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Abstract
In today’s digital age, conspiracies and information campaigns
can emerge rapidly and erode social and democratic cohesion.
While recent deep learning approaches have made progress in
modeling engagement through language and propagation mod-
els, they struggle with irregularly sampled data and early tra-
jectory assessment. We present IC-Mamba , a novel state space
model that forecasts social media engagement by modeling interval-
censored data with integrated temporal embeddings. Our model
excels at predicting engagement patterns within the crucial first
15-30 minutes of posting (RMSE 0.118-0.143), enabling rapid assess-
ment of content reach. By incorporating interval-censored mod-
eling into the state space framework, IC-Mamba captures fine-
grained temporal dynamics of engagement growth, achieving a
4.72% improvement over state-of-the-art across multiple engage-
ment metrics (likes, shares, comments, and emojis). Our experi-
ments demonstrate IC-Mamba’s effectiveness in forecasting both
post-level dynamics and broader narrative patterns (F1 0.508-0.751
for narrative-level predictions). The model maintains strong pre-
dictive performance across extended time horizons, successfully
forecasting opinion-level engagement up to 28 days ahead using
observation windows of 3-10 days. These capabilities enable earlier
identification of potentially problematic content, providing cru-
cial lead time for designing and implementing countermeasures.
Code is available at: https://github.com/ltian678/ic-mamba. An
interactive dashboard demonstrating our results is available at:
https://ic-mamba.behavioral-ds.science/.
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1 Introduction
On 28 October 2017, an anonymous 4chan user made a brief yet
impactful post on the platform claiming that Hillary Clinton was
to be arrested in the coming days1. On 6 January 2021, devotees of
then-outgoing President Donald Trump stormed the United States
Capitol building in an act of domestic terrorism designed to prevent
President-elect Joe Biden’s election victory from being confirmed.
Five people died during and in the immediate aftermath of the
attack, and an additional four died in the subsequent months2;
and over 140 police officers were injured3. Investigations by the
Associated Press of the online social media profiles of over 120 of the
rioters revealed high levels of adherence to the QAnon conspiracy
theory that had begun just four years prior on 4chan4. This incident
highlights how social media platforms can accelerate the spread
of harmful content, particularly misinformation (false information
shared without intent to harm) and disinformation (deliberately
created and shared false information) [26, 36].

Given these ongoing impacts, the question must be asked: what
if we could have seen this coming? More specifically, what if it had
been possible to forecast user engagement with fringe ideologies
before they morph into widespread movements? We introduce IC-
Mamba , a model capable of forecasting user engagement with
online content. We go beyond the level of atomic posts to forecast
the number of likes, shares, emoji reactions, and comments for
“emerging opinions” – particular worldviews supported across a
series of posts. Our framework can forecast the arrival rate of
posts supporting an opinion, and forecast the engagement for each,
obtaining estimates of the total level of engagement for the entire

1https://www.bellingcat.com/news/americas/2021/01/07/the-making-of-qanon-a-
crowdsourced-conspiracy/
2https://www.factcheck.org/2021/11/how-many-died-as-a-result-of-capitol-riot/
3https://www.nytimes.com/2021/08/03/us/politics/capitol-riot-officers-honored.htm
4https://apnews.com/article/us-capitol-trump-supporters-1806ea8dc15a2c04f2a68a
cd6b55cace
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Figure 1: Illustration of interval-censored social media en-
gagement data. Following a post’s creation at 𝑡0, users per-
form engagement actions (view, like, comment, share, emoji)
at timestamps 𝑠1 through 𝑠8. While individual actions occur
continuously, engagement data is only collected at discrete
observation points 𝑡 𝑗 , where each engagement vector 𝑒 𝑗 cap-
tures the cumulative counts of different interaction types
over intervals of length Δ𝑡 𝑗 = 𝑡 𝑗+1 − 𝑡 𝑗 .

opinion. Our analysis leverages CrowdTangle [1] data with interval-
censored engagement metrics, where observations are made at
discrete time points with engagement counts recorded for each
interval (as seen in Fig. 1).

Recent deep learning approaches have made progress in mod-
eling social media engagement through different architectural in-
novations: language models to capture coordinated posting be-
haviors [2, 37–39] and propagation models to model information
diffusion [19, 21–25, 30, 46, 47]. State spacemodels have also demon-
strated strong performance on sequential prediction tasks [11, 15],
with their latent state representations theoretically well suited for
temporal dependencies. However, these approaches face two key
limitations when applied to mis/disinformation engagement fore-
casting: (1) they primarily focus on classification tasks rather than
quantifying future temporal patterns of engagement, and (2) they
struggle with the irregularly sampled nature of viral content.
Ourmain contributions address three research questions (RQs) at
the intersection of temporal modeling and social media dynamics:

RQ1: How can we effectively model irregular temporal patterns
in social media engagement? : Through IC-Mamba’s time-aware
embeddings and state space model architecture, we capture the
dynamics of online interactions, achieving a 4.72% improvement
over the state-of-the-art approaches.

RQ2:Can we predict viral potential within the critical early win-
dow? : IC-Mamba shows strong performance in the crucial 15-30
minute post-publication window (RMSE 0.118-0.143), while cap-
turing both granular post-level dynamics and broader narrative
patterns (F1 0.508-0.751 for narrative-level predictions).

RQ3: How can we forecast engagement with emerging opinions
early? Can we improve the accuracy and confidence of these forecasts
as engagement data streams in over time? : Our experiments show
the model effectively forecasts engagement dynamics early, using
3-, 7-, and 10-day windows to predict spreading patterns up to 28
days, with performance improving as more data streams in.

As a tool, IC-Mamba streamlines the work of human experts,
enabling earlier identification of problematic content, and therefore,
providing more time to design and implement countermeasures.

Table 1: Information used in related studies and our work
(IC-Mamba ). V: views, S: shares/retweets, C: comments, L:
likes, E: emojis, WB: Weibo, YT: Youtube, FB: Facebook.

V S C L E platform
DeepCas [27] ✓ X
DeepHawkes [7] ✓ X
Topo-LSTM [41] ✓ X
HIP [35] ✓ ✓ YT
DeepInf [32] ✓ ✓ WB and X
B-Views [44] ✓ YT
SNPP [12] ✓ X
CasFlow [45] ✓ WB
MBPP [34] ✓ ✓ YT
IC-TH [21] ✓ X
OMM [4] ✓ X,YT& FB

IC-Mamba ✓ ✓ ✓ ✓ FB

2 Related Work
This section reviews relevant literature in two key areas that under-
pin our approach to modeling and predicting social engagements
during outbreak events such as information operations and natural
disasters like the infamous 2019-2020 Australian Bushfires: popu-
larity and engagement prediction on social media platforms, and
state space models for sequence modeling and prediction.

