.27 The co-expression network was con
structed using WGCNA (v1.72.5),28 and edges
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with a weight > 0.05 were kept in an outputted 
network. A motif search on promoter regions was 
performed using Homer (v4.11).29

The random forest (RF) model was trained using 
the scikit-learn package (v1.1.3) run in a Python 
3.10 environment with 100 estimators. Minimum 
samples per split and leaf were set to 3 to avoid 
model overfitting.

UK biobank data processing

The UK Biobank follows the principles of the 
Declaration of Helsinki and received ethical 
approval from a human ethics committee (11/ 
NW/0382), with access approved under application 
number 86,879. The UK Biobank is 
a comprehensive longitudinal cohort study, com
prising over 500,000 participants recruited between 
2006 and 2010.30 We assessed information from 
53,014 participants who had plasma proteomics 
data available. To filter out low-quality samples 
and proteins, we excluded proteins detected in 
fewer than 50% of samples and samples with less 
than 20% proteins detected, resulting in a final 
dataset of 52,936 participants and 2,920 proteins. 
Missing values in the proteomics data were 
imputed using the KNN method, consistent with 
our approach for metaproteomic datasets.

We included 34,311 participants who were not 
taking BP-affecting medications in further ana
lyses. Major adverse cardiovascular events 
(MACE) were defined following a method outlined 
by Zheng & Tavares et al. (2024).31 Briefly, MACE 
included hospital admissions and death registers 
(ICD code I20.0, I21.*,I24.8, I24.9, I50.*, I63.*, 
I64.*) as well as surgical procedures (K40.*, K41.*, 
K42.*, K43.*, K44.*, K45.*, K46.*,K49.*, K50.*,K75. 
*) associated with acute coronary syndrome (ACS), 
ischemic stroke, or heart failure (HF). The circulat
ing protein scores were calculated using the follow
ing method. First, we extracted circulating proteins 
also detected in the metaproteomic datasets. 
Proteins with zero importance in the human pro
tein-based random forest model were excluded. 
The metaproteomic circulating protein scores 
were subsequently calculated as a weighted sum 
based on the random forest model’s importance. 
Specifically, the score was computed as ∑ (random 
forest importance × upregulated protein level) − ∑ 

(random forest importance × downregulated pro
tein level). High scores indicate a protein expres
sion profile similar to the low-risk group we 
identified.

Statistical analysis

Statistical tests and data visualization were per
formed using R 4.3. Normally distributed data 
was analyzed using a two-tailed Welch two- 
sample t-test. Non-normally distributed data was 
analyzed using a two-tailed Wilcoxon-Mann- 
Whitney test or permutation test for a small sample 
size (n < 30). Binomial data, such as sex and living 
area among patients, were analyzed using the chi- 
square (Χ2) test. In contrast, other binomial data 
were analyzed using Fisher’s exact test due to the 
presence of low frequencies. Time-to-event ana
lyses were conducted using a Cox proportional 
hazards model with the survival (version 3.6.4),32 

survminer (version 0.4.9), and adjustedCurves 
(version 0.11.2)33 packages in R. Permutational 
analysis of variance (PERMANOVA) test based 
on Euclidean distance was conducted using the 
R package vegan (https://CRAN.R-project.org/ 
package=vegan) to assess the equivalence of cen
troids among different groups. For high- 
dimensional data analysis, p-values were adjusted 
using the Benjamini – Hochberg FDR method with 
a cutoff of q < 0.05. Significance was determined as 
P or q < 0.05.

Results

Traditional cardiovascular risk factors poorly 
capture expression profiles of gut lumen human 
protein and microbial proteins

Healthy participants were recruited from 
Melbourne and Shepparton in Victoria, 
Australia – their baseline characteristics are 
detailed in Table 1 and Figure 1a. Fecal samples 
from these participants were analyzed using 
mass spectrometry to determine the fecal meta
proteome. A total of 22,709 proteins were iden
tified in the metaproteome data from these 
participants (Figure 1b). Among these 21,594 
were classified as microbial proteins originating 
from seven bacterial phyla (Figure 1b and S1A),
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with the majority originating from the Bacillota 
and Bacteroidota phyla, and a smaller propor
tion from Campylobacterota, Pseudomonadota, 
Thermodesulfobacteriota, and 
Verrucomicrobiota. This taxonomic distribution 
aligns with the well-defined structure of the 
human gut microbiota.38 Additionally, 1,072 
were identified as human proteins, representing 
gut lumen human proteins, and 43 proteins 
originated from other eukaryotic organisms, 
potentially linked to food intake (Figure 1b).

