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Abstract
Fused filament fabrication (FFF), a 3D printing technique, has gained prominence due to its diverse application in rapid 
prototyping, custom tooling, architectural modelling, and medical device fabrication. The current literature shows extensive 
works on single-objective optimisation but limitation in studies on multi-objective optimisation that determines a set of pro-
cess parameters to attain a balance between conflicting properties such as mechanical properties and build time. Therefore, 
this study experimentally investigates mechanical properties and build time of FFF printed acrylonitrile butadiene styrene 
(ABS), considering the influences of five key FFF printing process parameters on mechanical properties, including extrusion 
temperature, layer thickness, printing speed, number of contours, and infill density. Response surface methodology (RSM) 
and artificial neural network (ANN) are both adopted for pattern recognition before the genetic algorithm (GA) and multi-
criteria decision-making (MCDM) algorithm are applied for optimisation. Results reveal that the infill density is the main 
contributor to tensile strength while the layer thickness has the highest impact on build time. Both RSM-GA and ANN-GA 
approaches succeed at achieving a balance between tensile strength and build time. In comparison to RSM, ANN proves to 
be a superior tool with remarkable accuracy in predicting responses across diverse parameter settings. The findings of this 
study hold significant implications for designers and manufacturers of domestic and small industrial components.

Keywords  Acrylonitrile butadiene styrene (ABS) · Build time · Fused filament fabrication (FFF) · Machine learning · 
Mechanical properties · Multi-objective optimisation

1  Introduction

Additive manufacturing (AM), also known as 3D printing, is 
a revolutionary manufacturing process to build objects layer 
by layer from digital designs. Unlike traditional subtractive 
technology involving material removal, AM adds material 
only where it is needed, resulting in reduced waste and intri-
cate geometries for sustainability [1, 2]. During the COVID-
19 pandemic, AM emerged as a vital tool in addressing 
supply chain disruptions and urgent medical equipment 
shortages, and AM technologies were rapidly deployed to 
produce personal protective equipment (PPE) such as face 

shields, ventilator components, and nasal swabs. The flex-
ibility of 3D printing allowed for quick design iterations 
and localised production, enabling healthcare facilities and 
communities to respond to the crisis by producing essential 
items on-site [3]. Fused filament fabrication (FFF) is a mate-
rial extrusion-based AM technique that constructs objects 
by melting and extruding thermoplastic filaments layer by 
layer. Widely known for its accessibility and versatility, FFF 
technique is used in various industries for rapid prototyping, 
functional part production, and educational purposes. Cur-
rently, FFF holds significant value in the circular economy 
due to its role in sustainable manufacturing. For example, by 
utilising both mechanically and chemically recycled plastics, 
FFF minimises waste, conserves resources, and extends the 
life of polymers.

The optimisation of the FFF printing process param-
eters is crucial for achieving consistent and high-quality 
FFF-printed objects. Properly calibrated parameters, such 
as layer thickness, printing speed, extrusion temperature, 
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and infill density, ensure optimal bonding between layers 
and mechanical properties [4, 5]. This precision minimises 
print failures, reduces material waste, and enhances produc-
tion efficiency. Surface roughness, mechanical strength, and 
dimensional accuracy are key attributes frequently targeted 
for optimisation in FFF, ensuring that FFF printed parts 
exhibiting desired aesthetics, structural integrity, and pre-
cise dimensions. The layer thickness, extrusion temperature, 
printing speed, and raster width were found as the key FFF 
printing process parameters contributing to surface rough-
ness (SR), build time (BT), and volume percentage error 
(VPE). Via using artificial neural networks (ANN) and the 
whale optimisation algorithm for optimisation, the layer 
thickness was found to be the most significant factor for SR, 
BT, and VPE [6]. A different study confirmed the increase 
of layer thickness strongly impacted all surface parameters 
of FFF-ed parts made of ABS [7]. Multiple machine learn-
ing models were employed to evaluate the nonlinear effects 
of layer thickness, printing speed, number of contours (also 
known as number of shells), build orientation and extrusion 
temperature on the surface roughness of polyvinyl butyral 
(PVB), and layer thickness and build orientation were 
found having the highest impact on the surface roughness 
[8]. The effects of all 13 FFF printing process parameters 
on the dimensional accuracy and geometric characteristic 
of FFF printed parts were investigated, and the number of 
contours was concluded as the most influential factor for 
dimensional accuracy while layer thickness had the high-
est contribution to geometric characteristics [9]. In another 
study [10], after the specimens were fabricated under the 
variation of layer thickness, build orientation, infill density, 
and number of contours, the response surface methodology 
(RSM) and ANN were adopted to study the nonlinearity of 
the data before optimising the part properties using genetic 
algorithm (GA). Tensile strength (TS) stands as a paramount 
consideration in optimising mechanical performance within 
FFF [11, 12]. This property, reflecting a material’s resistance 
to the applied forces, plays a pivotal role in determining the 
durability and load-bearing capacity of 3D-printed objects, 
thereby guiding the refinement of FFF parameters to attain 
enhanced structural integrity. Layer thickness, air gap, raster 
width, build orientation, raster angle, and number of con-
tours were taken into account to optimise TS, SR, and BT 
of FFF printed parts, and their results indicated that the lon-
gitudinal build orientation, less layer thickness, and greater 
raster width can improve material strength [13]. Another 
study confirmed that lower thickness enhanced mechanical 
responses and ANN model illustrated high accuracy in cap-
turing the influences of layer thickness, raster angle, and 
printing speed [14]. When analysis of variance (ANOVA) 
and RSM were applied to understand the effects of layer 
thickness, infill density, and raster angle on mechanical prop-
erties, infill density was claimed to be the most significant 

factor for improving TS, yield strength, elastic strength, and 
fracture strength [15].