2.1 Popularity and Engagement Prediction
Social media engagement prediction research spans various plat-
forms and prediction tasks. DeepCas [27] used random walk and
attention mechanisms to predict final cascade size on X, while
SNPP [12] applied temporal point process with a gated recurrent
unit architecture for tweet repost count prediction. Topo-LSTM [41]
incorporated user interaction sequences through a topological struc-
ture for retweet prediction, while DeepInf [32] on Weibo and X pre-
dicted user retweets, likes, and following behaviors using graph con-
volutional networks within the 2-hop neighborhood. CasFlow [45]
used hierarchical attention networks for modeling Weibo reposts.
Several approaches have focused on handling temporal dynamics in
engagement prediction. DeepHawkes [7] integrated reinforcement
learning with Hawkes processes for retweet cascade prediction. For
YouTube, HIP [35] and MBPP [6, 34] advanced temporal model-
ing for views prediction, with B-Views [44] specifically addressing
cold-start scenarios. Recently, IC-TH [21] tackled the challenge of
incomplete observations in retweet prediction on X, while OMM [4]
and BMH [5] proposed a mathematical framework for shares pre-
diction on X, YouTube, and Facebook. While these approaches have
advanced cascade modeling, existing interval-censored methods
(IC-TH, MBPP) focus on single-post dynamics without considering
broader opinion-level patterns. Our work extends beyond individ-
ual post predictions to model collective opinion engagement on
Facebook, and we include these interval-censored models along
with neural approaches (TH [49]) as baselines.
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2.2 State Space Model in Sequence Modeling
State Space Models (SSMs) have recently emerged as a robust
alternative to traditional sequence modeling approaches, partic-
ularly for long-range dependency capture [18, 33]. Subsequent
work has showed their efficiency in processing extremely long
sequences [10, 16] and competitive performance in language mod-
eling [11, 15]. Despite these advancements, few studies have applied
modern SSM architectures to predict or analyze social media en-
gagement, particularly in the context of disinformation campaigns
or crisis events. Most existing methods rely on graph-based [29],
RNN [42], or transformer approaches [49] that typically assume
uniform sampling or discret snapshots. Such assumptions often
overlook fine-grained temporal patterns crucial to disinformation
campaigns or crisis events. In contrast, modern SSMs can naturally
handle non-uniform intervals and continuous-time dynamics, mak-
ing them well-suited for rapidly unfolding social media processes.
Our work bridges this gap by extending the Mamba architecture
to handle non-uniform intervals, while identifying misinformation
opinions and disinformation narratives.

3 Interval-Censored Mamba (IC-Mamba)
This section introduces IC-Mamba , our proposed approach for
engagement prediction illustrated in Fig. 2. We begin with the
problem statement (Section 3.1) and then detail the key compo-
nents of our architecture: the time-aware positional embeddings
(Section 3.2), the content and sequence embeddings (Section 3.3),
interval-censored state space modeling (Section 3.4), the pretraining
strategies (Section 3.5), and the two-tier architecture that enables
predictions at both post and opinion levels (Section 3.6).

3.1 Problem Statement
Let E denote a social outbreak event with associated posts P =

{𝑝1, 𝑝2, . . . , 𝑝𝑁 }. For each post 𝑝 ∈ P, we define a tuple (𝑡0, 𝑥,𝑢, 𝑜, 𝐻 )
where 𝑡0 denotes the original posting time; 𝑥 represents the textual
content; 𝑢 captures the user metadata; 𝑜 ∈ O indicates the opinion
class from the set of possible opinions O; and the interval-censored
engagement history is defined as 𝐻 = {(𝑡 𝑗 , 𝑒 𝑗 )}𝑚𝑗=1, with𝑚 as the
total number of observation intervals. Each 𝑒 𝑗 is a 𝑑-dimensional
vector capturing different types of engagement at observation time
𝑡 𝑗 , with intervals Δ𝑡 𝑗 = 𝑡 𝑗+1 − 𝑡 𝑗 between consecutive observations
– see also Fig. 1 for how these quantities interact. See Table 6 for a
complete reference of mathematical notations used in this work.

Given an observation window 𝜏𝑜𝑏𝑠 (e.g., 1 day), let 𝐻𝜏𝑜𝑏𝑠 (𝑝) =
{(𝑡, 𝑒) ∈ 𝐻 | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝜏𝑜𝑏𝑠 } denote the initial interval-
censored engagement history. Let Δ𝑡 be a fixed time interval (e.g.,
5 minutes) and 𝑇 be the prediction horizon (e.g., 28 days). Our
goal is to predict the engagement trajectory at regular intervals:
{𝑒 (𝑡0 + 𝜏𝑜𝑏𝑠 + 𝑘Δ𝑡)}𝐾𝑘=1, where 𝐾 = ⌊𝑇 /Δ𝑡⌋ represents the number
of prediction points.

Using this setup, we address two primary tasks. (1) Social En-
gagement Prediction: We predict engagement at both individual
and collective levels. Post level: Predict the engagement trajectory
𝑒 (𝑡0 + 𝜏obs + 𝑘 𝜏step)𝐾𝑘=1 at regular intervals 𝜏step up to horizon 𝑇
(with 𝐾 = ⌊𝑇 /𝜏step⌋), as well as the total cumulative engagement
over 𝑇 . Opinion level: For a given opinion 𝑜 , predict the collective

trajectory 𝐸𝑜 (𝑡0 + 𝜏𝑜𝑏𝑠 + 𝑘𝜏step)
𝐾

𝑘=1 , where 𝐸𝑜 is the sum of engage-
ments across all posts P𝑜 expressing 𝑜 . (2) Opinion Classification:
We learn a mapping 𝑓 : (𝑥,𝑢, 𝐻𝜏𝑜𝑏𝑠 ) ↦→ O that assigns a post
to an opinion class based on its content 𝑥 , user metadata 𝑢, and
engagement history 𝐻𝜏𝑜𝑏𝑠 .