Based on previous findings linking gut micro
biota to cardiovascular health,39,40 we initially 
investigated whether the expression of gut 
lumen human proteins or microbial proteins 
differed between individual traditional risk fac
tors for CVD, including hypertension, age (>50  
years versus ≤50 years), BMI (>25 kg/m2 or ≤25  
kg/m2), and sex (Figure 1c and S1B). None of 
these were significantly different. The variation 
in expression levels of both human and micro
bial proteins within the gut lumen could only be 
minimally explained by these traditional factors 
(less than 10%) (Figures 1d-e and S1B). BP, for 
example, explained only 1.6% of the variance for 
gut lumen human proteins (p = 0.433) and 1.7% 
for microbial proteins (p = 0.397) (Figure 1d). 
Even an additive model incorporating all these 

factors could explain only 6.7% of the variance 
in gut lumen human proteins and 6.4% of the 
variance in microbial proteins (Figure 1e). 
Although dietary fiber intake has been pre
viously associated with reduced CVD risk by 
promoting the production of short-chain fatty 
acids (SCFAs) by the gut microbiome,11,41 we 
found a significant difference only in the human 
proteins (p = 0.027), with seven muscle-related 
proteins underrepresented in participants with 
inadequate dietary fiber intake (Figure S2C-E). 
These could be potentially related to gut dysmo
tility observed in constipation, an emerging risk 
factor for CVD.31,42,43

Unsupervised clustering identified distinct 
cardiovascular risk groups through metaproteome 
expression

We then used K-means, an unsupervised machine- 
learning algorithm renowned for its robustness, to 
cluster samples based on human and microbial 
protein expression. To select proper input PCs for 
cluster, we examined the top 50 human proteins 
contributing to different principal components. 
PC1 has a diverse function and may influence the 
individual differences. This included pathways 
related to insulin secretion and pathogenic

Table 1. Characteristics of participants included in the healthy cohort and low- and high-risk groups identified.
Variable Healthy participants (n = 63) Cluster 1 (Low-risk) (n = 26) Cluster 2 (High-risk) (n = 37) P-value

Age 6034,35 6034,36 6035,37 0.695
Female 54.0% (34) 65.4% (17) 40.6% (17) 0.205
Regional patients 39.7% (25) 53.8% (14) 29.7% (11) 0.096
BMI (kg/cm2) 25.036 ± 2.871 24.801 ± 2.655 25.202 ± 3.038 0.581
WHR 0.866 ± 0.088 0.856 ± 0.078 0.874 ± 0.094 0.419
Daytime SBP (mmHg) 128.992 ± 14.974 126.789 ± 15.769 130.539 ± 14.405 0.34
Daytime PP (mmHg) 49.926 ± 8.795 48.710 ± 9.584 50.781 ± 8.223 0.3754
Nighttime SBP (mmHg) 113.680 ± 16.523 108.597 ± 14.637 117.252 ± 17.018 0.035*
Nighttime PP (mmHg) 46.473 ± 8.978 43.393 ± 8.870 48.637 ± 8.516 0.023*
Overall HR (mmHg) 73.680 ± 12.066 77.673 ± 11.334 70.873 ± 11.913 0.025*
Fiber intake (g/day) 23.856 ± 8.796 24.915 ± 8.992 23.092 ± 8.699 0.428
Sodium (g/day) 1.978[1.643,2.539] 2.164[1.811,2.766] 1.950[1.53,2.24] 0.046*
Potassium (g/day) 3.622[2.967,4.348] 3.987[3.318,4.507] 3.408[2.760,3.956] 0.061
Sodium/Potassium 0.582 ± 0.171 0.596 ± 0.204 0.571 ± 0.143 0.605
CVD risk-associated dietary factor analysis by sex

Male Female

Cluster 1 (Low-risk) Cluster 2 (High-risk) P-value Cluster 1 (Low-risk) Cluster 2 (High-risk) P-value

Fiber intake (g/day) 30.581 ± 8.254 23.242 ± 6.943 0.022* 21.915 ± 8.040 22.925 ± 10.548 0.756
Sodium (g/day) 2.080[1.811,2.766] 1.924[1.573,2.324] 0.143 2.301[1.867,2.786] 1.919[1.486,2.242] 0.121
Potassium (g/day) 3.987[3.508,4.507] 3.128[2.805,3.700] 0.021* 3.896[3.124,4.527] 3.642[2.744,4.221] 0.769
Sodium/Potassium 0.565 ± 0.206 0.584 ± 0.124 0.772 0.614 ± 0.207 0.558 ± 0.164 0.4