While ANN has been utilised to capture the intricate non-
linear interactions between material properties and diverse 
process parameters, the quest to identify the optimal model 
persists as a manual undertaking. For instance, Vijayara-
ghavan, Garg [16], determined the best model after assess-
ing varied structures with hidden layers ranging from 1 to 4 
and neurons from 2 to 9 per layer. Similarly, Chinchanikar, 
Shinde [17], sought the optimal model, employing a maxi-
mum of three hidden layers and diverse neurons (10 to 750), 
yielding a correlation coefficient of 0.875 and an R-squared 
value of 0.765. Tayyab, Ahmad [18], optimised their ANN 
model for flexural strength using two hidden layers and a 
Bayesian algorithm. Alafaghani, Ablat [19], adopted a more 
exhaustive approach, exploring a wide range of combina-
tions in hidden layers (1 to 2), neurons (3 to 10), and transfer 
functions. Their procedure resulted in 36 models, their final 
prediction being an average of all outputs, showcasing the 
intricate process of refining ANN models.

Although the aforementioned trial-and-error methods 
may be apt for scenarios involving a limited count of pro-
cess parameters, they encountered challenges when faced 
with a greater number and intricacy of data points. As an 
illustration, Tura, Lemu [20], effectively established an ANN 
model, yielding a remarkable correlation coefficient R of 
0.99 to predict tensile strength from merely three process 
parameters and 15 experimental data points. However, when 
confronted with an analogous quantity of process parameters 
and an expanded dataset of 30 experimental runs, the R coef-
ficient dropped to 0.97 during the construction of the ANN 
to capture tensile strength trends [21]. Consequently, it is 
plausible to contend that a more comprehensive technique 
for constructing ANN should be devised through the evolu-
tion of contemporary software, replacing the manual selec-
tion process predominantly reliant on researchers’ expertise.

Multi-objective optimisation in FFF holds a distinct 
advantage over single-objective optimisation by consider-
ing a broader range of factors simultaneously. While single-
objective optimisation may focus solely on one aspect, such 
as tensile strength or material usage, multi-objective optimi-
sation balances multiple factors like strength, surface finish, 
and time efficiency. This holistic approach results in more 
well-rounded solutions that cater to real-world complexi-
ties and trade-offs, leading to 3D-printed parts that excel 
across various criteria and better align with complex design 
requirements and manufacturing constraints. Gurrala and 
Regalla [22] performed multi-objective optimisation for 
the TS and volume shrinkage of FFF parts by controlling 
the model interior, horizontal direction, and vertical direc-
tion. Non-dominated sorting genetic algorithm II (NSGA-
II) is a popular multi-objective optimisation algorithm 
known for its ability to efficiently handle complex problems 
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involving conflicting objectives [23]. In a study, NSGA-II 
was deployed to maximise the TS and minimise volume 
shrinkage. Apart from NSGA-II, bacterial foraging optimi-
sation (BFO) and particle swarm optimization (PSO) are 
both nature-inspired optimisation algorithms, with BFO 
mimicking bacterial foraging behaviour [24] and PSO sim-
ulating the social behaviour of particles [25], and they can 
be effectively combined in hybrid models to leverage the 
strengths of both methods for more efficient optimization. 
In a literature [26], based on the Taguchi array, the effects 
of layer thickness, support material, model interior, and ori-
entation were experimentally examined and multi-objective 
optimisation was performed for hardness, tensile strength, 
flexural modulus, and surface quality. All the responses 
were merged with suitable weight into a single response for 
PSO, BFO, and hybrid PSO-BFO. The technique for order 
of preference by similarity to ideal solution (TOPSIS) is a 
decision-making method used to evaluate and rank a set of 
alternatives based on multiple criteria [27]. In the context 
of FFF, TOPSIS holds importance as it enables a system-
atic approach to assess and select optimal combinations of 
process parameters for 3D printing. By considering various 
factors such as surface finish, mechanical properties, mate-
rial usage, and printing time, TOPSIS aids in identifying 
the most suitable parameter settings that strike a balance 
between competing objectives. Dev and Srivastava [28] 
applied TOPSIS to conduct a multi-objective optimisation 
for TS, flexural strength (FS), and material weight (MW). 
The experiment was planned based on central composite 
design (CCD) and the controlled process parameters are 
layer thickness, raster angle, extrusion temperature, printing 
speed, and infill density. ANOVA results indicated the infill 
density as the highest influential factor for all responses. 
The sequential results of ANN-GA-TOPSIS were found to 
improve the TS, FS, and MW by 6.45%, 4.19%, and 11.47%. 
In another study, the TOPSIS played an important role in 
determining the optimal process parameters for TS and 
impact strength when the FFF parts were fabricated under 
the variation of layer thickness, infill density, and build ori-
entation. Those results also revealed the increase of FS rela-
tive to the increase in layer thickness and infill density [29].