3.2 Time-aware Positional Embeddings
The temporal dynamics of social media engagement operate at
multiple scales – from rapid initial spread to long-term influence
patterns. To capture thesemulti-scale dynamics, we introduce a dual
strategy featuring Relative Temporal Encoding (RTE) and Absolute
Temporal Encoding (ATE). RTE captures temporal relationships
between two time points 𝑡 and 𝑡𝑟𝑒 𝑓 as 𝑅𝑇𝐸 (𝑡, 𝑡𝑟𝑒 𝑓 ) = sin

(
𝑡−𝑡𝑟𝑒𝑓
𝜎

)
,

where 𝜎 is a learnable parameter that allows the model to adapt to
varying engagement velocities. ATE is capturing predictions to the
global event timeline by mapping each time point 𝑡 into a sinusoidal
embedding space:

𝐴𝑇𝐸 (𝑡) =
[
sin

(
𝑡

100002𝑖/𝑑

)
, cos

(
𝑡

100002𝑖/𝑑

)]𝑑/2−1
𝑖=0

.

These embeddings combine through a learnable projection:

𝑃𝐸 (𝑡, 𝑡𝑟𝑒 𝑓 ) =𝑊𝑝
[
𝑅𝑇𝐸 (𝑡, 𝑡𝑟𝑒 𝑓 )
𝐴𝑇𝐸 (𝑡)

]
,

which is then modulated by observed engagement 𝐸𝑃𝐸 (𝑡, 𝑡𝑟𝑒 𝑓 , 𝑒) =
𝑃𝐸 (𝑡, 𝑡𝑟𝑒 𝑓 ) ⊙

(
1 + log (1 + 𝑒)

)
, where ⊙ denotes element-wise mul-

tiplication, and 𝑒 is the engagement vector at time 𝑡 .
This engagement-sensitive embedding enables themodel to learn

characteristic temporal patterns associated with different levels of
social impact. For each post 𝑝 ∈ P and a prediction time 𝜏𝑘 , we
construct a time-aware embedding sequence 𝑇𝐸𝑘 (𝑝) ∈ R(𝑚𝑘+1)×𝑑

as𝑇𝐸𝑘 (𝑝) =
[
𝐸𝑃𝐸 (𝑡 𝑗 , 𝜏𝑘 , 𝑒 𝑗 ) | (𝑡 𝑗 , 𝑒 𝑗 ) ∈ 𝐻𝜏𝑜𝑏𝑠 (𝑝)

]
∪ [𝑃𝐸 (𝜏𝑘 , 𝜏𝑘 , 0)],

where 𝐻𝜏𝑜𝑏𝑠 (𝑝) = {(𝑡, 𝑒) ∈ 𝐻 | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝜏𝑜𝑏𝑠 } is the observed
engagement history within the observation window 𝜏𝑜𝑏𝑠 .

3.3 Content and Sequence Embedding
To create a unified representation of social media posts, we must
handle both textual content and temporal patterns. We use a byte-
level BPE tokenizer [3] to process the social media text, enabling us
to embed the multi-modal information (content, user metadata, and
temporal dynamics) into a single sequence representation: 𝑆𝐸 (𝑝) =
𝐸𝑛𝑐𝑜𝑑𝑒𝑟 ( [𝐶𝐿𝑆] ⊕ [𝑥] ⊕ [𝑆𝐸𝑃] ⊕ [𝑢] ⊕ [𝑆𝐸𝑃] ⊕ [𝑇 ] ⊕ [𝑆𝐸𝑃] ⊕ [𝑒 𝑗 ]).
Here, 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 is a transformer-based function, 𝑥 is the post text, 𝑢
is user metadata,𝑇 = {𝑡0, 𝑡1, . . . , 𝑡𝑚} is the post’s timeline of engage-
ment events, {𝑒 𝑗 } are engagement counts, and [𝐶𝐿𝑆] and [𝑆𝐸𝑃]
are special tokens. Note that the 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 function maps the input
sequence to a fixed-dimensional space R𝑑 , where 𝑑 is the embed-
ding dimension. This allows for building uniform representations
regardless of the posts’ content or engagement history length.

3.4 Interval-Censored State Space Modeling
Here, we extend the Mamba architecture to incorporate time inter-
vals within the state space model. Standard SSMs assume regular
sampling intervals, which fails to capture social media engage-
ment’s irregular and censored nature (see Fig. 1). We address this
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Figure 2: Overview of the IC-Mamba Architecture for social media engagement prediction. (left panel) The model first takes
three types of inputs (interval-censored social engagement, post content, and user metadata). These inputs are tokenized
through a linear tokenization layer. The tokenized sequence (combination of temporal embedding, positional embeddings
and user embeddings) is processed through N-stacked IC-Mamba blocks. (right panel) Each IC-Mamba block contains a
selective SSM mechanism and parallel Conv1d operations to handle input and time-interval vectors simultaneously. Lastly, the
processed features go through normalization and linear layers to generate the final social engagement predictions.

through three key components: interval-aware state representation,
time-dependent transitions, and selective state updates.
Interval-aware State Representation. For each observation time
𝑡 𝑗 in the engagement history 𝐻𝜏𝑜𝑏𝑠 (𝑝), we construct an interval-
aware vector 𝑣 𝑗 ∈ R4𝑑 :

𝑣 𝑗 = [Δ𝑡−𝑗 ; log(1 + 𝑒 𝑗 );Δ𝑡
+
𝑗 ; log(1 + 𝑒 𝑗+1)],

where Δ𝑡−
𝑗
= 𝑡 𝑗 − 𝑡 𝑗−1 captures the time since the last observation,

𝑒 𝑗 is the current engagement vector, Δ𝑡+
𝑗
= 𝑡 𝑗+1 − 𝑡 𝑗 is the forward

interval length, and 𝑒 𝑗+1 is the predicted next engagement vector.
To maintain a consistent representation when transitioning

from variable-length historical intervals to fixed-length prediction
intervals, at each prediction time point 𝜏𝑘 , we construct: 𝑣𝑘 =

[𝜏𝑘 − 𝑡 𝑗 ; log(1 + 𝑒 𝑗 );𝜏𝑘+1 − 𝜏𝑘 ; log(1 + 𝑒𝑘 )], using the last observed
engagement (𝑡 𝑗 , 𝑒 𝑗 ) in 𝐻𝜏𝑜𝑏𝑠 .
Time-Dependent State Transitions. We handle varying-length
censored intervals by modifying the standard SSM architecture to
incorporate time-dependent state transitions. For a hidden state
dimension 𝐷ℎ and input dimension 𝐷 , our model becomes:

A𝑡 (Δ𝑡) = exp(Δ𝑡 · Ã𝑡 ) ∈ R𝐷ℎ×𝐷ℎ ,

h𝑡 = A𝑡 (Δ𝑡)h𝑡−1 + B𝑡x𝑡 , y𝑡 = C𝑇𝑡 h𝑡 ,

where h𝑡 ∈ R𝐷ℎ is the hidden state at time 𝑡 , x𝑡 ∈ R𝐷 is de-
rived from the interval-aware vector 𝑣 𝑗 , and the matrix exponential
exp(Δ𝑡 ·Ã𝑡 ) enables smooth interpolation across censored intervals.
Selective State Processing.We integrate the temporal embeddings
(𝑇𝐸𝑘 (𝑝)) and interval-aware vectors through parallel pathways:

[X,𝚫,B,C] = Projection
(
V,𝑇𝐸𝑘 (𝑝)

)
∈ R𝐿×(𝐷+1+2𝑁 )

where 𝐿 is the sequence length, V ∈ R𝐿×4𝑑 is the sequence of
interval-aware vectors, and𝑇𝐸𝑘 (𝑝) provides temporal context. The
selective SSM mechanism then processes as follows:

Y = SSM(Ã,B,C,X,𝚫) ∈ R𝐿×𝐷 ,
The final output is modulated through a gating mechanism:

Output = Y ⊙ 𝜎
(
Conv1d(X)

)
∈ R𝐿×𝐷 ,

where 𝜎 is the Silu activation function [14] and Conv1d [17] cap-
tures local engagement patterns.

3.5 IC-Mamba Pretraining
Creating labeled sets of misinformation and disinformation cam-
paigns is a human-time-intensive process, and often, the resulting
training sets are too small to allow training an architecture such
as IC-Mamba from scratch. Algorithm 1 outlines the pretraining
procedure for IC-Mamba . We introduce D = {(𝑝𝑖 , 𝐻𝑖 , 𝑥𝑖 , 𝑢𝑖 )}𝑀𝑖=1,
a pretraining dataset comprising 1.78 million posts and their as-
sociated social engagement timelines – totaling over 153 million
timelines – collected from the two datasets SocialSense [20] and
DiN (detailed in Section 4.1). Here 𝑀 is the number of posts and
𝐻𝑖 = {(𝑡𝑖,𝑛, 𝑒𝑖,𝑛)}𝑚𝑖

𝑛=1 with |𝐻𝑖 | = 𝑚𝑖 represents the complete en-
gagement history for post 𝑝𝑖 .
Objective Function. We define two objective functions that we
combine for pretraining.

Engagement Prediction Loss. For each post, we train the model to
predict the next engagement vector:

Lpred =
1
|P |

∑︁
𝑝∈P

𝑚−1∑︁
𝑗=0
∥𝑒 𝑗+1 − 𝑒 𝑗+1∥2 , (1)
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Algorithm 1 IC-Mamba Pretraining

1: Initialize parameters 𝜃 = {Ã,B,C,W𝑝 , 𝜃Encoder}
2: for epoch = 1 to 𝑁epochs do
3: for batch B ⊂ D do
4: Construct interval-aware vectors {v𝑗 } 𝑗∈B
5: Compute temporal embeddings {𝑇𝐸𝑘 (𝑝)}𝑝∈B
6: [X,𝚫,B,C] ← Projection({v𝑗 }, {𝑇𝐸𝑘 (𝑝)})
7: H← SSM(Ã,B,C,X,𝚫)
8: Ê← MLP(H)
9: Compute Lpred (Eq. (1)) and Ltemp (Eq. (2))
10: Update 𝜃 using ∇𝜃 (Lpred + 𝜆Ltemp)
11: end for
12: end for
13: return 𝜃

where 𝑒 𝑗+1 ∈ R𝑑 is the predicted engagement vector.
Temporal Coherence Loss. We enforce consistent state transitions

across intervals:

Ltemp =
1
|P |

∑︁
𝑝∈P

𝑚−1∑︁
𝑗=0
∥h𝑗+1 − exp(Δ𝑡+𝑗 · Ã𝑡 )h𝑗 ∥

2 , (2)

where h𝑗 ∈ R𝐷ℎ is the hidden state at time 𝑡 𝑗 and the exponential
term comes from our SSM formulation.

The pretraining loss combines these objectives from Eq. (1) and
Eq. (2) as Ltotal = Lpred + 𝜆Ltemp, where 𝜆 is a hyperparameter
balancing the two losses.

3.6 Two-Tier IC-Mamba Architecture
It is desirable to model and predict the engagement dynamics of a
group of posts expressing the same opinion – dubbed the engage-
ment of an opinion. We propose a hierarchical two-tier architecture,
showcased in Fig. 3. The intuition of the two-tier IC-Mamba model
is that the first tier (IC-Mamba1) models the arrival of engagement
on an individual post. The second tier (IC-Mamba2) models the
arrival of posts within an opinion.
Post-Level Processing. In the first tier, for each opinion 𝑜 , we
process all posts 𝑝𝑖 ∈ P𝑜 individually using the IC-Mamba1 model:

h𝑖 = IC-Mamba1 (𝐻𝜏𝑜𝑏𝑠 (𝑝𝑖 ), 𝑥𝑖 , 𝑢𝑖 ), ∀𝑝𝑖 ∈ P𝑜 (3)

where 𝐻𝜏𝑜𝑏𝑠 (𝑝𝑖 ) is the interval-censored engagement over obser-
vation window and h𝑖 the hidden state representation of post 𝑝𝑖 .
Group-Level Dynamics. In the second tier, wemodel the temporal
interactions between posts sharing opinion 𝑜 . By ordering posts in
P𝑜 chronologically by posting time 𝑡p

𝑖
, we capture the inter-post

intervals 𝛿𝑡𝑖 = 𝑡
p
𝑖+1−𝑡

p
𝑖
between posts in the group. The group-level

dynamics are modeled using IC-Mamba2 with h𝑖 from Eq. (3):

z𝑜 = IC-Mamba2 ((h𝑖 , 𝛿𝑡𝑖 )) .

4 Experiments and Results
In this section, we present the experimental setup and the results
we obtain; including datasets and data insights (Section 4.1), the
baseline models we compare against (Section 4.2), and the results
that address our research questions (Section 4.3).

Group-level

Norm + Linear

Post-level

Engagement 
Prediction

Figure 3: Two-Tier IC-Mamba Architecture. The bottom-
tier model (IC-Mamba1) learns post-level representations
from historical (𝐻 ), content (𝑥), and user (𝑢) features, while
the top-tier model (IC-Mamba2) captures temporal depen-
dencies across intervals 𝛿𝑡 to jointly predict individual post
virality and aggregate narrative engagement dynamics.