Binomial data are presented as percentage (number of individual). Normally distributed data are presented as mean ± standard deviation. Non-normally 
distributed data are presented as median [Q25, Q75]. BMI: Body mass index; HR: Heart rate; SBP: Systolic blood pressure; PP: Pulse pressure; WHR: Waist-to-hip 
ratio. *p < 0.05.
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bacterial infection (Figures 2A and S3A). 
Conversely, proteins contributing to PC2 included 
those involved in the activation of the immune 
system such as lipocalin-2 (LCN2) and several 
immunoglobulins (Figures 2a and S3B, Table S1). 
Proteins contributing to PC3 included angiotensin 
converting enzyme (ACE, key for BP regulation) 
and mucins involved in the gut epithelial barrier 
(MUC12, MUC13), and predominantly played 
a role in pathways related to pancreatic secretion, 
protein digestion and absorption, and the renin- 
angiotensin system (RAS)44 (Figures 2a and S3C, 
Table S1). Therefore, we did K-means analysis 
based on PC2 and PC3 for their relevance to 
CVD risk. This clustering method distinctly cate
gorized samples into two clusters (Figure 2b-c), 
with a p-value <0.001 (under the detectable lower 
limit of PERMANOVA), indicating significant dif
ferences in human (Figure 2b) and microbial pro
tein expression (Figure 2c) between the clusters.

A comparison of gut lumen human protein 
expression profiles between the two clusters 
revealed 25 overrepresented proteins in Cluster 1 
(Figure 2d, Table S2). These proteins formed 
a protein-protein network (Figure S4A). Key over
represented pathways included pancreatic secre
tion, protein digestion and absorption, glycolysis/ 
gluconeogenesis, and proteins involved in insulin 
signaling-mediated glucose transport proteins 
including YWHAE and YWHAH (Figure 2e, 
Table S4). Among these, we identified ATP2A2, 
a protein associated with systolic BP in a genome- 
wide association study,45 which dysfunction leads 
to increased BP via oxidative stress;46 CELA3B, an 
elastase that may be involved in cholesterol meta
bolism and transport in the intestine;47 and 
MYO1D, a myosin that maintains gut epithelial 
integrity.48

Forty proteins were underrepresented in Cluster 
1 (Figures 2d, Table S3). Relevant underrepre
sented pathways included neutrophil extracellular 
trap formation (a bacterial defense mechanism) 
and conversion of angiotensinogen to angiotensin 
II, and those associated with auto-immune regula
tion (including miRNA role in immune response in 
sepsis, asthma, systemic lupus erythematosus) 
(Figure 2f, Table S4). These proteins formed 
a tight protein-protein interaction network 
(Figure 2G). Central to this network were the 

intestinal inflammation marker calprotectin 
(S100A8)49 and an associated protein, S100A12.50 

LCN2 could interact with another MUC13, 
a negative regulator of tight junction.51 Besides, 
another underrepresented protein, proteoglycan 2 
(PRG2), also called eosinophil major basic protein 
(MBP), could suppress occludin expression in the 
gut epithelium and destabilize the gut epithelial 
barrier.52 These findings indicate that gut epithe
lium barrier integrity may be compromised in 
Cluster 2. We also found two angiotensin- 
converting enzymes, cathepsin D (CTSD)53 and 
cathepsin G (CTSG)54 (Figure 2h), which may 
drive an exaggerated RAS observed in hyperten
sion. CTSD is associated with cardiovascular risk,55 

worse CVD outcomes,56 and pro-inflammatory 
factors.34,37 Indeed, CTSD, but not CTSG, was sig
nificantly correlated to night pulse pressure in our 
dataset (Figure 2i). The small intestine and colon 
are among the tissues with the highest CTSD and 
CTSG expression levels (Figure S4B-C), suggesting 
a role of gut CTSD in BP regulation. LCN2 also 
serves as a neutrophil gelatinase-associated lipoca
lin previously shown to lead to cardiac hypertrophy 
and failure,57 which also acts as part of the innate 
immune system, limiting bacterial growth58 and 
preventing intestinal inflammation.59 Together 
with LCN2, other key neutrophil-relevant proteins, 
including ELANE and MPO, were also 
underrepresented.

