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ABSTRACT
Climate change (CC), along with changes in land use and land
cover (LULC), is among the primary forces driving soil erosion.
Deforestation and anthropogenic activities have led to excessive
soil erosion in the Ketar watershed. This study aimed to map the
consequences of climate and LULC changes on soil erosion using
soil loss equation factors integrated with Landsat imagery and
geographic information systems. A maximum likelihood classifier
was employed to categorize LULC classes, namely agricultural
land, bareland, shrubland, forest, grassland, settlement, wetland,
and waterbody. Rainfall data were derived from the Climate
Hazards Group Infrared Precipitation with Stations (CHIRPS) data-
set, and rainfall erosivity (R factor) was calculated for 1990–2020.
The R factor, linked to rainfall intensity and amount, influences
runoff and soil detachment. Cover management (C) and conserva-
tion practice (P) factors were derived from LULC and slope. LULC
change significantly altered these factors. Results showed that
between 2000 and 2020, cultivated land increased by 7.92%,
while forest and wetland declined by 4.61%. The findings indicate
that very high soil loss of 382.48 t ha−1 yr−1, 368.8 t ha−1yr−1,
and 412 t ha−1yr−1 occurred in 2000, 2010, and 2020, respect-
ively. These findings support evidence-based watershed manage-
ment, guiding sustainable land use planning and conservation
interventions to protect livelihoods.
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1. Introduction

Soil erosion induced by water is defined as the loss of upper productive surface soil
due to erosive precipitation and subsequent overflow (e.g. Ganasri and Ramesh 2016;
Agegnehu et al. 2022). It is one of the most serious environmental degradations (e.g.
Chalise et al. 2019; Bekele and Gemi 2021) and has become a significant issue for glo-
bal sustainable development (Keesstra et al. 2018). This global environmental chal-
lenge primarily affects smallholder farmers (Gessesse et al. 2015). Soil erosion can be
exacerbated by various natural and manmade factors (e.g. Alexandridis et al. 2015,
Rust et al. 2022).

The rapid population growth has aggravated soil erosion and negatively impacted
soil resources. There are many causes of soil erosion, such as land degradation, steep
slope cultivation, and agricultural intensification (Haregeweyn et al. 2017; Nyssen
et al. 2008). Additionally, Land use and Land cover (LULC) change has contributed
to soil erosion. Several studies (e.g. Kavian et al. 2017; Gashaw et al. 2019; Girmay
et al. 2020; Sime et al. 2020; Kulimushi et al. 2021) indicate a significant association
between the severity of soil erosion and LULC change. At watershed, regional, and
global levels, LULC change is a key source of soil loss (Kidane et al. 2019). The yearly
average soil erosion varies substantially across different regional scales due to diverse
LULC types and varying vegetation cover (Huang et al. 2020).

In the last century, significant LULC changes have occurred in Ethiopia, as they
have in many other developing countries around the world. These changes were pri-
marily driven by anthropogenic activities, such as deforestation, overgrazing, and
unsustainable agricultural practices, which have accelerated soil erosion and led to
soil nutrient deterioration (Eleni et al. 2013). LULC change also impacts landslide
occurrence, which contributes to soil erosion and environmental degradation (Chen
et al. 2019). In addition to LULC change, climate change (CC) has the potential to
accelerate soil erosion (Huang et al. 2020). Due to land deterioration and poor farm-
ing practices in sloppy areas, Ethiopia’s highlands are subject to soil erosion
(Belayneh et al. 2019).

Ethiopia’s highlands cover 43% of the country’s land area and 95% of its cultivated
land, and they are believed to have significant soil fertility potential (Desalegn et al.
2018). However, intensive farming methods, high rainfall erosivity and steep slopes
exacerbate the problem of soil erosion (Nyssen et al., 2004; Fazzini et al. 2015;
Haregeweyn et al. 2017; Nyssen et al. 2009). Rainfall is one of the most critical factors
in CC-related soil erosion (Berberoglu et al. 2020; Borrelli et al. 2020; Ciampalini
et al. 2020; Eekhout and De Vente 2020), influencing future trends in soil loss (Pal
and Chakrabortty 2019). Thus, CC has impacted runoff and soil erosion in many
watersheds by increasing precipitation concentration, volume, and intensity (Chen
et al. 2019). This presents a key challenge for achieving regional sustainable develop-
ment in the African Highlands, exacerbated by global CC and human activities (Li
et al. 2021). Soil erosion negatively affects organic matter and topsoil, which are
essential for plants development (Wijitkosum 2012). It significantly impacts food
security, as evidenced by cases in developing countries (Eleni et al. 2013).
Consequently, mapping and assessing soil erosion risk is an important tool for natu-
ral resource planning and management (Xavier et al. 2016).
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Rain-fed agricultural areas in Ethiopia’s highlands are expected to lose 940,893,165
tons of net soil per year, affecting two-thirds of the country’s population (Hurni et al.
2015a; Hurni et al. 2015b). As a result, 50% of the highlands have been extensively
degraded, leading to a 2.2% annual loss of land productivity (Greenland 2001).
Consequently, considerable ecological deterioration has occurred, severely impacting
the livelihoods of numerous households. In the central Main Ethiopian Rift (MER),
the Ketar watershed is one of the areas with the highest rainfall erosivity and is heav-
ily affected by soil erosion, according to Sime et al. (2020). They claim that heavy
runoff during the summer makes agricultural land susceptible to erosion and flooding
issues that impact communities living along the Ketar River’s banks.

Soil erosion poses a significant environmental risk, but it can be mitigated through
conservation measures (Kumar and Singh 2021). Researchers (e.g. Lee, 2004; Fu et al.
2005; Sotiropoulou et al. 2011; Haregeweyn et al. 2017; Lanorte et al. 2019; Girmay
et al. 2020; Sidi Almouctar et al. 2021; Samela et al. 2022) have examined the valu-
ation of soil erosion susceptibility or risk on regional and national scales using inte-
grated empirical models like the Universal Soil Loss Equation (USLE) and the
Revised Universal Soil Loss Equation (RUSLE) combined with geospatial techniques.
These methods are crucial for providing improved evidence to implement soil and
water conservation practices in eroded areas. Although these scientifically advanced
models, tools, and studies exist, soil conservation practices in the Ethiopian Ketar
watershed are not carried out due to a lack of scientifically measured, erosion-specific
studies to prioritize hotspot areas that need protection.

