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Accurate localisation of the first point of interaction (FPoI) of incident gamma photons in monolithic 
scintillators is crucial for many radiation-based imaging applications - in particular, accurate estimation 
of the lines of response in positron emission tomography (PET). This is particularly challenging in thick 
nanocomposite and ceramic scintillator materials, which exhibit high levels of Rayleigh scattering 
compared to monocrystalline scintillators. In this work, we evaluate deep neural network-based 
approaches for (1) classifying the mode of photon interaction using an InceptionNet-based classifier 
and (2) accurately estimating the location of the FPoI based on scintillation photon distributions in 
several monolithic nanocomposite and ceramic scintillators using both CNN- and InceptionNet-based 
regression networks. The classifier was able to correctly categorise single-energy deposition events 
with an accuracy ≥ 90.1%, two-deposition interactions with an accuracy ≥ 77.6% and three-plus 
deposition interactions with an accuracy ≥ 66.7%. Across the evaluated materials, median total 
localisation error ranged from 0.58 mm to 2.91 mm with the CNN and 0.59 mm to 2.10 mm with 
InceptionNet, assuming 50% detector quantum efficiency. Localisation in nanocomposites using 
the InceptionNet-based regression network improved the most relative to previously-reported 
results based on classical techniques, in some cases approaching the accuracy achieved with ceramic 
scintillators.

Low-cost scintillator materials are attracting increasing interest for their potential use in radiation detection 
and imaging applications, including positron emission tomography (PET)1,2. Nanocomposite and transparent 
polycrystalline ceramic scintillators, despite having generally inferior optical and physical properties compared 
to monocrystalline scintillators, offer many advantages, including lower material costs and improved 
manufacturability3,4. This is particularly important for applications requiring large scintillator volumes, such as 
in monolithic PET detector modules, since the production of large, uniform monocrystals of high-performance 
scintillator materials such as cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) is technically 
challenging and very expensive5.

Estimating the location of the first point of interaction (FPoI) between the emitted gamma photon and 
the scintillator is the initial step in utilising a monolithic scintillator in PET. Following energy windowing, 
coincident pairs of annihilation photons are identified and lines of response are formed between these locations 
and used to construct a sinogram for image reconstruction6. Some of the emitted photons are absorbed, lost 
or scattered within the patient; models for these processes (based on patient CT images) inform attenuation, 
activity normalisation and scatter correction algorithms. The energy acceptance window may also be broadened 
to include Compton-scattered photons, enabling the creation of hybrid PET-Compton imaging systems, which 
can offer improved signal to noise ratio compared to pure PET systems7,8.

The accuracy of this localisation is a critical factor in determining PET system performance. If one or more 
faces of the scintillator are covered in pixellated optical photodetector arrays, the distribution of detected optical 
photons can be used to estimate this location in three dimensions. However, this process is complicated by the 
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large variety of possible types of energy-depositing interactions that can occur in the scintillator, ranging from 
a single photoelectric absorption of the 511 keV gamma photon to one or more Compton interactions, followed 
by either a final photoelectric absorption of the scattered photon or its escape from the scintillator. Each of these 
situations results in different optical photon distributions9.

Several approaches can be used for FPoI localisation. One method involves fitting a parametric analytic 
model of the optical photon distribution as a function of the initial point of interaction to the observed pattern 
and iteratively minimising the error between them to yield the coordinates of the point of interaction. This 
approach is challenging due to the many different modes of photon-matter interaction, as well as internal optical 
reflections, especially at the edge of the scintillator block10. Nevertheless, in previous work, we successfully 
utilised this approach to optimise the thickness of monolithic scintillators fabricated from nanocomposite and 
polycrystalline ceramics, maximising the probability of localising the point of interaction to within a specified 
threshold11,12. There has also been growing interest in the use of deep neural networks for localisation, leveraging 
their ability to learn complex nonlinear relationships between the system inputs and outputs given sufficient 
training data. Such training data can be obtained from Monte Carlo simulations, which is computationally 
feasible on modern computer hardware13.

Several previous studies have investigated the use of deep neural networks for FPoI localisation in the context 
of monocrystalline scintillator materials such as LYSO:Ce. Sanaat et al. evaluated the precision of a multilayer 
perceptron neural network to estimate the point of interaction in a monolithic LYSO:Ce scintillator coupled to 
a 12×12 array of SiPM detectors, achieving localisation with a maximum error in depth of interaction (DoI) of 
8.7% at interaction depths under 7 mm using a four-layer neural network14. Jalibarthi et al. employed a 10-layer 
deep-residual convolutional neural network to estimate event position in a 7.2 cm long annular monolithic PET 
scanner and showed that this approach outperforms the classical centre of mass (CoM) algorithm15. Carra et 
al. utilised several specialised neural networks to simultaneously estimate event positioning and timestamping, 
achieving an error of 0.78 mm FWHM on the (x, y) plane and 1.2 mm FWHM in the depth-of-interaction 
dimension, with 156  ps coincidence timing resolution on a 25  mm  ×  25  mm  ×  8  mm LYSO monolithic 
scintillator block16.