Fecal metaproteomics clusters are associated with 
cardiovascular risk factors

The combination of proteins and pathways related 
to CVD and inflammation prompted the hypoth
esis that these clusters may represent distinct CVD 
risk groups. To validate this hypothesis, we ana
lyzed medical and demographic data of partici
pants corresponding to the clusters identified in 
the metaproteome data (Table 1). Indeed, we 
found that participants in Cluster 1 had 
~9 mmHg significantly lower night systolic BP 
and ~5 mmHg pulse pressure relative to Cluster 2, 
indicative of lower CVD risk.60 These were inde
pendent of sex, BMI, and age. Accordingly, we 
classified Cluster 1 as a low cardiovascular risk 
group (referred below as ‘low-risk group’) and 
Cluster 2 as a high cardiovascular risk group

8 C. YANG ET AL.



Figure 2. Differential expression of gut lumen human protein. A. Overrepresentation analysis of the top 50 proteins contributing to 
PC1-PC3 of human protein PCA using the KEGG database. The diverse functions observed in the top contributor proteins of PC1 
suggest their association with individual differences, and thus its capacity to define groups with distinct cardiovascular disease risk is 
limited. In contrast, the top contributor proteins of PC2 and PC3 are primarily related to gut immune function and absorption, both of 
which are closely linked to human cardiovascular health. B. Principal component analysis (PCA) plot illustrating the outcome of 
unsupervised clustering. Two distinct clusters, cluster 1 and cluster 2, are clearly outlined by this supervised K-mean model 
(PERMANOVA p-value <0.001, based on Euclidean distances of all gut lumen human proteins). C. Two clusters based on gut lumen 
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(‘high-risk group’). Notably, the dietary patterns of 
the two clusters differed by sex. Low-risk males had 
a significantly higher dietary fiber and potassium 
intake. The low-risk group had a higher overall 
sodium intake (Table 1). However, after adjusting 
for sex, there was no significant difference in 
sodium intake between the high-risk and low-risk 
groups (Table 1).

Due to the contribution of diet to both the gut 
microbiome and CVD, we next assessed the var
iance explained by common dietary factors consid
ered CVD risk factors across the two clusters. 
Collectively, dietary factors explained ~ 20% of the 
total variance in differentially expressed human 
proteins between the two groups (Figure S5A), 
underscoring the importance of dietary factors in 
mitigating CVD risk, albeit not the sole determi
nant. Notably, high potassium intake was observed 
in the low-risk group and could significantly 
explain ~ 5% variance in an additive model 
(Figure S5A).

Regulatory factors’ contribution to cardiovascular 
risk groups

To identify potential key regulators of differentially 
expressed gut lumen human proteins between the 
two groups, we extracted the promoter sequences, 
defined as 1 kilobase upstream to 0.1 kilobase 
downstream of the transcription start site (−1kb 
to + 0.1kb of TSS), of coding genes associated 
with the differentially expressed proteins (Figures 
S5B-C). Subsequently, we conducted a motif search 
on the extracted promoter regions. Notably, the 
sequence motif of hypoxia-inducible factor (HIF) 
was significantly enriched in the promoters of 
genes encoding overrepresented proteins (Figures 
S5B-C). A moderate level of HIF1α expression is 
essential for the normal function of insulin- 
producing β cells,61,62 which aligns with the 
observed association of upregulated proteins of 
HIF1 signaling, glycolysis/gluconeogenesis, and 

pancreatic secretion in overrepresented proteins. 
Conversely, the sequence motif of myocyte enhan
cer factor-2 (MEF2) plays a role in the pathology of 
hypertension-induced cardiac hypertrophy,63 was 
enriched in promoters of genes encoding under
represented proteins.

Differential gut bacteria proteome and 
cardiovascular risk factors

Within the microbial proteins, we identified 430 
significantly higher and 276 lower expressed pro
teins in the low-risk group (Figure 3a, Tables S5 
and S6). Analysis of the source of these differen
tially expressed gut microbial proteins revealed that 
most underrepresented proteins in the low-risk 
group originated from the Bacillota (Firmicute) 
phylum. Conversely, underrepresented proteins in 
the high-risk group exhibited a significantly higher 
proportion of Bacteroidota-sourced proteins 
(Figure S6A). Classification based on Clusters of 
Orthologous Groups (COG) categories demon
strated that the most enriched functions of differ
entially expressed gut microbial proteins were 
associated with translation and metabolism (COG 
categories J, G, and C), indicating alterations in the 
bioactivity of the source gut microbiome. Notably, 
proteins related to translation (COG category J) 
were significantly overrepresented among overre
presented gut microbial proteins in the low-risk 
group (Figure S6B).