A drawback of the RUSLE model (Gurmu et al. 2021; Sidi Almouctar et al. 2021)
is that it ignores gully erosion. The RUSLE model is sensitive to uncertainties in
input variables due to the nonlinear spatiotemporal variability of the parameters.
Thus, the modeling outcomes should be validated using local measurement data
(Wang et al. 2002). Validation and calibration of the RUSLE should involve soil ero-
sion measurements from field plots, and it is advisable to conduct long-term soil loss
experiments and measurements (Abu Hammad et al. 2004). While LULC alterations
and CC are interconnected (Singh, 2023), the unique focus of this study is to assess
how these two factors combine and affect soil erosion. Mainly, the C and P factors
vary with changes in LULC, while the R factor varies with changes in rainfall.
Therefore, the combined variations of these factors influence the extent of soil
erosion across different decadal periods. This will provide policymakers with
sufficient information about the site’s LULC, climate, and soil loss status for future
sustainable development. With these issues in mind, this study estimated potential
soil loss using integrated RUSLE, Geographic Information System (GIS), and remote
sensing techniques, considering rainfall and LULC changes over three decades (2000,
2010, and 2020). It also seeks to identify the current eroded hotspot areas to
prioritize conservation measures in the Ketar watershed, Ethiopia.
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2. Study area and data overview

2.1. Description of the study area

The Ketar watershed is located in the Arsi zone of Oromia region (Figure 1) which is
part of the central MER. The study area is located within the Ziway-Shala basin,
approximately 225 km from Addis Ababa. The watershed is bounded by latitudes 7�

210 4200−8� 80 500 N and longitudes 38� 520 3300−39� 240 3600 E, with a total area of
3354 km2. The Ketar River watershed region begins south of Mararo town, on the
eastern Ethiopian plateau and flows towards its mouth at Lake Ziway, in the middle
of the MER floor, west of Ogolcho town. The primary river within the watershed is
Ketar.

2.2. Description of data and material

This research utilized various datasets and software to assess CC and LULC change,
estimate potential soil loss, identify hotspot areas, and prioritize conservation meas-
ures. The analysis was conducted using software such as, ArcGIS 10.5, ERDAS
Imagine version 2015, and Quantum GIS. Table 1 lists the main datasets used in this
study.

Figure 1. Location map of the study area.
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Primary and secondary data from various sources were used in this analysis.
Cloud-free Landsat imagery from the Operational Land Imager (OLI) and Enhanced
Thematic Mapper plus (ETMþ), covering path 168 and raw 055, was included as pri-
mary data. All imagery was obtained for free from the United States Geological
Survey (USGS) website. Secondary data was sourced from records maintained by vari-
ous organizations.

The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data-
set (https://www.chc.ucsb.edu/data/chirps) was developed in collaboration with scien-
tists at the USGS Earth Resources Observation and Science (EROS) Center to
provide reliable, up-to-date global data for applications such as trend analysis and
seasonal drought monitoring (Ahmed et al., 2024). The CHIRPS satellite product
was created by combining high-resolution climatology, field observations, and satel-
lite imagery (Zhang et al. 2025). This quasi-global rainfall dataset estimates precipi-
tation by blending real-time meteorological station data with infrared satellite
observations at a 0.05� (5 km) resolution, providing continuous precipitation esti-
mates from 1981 to the present. The performance of CHIRPS has been validated in
multiple regions worldwide, using comparison with ground-based measurements
and other satellite products. In particular, CHIRPS has been proven to be one of
the most reliable satellite products in Africa, where sparse ground-based weather
stations and data inconsistencies often hinder the performance of other satellite
products (Du et al., 2024).

Recently, new observational resources, such as NASA and NOAA’s gridded
satellite-based precipitation estimates, have been used to create high-resolution
(0.05�) precipitation climatologies. These refined climatologies minimize systematic
bias in satellite-based precipitation data, which was a significant development in cre-
ating CHIRPS dataset (1981- present). The USAID Famine Early Warning Systems
Network has also utilized CHIRPS for drought monitoring. The ‘Africa’ dataset offers
a 0.10� grid resolution with a 6-hour time step (https://www.watres.com/CHIRPS/).
Today, satellite rainfall products like CHIRPS are an alternative data source in areas
with sparse rain gauge stations, as demonstrated by Paredes-Trejo et al. (2020),
Ethiopia, for instance, has a limited rain gauge coverage. In East Africa, CHIRPS has
been used for trend analysis and hydrological forecasting (Funk et al. 2015). For this
study, monthly precipitation data from the CHIRPS data was used to calculate the
long-term monthly averages over 30 years (1990–2020).

Table 1. Geospatial data used.
Major Data Resolution Source Purpose

Landsat Images
(ETMþ, and OLI)

30m USGS To generate LULC for 2000, 2010, and 2020 which
was used to derive C and P factors over three
decades

SRTM DEM 30m USGS To generate Slope length and steepness (LS-factor)
CHIRPS 5km (resampled

to 30m)
EROS To obtain rainfall erosivity (R factor) for 2000, 2010,

and 2020
Soil 250m (resampled

to 30m)
Ministry of

Agriculture
To determine Soil erodibility (K factor)
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3. Methodology

Figure 2 shows the flowchart that visually outlines the various stages of data process-
ing and analysis. It provides a step-by-step overview of the research process, from
input data collection to soil loss estimation using the RUSLE model, and the identifi-
cation of severely eroded areas to support better conservation measures. The flow-
chart highlights the key steps involved, including data acquisition, derivation of
factors, and the calculation of the RUSLE model using R, K, LS, C, and P factors. In
the three decades (2000, 2010, and 2020), the LULC change was assessed, and the C
and P factors were derived. The rainfall distribution was analyzed (1990–2000, 2001–
2010, and 2011–2020), and the R factor in the given period was determined. Each of
these steps is essential for assessing soil erosion and its relationship with land cover
and rainfall dynamics over the study period.