Despite the potential of deep neural networks for FPoI localisation, their performance in multi-centimeter 
thick nanocomposite and transparent ceramic materials remains unexplored. In nanocomposites, the 
difference in refractive indices of the nanoscintillator and the polymer matrix increases Rayleigh scattering - a 
phenomenon where optical photons are elastically scattered by particles or irregularities that are much smaller 
than its wavelength. Similarly, transparent polycrystalline ceramics suffer more from Rayleigh scattering 
than monocrystalline materials. This scattering results in a weaker and more diffuse optical photon pattern 
at the photodetector as the scintillator thickness increases. Although thicker scintillators improve sensitivity 
to incident gamma photons, they also degrade localisation accuracy due to the cumulative effects of Rayleigh 
scattering. Nonetheless, it is reasonable to expect that a deep neural network can account for these scattering 
effects on the optical photon distribution, providing an accurate estimate of the FPoI even in thick monolithic 
scintillator blocks.

In this work, we demonstrate the feasibility of using deep neural networks to localise the FPoI of gamma ray 
interactions in five thick nanocomposite scintillators (LaBr3:Ce-polystyrene, Gd2O3-polyvinyl toluene, LaF3:Ce-
polystyrene, LaF3:Ce-oleic acid, and YAG:Ce-polystyrene) and four thick ceramic scintillators (GAGG:Ce, 
GLuGAG:Ce, GYGAG:Ce, and LuAG:Pr). Additionally, we demonstrate the classification of detected events by 
the type of interaction which has occurred.

Materials and methods
This section describes the methods used to estimate the type and location of the first point of interaction of 
511 keV gamma photons in monolithic scintillator blocks. The methodology involves three main steps:

•	 Generation of training data through Monte Carlo simulations;
•	 Development and training of neural networks for interaction classification and FPoI localisation; and
•	 Evaluation of network performance.

First, a large body of training data is generated by simulating the emission of 511 keV gamma photons with 
random position and orientation towards each of the nine evaluated scintillator materials using the Geant4 
Application for Tomographic Emission (GATE) Monte Carlo simulation platform17,18. For each 511 keV gamma 
photon interacting with the slab under test, the first point of interaction between the incident gamma photon 
and the scintillator slab, as well as the resulting optical photon distribution on the optical photodetector plane 
and the mode/modes of interaction are recorded. The simulated photon distributions are then used to train three 
deep neural networks - one for interaction type classification, and two alternative regression networks for event 
localisation.

A more detailed illustration is represented in Fig. 1.
In this work, the InceptionNet model is used to classify the type of interaction, while two regression networks 

- one based on a convolutional neural network (CNN) and the other based on a modified InceptionNet - are 
utilised for the localisation of the FPoI. InceptionNet is an advanced convolutional neural network (CNN) 
architecture originally developed by Google for computer vision problems19. Unlike classical CNNs that use 
fixed-size convolutional filters, InceptionNet introduces “inception modules” that perform parallel convolutions 
with filters of different sizes (e.g., 1×1, 3×3, and 5×5) where their outputs are concatenated along the channel 
dimension. In this approach, subsequent layers can learn to combine and weigh the multiscale features as needed. 
This design enables the network to capture features at multiple scales simultaneously, improving its ability to 
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recognise complex patterns while keeping the computational cost and number of parameters low compared to 
a classical CNN19.

Scintillator materials, surfaces and detector model
Five nanocomposite materials (LaBr3:Ce-polystyrene, Gd2O3-polyvinyl toluene, LaF3:Ce-polystyrene, LaF3:Ce-
oleic acid and YAG:Ce-polystyrene) and four high-density ceramics (GAGG:Ce, GLuGAG:Ce, GYGAG:Ce and 
LuAG:Pr) are chosen as simulation materials, to enable direct comparison with materials simulated by Wilson 
et al.12. For each material, the physical and optical properties of each scintillator were implemented in GATE 
using a combination of data obtained from the literature20–33. The key parameters include the binding matrix and 
nanoscintillator chemical composition and nanocomposite loading factor, average nanocomposite density, the 
refractive index of the matrix and nanoparticles, the average nanoparticle size, scintillation yield and scintillation 
emission spectrum. The chemical compositions and density are described in GATE’s GateMaterials.db 
file, while the optical properties are used to calculate the material’s absorption length and Rayleigh scattering 
length, which are encoded in GATE’s Materials.xml file. The properties of the nanocomposite and ceramic 
materials are summarised in Tables 2 and 1.