Considering that increased microbial SCFA pro
duction and/or sensing has been linked to reduced 
BP and CVD risk,11,15,57,64 we hypothesized that 
SCFA production is elevated in the low-risk group. 
To test this hypothesis, we selected enzymes involved 
in the final production steps of SCFAs and examined 
their expression between the two groups. We 
observed a significant increase in the expression of 
acetate kinases (ackA) and phosphate acetyltransfer
ase (pta) in several SCFA-producing bacteria, such as 
Phocaeicola dorei (Bacteroides dorei) and

human protein expression profiles also effectively distinguishes microbial protein expression profiles (PERMANOVA p-value <0.001, 
based on Euclidean distances of all microbial proteins). D. Volcano plot showing differentially expressed gut lumen human proteins 
between the low-risk and high-risk groups. Fold changes were calculated as low-risk group versus high-risk group. 
E-F. Overrepresentation analysis using the KEGG and Wikipathway databases for E. overrepresented and F. underrepresented proteins. 
G. A PPI network of underrepresented gut lumen human proteins in low-risk group. H. Schematics depicting the angiotensin 
converting by CTSD and CTSG protein. I. Correlation analysis between gut lumen CTSD and CTSG protein levels and nighttime PP. 
Sample size n = 63.
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Figure 3. Differential expression of microbial proteins and pathways between two groups and crosstalk between gut lumen human 
proteins and microbial proteins. A. Volcano plot displaying differentially expressed gut microbial proteins between the low-risk and 
high-risk groups. Fold changes were calculated as the low-risk group versus the high-risk group. B. Identification of significantly 
differentially expressed microbial enzymes involved in directly producing short-chain fatty acids (SCFAs). C. Schematics depicting the 
catalytic process by which acetate kinase and phosphate acetyltransferase facilitates the chemical reaction leading to the production 
of acetate and propanoate. D-E. Comparison of the overall expression level of D. phosphate acetyltransferase and E. acetate kinase in 
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Faecalibacterium prausnitzii (Figure 3b-c), suggesting 
elevated levels of both acetate and propanoate pro
duction. Moreover, among four detected enzymes 
involved in the final production steps of SCFAs 
(Figure 3d-e; Figure S6C-D), the overall expression 
of pta in the gut microbiome population was signifi
cantly higher in the low-risk group (Figure 3d), while 
the overall expression of ackA was increased but did 
not reach statistical significance (p = 0.054, 
Figure 3e). There was no change in the levels of the 
other two enzymes, butyrate kinase and butyryl-CoA: 
acetate-CoA transferase (Figure S6C-D). 
Furthermore, analysis of metabolism-related KEGG 
pathways in each microbiota species revealed 
increased activity in SCFA-production pathways, 
such as pyruvate metabolism in Ruminococcus_A 
faecicola, and amino acid metabolism pathways con
tributing to SCFA production of species in 
Faecalibacterium and Anaerobutyricum, which are 
well-described SCFA-producing genera 
(Figure 3f).36 Thus, the evidence above supports 
that the low-risk group has a gut microbiome with 
enhanced SCFA production capacity, which may 
contribute to the lower BP observed in these 
participants.

A previous randomized clinical trial found vita
min B1 supplementary could significantly lower 
BP.65 KEGG pathways related to thiamine (vitamin 
B1) and pyridoxine (vitamin B6) metabolism are 
upregulated in the gut microbiome of the low-risk 
group. Vitamin B1,35 B2,66 B367 and B668 intake are 
all associated with lower BP. Moreover, vitamins 
B1, B2 and B3 were all significantly higher in the 
low-risk group, but not vitamin B6 (Table S7).

Crosstalk between the gut microbiome and human 
proteins

We hypothesized that there were also crosstalks 
between differentially presented microbiome proteins 
and gut lumen human proteins that may explain 
some CVD risk. To investigate this hypothesis, we 
explored potential co-expression networks between 

human proteins and gut microbiome proteins, which 
are strong indicators of crosstalk between micro
biome-to-host communication. Indeed, we identified 
two co-expression networks significantly underrepre
sented in the low-risk group, likely associated with 
CVD risk. In the first co-expression networks, we 
found one downregulated network in the low-risk 
group that included CTSD (involved in the RAS) 
and PRG2, which is a proinflammatory factor desta
bilizing the intestinal barrier52 (Figure 3g). In 
the second network (Figure 3h), several proteins 
known to play a relevant role in CVD 
development,69 including S100A8, MUC13 and pro
filin 1 (PFN1), were identified.