3.1. Image processing

The purpose of image processing is to reduce distortions and enhance the quality of
the data (Ullah et al. 2024). Radiometric calibration and correction are essential image
processing stages when comparing datasets across multiple periods to enhance the
precision and interpretability of remote sensing data. Radiometric calibration is the
way of transforming unprocessed sensor data (digital numbers) into physically mean-
ingful units, such as converting Landsat digital numbers (DNs) to reflectance value;
radiometric correction is the process of eliminating aberrations brought on by instru-
mental or environmental factors, such as fluctuation in the sun’s angle, atmospheric

Figure 2. Overall methodology of the study.
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interference, or sensor noise. The images were processed using the open-source, cost-
free Quantum GIS (QGIS) software (Abdurahman et al. 2023). Atmospheric correc-
tion was performed using a Semi-Automatic Classification Plugin based on the Dark
Object Subtraction (DOS) technique (Chavez, 1988), as recommended by Mohajane
et al. (2018).

In this study, the DOS algorithm was applied to perform the atmospheric correc-
tion on the ETMþ images from 2000 and 2010, and on the OLI image from 2020.
Each band of the ETMþ and OLI images, with a 30-metre resolution, was converted
accordingly (Li et al., 2010); Abdurahman et al. 2023). Multi-temporal Landsat image-
ries from TM, ETMþ, and OLI sensors are used to classify and predict LULC
dynamics (Ullah, Ahmad, et al. 2025). For long-term LULC change studies, Landsat
products offer remarkable advantages in scientific research because of their unique
continuity (1972–present). For this study, Landsat ETMþ and OLI imagery were
selected due to their uniform spatial resolution (30m), temporal resolution (16 days),
free accessibility, and wide spatial coverage.

3.2. LULC classification

The process of image interpretation and classification was used to extract the LULC
information from multiband raster imageries (Li et al. 2014). Supervised classification
using the maximum likelihood classifier has been widely applied due to its accessibil-
ity, and it doesn’t need a lengthy training procedure (Currit 2005; Pal and Mather
2003; Nigussie et al. 2019; Osunmadewa et al. 2018; Abdurahman et al. 2023). When
using the Maximum Likelihood Classifier for supervised classification, the analyst
defines representative samples for each land cover category, achieving an effective
classification with minimal cost and time, while ensuring the use of a significant
amount of training data. Therefore, this study employs the standard Maximum
Likelihood Classification technique, combining it with field verification and Google
Earth imagery for accuracy assessment (Alam et al. 2020). LULC data in this research
was derived from Landsat ETMþ and OLI images for 2000, 2010 and 2020. The clas-
sified LULC categories included farmland, bareland, grassland, forest, built up, wet-
land, shrubland, and waterbody. The Global Positioning System (GPS) data supported
the post-classification process. After classifying the images into LULC classes, the
accuracy assessment is an important procedure that checks how well the classified
LULC map matches the real ground. Thus, field trips were conducted to improve
LULC categorization and validate ambiguity. Given the potential for classification
errors, an accuracy assessment of the output maps was conducted using established
confusion matrix statistical techniques (Alam et al. 2020). Classification accuracy was
estimated by calculating overall accuracy and the kappa coefficient (Sharma et al.
2018). In this study, all the raster layers’ accuracies (2000, 2010, and 2020) were eval-
uated using an error-matrix. The classification for 2000 and 2010 were verified
through local community discussions and Google Earth history, while the 2020 classi-
fication was assessed using field data and Google Earth references. Using those refer-
ence data, overall accuracy and the kappa coefficient were computed (see
supplementary material). A classified LULC with an overall accuracy value of more
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than 85% is acceptable (Girmay et al. 2021). The Kappa values lie between 0 and 1,
with Kappa values >0.80 represent a strong agreement and good accuracy, between
0.40 and 0.80 indicate a middle accuracy, and <0.40 indicate a poor agreement
between classification and observation (Barakat et al. 2018). The overall accuracy and
kappa coefficient were computed based on Equation 1 and 2, respectively
(Abdurahman et al. 2023).

Overall Accuracy ¼
Pr

i¼1 xii
N

X 100 (1)

Kappa Coefficient ¼ N
Pr

i¼1 xii −
Pr

i¼1 xiþ�xþið Þ
N2 −

Pr
i¼1 xiþ�xþið Þ (2)

where r is the number of rows in the matrix, xii expresses the total number of cor-
rectly classified pixels in row i and column i; N is the total reference data, xiþ and
xþi are the marginal totals of row i and column i:

3.3. Soil loss estimation (the RUSLE model)

Potential soil loss estimation has been carried out using a widely used and evaluated
soil erosion model, originally developed as the USLE (Wischmeier and Smith 1978)
and later modified into the RUSLE (Renard et al. 1997). The RUSLE is a popular
model applied in various studies to assess rill and inter-rill soil erosion (e.g.
Kulimushi et al. 2021). Hurni (1985) adapted it to the conditions of the Ethiopian
highlands and calibrated most of the variables. The RUSLE model also effectively
illustrates the connection between LULC change and soil erosion (e.g. Phinzi and
Ngetar 2019). Given its, adaptability, usefulness in situations with limited data, and
acceptance in Ethiopian highlands, RUSLE was chosen for this investigation.

The RUSLE model calculates soil erosion by factoring in climate, soil properties,
topography, cover management, and conservation strategies. The equation for the
RUSLE soil loss estimation model is expressed in Equation 3.

A ¼ R� K � LS� C � P (3)

where A is the estimated annual soil loss (t ha−1 year−1), R is the rainfall erosivity fac-
tor (MJ mm ha−1 h−1 year−1), K is the soil erodibility factor (t ha−1MJ−1mm−1), LS
is the slope length and steepness factor (dimensionless), C is the land use/cover factor
(dimensionless) and P is the conservation support practice factor (dimensionless).