Each scintillator is modelled as a rectangular prism, with transverse dimensions (x, y) of 45.6 mm and an 
optimal thickness (z) of Topt for each material taken from Wilson et al., 202011, which provides the optimal 
sensitivity for a median error in the localisation of the first point of interaction of less than 5 mm (reflecting 
the intrinsic compromise between gamma sensitivity and internal self-absorption/Rayleigh scattering of the 
resulting optical photons). Topt for each material is shown in Table 3.

Both proximal and distal surfaces are modelled as a finely polished optical surface coupled to an array of 
silicon photodetector pixels via a layer of Meltmount ™optical epoxy resin12,34. Dual-sided readout (DSR) is a 
more expensive option compared to single-sided readout (SSR; either front or back), but it enables the use of 
a thicker scintillator slab since self-attenuation will not prevent the capture of photons from events interacting 
far from the one photosensitive face. Dual-sided readout also enables a direct comparison with previous 
results reported by Wilson et al.12. Future work will explore the lower-cost alternative of front and back SSR 
configurations.

Non-photosensitive faces of the scintillator are coated in non-reflective black paint; these properties are 
described in GATE’s Surfaces.xml file. Again, this is chiefly to enable direct comparison with Wilson et 
al.12; an alternative of a reflective coating will also be considered in future work.

In the simulation, detector quantum efficiency is set to 100% at the emission wavelength; data from this ideal 
detector is then used for training the neural networks. Subsequent evaluation of localisation and classification 
performance is performed for realistic detector quantum efficiency by probabilistically eliminating a fraction of 
the detected photons. Detector QE is thus evaluated over a range from 100% (ideal) to 30%.

Ceramic GYGAG:Ce GLuGAG:Ce GAGG:Ce LuAG:Pr

Peak λ (nm) 550 550 530 310

Yield (ph/keV) 50 48.2 70 21.8

R (% @662 keV) 4.9 7.1 4.9 4.6

1st Decay (ns) 100 84 90 21.4

2nd Decay (ns) 500 148 194 771

ρ (g/cm3) 5.8 6.9 6.63 6.73

n (@peak λ) 1.82 1.92 1.90⋆ 2.03⋆

α (cm−1) 0.10 2.00 3.13∗ 2.86∗

Refs. 26–28 29,30 31,32 32,33

Table 1.  Properties of several transparent ceramic scintillator materials modelled in this work, adapted 
from12. Properties listed with ∗ have been calculated analytically, while those listed with ⋆ were obtained from 
literature pertaining to the equivalent monocrystalline form of the material. R is the energy resolution; ρ is the 
material density; α is the (optical) linear attenuation coefficient at the peak emission wavelength.
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Figure 1.  Flow chart illustrating the proposed approach.
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Generation of training data
An example simulation (showing a single scintillation event) is shown in Fig. 2.

A planar 60  mm  ×  60  mm 511  keV gamma radiation source is placed parallel to the slab, just above 
the surface of the scintillator/detector slab, with random emission azimuth az ∈ [0◦, 360◦] and elevation 
el ∈ [0◦, 90◦] (shown as the plane of red dots in Fig. 2). For each material, 50,000 primary particles are simulated. 
Since further increases beyond this number did not result in any additional improvement in convergence or a 
reduction in the residual error of the trained networks, this number was selected as it represented the ideal 
balance between reduced computational overhead and model accuracy.

The GATE simulation records the distribution of optical photons on both the front and back detector planes, 
quantised into 20×20 pixel arrays. The ground truth location and interaction type for each gamma photon 
interaction with the crystal are also recorded—most importantly, for the first point of interaction, which is 
critical in determining the line of response in PET. The amount of energy deposited, the time at which the 
interaction occurred, and the identity of the parent event are also recorded.

Generation of training datasets for each material took approximately 15-35 core-hours (depending on the 
material) on an Intel Xeon Gold 6126 CPU.

Gamma interaction classification
For 511  keV gamma photons, the primary modes of interaction are photoelectric absorption and Compton 
scattering, with the possibility of multiple Compton scatterings before final absorption or escape (i.e., Compton-
photoelectric or Compton-escape)12.

The accuracy of the FPoI location estimation is dependent on the interaction mode. Compton scattering 
followed by a photon escape typically yields a weaker signal compared to photoelectric absorption due to lower 
energy deposition. Conversely, multi-interaction events, which deposit energy almost simultaneously at multiple 
locations within the scintillator, generate complex optical photon distributions that degrade the accuracy of 
FPoI determination. Therefore, classifying the interaction type enables appropriate weighting of events in PET 

 Material Topt (mm)

GAGG:Ce (c) 13.98

GLuGAG:Ce (c) 27.54

GYGAG:Ce (c) 42.63

LuAG:Pr (c) 19.07

Gd2O3/PVT (n) 62.61

LaBr3 :Ce/PS (n) 53.78

LaF3 :Ce/OA (n) 32.66

LaF3 :Ce/PS (n) 42.60

YAG:Ce/PS (n) 46.79

Table 3.  Optimal thicknesses Topt for each of the materials included in this study (ceramics denoted (c) and 
nanocomposites denoted (n)).