Fecal metaproteome signature in heart failure

Because distinct expression patterns of gut lumen 
proteins were associated with clusters with vary
ing risk for CVD (Figure 2c), we further investi
gated the differentially expressed microbial and 
human proteins in 26 patients diagnosed with 
HFpEF, an increasingly common form of heart 
failure in which high BP is a key risk factor. We 
hypothesized that the signature of protein expres
sion in the gut lumen could serve not only as 
a predictor of CVD risk but also as an indicator 
of clinical phenotypes. HFpEF patients were, on 
average, 68 ± 7.5 years old, had 32.8 ± 5.8 kg/m2 

BMI, 113.2 ± 96 ng/L brain natriuretic peptide 
(BNP), 143.7 ± 19.1 mmHg office systolic BP, 
and 77% were female, as described previously.14 

These patients had a microbiome composition 
similar to healthy participants, with a higher 
abundance of the Bacillota and Bacteroideota 
phyla (Figure S7A). We trained two random for
est models based on human proteins and micro
bial proteins, separately, to predict low- and high- 
risk individuals based on the healthy cohort data 
and compared their performance (Figures 4a-c, 
Figures S7B-D). Testing via 5-fold cross- 
validation yielded a high area under the curve 
(AUC) of 0.80 based on the microbial protein-

gut microbiome between low-risk group and high-risk group. F. Bar plot showing the top ten significantly overrepresented and 
underrepresented KEGG pathways by species in the low-risk group. Fold changes were calculated as the low-risk group versus the 
high-risk group. G-H. Presentation of two co-expression networks of gut lumen human proteins and microbial proteins, both found to 
be significantly downregulated in the low-risk group. Sample size n = 63.
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based model (Figure S7C) and 0.91 for the human 
protein-based model (Figure 4a) on the Receiver 
Operating Characteristic plot, indicating both 
models were well-trained. We employed these 
two random forest models to classify HFpEF 
patients into low- and high-risk groups 
(Figure 4b, Figure S7D). In both models, the 
high-risk and low-risk groups within the HFpEf 
cohort did not show significant differences in age, 
BMI and sex (Table S8). In the human protein- 
based model, intestinal inflammation marker 
S100A850 and angiotensin-converting enzymes 
CTSD and CTSG show high evidence 
(Figure 4c), suggesting their pivotal associations 
with cardiovascular risks. In the microbial pro
tein-based model, proteins from Bacillota species 
emerged as pivotal in distinguishing between the 
low- and high-risk groups, as evidenced by their 
high feature importance (Figure S7B).

Subsequently, we compared PCWP indexed to 
workload,70 pulmonary compliance at exercise,71 

and workload-indexed exercise lactate72 between 
high-risk and low-risk HFpEF patients identified 
by the two prediction models. These three indica
tors are well-established gold standards for evalu
ating clinical outcomes in HFpEF patients, 
associated with worse clinical outcomes.70–72 In 
the human protein-based model, the high-risk 
group showed significantly higher PCWP 
(Figure 4d) and lactate (Figure 4f) after exercise 
indexed to workload and lower pulmonary com
pliance at exercise (Figures 4e). Conversely, the 
microbial protein-based model identified a high- 
risk group with significantly lower pulmonary 
compliance during exercise (Figure S7F), but no 
significant differences for the other two indicators 
between the high- and low-risk groups. These find
ings demonstrate that both the human and micro
bial protein-based models could effectively predict 
clinical outcomes in HFpEF patients, with the 
human protein-based model showing higher 
performance.