3.3.1. R-factor (rainfall erosivity) estimation
Ethiopian rainfall distribution has shown high variability across space and time due
to complex topography (Reda et al. 2015); which is characterized by both seasonal
and inter-annual spatial inconsistency (Alhamshry et al. 2019). The Ketar watershed
is characterized by rugged topography, which ranges from 1628 to 4171 meters above
mean sea level. The altitudinal variation in the Ketar watershed results in differing
rainfall distribution, with highland areas receiving more rainfall, and lowland areas
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receiving less. The amount, intensity, and distribution of rainfall govern the R factor
(Amsalu and Mengaw, 2014). The R factor quantifies the erosive force of particular
rainfall events (Gashaw et al. 2019). According to Renard et al. (1997), soil erosion is
the reason for the R factor, which is the kinetic energy of rainfall storms. Hurni
(1985) developed a regression empirical equation for the highlands of Ethiopia
(Equation 4). In Ethiopia, where there was a lack of high-resolution rainfall intensity
data, Hurni’s work sought to localize the R-factor estimation. He conducted a statis-
tical analysis of Ethiopian highland erosivity trends and rainfall data from metro-
logical stations. Using restricted observed R values and matching them with
corresponding annual rainfall, Hurni carried out regression analysis. The minimal
threshold below which rainfall has no discernible effect on erosivity is considered
by the intercept −8.12. The R rises with precipitation, as shown by the slope of
0.562. Several studies have applied Hurni’s empirical erosion model to calculate the
R factor and assess soil erosion in Ethiopia (e.g. Gelagay and Minale 2016; Zerihun
et al. 2018; Heyder et al. 2023; Abro and Debie 2024; etc.). Therefore, due to a lack
of data in the study site, we estimated the R factor by adopting Hurni’s empirical
equation.

R ¼ −8:12þ 0:562P (4)

where R is the rainfall erosivity factor (number) and P is the mean annual rainfall
(mm). In this study, the R factor was calculated based on Hurni (1985) using
CHIRPS data.

3.3.2. K-factor (erodibility) estimation
The K-factor expressed in t ha−1MJ−1mm−1 characterizes the soils’ vulnerability to
erosion and reflects the intrinsic resistance of the soil to particle separation and trans-
port by water erosion (Renard et al. 1997). Various soil properties, such as texture,
structure, color, organic matter, and permeability, govern soil erodibility. The color of
the soil reveals its composition of minerals, texture, and amount of nutrients, and
those have an impact on erosion. For Ethiopian condition, Hurni (1985) developed a
method for calculating the K factor based on soil color. This study identified the K
factor of the research site based on soil color.

3.3.3. Topographic (LS factor) estimation
The gradient that influences flow velocity represents the local slope gradient (S-
factor) (Renard et al. 1997), while the distance between the origin of overland flow to
the point where deposition begins or flow is concentrated into rills in a defined chan-
nel represents the slope length (L-factor) (Wischmeier and Smith 1978). Topographic
influence is considered a primary factor governing soil erosion (Farhan et al. 2013).
On the steeper and longer slopes, erosion by water is greater due to the topography’s
increased runoff influence (Gashaw et al. 2019). Conversely, on gentle and shorter
slopes, soil erosion by water is lower. Therefore, the LS factor is one of the main sur-
face features of the model for erosion. The 30-meter resolution SRTM DEM was used
directly to determine the S values. Similarly, flow accumulation derived from the
DEM using fill and flow direction procedures. The LS factor was computed in
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ArcGIS raster calculator using the map algebra expression in Equation (5) suggested
by Mitasova and Mitas (1999); and Simms et al. (2003).

LS ¼ powððflow accumulationÞ � cell size
22:13; 0:6

� �
� powð sin ððslopÞ � 0:01745

0:0896, 1:3

� �
(5)

3.3.4. Cover management (C factor) estimation
The C factor reflects how soil loss is influenced by land use, crop cover, and manage-
ment strategies, rather than losses from bare fallow areas (Haregeweyn et al. 2017). It
indicates the reduction in soil erosion brought on by ground cover and vegetation
canopy. C values range from 0 for non-erodible conditions to 1 for more erodible
conditions, often seen in extensive tillage situations, indicating varying levels of erodi-
bility (Belay and Mengistu 2021). The normalized difference vegetation index (NDVI)
and LULC classification maps are the most used techniques for estimating C-value.
Hurni (1985) suggested C-values for forest land, shrub land, cultivated land, and
grassland, while Moges and Bhat (2017) suggested C-values for bare ground and
built-up area. Soil erosion is potentially more likely in areas without a developed
vegetative layer because areas with less vegetation typically have higher C values
(Ozsahin et al. 2018). Thus, there is less vegetation cover and more soil erosion when
the C factor is larger. The C factor varies from 0 to 1 based on the LULC type
(Gelagay and Minale, 2016; Tsai et al. 2021). This work independently derived the C-
factor using the LULC data for 2000, 2010, and 2020 based on earlier research (e.g.
Hurni, 1985; Gelagay and Minale, 2016; Moges and Bhat, 2017; Tsai et al. 2021).

3.3.5. Conservation practice (P factor) estimation
The term “P factor” describes how land conservation measures reduce the amount
and speed of soil erosion and rainfall-runoff (Wischmeier and Smith 1978).
According to Markose and Jayappa (2016), the conservation practice factor repre-
sents the ratio of soil erosion from land treated with a specific conservation measure
to the corresponding soil loss from upslope and downslope tillage. Control measures
that reduce runoff’s potential for erosion are considered by the P factor, as they
influence drainage patterns, runoff concentration, runoff velocity, and the hydraulic
forces that runoff exerts on soil. The area with no management practices is given
the highest score on the P factor, which ranges from 0 to 1. For this study, the P-
factor was determined based on the slope present, and LULC of 2000, 2010 and
2020, with values ranges ranging from 0 to 1. The generated P-factor map is used
to understand the conservation practices implemented in the study area. This factor
considers control practices that reduce the erosive power of rainfall and runoffs by
affecting drainage patterns, runoff concentration, and runoff velocity. The P-factor
values were generated by classifying the land into farming and other major land use
types. Since many management practices heavily rely on the area’s slope, agricultural
land (Table 2) was divided into six slope classes, with a P-value assigned to each
class.
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4. Results