Table 2: Dataset Statistics

Dataset Bushfire Climate Ch. Vaccin. COVID-19 DiN

#posts 78,030 138,278 178,894 640,100 746,653
#users 13,438 25,850 34,652 67,727 41
#opinions 15 24 27 17 9

4.1 Datasets
Datasets. Our experiments use two Facebook datasets: the theme-

focused SocialSense dataset [20] and the user-centric Disinforma-
tion Network (DiN) dataset. For each post in our datasets, we col-
lect historical engagement metrics (likes, shares, comments, emoji
reactions) collected via CrowdTangle API5. SocialSense contains
posts and comments from four main themes during 2019-2021(see
Table 2) that attracted significant volumes of misinformation and
conspiratorial discussions. The DiN dataset comprises posts from 41
accounts (2019-2024). Social science experts systematically analyzed
and assigned narrative labels to these posts through comprehensive
content evaluation to detect suspected coordinated information op-
erations. The two datasets capture the dynamics of misinformation
across diverse real-world events (SocialSense) and disinformation
narrative spread by information operation networks (DiN). 6

Data Insights. Fig. 4(a) and (b) present the Empirical Comple-
mentary Cumulative Distribution Functions (ECCDFs) for likes,

5https://www.crowdtangle.com/ before its termination in August 2024.
6Note that, posts with fewer than four engagement intervals were excluded from
model evaluation to ensure sufficient temporal depth.
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(a) (b) (c)

Figure 4: Engagement distribution patterns across social media content. (a) Log-scale ECCDF of engagement metrics for the
DiN dataset. (b) Log-scale ECCDF of engagement metrics from the climate change theme in SocialSense. (c) Temporal evolution
of comment distributions across different time windows ranging from 1 hour to 7 days. Note: ECCDF represents Empirical
Complementary Cumulative Distribution Functions.

shares, comments, and emoji reactions across DiN (a) and the Cli-
mate Change theme in SocialSense (b). The survival probability
𝑃 (𝑋 ≥ 𝑘) measures the likelihood of achieving at least 𝑘 engage-
ments [9], and the power-law exponent 𝛼 characterizes the decay
rate [31]. While Climate Change content rarely exceeds 104 total
engagements, DiN reaches 106, indicating significantly broader
reach. In the low-engagement regime (1 ≤ 𝑘 ≤ 10), DiN exhibits a
higher survival probability (𝛼 ≈ 2.1) compared to Climate Change
(𝛼 ≈ 2.4), suggesting stronger early visibility potential. The mid-
range (10 ≤ 𝑘 ≤ 1000) shows uniform decay across engagement
types for Climate Change, reflecting organic interaction patterns. In
contrast, DiN reveals marked stratification, especially in likes. Be-
yond 𝑘 > 1000, Climate Change content plateaus near 103 engage-
ments, aligning with established social network theory regarding
human-scale constraints – approximately 150 stable connections,
known as Dunbar’s number [13] – while DiN content transcends
these natural limits, reaching 106 engagements.

Fig. 4(c) offers examines comment distributions over time win-
dows ranging from one hour to seven days. The scale-invariant,
power-law structure persists across all observation periods, though
longer windows (3–7 days) exhibit slightly elevated survival prob-
abilities beyond 103. This self-similar temporal behavior distin-
guishes naturally diffusing, high-visibility content from artificially
amplified patterns, underscoring the unique viral longevity of DiN.

4.2 Baselines and Experimental Setup
We compare our IC-Mamba model against the following state-of-
the-art baselines, including generative models, transformer-based
architectures and state space models:
• TimeSeriesTransformer [28]7 is a transformer-based model
specifically adapted for time series forecasting. It applies self-
attention mechanisms to capture temporal dependencies.
• Informer [48]8 is a long sequence time-series forecasting model
that uses a ProbSparse self-attention mechanism to handle long-
term dependencies.
• Autoformer [43]9 is a decomposition-based architecture for
long-term time series forecasting. It uses an auto-correlation

7https://huggingface.co/docs/transformers/en/model_doc/time_series_transformer
8https://huggingface.co/docs/transformers/en/model_doc/informer
9https://huggingface.co/docs/transformers/en/model_doc/autoformer

mechanism to identify period-based dependencies and a series
decomposition architecture for trend-seasonal decomposition.
• MeanBehaviour Poisson (MBP) [34] is a generative time series
model that uses a compensator function to model non-linear
engagement patterns. It treats each engagement as an event in a
continuous time process and optimizes post-specific parameters
to model the expected cumulative engagements over time to
capture the growth patterns.
• Transformer-Hawkes (TH) [49] is a model that combines the
transformer architecture with the Hawkes process for modeling
sequential events. It uses self-attention mechanisms to capture
temporal dependencies in event sequences.
• Interval-Censored Transformer Hawkes (IC-TH) [21] is a
TH extension designed to handle interval-censored data. It adapts
the transformer architecture to work with event data where exact
occurrence times are unknown but bounded within intervals.
• TS-Mixer [8]10 is a model that combines MLPs and transformers
for time series forecasting. It uses separate mixing operations
across the temporal and feature dimensions, allowing it to capture
both temporal patterns and feature interactions.
• Mamba [11]11 is a selective state space model, it uses selective
algorithms instead of attention mechanisms for sequence model-
ing. It can handle long-range dependencies in sequential data for
time series analysis tasks.

Experimental settings. We use a temporal holdout evaluation
protocol across all the datasets. We chronologically order all posts
and use the earliest 70% for training, the next 15% for validation, and
the most recent 15% for testing. This ensures no future information
leaks into training and models are evaluated on their ability to
generalize to future posts. Models are implemented using PyTorch,
with hyperparameters and other settings detailed in Appendix B.

4.3 Engagement Prediction–RQ1
We evaluate the performance of our models with two tasks: en-
gagement forecasting and opinion classification. For engagement
prediction, we observe the first six hours of engagement metrics
for each post and forecast the overall engagement metrics (i.e., at

10https://github.com/google-research/google-research/tree/master/tsmixer
11https://huggingface.co/docs/transformers/en/model_doc/mamba2
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Table 3: Post-level engagement prediction performance of IC-Mamba vs baselines on SocialSense (four themes) and DiN;
measured using RMSE and MAPE (lower is better), and 𝑅2 (higher is better). Best performance in boldface.