Population-level impact of differentially expressed 
human proteins on cardiovascular health detected 
in plasma

Given the higher performance of the human pro
tein-based model, to further validate the impact of 

differentially expressed human proteins between the 
high-risk and low-risk groups on cardiovascular 
health at the population level, we extracted human 
proteins that were differentially expressed between 
the high-risk and low-risk groups and overlapped 
with circulating proteins detected in the UK Biobank 
plasma proteomics dataset (Figure S8A). We calcu
lated random forest importance-weighted circulat
ing protein scores (see methods and Figure S8B). 
Higher circulating protein scores indicate a greater 
similarity to the protein signature identified in the 
low-risk group. We found that one standard devia
tion (SD) increase in this circulating protein score 
was associated with a reduction of 2.9 mmHg in 
systolic BP in an unadjusted model (p < 0.001). 
After adjusting for age, BMI, and sex, a one SD 
increase in the circulating protein score was asso
ciated with a 1.3 mmHg reduction in SBP (p < 0.001, 
Figure 4G). We then categorized the 34,311 UK 
Biobank participants based on whether their scores 
were above or below the population median. Two 
time-to-event models were developed to evaluate the 
occurrence of major CVD events within 10 years 
after the assessment: Model 1 was unadjusted, 
while Model 2 was adjusted for age, BMI, and sex 
(Figures 4H-I, Table S9). The results showed that 
participants with circulating protein scores above 
the median had a significantly lower incidence of 
CVD events within the next 10 years.

Discussion

Here, we report on fecal metaproteomics analysis 
in healthy and heart failure cohorts showing that 
human and gut microbial proteins can identify 
individuals at lower and higher risk of CVD. The 
low-risk group presented with lower night systolic 
BP (by 9 mmHg), angiotensin-converting enzymes 
and pro-inflammatory intestinal responses, and 
higher SCFA production capacity by the gut micro
biome and sex-specific dietary potassium and fiber. 
We then used machine-learning analysis based on 
differential microbial and human protein signa
tures observed in the healthy low- and high-risk 
groups that identified HFpEF patients with worse 
clinical phenotypes (i.e., increased PCWP and lac
tate after exercise indexed to workload and reduced 
pulmonary compliance). Moreover, when evalu
ated in plasma samples, the low-risk protein
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Figure 4. Machine learning model showing the relationship between human proteins and cardiovascular risk. A. Receiver operating 
characteristic (ROC) plot illustrating the results of 5-fold cross-validation of the constructed random forest model based on 
differentially expressed human proteins. B. PCA dimensionality reduction visualization of prediction results for heart failure with 
preserved ejection fraction (HFpEF) patients using the trained human protein-based random forest model. C. Presentation of the top 
15 signature human proteins with the highest feature importance in the random forest model. D-F. Comparison of D. PCWP indexed to 
workload and E. Pulmonary compliance at exercise F. Workload indexed exercise lactate in HFpEF patients predicted as high-risk and 
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signature was associated with lower systolic BP and 
long-term cardiovascular risk at the population 
level. This suggests fecal metaproteomics data 
may be able to predict long-term cardiovascular 
outcomes and that several mechanisms that lead 
to these outcomes may develop in the gut. These 
could include, for example, a decrease in SCFA 
production leading to the breakdown of the gut 
epithelial barrier, passage of microbial metabolites 
and/or components to the intestinal tissue and 
activation of inflammatory pathways that contri
bute to the development of CVD.15,73

Unsupervised learning based on gut lumen 
human protein expression identified two distinct 
groups of individuals. Proteins highly expressed in 
the low-risk group primarily relate to pancreatic 
secretion and glycolysis/gluconeogenesis, which 
may reflect better glucose control. While all parti
cipants from the VicGut were healthy and 
a previous diagnosis of type 1 or type 2 diabetes 
was an exclusion criterion, we did not have fasting 
glucose information available to add to our model. 
Moreover, the low-risk group had an underrepre
sentation of proteins associated with inflammation 
(e.g., calprotectin, LCN2 and other neutrophil 
extracellular trap formation proteins) and gut 
epithelial barrier degradation (e.g., MUC13). 
These differences in protein expression profiles 
could be influenced by dietary patterns such as 
fiber or potassium intake, suggesting a link 
between diet-related metabolic alterations and sub
sequent effects on the gut microenvironment and 
cardiovascular health. This may provide novel 
insights into the contribution of diet via the gut 
microbiome to the development of CVD.

Consistently with their lower night systolic BP, 
which is a risk factor for cardiovascular mortality,74 

the low-risk group had an underrepresentation of 
proteins associated with the conversion of angio
tensinogen to angiotensin I (CTSD, CTSG) and 
angiotensin I to angiotensin II (CTSG),75 as part 
of the traditional arm of the RAS. The significant 

positive correlation between CTSD and nighttime 
pulse pressure suggests intestinal CTSD could play 
a role in systemic BP regulation. It remains unclear, 
however, whether these proteins are involved in the 
systemic or only intestinal RAS.