4.1. Spatiotemporal classifications of LULC

The accuracy of the LULC maps, validated using ground truth data, was high for all
three study years, indicating reliable classification results (see Supplementary material).
Classified LULCs with overall accuracy of 85.97%, 87.98% and 88.14% were achieved,
with kappa coefficient of 0.83, 0.85 and 0.86 for 2000, 2010, and 2020, respectively.
Multi temporal raster layers were generated, and corresponding statistics were com-
pared to estimation LULC changes. During 2000 (Figure 3a), agriculture was the main
LULC type, accounting for 58.58% of the research site, followed by bareland (18.76%),
grassland (9.66%), forest (7.52%), and Shrubland (4.71%) (Table 3). Waterbody, wet-
land, and built-up areas made up a small proportion of the landscape, at 0.07%,
0.33%, and 0.36%, respectively. Similarly, in 2010 (Figure 4a), agriculture increased
and occupied the largest portion (62.10%) of the study landscape, followed by bareland
(18.74%), forest (7.18%), and grassland (6.47%). Shrubland and settlement area cov-
ered 4.71%, and 0.49% of the total area, respectively. The remaining portions were
occupied by waterbody and wetland, which covered 0.09% and 0.20%. In 2020, agricul-
ture continued to be the dominant LULC type, with a proportion of 66.5%. In con-
trast, bareland decreased, covering 11.24%. Unlike the period from 2000 to 2010,
grassland increased and covered 8.40% of the total study area. Shrubland showed an
increase during the three study periods, covering 8.79% in 2020. Settlement areas and
waterbody covered 0.85%, and 0.11% of the whole area, respectively, both showing an
increase (Figure 5a) compared to previous years. Conversely, forest and wetland areas
were degraded, covering 3.11% and 0.13%, respectively.

The change detection result revealed considerable changes in LULC during the last
three decades (2000–2010–2020) across the study area. The details of LULC changes
within the study area during the selected period are illustrated in Table 4, and 5.
There was a continuous increase in the spatial extent of agriculture, shrubland, and
settlement. In contrast, forest and wetland areas significantly decreased from 2000 to
2020. During the periods from 2000 to 2010 and from 2010 to 2020, 3167.5, and
2147.29 sq km, respectively (i.e. the sum of the diagonal elements), of the total land-
scape remained unchanged.

4.2. Cover Management (C) and Conservation Practice (P) Factors

The factor values for the research region ranged from 0 to 0.1 according to the ana-
lysis (C). A higher C value indicates that the designated LULC is highly susceptible

Table 2. P-Value for the study area (adapted from Wischmeier & Smith, 1978).
LULC Slope (%) P factor

Agricultural land (cultivated land) 0–5 0.1
5–10 0.12
10–20 0.14
20–30 0.19
30–50 0.25
50–100 0.33

Other land All 1.00

GEOMATICS, NATURAL HAZARDS AND RISK 11
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to soil erosion, while a lower value indicates a less vulnerable land cover type in the
study area. The C factor values associated with respective LULC type were (0, 0.001,
0.004, 0.01, 0.014, 0.05 and 0.1) in a waterbody, wetland, settlement, forest, shrubland,
grassland, bareland and agriculture (Figure 3b, 4b, and 5b). Agricultural land has a
higher C factor value than other LULC types because it is more susceptible to

Figure 3. LULC in (a) 2000, (b) C factor, (c) slope (%),and (d) P factor.

12 W. NIGUSSIE ET AL.



erosion. Due to degraded land cover and farming without conservative practices, the
center portion of the north-south route has a high C-factor raster map value. Pasture
and forest land had the lowest values in the northeast and southwest, which are the
most central parts of the research area. The P-value (Figure 3d, 4c, and 5c) in agricul-
tural land has increased as the slope percentage increased from 0 to 100% (Figure
3c), while all other LULC types contributed similar P-values.

4.3. Average annual rainfall and erosivity factor

In the Ketar watershed, the rainy season lasts from March to October, with June,
July, and August receiving the most rainfall. The processed average annual satellite
rainfall ranged from 651.5 to 1245.6mm (1990-2000) (Figure 6a), 686.9 to
1183.88mm (2001-2010) (Figure 7a), and 682.1 to 1256.2mm (2011-2020) (Figure
8a). Notably, rainfall decreased from 2001 to 2010 compared to 1990 to 2000, while it
increased during 2011 to 2020. In the majority of the research site, the distribution of
rainfall was directly related to elevation (altitude). Over the three decades, the highest
rainfall occurred in the eastern and south-western highlands. The R factor, measured
in MJ mm ha−1 h−1 yr−1 (Figure 6b, 7b, and 8b), for the three consecutive decades
was derived from average annual rainfall and plays a major role in estimating soil
erosion. Since the R factor is directly proportional to rainfall, the R-factor maps
reveal very high values in the eastern highlands (Chilalo, and Galama mountains) and
low values in the lowlands of the rift floor.

4.4. Soil erodibility (K factor)

The K-factor values of the Ketar watershed comprise five different colors of soil, cor-
responding to six soil classes. Chromic Luvisols and Haplic Luvisols (Brown or
Redish brown), Mollic Andosols and Vitric Andosols (black), Eutric Cambisols (very
dark gray), Eutric Fluvisols (yellow), Eutric Vertisols (very dark grayish brown), and
Vertic Cambisols (brown) are the main soil classes in the research area (Table 6 and
Figure 9a). The K-factor value, measured in t ha−1MJ−1mm−1, was specifically allo-
cated based on the color of each soil class (Table 6 and Figure 9b).

Table 3. LULC areas for the reference years 2000, 2010, and 2020 in the study areas.

LULC Types

2000 2010 2020

Area (sq km) % Area (sq km) % Area (sq km) %

Agriculture 1964.85 58.58 2082.71 62.10 2230.41 66.50
Bareland 629.13 18.76 628.59 18.74 407.15 11.24
Forest 252.14 7.52 240.93 7.18 104.23 3.11
Grassland 324.16 9.66 217.18 6.47 280.27 8.40
Settlement 12.12 0.36 16.59 0.49 28.74 0.85
Shrubland 158.07 4.71 158.08 4.71 294.96 8.79
Waterbody 2.57 0.07 3.05 0.09 3.75 0.11
Wetland 10.96 0.33 6.87 0.20 4.34 0.13
Total 3354 100 3354 100 3354 100
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4.5. Topographic (LS) factors

The LS factor in the current study ranges from 0 in the bottom portion of the water-
shed to 180.32 in the upper portion, which has the greatest slope. This suggests that
the hills, mountainous areas (in the east and south), and lineament or faults (in the

Figure 4. LULC in (a) 2010, (b) C factor, and (c) P factor.
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northwest) of the watershed are significantly impacted by the combined slope length–
steepness (LS) factor for soil loss (Figure 10). Conversely, in the lower and middle
portions of the watershed, the topographic (slope length–steepness) component has a
negligible impact on soil erosion.