 

Nanoparticle LaBr3:Ce Gd2O3 LaF3:Ce LaF3:Ce YAG:Ce

Matrix PS PVT OA PS PS

Load (% Vol.) 19 4.6 34 50 50

Peak λ (nm) 380+ 550 334 334 550+

Yield (ph/keV) 63+ 22 4.5+ 4.5+ 20.3+

R (% @662 keV) 2.6+ 11.4 16+ 16+ 11.1+

Decay (ns) 16+ 17 30+ 30+ 87.9+

ρ (g/cm3) 1.81∗ 1.34∗ 2.59∗ 3.47∗ 2.81∗

n (@peak λ) 1.69∗ 1.56∗ 1.52∗ 1.65∗ 1.72∗

α (cm−1) 2.00∗ 0.09∗ 2.05∗ 0.15∗ 0.95∗

Refs. 20,21 21,22 21,23,24 21,23,24 21,25

Table 2.  Physical and optical properties of the nanocomposite scintillator materials modelled in this work, 
adapted from12. Properties marked with an ∗ were been estimated from the volume fractions listed, assuming 
9 nm diameter nanoparticles. Properties listed with a + are estimates based on the bulk crystalline equivalent 
of the nanoparticle. R is the energy resolution; ρ is the average nanocomposite density; α is the (optical) linear 
attenuation coefficient at the peak emission wavelength. PS is polystyrene; PVT is polyvinyl toluene; OA is 
oleic acid.
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sinogram construction, with higher weight assigned to interactions that provide more reliable FPoI location 
estimates.

To accomplish this classification, a neural network classifier is designed with three output classes 
corresponding to one, two or three or more energy depositions. The network architecture comprises of:

•	 One convolutional layer followed by max pooling (Conv1/MaxPool1)
•	 One Inception layer plus max pooling layer (Inception1/Maxpool2)
•	 One flattening layer (FC1)
•	 Five fully connected layers (FC2-5 plus the output layer)

Batch normalisation is applied after all convolutional layers, including those in the Inception layer. The leaky 
rectified linear unit (ReLU) serves as the activation function for both convolutional and fully connected layers; 
Fig. 3 illustrates the network structure, and Tables 4 and 5 detail the network parameters, including kernel size 
(spatial dimensions of the convolutional filter), stride (pixel shift per operation), padding (zero-padding applied 
to input borders), and Inception layer specifications, respectively.

For this task, 50% detector efficiency is assumed.

Input Conv layer1 Maxpool layer1 Inception layer1 Maxpool layer2

FC1 FC2 FC3 FC4 FC5 Output

Figure 3.  InceptionNet model for event type classification; the network classifies gamma interactions into 
single, two, or three-plus energy depositions. It consists of an input layer, convolutional and max pooling 
layers (Conv1/MaxPool1), an Inception layer (Inception1/Maxpool2), a flattening layer (FC1), and five fully 
connected layers (FC2-5) with an output layer. Batch normalisation and leaky ReLU activation are used 
throughout.

 

Figure 2.  Simulation model showing example scintillation event in GLuGAG:Ce scintillator slab. The layer 
of red dots on the bottom illustrates the planar radiation source. Gamma photons are shown in red, while 
optical photons are shown in green. The gamma photon exiting the centre of the scintillation flash to the left 
represents a Compton-scattered photon escaping from the scintillator, which is one of the most common types 
of interactions. The front and back faces of the scintillator (bottom and top of the model, respectively) are 
optically coupled to pixellated photodetector arrays for double-sided readout.
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FPoI location estimation
Following classification by event type, the 20 × 20 × 2 optical photon map corresponding to each energy-
depositing event is used as an input to the FPoI localisation network. This network is trained to estimate the 
spatial coordinates of the FPoI within the scintillator. For comparative analysis, two network structures are 
trained in parallel: a pure CNN and an Inception-based network.

Both network structures share similarities with the classification network, as they all have identical input 
and output dimensions (three classes in the case of the classification network and three coordinates for spatial 
location in the case of the regression network). The training parameters, including batch size, learning rate, and 
optimiser are identical to those used in the classification network.

The CNN is constructed using two convolutional layers, each followed by a max pooling layer, a flattening 
layer (FC1), and five fully connected layers (FC2-5 plus the output layer). Table 7 lists the network parameters. 
The InceptionNet variant substitutes an Inception layer for the second convolutional network layer, otherwise 
maintaining the same structure and parameters as in the classification network. The parameters for this network 
are listed in Table 6.

InceptionNet parameter Layer size Kernel size Stride Padding

Input 20 × 20 × 2 – – –

Conv1 20 × 20 × 24 3 1 1

Maxpool1 10 × 10 × 24 2 2 0

Inception1 10 × 10 × 48 – – –

Maxpool2 5 × 5 × 48 2 2 0

FC1 1200 – – –

FC2 384 – – –

FC3 256 – – –

FC4 196 – – –

FC5 128 – – –

Output 3 – – –

Table 6.  Parameters for the InceptionNet-based network for FPoI localisation, including layer sizes, kernel 
sizes (where applicable), stride, and padding, detailing the network structure from input to output.