Model Bushfire Climate Change Vaccination COVID-19 DiN

RMSE MAPE 𝑅2 RMSE MAPE 𝑅2 RMSE MAPE 𝑅2 RMSE MAPE 𝑅2 RMSE MAPE 𝑅2

TSTransformer [40] 0.185 0.232 0.651 0.192 0.241 0.643 0.180 0.226 0.658 0.188 0.236 0.647 0.221 0.276 0.568
Informer [48] 0.172 0.216 0.678 0.179 0.224 0.670 0.167 0.210 0.685 0.175 0.220 0.674 0.206 0.258 0.598
Autoformer [43] 0.163 0.204 0.697 0.169 0.212 0.689 0.158 0.198 0.704 0.166 0.208 0.693 0.195 0.244 0.619

MBPP [34] 0.183 0.229 0.655 0.192 0.241 0.643 0.181 0.227 0.656 0.189 0.237 0.645 0.222 0.278 0.566
IC-TH [21] 0.156 0.195 0.712 0.162 0.203 0.704 0.151 0.189 0.719 0.159 0.199 0.708 0.187 0.234 0.636

TH [49] 0.149 0.187 0.726 0.155 0.194 0.718 0.144 0.181 0.733 0.152 0.190 0.722 0.179 0.224 0.652
TS-Mixer [8] 0.155 0.194 0.714 0.161 0.202 0.706 0.150 0.188 0.721 0.158 0.198 0.710 0.186 0.233 0.638

Mamba [11] 0.124 0.155 0.776 0.129 0.161 0.768 0.119 0.149 0.783 0.127 0.159 0.772 0.150 0.188 0.708
IC-Mamba w/o text 0.123 0.154 0.778 0.128 0.160 0.770 0.118 0.148 0.785 0.126 0.158 0.774 0.145 0.181 0.718
IC-Mamba w/o user 0.120 0.150 0.785 0.125 0.156 0.777 0.115 0.144 0.792 0.123 0.154 0.781 0.146 0.183 0.716
IC-Mamba w/o time 0.121 0.151 0.783 0.126 0.157 0.775 0.116 0.145 0.790 0.124 0.155 0.779 0.149 0.186 0.711
IC-Mamba 0.118 0.148 0.789 0.123 0.154 0.781 0.113 0.142 0.796 0.121 0.152 0.785 0.143 0.179 0.723

𝑇 = ∞). For opinion classification, we evaluate our model’s classifica-
tion performance at multiple granularities. We perform a post-level
opinion classification across the four SocialSense themes (bushfire,
climate change, vaccination, and COVID-19) – that is, we predict if
a given post expresses one of the predefined opinions. For the DiN
dataset, we perform a user-level opinion classification – classify the
presence of opinions across multiple posts from the same user.
Post-level Engagement Prediction Performance – RQ1 Table 3
reports the performance metrics using three standard measures. We
evaluate the models using RMSE to assess absolute prediction errors
(crucial for high-engagement posts), MAPE for scale-independent
accuracy, and 𝑅2 to measure explained variance in engagement
predictions. IC-Mamba outperforms all baselines on every metric
(RMSE, MAPE, and 𝑅2) and dataset, while the original Mamba archi-
tecture ranks consistently second, confirming the effectiveness of
state space models. Among transformers, IC-TH improves upon TH,
and TS-Mixer outperforms both Autoformer and Informer; TSTrans-
former lags behind. Interestingly, the lightweight MBP model, still
competes well on some events (particularly bushfire and climate
change). All models exhibit performance degradation on the DiN
dataset, reflecting the complexity of predicting engagement in coor-
dinated campaigns. For models supporting dynamic prediction time
points, additional results for next-time and next social engagement
metrics are provided in Appendix D.

We conduct an ablation study to understand the contribution of
different components by removing text, user, and temporal features
from IC-Mamba (Table 3). Text features demonstrate a stronger
influence on SocialSense datasets, where their removal leads to a
0.005 RMSE increase, compared to a smaller 0.002 RMSE increase
in the DiN dataset. This difference highlights the crucial role of
textual content in organic content spread versus coordinated cam-
paigns. Temporal features, conversely, show greater impact on the
DiN dataset, where their removal results in a 0.006 RMSE increase,
compared to a 0.003 RMSE increase in SocialSense datasets. This
may suggest the strategic temporal patterns in coordinated disinfor-
mation campaigns. User features maintain consistent importance

across both datasets, with their removal causing similar perfor-
mance degradation (0.002-0.003 RMSE increase) regardless of the
dataset type. Even with text features removed, IC-Mamba still
outperforms IC-TH, improving RMSE from 0.156 to 0.123 on the
Bushfire dataset, demonstrating the fundamental strength of our
model’s architectural design.
Opinion-level Classification Performance –RQ1 In our clas-
sification settings, we tackled datasets of varying complexity: the
bushfire dataset contains 9 opinions, climate change and vaccination
each have 12 classes, the COVID-19 dataset includes 10 classes, and
the DiN (Disinformation Narrative) dataset comprises 9 distinct
narrative labels. We also include a random classification baseline
with an expected F1 score of 1/𝑁 for each dataset, where 𝑁 is the
number of classes. Note that we removed opinions with less than
5, 000 posts in this experimental setting.

Table 4 presents the macro-averaged F1 scores for classification
across models and datasets. IC-Mamba consistently outperforms
all others, achieving F1 scores between 0.69 and 0.75. While BERT
performs well on SocialSense (F1: 0.62–0.68), both models see signif-
icant drops on DiN, with IC-Mamba scoring 0.52 and BERT falling
to 0.11. This highlights the limitations of text-only analysis for
DiN, where narrative elements demand more complex temporal
or contextual understanding. Informer, Autoformer, and Mamba
struggle on SocialSense (F1 < 0.41) but perform relatively better on
DiN, with Mamba achieving its best score of 0.32. This suggests
that temporal and non-textual features are critical for narrative
detection, contrasting with the outbreak event focus of SocialSense.

4.4 Early Engagement Prediction–RQ2
We vary the length of the observed period in the temporal holdout
setup (see Section 4.2) to assess how well different models can
forecast engagement in the critical initial hours after a post is made.
Fig. 5a shows RMSE-based early prediction performance for the
climate change theme in SocialSense, measured at intervals from
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Figure 5: Comparative analysis of early prediction performance and dynamic forecasting. (a) Performance comparison on
RMSE between IC-Mamba and baseline models from 15 minutes to 6 hours after posting. (b)(c) IC-Mamba ’s 28-day predictions
with 5-minute intervals using 7-day (b) and 10-day (c) input windows respectively.