Figure 5. LULC in (a) 2020, (b) C factor, and (c) P factor.
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4.6. Potential annual soil loss

The final map showing the potential annual soil loss of the watershed was produced
by overlaying and multiplying the five parameters (K, R, LS, C, and P). Each layer

Table 4. LULC change transition matrix (in sq km) from 2000 to 2010.

LULC Agriculture Bareland Forest Grassland Settlement Shrubland Waterbody Wetland
Total area
in 2000

Agriculture 1958.1 0.21 0.01 4 2.4 0.01 0.11 0.01 1964.85
Bareland 0.77 620.3 0.03 7.8 0.23 629.13
Forest 2.87 0.08 230.88 0.03 18.28 0 252.14
Grassland 116.81 4.5 0.01 199.38 2.15 0.36 0.95 324.16
Settlement 0.11 0 12.01 0 12.12
Shrubland 0.01 3.5 10 5 139.56 158.07
Waterbody 0.01 0 0 1.96 0.6 2.57
Wetland 4.03 1 0.62 5.31 10.96
Total area in 2010 2082.71 628.59 240.93 217.18 16.59 158.08 3.05 6.87 3354

Table 5. LULC change transition matrix (in sq km) from 2010 to 2020.

LULC Agriculture Bareland Forest Grassland Settlement Shrubland Waterbody Wetland
Total area
in 2010

Agriculture 1674.67 188.95 5.93 189.12 8.81 14.1 0.65 0.48 2082.71
Bareland 370.15 160.97 1.56 20.96 2.9 72.05 0 0 628.59
Forest 46.43 19.92 96.08 1.35 1.89 75.26 0 0 240.93
Grassland 122.56 21.45 0.17 66.69 0.26 5.02 0.03 1 217.18
Settlement 1.64 0.06 0 0.38 14.5 0.01 0 0 16.59
Shrubland 13.19 15.76 0.41 0.08 0.14 128.49 0.01 158.08
Waterbody 0.09 0.04 0 0.03 2.89 3.05
Wetland 1.68 0.08 1.66 0.24 0.03 0.18 3 6.87
Total area in 2020 2230.41 407.15 104.23 280.27 28.74 294.96 3.75 4.49 3354

Figure 6. Average annual rainfall from (a) 1990 to 2000, (b) R factor.
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was organized with a resampled cell size (30 � 30m). Additionally, a statistical tech-
nique was utilized to categorize the soil loss risk levels in the study watershed and
estimate the potential quantity of soil loss. The soil erosion map of the watershed was
divided into five groups of administrative prioritization (Table 7 and Figure 11).

Figure 7. Average annual rainfall from (a) 2001 to 2010, (b) R factor.

Figure 8. Average annual rainfall from (a) 2010 to 2020, (b) R factor.
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In 2000, the estimated potential soil loss ranged from 0 to 382.48 t ha−1 year−1

(Figure 11a). This soil loss decreased to 368.8 t ha−1 year−1 in 2010 due to reduced
rainfall (Figure 11b). However, in 2020, the potential soil loss increased to 412 t
ha−1 yr−1 due to the combined effects of LULC change and CC (Figure 11c).

4.7. Identified severity areas needing urgent conservation measures

Highly eroded areas (severity classes) in 2020 were found in the eastern and southern
parts of the steep mountainous regions. These are mostly located at altitudes ranging
from 3200− 4213 meters above sea level. A severely eroded area in the northwest
(1600− 2300 meters above mean sea level) is situated around faults, and lineaments
(Wonji fault). Therefore, these areas (marked in red on the map) require urgent con-
servation measures (Figure 12). Some sample field photos (Figure 13) were taken at
Kolicha Kebele, a site that needs conservation efforts and is near Chilalo Mountain.
During field verification, seventy-nine ground truth points (Table 8) at eroded hot-
spot areas were collected and overlaid on the map of identified severity areas.

Table 6. Soil type, color, K-factor, and area coverage.
Soil type Soil color K factor (t ha−1 MJ−1 mm−1) Area (sq km) Area (%)

Chromic Luvisols Brown (Redish brown) 0.2 517.6 15.43
Eutric Cambisols Very dark gray 0.2 6.96 0.21
Eutric Fluvisols Yellow 0.3 0.67 0.02
Eutric Vertisols Very dark grayish brown 0.15 1604.89 47.85
Haplic Luvisols Brown (Redish brown) 0.20 557.7 16.62
Mollic Andosols Black 0.15 505.04 15.06
Vertic Cambisols Brown 0.20 110.5 3.3
Vitric Andosols Black 0.15 50.64 1.51

Figure 9. (a) Major soil type and (b) K factor of the study area.
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The collected hotspot locational data coincided exactly with the severity areas, indi-
cating that the identified potential annual soil loss by the RUSLE model was spatially
correlated with the actual ground conditions.

5. Discussion

LULC change affects soil erosion, along with other influences such as climate, soil
properties, and topography (Negese 2021). Changes in LULC are accelerating land

Figure 10. Topographic (LS) factor of the study area.

Table 7. Soil erosion severity classes and area coverage in each year.

Soil erosion severity classes (t ha-1 year-1)

2000 2010 2020

Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%)

Very slight (0–5) 169444.1 50.5 177218.3 52.8 167246.5 49.9
Slight (5–15) 101727.2 30.3 96782.3 28.9 97599.2 29.1
Moderate (15–30) 39715 11.8 37918.2 11.3 44138.6 13.2
Severe (30–50) 14900.7 4.4 14513.6 4.3 16250.7 4.8
Very severe (>50) 9613 3 8967.6 2.7 10165 3.03
Total 335400 100 335400 100 335400 100
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degradation due to climatic and geomorphological factors in the area (Sharma et al.
2011). One of the under-researched issues in developing countries is measuring soil
erosion, sediment output, and the sediment retention capacity of watersheds (Degife