 

Inception layer Branch1 Branch2 Branch3 Branch4

Layer design 1 × 1 Conv 3 × 3 Conv 5 × 5 Conv Same size maxpool

Input size 10 × 10 × 24 10 × 10 × 24 10 × 10 × 24 10 × 10 × 24
Output size 10 × 10 × 12 10 × 10 × 12 10 × 10 × 12 10 × 10 × 12

Table 5.  Parameters of the inception layer (inception1) of the classification network.

 

Classification network parameter Layer size Kernel size Stride Padding

Input 20 × 20 × 2 – – –

Conv1 20 × 20 × 24 3 1 1

Maxpool1 10 × 10 × 24 2 2 0

Inception1 10 × 10 × 48 – – –

Maxpool2 5 × 5 × 48 2 2 0

FC1 1200 – – –

FC2 384 – – –

FC3 256 – – –

FC4 196 – – –

FC5 128 – – –

Output 3 – – –

Table 4.  Parameters for the InceptionNet-based network for energy-depositing event classification, including 
layer sizes, kernel sizes (where applicable), stride, and padding, detailing the network structure from input to 
output.
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Training
The networks are trained using randomly shuffled batches of 2000 samples. A learning rate of 0.001 per epoch is 
applied; a range of other learning rates was also evaluated, however this parameter did not significantly change 
the performance of the resulting networks.

A total of 21 datasets were simulated and subsequently divided into training, validation, and testing subsets. 
Twenty of these datasets were combined and randomly mixed, with 80% used for training and the remaining 20% 
reserved for validation. The final, completely independent dataset was held out and used exclusively for testing to 
ensure an unbiased evaluation of model performance. For the localisation network, mean squared error (MSE) is 
used as the loss function, while the classification network employs cross-entropy loss. Both networks are trained 
using the Adam optimiser with a weight decay factor of 10−3.

The network typically converges within 500 epochs, with a maximum limit set at 800 epochs. During training, 
network performance is continuously monitored. An early stopping mechanism is implemented, halting the 
training process when accuracy starts to decrease after reaching a maximum (which typically occurs between 
500-600 epochs) to prevent overfitting.

Training of the classifier network takes an average of approximately 19 minutes and the localisation network 
approximately 25 minutes per dataset on an Intel Xeon E-2488 CPU with an NVidia A2 GPU.

Model evaluation and metrics
For the classification network, each event’s output is compared to the ground truth and categorised as correct 
(output matches ground truth) or incorrect.

For the localisation networks (both CNN and InceptionNet), the Euclidean distance between the estimated 
FPoI and the ground truth is evaluated, as well as the components of this error in depth (i.e. depth of interaction) 
and lateral displacement directions are evaluated and plotted as a function of detector quantum efficiency. A 
more detailed statistical description of the error distributions is provided for a detector with quantum efficiency 
of 50%, including the minimum, maximum, mean, standard deviation, median and interquartile range.

Finally, the dependence of error on the ground truth position within the scintillator slab is evaluated as a 
heatmap in both the xy (lateral) and yz (depth) planes.

Inference (i.e. execution of the trained network on the evaluation dataset) takes less than one minute for each 
evaluation dataset, on the same Intel Xeon CPU / NVidia GPU used for training.

Results and discussion
Classifation network
Results for the classification network are shown in Table 8.

The classifier correctly identified events involving a single energy deposition-either a photoelectric interaction 
or a Compton interaction followed by the escape of the scattered photon-with an accuracy between 90.1% and 
91.4%. Most misclassified single-deposition events were incorrectly labeled as two-deposition interactions (e.g., 
two Compton interactions followed by photon escape, or one Compton interaction followed by a photoelectric 
interaction).

The most common interactions involve two energy-deposition steps (Compton-Compton-escape or 
Compton-photoelectric). For these events, the classifier achieved an accuracy between 77.6% and 81.7%. 
Misclassifications in this category were most often multi-deposition events mistaken for single-deposition 
events.

For interactions with three or more energy depositions, the accuracy dropped to 66.4–68.4%, with most 
errors being misclassified as single-deposition events.

The classification network’s performance was largely independent of the scintillator type (nanocomposite or 
ceramic) and the specific material used.