Studies in recent years showed that the host’s 
dietary intake significantly influences the composi
tion of the gut microbiome and their production of 
secondary metabolites.10 Indeed, we observed that 
the gut microbiome in the low-risk group exhibited 
a significantly higher capacity for producing 
SCFAs, which reduces BP and associated end- 
organ damage in animal models and untreated 
hypertensive patients by driving a gut-cardiorenal 
axis.11,64 This involved, in particular, higher levels 
of pta, a critical enzyme that converts the precur
sors of acetate and propionate into their final 
forms.

The metaproteomic data allowed us to predict 
the severity of phenotypes of patients with 
HFpEF. For instance, our prediction model 
based on both human and microbial proteins 
successfully categorized HFpEF patients into 
high- and low-risk groups, with significant differ
ences in PCWP, lactate concentration and pul
monary compliance during exercise, which has 
implications for clinical outcomes associated 
with aerobic capacity and survival.76,77 The 
same proteins, when detected in the systemic 
circulation, were associated with significantly 
higher BP and long-term risk of MACE in 
a population-based cohort from European ances
try. Collectively, this suggests that the metapro
teomic changes observed in healthy individuals 
may predict long-term cardiovascular outcomes. 
Some of the mechanisms we identified, such as 
SCFA production, angiotensin production and 
inflammation, may be involved.

We acknowledge this study had limitations. 
Firstly, we did not establish causality in this 
study. However, there are no in vitro or in vivo 
models where we could emulate the combination

low-risk. Sample size n = 26.G. Age, BMI, sex adjusted regression model between SBP and standardized circulating protein scores 
derived from differentially expressed gut lumen human protein between high-risk and low-risk group. H.-I. Two 10-year follow-up 
time-to-event analysis H. unadjusted (p < 0.001***) and I. age, sex BMI adjusted (p < 0.001***) showing the incident rate of major CVD 
events in two groups based on circulating protein scores calculated. Sample size n = 26 for the HFpEF cohort and n = 34,311 for the UK 
biobank dataset.
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of human and microbial proteins and their sys
temic effect on the host, as observed here. 
Secondly, the mapping of microbial proteins 
identified remains poorly understood, highlight
ing the need for further investigations and poten
tial reanalysis of this dataset once better tools are 
available. This challenge partly arises because 
many gut microbial species have only been char
acterized recently by non-culture-dependent 
methods such as metagenomics. Thirdly, the sam
ple size of our metaproteomics dataset, while 
unique in a CVD setting and larger than previous 
studies using metaproteome techniques to study 
human gut environments, was still relatively 
small. While we validated the findings using 
plasma proteomics, larger metaproteomics 
cohorts will be needed to validate the current 
findings, and other CVD risk factors, such as 
fasting glucose and cholesterol, could be included.

In conclusion, traditional cardiovascular risk 
factors could not clearly distinguish human gut 
lumen proteins nor gut microbial protein expres
sion profiles in our dataset. By introducing 
machine learning models, we successfully identi
fied two distinct groups with significantly differ
ent cardiovascular risk factors based on their 
unique protein expression profiles. Besides unco
vering molecular mechanisms associated with 
these low- and high-risk groups, our findings 
unveil some of the intricate interplay between 
diet, gut microenvironment, gut microbiome, 
and the cardiovascular system that result in dif
ferential CVD risk, including long-term risk. Our 
results underscore the complexity of these inter
actions, as metaproteomic changes could not be 
solely attributed to a single factor. This high
lights the necessity for applying machine learn
ing models capable of capturing the complicated 
relationships between risk factors and pheno
types compared to conventional statistical 
methods.

Highlights

● Fecal metaproteomic analyses identified 
human intestinal and microbial proteins asso
ciated with low- and high-risk cardiovascular 
phenotypes in otherwise healthy individuals.

● Low-risk individuals had 9 mmHg lower night 
blood pressure and expression of angiotensin- 
converting enzymes (i.e. CTSD, CTSG) and 
inflammatory proteins (e.g. LCN2, S100A8/ 
calprotectin), and higher intake of dietary 
potassium and fiber in males, expression of 
proteins associated with pancreatic secretion 
and glycolysis/gluconeogenesis, and a gut 
microbiome with a higher capacity for short- 
chain fatty acid production relative to high- 
risk individuals.

● Both gut microbial and human proteins within 
the high-risk healthy individuals could predict 
the severity of phenotypes in patients with 
heart failure with preserved ejection fraction 
(HFpEF) and long-term risk of a major cardi
ovascular event in a large population-based 
cohort.
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