Figure 11. Estimated potential annual soil loss map in (a) 2000, (b) 2010, and (c) 2020.
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et al., 2021). With rugged topography and high soil erosion, the Ketar watershed in
Ethiopia is encircled by tall mountains (Chilalo and Galama), which rise 4176 meters
above mean sea level. Most high mountain areas are sensitive to CC, and shifting cli-
matic conditions may increase the risk of soil loss and land degradation (Wang et al.
2017). Consequently, increased rainfall leads to a rise in the annual R factor, which
accelerates soil erosion (Belay and Mengistu 2021). Resampling of CHIRPS data has
been conducted in previous studies such as Li et al. (2021) and Tesfamariam et al.
(2022). In the current study, the CHIRPS product monthly rainfall was used to calcu-
late annual maximum and minimum rainfall from 1991 to 2020 (Figure 14). The
average maximum rainfall was 1245.6mm (1990-2000), 1183.88mm (2001-2010), and
1256.2mm (2011-2020). The increasing annual maximum rainfall from 2010 to 2020
indicates that rainfall events became more intense, with a sharp rise observed.
Additionally, the minimum annual rainfall also showed a slight increase. During this
period, the study area experienced more frequent and intense rainfall events, which
accelerated soil erosion. Over the three decades, high rainfall was observed in moun-
tain areas, similar to findings by Nigussie et al. (2019). The R factor in these three

Figure 12. Identified severity areas that needs an urgent conservation measure.
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consecutive decades was 764.194, 725.885, and 770.727MJ mm ha−1 h−1 yr−1 respect-
ively (Figure 15). In all periods, the highest R factors were recorded in the north-
eastern mountainous areas, which have a major impact on soil erosion. In a highly
populated area, anthropogenic activities (such as agricultural practices without soil
and water conservation measures, overgrazing, and deforestation) that induce land
cover change are primarily responsible for CC and severe soil erosion (Pal et al.
2021). Areas with poor soil management (i.e. lacking conservation practices) are
more prone to increased soil erosion, whereas non-intensive agricultural practices
may reduce the rate of erosion. Recent research indicates that LULC and CC may sig-
nificantly affect the severity of soil erosion at different spatiotemporal scales (e.g.
Aneseyee et al. 2020; Berihun et al. 2019; Chakrabortty et al. 2020b; Ebabu et al.
2019; Luetzenburg et al. 2020; Tadesse et al. 2017; Taye et al. 2018). The conservation

Figure 13. Field photographs of eroded soil areas at kolicha kebele.
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Table 8. Ground truth data at eroded hotspot locations.
ID X-Coordinate Y-Coordinate ID X-Coordinate Y-Coordinate

1 39.021641 7.508924 40 38.963702 7.790765
2 39.015321 7.508279 41 38.967015 7.797073
3 39.014092 7.508951 42 39.138237 7.41391
4 39.023163 7.510212 43 39.1372 7.416159
5 39.02601 7.509682 44 39.132389 7.417551
6 39.025338 7.51033 45 39.129504 7.412041
7 39.024593 7.497522 46 39.127953 7.406607
8 39.025684 7.500357 47 39.209645 7.946806
9 39.02826 7.498135 48 39.211646 7.943102
10 39.027601 7.499306 49 39.130517 8.022822
11 39.023295 7.514573 50 39.228772 7.98045
12 39.058126 7.499776 51 39.229635 7.9775
13 39.044348 7.464086 52 39.073115 7.956459
14 39.04143 7.438775 53 39.277663 7.500876
15 39.119732 7.380969 54 39.313323 7.405974
16 39.122911 7.377756 55 39.18364 7.938606
17 39.129662 7.375948 56 39.187555 7.932326
18 39.133099 7.375395 57 39.200669 7.924998
19 39.134418 7.372989 58 39.166549 7.906188
20 39.014462 7.898729 59 39.158775 7.900263
21 39.010273 7.901751 60 39.183785 7.848536
22 39.0041 7.904694 61 39.325492 7.651074
23 39.006415 7.901861 62 39.325047 7.653597
24 39.006348 7.900367 63 39.337525 7.658725
25 39.008726 7.900653 64 39.247124 7.73962
26 39.013211 7.89829 65 39.28684 7.623211
27 39.023744 7.893814 66 39.057697 7.786152
28 39.026418 7.88688 67 39.05745 7.786553
29 39.026349 7.890175 68 39.054933 7.787981
30 39.028592 7.889334 69 39.055838 7.786143
31 39.060032 8.066375 70 39.057448 7.782407
32 39.064128 8.064708 71 39.058444 7.781307
33 39.069014 8.063099 72 39.057691 7.781316
34 39.071988 8.069662 73 39.388797 7.900824
35 39.106513 8.061923 74 39.390813 7.887727
36 39.111355 8.06816 75 39.359892 7.756823
37 39.112982 8.070682 76 39.256368 7.894927
38 38.956256 7.779032 77 39.25871 7.898379
39 38.958723 7.784511 78 39.278724 7.905047

79 38.903653 7.873919

Figure 14. Annual maximum and minimum rainfall from 1991 to 2020.
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of natural plant cover to cultivated land and general LULC dynamics are two promin-
ent human-induced issues that have significantly contributed to the rise in soil ero-
sion rates in Ethiopia (Negese 2021). Negese (2021) claims that the expansion of
cultivated land at the expense of forest, shrubland, and grassland has increased
Ethiopia’s mean rate of soil erosion over the past forty years.

One of the main benefits of the RUSLE model is its adaptability to different geo-
environmental and socioeconomic contexts (Duarte et al. 2021). This research used
the RUSLE model to calculate annual soil loss over three decades. By overlaying and
multiplying the five factors (C, P, R, K, and LS), the mean annual soil loss in the
Ketar watershed was estimated at 0 to 382.48 t ha−1 yr−1 in 2000, 0 to 368.8
t ha−1 yr−1 in 2010, and 0 to 412 t ha−1 yr−1 in 2020. CC is anticipated to affect soil
erosion due to its impact on rainfall intensity (Maliqi and Singh, 2019). In this study,
the decreased rate of soil erosion in 2010 was attributed to the reduced R factor com-
pared to other years. These results align with Li et al. (2021), concluding that the
impact of CC on soil erosion is greater than human influence. Due to the observed
decline in rainfall between 2001 and 2010, we conducted a comparative analysis by
applying the R-factor derived from the 2001–2010 rainfall data to estimate soil loss
across the three decades. Using the actual R-factor from 1991 to 2000 rainfall, the
estimated soil loss was 382.48 t ha−1 yr−1. However, when the 2010R-factor was
applied, it decreased to 362.7 t ha−1 yr−1. In 2020, the increased rainfall resulted in an
estimated soil loss of 412 t ha−1 yr−1. Nevertheless, when the R-factor from the
second decade of rainfall was applied, the soil loss decreased to 396.9 t ha−1 yr−1.
This demonstrates that variations in the amount and intensity of rainfall influenced
the R-factor, thereby affecting soil erosion. Here, we observed that even when the
same amount of rainfall was applied across the study periods, the extent of soil
loss increased (Figure 16) by 9.4% from 2000 to 2020, primarily due to changes in
LULC.