CNN parameter Layer size Kernel size Stride Padding

Input 20 × 20 × 2 – – –

Conv1 20 × 20 × 24 3 1 1

Maxpool1 10 × 10 × 24 2 2 0

Conv2 8 × 8 × 48 3 3 0

Maxpool2 4 × 4 × 48 2 2 0

FC1 768 – – –

FC2 256 – – –

FC3 256 – – –

FC4 196 – – –

FC5 128 – – –

Output 3 – – –

Table 7.  Parameters for the CNN-based network for FPoI localisation, including layer sizes, kernel sizes 
(where applicable), stride, and padding, detailing the network structure from input to output.
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Localisation networks
Localisation accuracy is evaluated as a function of detector quantum efficiency for each material and localisation 
network, and the results are plotted in Fig. 4. Localisation accuracy is shown both as overall Euclidean distance 
and decomposed into error in depth (i.e. depth of interaction) and lateral displacement error (i.e. the radial offset 
from the projection of the ground truth and estimated position in the xy plane).

The first quartile, median, third quartile, mean, and standard deviation of the error (total Euclidean distance) 
between the ground truth FPoI (obtained directly from GATE) and the estimated FPoI are summarised in Table 
9 and Fig. 5 for all nanocomposite and ceramic scintillators.

For the transparent ceramic materials with 50% detector quantum efficiency, InceptionNet achieved a median 
error of between 0.59 mm (LuAG:Pr) and 1.13. mm (GYGAG:Ce), with corresponding mean errors of between 
1.08 and 1.80 mm. For the CNN, median error was between 0.58 mm (LuAG:Pr) and 0.99 mm (GYGAG:Ce), 
with corresponding mean errors between 1.09 mm and 1.69 mm. For the nanocomposite scintillator materials, 
InceptionNet achieved a median error of between 0.87  mm (LaBr3:Ce/PS) and 2.10  mm (LaF3:CE/OA), 
with corresponding mean errors of between 1.58 mm and 3.21 mm. The CNN achieved errors in the range 
1.18 mm (LaBr3:Ce/PS) to 2.91 mm(Gd2O3/PVT) and corresponding mean errors from 1.77 mm to 3.54 mm. 
Performance of the CNN and InceptionNet was generally very similar for the transparent ceramic materials, 
while for the nanocomposite materials, InceptionNet offered an average 46% improvement in accuracy over the 
CNN, suggesting that it is better able to model the effects of Rayleigh scatter and self-attenuation compared to 
the plain CNN. This observed performance advantage aligns with the theoretical expectation that InceptionNet, 
through its use of parallel convolutional filters with varying kernel sizes, is better suited for extracting multi-
scale features. In this study, the illumination features produced by different scintillators exhibit variations in both 
spatial extent and intensity. Unlike conventional CNN architectures, which utilise a single kernel size per layer, 
InceptionNet employs multiple kernel sizes within the same module. This design enables the network to capture 
a broader and more representative set of features across different spatial scales, resulting in improved accuracy 
in locating the FPoI within the scintillator-induced illumination pattern.

The best-performing nanocomposite and ceramic materials are LaBr3:Ce/PS and LuAG:Pr, respectively, 
achieving the best performance amongst the respective scintillator types with both the CNN and InceptionNet.

Heatmaps illustrating the spatial distribution of errors in the xy (normal to the beam) and xz (depthwise) 
planes for the best-performing transparent ceramic material (LuAG) are shown in Fig. 6. In the xy plane, error 
magnitude is approximately uniform across the detector face, while in the xz plane, errors are clearly lowest at 
the shallowest depth in the scintillator, since these photons are subject to the least self-absorption and scattering.

Heatmaps illustrating the spatial distribution of errors in the xy and xz (i.e. depthwise) planes for the best-
performing nanocomposite material (LaBr3:Ce/PS) are shown in Fig. 7. In the xy plane, error magnitude is 
slightly higher around the periphery of the detector face, while in the xz plane, errors are clearly lowest near the 
front and back surface of the scintillator block, and highest near the centre. These effects are more pronounced 
than in the higher-density LuAG scintillator. The effect seen at the periphery is a result of the non-reflective edge 
coating absorbing some of the photons emitted by interactions in this region, reducing the amount of available 
information for inferring the point of interaction. Despite this loss of information, the shape of the photon 
distribution is preserved; use of a reflective coating is not expected improve performance due to the ambiguity 
introduced by reflected (especially multiply-reflected) photons35.

Higher localisation error in the centre of the scintillator block (in the z direction) is a result of the optimal 
slab thickness being greater (as per12) in nanocomposites compared to the ceramic materials. Photons resulting 
from interactions at this point are subject to the greatest degree of self-absorption and scattering, leading to the 
relatively high error. Further reductions in this error in nanocomposite materials may be achieved by reducing 
the size of the nanoparticles and by reducing the difference between the refractive indices of the nanoparticle 
and the matrix.