Table 4: Opinion Classification results; F1 scores are reported;
higher is better; best results in boldface.

Model Bushfire Climate Vaccination COVID-19 DiN
Random 0.111 0.083 0.083 0.083 0.111

Informer [48] 0.323 0.291 0.274 0.299 0.248
Autoformer [43] 0.342 0.313 0.278 0.324 0.255

BERT [40] 0.676 0.652 0.621 0.644 0.107

Mamba [11] 0.412 0.375 0.363 0.388 0.316
IC-Mamba 0.751 0.724 0.687 0.705 0.508

15 minutes to 6 hours after posting, across Informer, Autoformer,
TS-Mixer, IC-TH, and IC-Mamba .

All models demonstrate substantial improvement in prediction
accuracy over time, with error rates decreasing from 15 minutes
to 6 hours. The most notable improvements occur in the first hour,
particularly between 15-50 minutes, suggesting that the first hour
of a post’s life is crucial for accurate engagement forecasting. IC-
Mamba outperforms other models across all time points, and its
performance advantage increases over time. While all models show
similar patterns of improvement in the first hour, IC-Mamba
continues to achieve increasingly better RMSE scores through the
6-hour mark, reaching the lowest RMSE of 0.118. IC-TH maintains
second-best performance throughout most of the timeline, followed
by Autoformer. The Informer and TS-Mixer models show higher
error rates, with their performance plateauing more quickly than
the interval-censored approaches. This performance gap may il-
lustrate the benefits of interval-censored modeling in engagement
prediction tasks on real-world social media platforms, while the
widening gap in RMSE scores over time suggests that IC-Mamba ’s
improvements go beyond just interval-censored modeling, poten-
tially indicating better long-range dependency learning.

4.5 Dynamic Opinion-level Prediction–RQ3
This section simulates a real-world monitoring and forecasting
scenario. We analyze the opinion “Climate change is a UN hoax”
from the SocialSense climate dataset. Fig. 5(b)(c) demonstrates our
dynamic prediction approach at opinion-level across multiple in-
teraction types (likes, comments, emojis, and shares) over a 28-day

period. We showcase two scenarios of initial data windows – 168
hours (1 week), and 240 hours (10 days). Our model first processes
the initial historical data window to establish baseline engagement
patterns. As time progresses beyond these initial periods (marked
by "Predictions Start" lines), the model continuously incorporates
new engagement data to refine its predictions. The shaded areas
around each prediction line represent the 95% confidence intervals
– obtained from all previous prediction for this time – providing
a measure of prediction uncertainty over time. We see that the
uncertainty reduces as more initial data is available, suggesting that
increased historical data improves the model’s predictive accuracy.

5 Conclusion
IC-Mamba demonstrates strong performance inmodeling interval-
censored engagement data, providing early predictions of viral
content, and tracking long-term opinion spread across platforms.
Through the novel integration of interval-censored modeling and
temporal embeddings within a state space model, IC-Mamba
achieves strong performance in predicting dynamic misinforma-
tion and disinformation engagement patterns and opinion clas-
sification. These capabilities enable platforms and researchers to
identify potentially harmful content and coordinated campaigns
in their early stages, facilitating proactive intervention strategies
while respecting platform constraints and user privacy. Future work
could enhance IC-Mamba through cross-platform dynamics model-
ing, interpretable attention mechanisms, and real-time deployment
adaptations. Online misinformation and information campaigns are
part of our digital ecosystem today, but we do not need to resign
ourselves to reactively attempting damage control after the fact.
With IC-Mamba, we can identify the next QAnon or climate change
denialism conspiracies before they gain mass exposure; and we
could mitigate the damage it can do to our lives and democratic
societies. We provide detailed discussion of ethical considerations
and safeguards in Appendix A.
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A Ethics Considerations
Our research exclusively uses publicly available Facebook data on
CrowdTangle, adhering to the platform’s terms of service and re-
search guidelines. We implement strict data protection measures: all
user identifiers are anonymized, personal information is excluded
from our analysis, and we focus solely on aggregate engagement
patterns. Our data collection and processing procedures have been
reviewed and approved. We maintain data minimization principles,
collecting only information necessary for our research objectives.

B Experimental Settings
To evaluate our proposed IC-Mamba model, we conducted sys-
tematic experiments with different parameter configurations. This
section includes our experimental environment, hyperparameters,
and optimization approach.

B.1 Experimental Environment
All experiments were conducted using PyTorch 2.0 on a GPU cluster
with 4xNVIDIAA100 GPUswith 40GBmemory. All reported figures
are averaged across ten runs with different random seeds.

B.2 Hyper-parameters
Table 5 lists the hyperparameter ranges used in our experiments.

C Mathematical Notations and Definitions
Table 6 summarizes the notations used throughout the paper to de-
scribe social outbreak events, associated posts, and the engagement
predictions. Each notation is accompanied by a brief explanation
for clarity and ease of reference.

D Next-time Social Engagement Prediction
While overall engagement prediction provides valuable insights
into model performance, the ability to predict engagement at future
time points is crucial for real-time social media monitoring and
intervention. This section focuses on models capable of generating
predictions for upcoming engagement values at the next future time
point. We evaluate Informer [48], Autoformer [43], Mamba [11],
and IC-Mamba for this task, as these models are architecturally
designed for next-point prediction.

We follow the same temporal set up for next-time social engage-
ment prediction task, with 6-hour history data as the input. For
this task, we set up three different temporal stages of post lifecycle,

Table 5: IC-Mamba Hyperparameters

Parameter Range

Hidden Size (𝑁 ) [256, 1024]
Input Dimension (𝐷) [64, 128]
Number of IC-Mamba Blocks [2, 8]
Embedding Dimension (𝑑) [128, 512]
Interval-Censor State Dim [512, 2048]
Sequence Length (𝐿) [1024, 8192]

Batch Size [16, 128]
Learning Rate [1e-5, 1e-3]
Warmup Steps [500, 1650]
Weight Decay [0.005, 0.15]
Dropout Rate [0.15, 0.3]
𝜆 (Loss Weight) [(0.1, 0.9),(0.4,0.6)]
Training Epochs [50, 150]
Early Stopping Patience [5, 20]

𝜏 (RTE Parameter) [5000, 20000]
Time Granularity [5m, 1h]
Max Prediction Window [7d, 28d]

𝛽1 [0.85, 0.95]
𝛽2 [0.995, 0.9999]
𝜀 [1e-9, 1e-7]
Gradient Clipping [0.5, 5.0]

each representing different length of intervals and data availability
scenarios. Early-stage predictions (within first hour) have limited
historical data but require quick response to emerging trends. Mid-
stage predictions (within first day) balance data availability with
evolving engagement patterns. Late-stage predictions (within first
week) have rich historical context but must account for long-term
engagement dynamics.