During the specified periods, very severe soil loss was predominantly observed in
agriculture areas, which encompass 1483.5 ha in 2000, 1586.7 ha in 2010, and
3648.5 ha in 2020 (Table 9). This increase can be attributed to heavy rainfall during
the wet season, with most crops (such as teff, maize and barley) being planted at the
start of the rainy period, resulting in significant soil erosion on relatively bare ground.
This is consistent with the finding by Wang et al. (2018). As shown in Table 9, bare-
land, grassland, and shrubland areas contributed to severe soil loss. In contrast,

Figure 15. Decadal average minimum and maximum rainfall, and R factor.
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waterbodies, and wetlands had less impact on soil erosion. However, wetlands experi-
enced some severe soil erosion in 2020 due to degradation. Zhang et al. (2025) exam-
ined land use dynamics and urban expansion over four decades (1990–2030) and

Figure 16. Estimated soil loss in 2000 (a), 2010 (b), and 2020 (c) using similar rainfall from 2001 to
2010.
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recorded the progressive increase in the conversion of grassland and shrubland to
urban areas. In this study the increased rate of built up areas were due to the conver-
sion of grassland and agricultural land to settlement areas, which contributed to
severe erosion in 2020. Due to unplanned urbanization, settlements were continu-
ously increased, and vegetation decreased (Ullah, Khan, et al. 2025), which may
increase soil erosion. Land use dynamics, such as the clearing of forests for agricul-
tural expansion, are key factors escalating the severity of soil erosion (Kulimushi
et al. 2021). According to Ullah, Ahmad, et al. (2025), agricultural lands increased
steadily between 1990 and 2020. In the current study, agricultural land showed an
increase mainly due to the conversion of forest, shrub, and grassland. Comparable to
our work, Besha et al. (2024) investigated LULC dynamics in Ethiopia’s Central Rift
Valley and revealed a steady increase in areas of agriculture, built-up, and bareland
while forests and grassland declined. In forest areas, there were moderate to severe
soil losses observed, although they were not the primary driving factor. This was due
to most forested areas being located in mountainous and sloped regions characterized
by high rainfall. Land use and management techniques significantly impact soil loss
(Rawat and Singh 2018). The C-factor, which fluctuated as LULC changed over time
and space while the other components remained constant, was identified as the cause
of spatiotemporal variation in soil erosion (Balabathina et al., 2019). In this study, the
changes in soil loss across different classes and years were attributed to variations in
the C-factor corresponding to changes in LULC. Due to LULC dynamics occurring
between 2000 and 2020, the predicted average soil loss increased. This demonstrates
that LULC has a substantial effect on soil erosion caused by water. High slope length
and gradient values in the watershed contribute to the high soil erosion rate (Girmay
et al. 2020; Kumar and Singh 2021). Similar to Girmay et al. (2020), the highest soil
erosion rates over the three decades were observed at high LS values. For instance, in
the northern part near the Ketar River, LS values greater than 100 result in soil loss
exceeding 240 t ha−1 yr−1. Therefore, in regions with high rates of erosion, it is
imperative to immediately apply soil conservation strategies, as this study has identi-
fied. Fruit tree plantations, agroforestry, and terracing systems are examples of inte-
grated techniques that should be given priority in order to guarantee the sustainable
management of steep mountain regions of the current study site that are prone to
erosion. Furthermore, to reduce soil loss in the heavily eroded portion of the research
region, nature-based strategies such as integrating plants with engineering structures
are advised. These methods not only lessen soil loss but also increase land production
and adaptability to upcoming environmental changes.

This study’s limitation is that, while the output was spatially validated by ground
truth data, it was not possible to measure soil loss directly through the use of sedi-
ment traps in the field or through the creation of testing plots with recognized LULC
types. Thus, we recommend that future studies should validate the model’s output by
direct soil loss measurements from the field. Further research should consider pre-
dicting the future LULC and CC. Additionally, studies should work to predict the soil
loss trend, especially if no conservation measures take place in the current severely
eroded hotspot areas.
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6. Conclusions

This study assessed the combined impact of LULC change and rainfall variability on
soil erosion dynamics in the Ketar watershed over three decades (2000–2020). The
RUSLE model and geospatial techniques were used to map the extent of soil loss.
The findings showed that forests, wetlands, and grasslands were lost in favor of a sig-
nificant increase in agricultural land and settlements, which heightened the risk of
soil erosion. Wetland degradation and the reduction in forest cover from 7.52% in
2000 to 3.11% in 2020 led to an expansion of areas susceptible to erosion. Although
shrubland showed some recovery between 2010 and 2020, the detrimental effects of
deforestation and agricultural expansion could not be offset by its growth. Climate
variability also influenced soil erosion across the three decades. The variation in rain-
fall trends demonstrated how fluctuations in rainfall intensity and frequency impacted
soil erosion. The worst soil loss, 412 t ha−1 yr−1, occurred in 2020, underscoring the
role that increased rainfall and ongoing land degradation play in increasing soil ero-
sion. To better understand the effect of rainfall and LULC change on soil erosion,
this study applied similar rainfall amounts across the three decades and observed an
increase in soil loss extent, which was primarily attributed to changes in LULC. The
results highlight how urgently appropriate land management techniques are needed
to reduce soil loss, especially in areas that have been cleared for agriculture and
deforestation. In areas significantly affected by erosion, the findings of this study can
assist in implementing effective erosion management techniques. The local commu-
nity should be made aware of the impact of LULC change on soil erosion, and it is
advisable to practice Soil and Water Bioengineering (SWBE) conservation measures,
along with other conservation and agricultural practices (Vianney Nsabiyumva et al.
2023). Fruit tree planting should be considered in places that are prone to erosion
because it serves to reduce erosion and increases soil fertility by enriching the soil
with organic matter. This study also recommends that planners and researchers con-
sider the climate’s impact on soil erosion and prepare accordingly. Future research
should incorporate projections of both LULC and CC impacts on future soil loss
extent.
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