 Material  Classification

 1-dep  2-dep  3+-dep

 1 T  2 F  3 F  2 T  1 F  3 F  3+T  1 F  2 F

GLuGAG:Ce (c) 90.3 7.2 2.5 80.9 15.7 3.4 67.2 26.2 6.6

GYGAG:Ce (c) 91.1 6.4 2.5 79.9 16.1 4 66.8 25.6 7.6

GAGG:Ce (c) 90.4 6.6 3 77.6 18.1 4.3 67.9 23.3 8.8

LuAG:Pr (c) 90.5 7 2.5 78.8 17.5 3.7 67.7 24.1 8.2

LaBr3 :Ce/PS (n) 90.1 7.5 2.4 81.4 16.5 2.1 67.5 24.1 8.4

Gd2O3/PVT (n) 91 6.7 2.3 80.2 15.2 4.6 66.8 23.8 9.4

LaF3 :Ce/OA (n) 91.4 7.3 1.3 81.7 16.1 2.2 66.7 25.8 7.5

LaF3 :Ce/PS (n) 90.7 6.8 2.5 78.1 17.4 4.5 68.4 24.3 7.3

YAG:Ce/PS (n) 90.3 7.1 2.6 79.1 17.8 3.1 66.4 24.7 8.9

Table 8.  Classification accuracy for events involving one, two and three or more energy depositing 
interactions with the scintillator (ceramics denoted (c) and nanocomposites denoted (n)); “M T” denotes 
true positives for an M-energy-deposition event, i.e. the event was correctly classified, “N F” denotes false 
classification as an N-energy-deposition event (where M ̸= N ).
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Heatmaps for each of the other materials are included in the Supplementary Materials.

Implications
Accurately estimating the number of energy-depositing events in a monolithic scintillator is of significance for 
imaging applications, especially PET and hybrid Compton-PET. The quality of information contained in the 

Figure 4.  Error in lateral offset, depth (DOI) and total error for each material as a function of detector 
quantum efficiency, for CNN localisation network (left) and InceptionNet (right). The best performing ceramic 
and nanocomposite materials are shown in bold (LuAG and LaBr3:Ce/PS, respectively).

 

Scientific Reports |        (2025) 15:28607 9| https://doi.org/10.1038/s41598-025-13339-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


event is lower with each additional Compton interaction, as it makes the localisation problem more difficult 
(either for classical approaches or for the neural networks). Correct classification of the event by interaction type 
would allow the contribution of each component to (for example) a PET sinogram to be weighted according to 
the number of energy depositions, which should result in a higher quality image. This remains an interesting 
area for future investigation.

In a typical clinical PET image, 30-40% of the detected annihilation photons have scattered in the patient 
before reaching the detectors36. Of the remaining unscattered photons, the majority that interact with the 
detector do so via a Compton scattering process (typically more than 90% of the gamma photons interacting 
with the nanocomposite scintillators and 70–85% for ceramics—see Table 3.3 and 3.4 in37). Scattering within the 
patient can be largely corrected using one of the well-known scatter correction techniques. However, photons 
which deposit energy within the detector via Compton interaction still carry valuable information. Although 
they produce a weaker signal compared to a photoelectric interaction (since less energy is deposited), if the 

Figure 5.  Localisation error comparison across all materials and networks. Confidence intervals are 
±2σ ( 95%).

 

 Material  Network

 Error (mm)