Fixed-Window Prediction (6-Hour Input). Table 7 presents the
RMSE scores for engagement prediction using a fixed 6-hour his-
torical window. All models use exactly 6 hours of historical data
regardless of when the next engagement occurs. We observe that
IC-Mamba consistently achieves the lowest RMSE scores across
all datasets, indicating strong performance in capturing short-term
temporal patterns. However, it’s noteworthy that baseline models
like Autoformer and Informer also perform competitively, suggest-
ing that the fixed-window approach provides sufficient context
for short-term prediction. An interesting finding is that the perfor-
mance gap between IC-Mamba and Mamba is relatively small in
this setting.

Early-Stage Prediction (≤ 1 hour). In the early-stage prediction
task, models forecast the next engagement within the first hour of
a post’s publication. As shown in Table 8, all models experience in-
creased RMSE compared to the fixed-window prediction, reflecting
the challenge of making accurate predictions with limited historical
data (typically 2-9 data points). Notably, IC-Mamba achieves the
lowest RMSE, but the performance gap between IC-Mamba and
Mamba widens in this setting.
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Table 6: Notation Table

Notation Description

E A social outbreak event
P The set of associated posts for E, P = {𝑝1, 𝑝2, . . . , 𝑝𝑁 }
𝑝 A single post 𝑝 ∈ P
𝑡0 The original posting time of a post 𝑝
𝑥 The textual content of a post 𝑝
𝑢 User metadata associated with the post
O The set of possible opinion classes
𝑜 The opinion class of a post, 𝑜 ∈ O
P𝑜 The set of posts sharing opinion 𝑜 , {𝑝 ∈ P | 𝑜 (𝑝) = 𝑜}
𝐻 Interval-censored engagement history of a post,

𝐻 = {(𝑡1, 𝑒1), . . . , (𝑡𝑚, 𝑒𝑚)}
𝑡 𝑗 Observation time for engagement measurement in 𝐻
𝑒 𝑗 𝑑-dimensional vector capturing different types of

engagement at time 𝑡 𝑗
Δ𝑡 𝑗 Interval between consecutive observations,

Δ𝑡 𝑗 = 𝑡 𝑗+1 − 𝑡 𝑗
𝜏𝑜𝑏𝑠 Observation window duration (e.g., 1 day)
𝐻𝜏𝑜𝑏𝑠 (𝑝) Initial engagement history within observation window,

{(𝑡, 𝑒) ∈ 𝐻 | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝜏𝑜𝑏𝑠 }
𝑇 Prediction horizon (e.g., 28 days)
𝜏step Fixed time interval for predictions (e.g., 5 minutes)
𝐾 Number of prediction points, 𝐾 = ⌊𝑇 /𝜏step⌋
𝑒 (𝑡) Predicted engagement at time 𝑡
𝑒total Predicted total cumulative engagement over horizon 𝑇

Table 7: Engagement prediction results with fixed 6-hour his-
torical window; RMSE scores reported; lower is better; best
results in boldface. All models use exactly 6 hours of histori-
cal data regardless of when the next engagement occurs.

Model Bushfire Climate Vaccination CoVID DiN

Informer [48] 0.208 0.215 0.203 0.211 0.248
Autoformer [43] 0.196 0.203 0.191 0.199 0.234

Mamba [11] 0.152 0.158 0.147 0.155 0.184
IC-Mamba 0.144 0.150 0.139 0.147 0.175

Table 8: Early-stage engagement prediction results (next in-
terval ≤ 1 hour); RMSE scores reported; lower is better; best
results in boldface.

Model Bushfire Climate Vaccination CoVID DiN

Informer [48] 0.245 0.252 0.238 0.248 0.299
Autoformer [43] 0.231 0.238 0.225 0.234 0.284

Mamba [11] 0.188 0.194 0.193 0.201 0.265
IC-Mamba 0.169 0.175 0.164 0.172 0.235

Another observation is that the baseline models, Informer and
Autoformer, show a heavy drop in performance during early-stage
predictions. Additionally, the DiN dataset shows higher RMSE
scores across all models, indicating that early-stage prediction is
particularly challenging for post related to disinformation.

Table 9: Mid-stage engagement prediction results (next inter-
val ≤24 hours); RMSE scores reported; lower is better; best
results in boldface.

Model Bushfire Climate Vaccination CoVID DiN

Informer [48] 0.198 0.205 0.193 0.201 0.235
Autoformer [43] 0.187 0.194 0.182 0.190 0.223

Mamba [11] 0.142 0.148 0.137 0.145 0.172
IC-Mamba 0.135 0.141 0.130 0.138 0.164

Table 10: Late-stage engagement prediction results (next in-
terval ≤1 week); RMSE scores reported; lower is better; best
results in boldface.

Model Bushfire Climate Vaccination CoVID DiN

Informer [48] 0.165 0.137 0.152 0.168 0.175
Autoformer [43] 0.156 0.128 0.163 0.159 0.168

Mamba [11] 0.118 0.123 0.114 0.121 0.144
IC-Mamba 0.112 0.117 0.108 0.115 0.137

Mid-Stage Prediction (≤24 hours). In the mid-stage predictions,
withmore historical data available, all models show improved RMSE
scores (Table 9). The performance gap between the models becomes
smaller, indicating that the availability of additional data helps all
models make better predictions. IC-Mamba continues to outper-
form the baselines.

An interesting finding is that the performance on Vaccination
theme shows a significant reduction in RMSE for all models in the
mid-stage prediction. This may imply that engagement patterns for
vaccination-related content become more predictable within the
first day, possibly due to sustained public interest and consistent
interaction patterns.

Late-Stage Prediction (≤1 week). For late-stage predictions, with
extensive historical data (up to one week), all models achieve their
best RMSE scores (Table 10). The performance differences between
models are less pronounced, though IC-Mamba still holds a slight
advantage.

We found that the Climate theme shows relatively low RMSE
scores across all models in late-stage prediction. This could reflect
consistent engagement patterns over longer periods for climate-
related content, perhaps due to sustained public interest and ongo-
ing discussions.
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