 Q1  Median  Q3 µ σ

GAGG:Ce (c)
CNN 0.50 0.74 1.11 1.05 1.69

IncNet 0.51 0.77 1.16 1.07 1.63

GLuGAG:Ce (c)
CNN 0.42 0.71 1.36 1.22 1.64

IncNet 0.42 0.72 1.60 1.34 1.72

GYGAG:Ce (c)
CNN 0.68 0.99 1.67 1.69 2.44

IncNet 0.75 1.13 1.80 1.80 2.75

LuAG:Pr (c)
CNN 0.34 0.58 1.12 1.09 1.85

IncNet 0.35 0.59 1.14 1.08 1.80

Gd2O3/PVT (n)
CNN 2.00 2.91 3.94 3.54 3.16

IncNet 0.70 1.40 3.04 2.58 3.53

LaBr3 :Ce/PS (n)
CNN 0.78 1.18 1.99 1.77 1.91

IncNet 0.44 0.87 1.95 1.58 2.03

LaF3 :Ce/OA (n)
CNN 1.63 2.45 3.92 3.35 3.03

IncNet 1.32 2.10 3.88 3.21 3.27

LaF3/PS (n)
CNN 1.76 2.38 3.57 3.50 3.76

IncNet 0.95 1.60 3.32 2.96 4.05

YAG:Ce/PS (n)
CNN 0.84 1.25 2.58 2.27 2.76

IncNet 0.57 1.04 2.57 2.11 2.75

Table 9.  Summary of overall localisation accuracy, evaluated across the 3000 events in the test dataset with 
detector quantum efficiency of 50%. For each scintillator material (ceramics denoted (c) and nanocomposites 
denoted (n)), localisation network (CNN or InceptionNet), and the first quartile, median, third quartile, 
mean and standard deviation of the error (Euclidean distance) between the true first point of interaction 
and the estimated FPoI are listed. The best-performing materials are indicated in bold (for both CNN and 
InceptionNet localisation networks).
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first point of interaction can be accurately localised, the line of response is just as valuable as a photoelectric 
interaction. By classifying detected events according to the number of interactions, we expect that it is possible 
to extract some useful direction-of-arrival information that would be discarded if we used a simple energy 
window to filter out only photoelectric events. Gamma photons which have only undergone a single Compton 
interaction in the detector followed by the escape of the scattered photon will convey the most useful information 
as these most closely resemble a photoelectric interaction from a line-of-response perspective; however, even 
multi-interaction energy deposition events can provide useful information (albeit with further degradation 
in localisation accuracy). Whether or not this is worthwhile is largely dependent on the injected activity and 
patient/subject dimensions - so especially for small-animal PET, where the scatter fraction is expected to be low 
and the injected activity is also limited, it would be preferable to utilise these detected events if possible. Our 
approach provides the option of doing so if desired, providing more information about the nature of each event 
than can be provided by energy deposition alone.

The accuracy with which the FPoI can be localised using both neural networks significantly improves 
compared to the classical least-squares error-minimisation approach used by Wilson et al., in which the median 
and mean errors were 1.2 mm and 2.3 mm for LaBr3:Ce/PS (compared with 0.87 mm and 1.58 mm obtained 
here), and 0.7 mm and 1.5 mm for LuAG:Pr (compared with 0.58 mm and 1.08 mm).

The improvement relative to the classical approach is most significant for the nanocomposite materials, with 
the InceptionNet results approaching or exceeding the performance of some of the transparent ceramic materials. 
This has important economic implications, since the use of nanocomposites, which can often be synthesised at 
room temperature, has the potential to significantly reduce the cost of detector manufacture relative to those 
which utilise conventional monocrystalline scintillator materials.

Figure 6.  Heatmap of mean total Euclidean error (in mm) as a function of position within the detector for the 
best-performing ceramic material (LuAG:Pr).
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Further cost reductions in the detector can be achieved if readout is limited to single-sided - either front- or 
back-face. The optimal thickness will need to be recalculated for such a system, but will be thinner (and hence 
less sensitive) if optimised using the same metric as the dual-sided read out model. While single-sided readout 
was previously explored by Wilson et al. using classical optimisation-based localisation, this will be the subject 
of a future investigation as we progress towards prototype implementation.

Translation to practical implementation faces several challenges - most significantly, the problem of 
achieving high uniformity in a large volume of nanocomposite or transparent ceramic material. Fortunately, 
neural networks such as the InceptionNet and CNN models used in this research can be fine-tuned via transfer 
learning using experimental measurements following training with simulation-based data. This process would 
entail using a collimated source of 511  keV photons, and directing it perpendicular to the xy, yz and/or xz 
planes. Depth of interaction cannot be controlled, so only two dimensions of the ground truth can be controlled 
simultaneously; however, by directing photons normal to at least two of these planes, and stepping the beam 
position through a series of different positions in those planes, all dimensions can be covered.

It is also challenging to achieve high and uniform optical transparency in nanocomposites. The critical 
parameter in ensuring sufficient transparency for fabrication of thick scintillator blocks is achieving a consistently 
small nanoparticle size. This is a rapidly evolving field, and new nanocomposites are frequently being reported 
in the literature (e.g.38). We expect that many new and interesting nanocomposite scintillators will emerge in 
coming years, to which our localisation and classification networks will be well suited.

In addition to the nanocomposite and transparent ceramic materials discussed in this work, there are other 
promising low-cost materials to which our method would be applicable, including novel Perovskite, glass and 
glass-ceramic scintillators39–41.

Figure 7.  Heatmap of mean total Euclidean error (in mm) as a function of position within the detector for the 
best-performing nanocomposite material (LaBr3:Ce/PS).

 

Scientific Reports |        (2025) 15:28607 12| https://doi.org/10.1038/s41598-025-13339-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Conclusions
The InceptionNet-based classifier successfully identified over 90.1% of single-energy-deposition events, 
comprising both photoelectric and Compton-escape interactions, and correctly classified more than 77.6% of 
all two-deposition events, encompassing Compton–photoelectric and Compton–Compton–escape interactions. 
Both the InceptionNet and CNN-based localisation networks achieved excellent estimates of the location of the 
first point of interaction for transparent ceramic materials, while InceptionNet outperformed the CNN by an 
average of 46% for nanocomposites.

These findings demonstrate that thick nanocomposite scintillators can approach the performance levels 
of transparent ceramics. The high localisation accuracy achieved, despite greater Rayleigh scattering and self-
absorption, confirms the viability of nanocomposites as a scintillator option for PET. Given their significantly 
lower costs and more benign fabrication and material handling properties compared to both monocrystalline 
and transparent ceramic materials, these nanocomposites warrant serious consideration for next-generation 
high-performance PET systems.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author (Daniel.Franklin@uts.edu.au) on reasonable request.
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