Despite the growing interest in FFF, there keeps a sub-
stantial blank in the exploration of multi-objective optimisa-
tion tailored to this additive manufacturing process. Notably, 
the existing literature lacks comprehensive investigations 
into the intricate interplay between build time and mate-
rial performance within FFF-printed parts. Recognising 
the symbiotic relationship between material performance 
and build time is paramount to ensure a balanced approach 
that not only elevates high performance but also maintains 
the essential agility and competitiveness that FFF offers. 
Although the number of contours, referring to the outer 
perimeter lines printed around each layer of a 3D object, 

was proved to enhance the material performance, e.g. tensile 
strength, its impact when correlated to other process param-
eters such as layer thickness, printing speed, extrusion tem-
perature, and infill density on build time remains uncertain 
and inadequately explored [30, 31].

In this study, the objectives are outline as follows:

•	 The primary objective is to conduct a comprehensive 
multi-objective optimisation study targeting the simul-
taneous enhancement of build time efficiency and tensile 
strength in FFF printed acrylonitrile butadiene styrene 
(ABS).

•	 The second objective is to elucidate the influence of key 
FFF printing process parameters on tensile strength and 
build time.

•	 The third objective is to evaluate the ability of two mod-
els, RSM, and ANN, in predicting the properties with 
limited available data.

However, our current study is limited to perform multi-
objective optimisation for only 5 key parameters. Moreo-
ver, our study focuses on enhancing one dimension of part 
qualities such as tensile strength while other qualities such as 
surface roughness and dimensional accuracy can be affected. 
The paper is outlined as follows. Section 2 focuses on the 
development of experimental, mathematical analysis, and 
optimisation procedures; Section 3 presents the obtained 
results and conducts the discussion; Section 4 presents the 
results of multi-objective optimisation and experimental val-
idation; Section 5 analyses the internal structures and frac-
tography of samples; and Section 6 draws conclusions based 
on the research findings and recommends the future work.

2 � Materials and methodology

2.1 � Development of three‑stage material 
optimisation framework for FFF‑printed ABS

In this study, a three-stage integrated experimental and theo-
retical analysis and optimisation framework for optimising 
FFF printed ABS is developed as depicted in Fig. 1.

At stage 1, the experiment was carried out using Tagu-
chi array L27 to collect data on tensile strength and build 
time of printed samples. Then, the data set of 27 data points 
was utilised to train ANN and RSM models for comparative 
analysis. After that, additional experiments were carried out 
to evaluate the efficiency of the models and their potentials 
in practical applications. It was worth noting that a distinct 
predictive model was constructed for each response (either 
tensile strength or build time). At stage 2, GA and TOP-
SIS were adopted to generate optimal solutions using the 
devised predictive models built in the previous stage. The 
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main target was to maximise the tensile strength while mini-
mising build time. At stage 3, additional experimental work 
was performed, and validation was performed to evaluate the 
efficiency of the devised predictive models. Specifically, the 
effectiveness of each model (ANN-GA-TOPSIS and RSM-
GA-TOPSIS) was determined by comparing the values of 
the prediction and experiment. After that, the experimental 
values of the optimal sets were compared with the maximum 
strength found from the original experimental set. Optimal 
set of the FFF printing process parameters was then deter-
mined based on the balance between the reliability of the 
predictive model and improvement.

2.2 � Sample design and experimental procedures

The testing specimens utilised in this study were dog-bone 
shaped type-V specimens with a cross-sectional area of 

3.18 × 3.20 mm, as outlined by the ASTM D638 standard. 
The CAD models of the specimens were created using Solid-
Works and then imported into an FFF printer – Flashforge 
Creator 3 Pro for their 3D printing. The primary material 
employed for the 3D printing process was ABS purchased 
from Fillamentum with a filament tensile strength of 39 
MPa.

The experimental design for this study was structured 
using the Taguchi L27 orthogonal array. Taguchi arrays are 
orthogonal designs used in robust design experiments to sys-
tematically study the effects of multiple factors with minimal 
trials. The L27 array is a 33 design, meaning that it consists 
of 27 experimental runs, supports up to 13 factors at 3 levels 
each, and allows for analysing 5 factors at 3 levels while 
maintaining orthogonality across selected factors [32]. The 
goal was to comprehensively analyse the effects of five key 
FFF printing process parameters, which are the extrusion 

Fig. 1   Schematic of systematic 
experimental and theoretical 
analysis framework for extract-
ing material properties and 
optimisation
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temperature, infill density, layer thickness, printing speed, 
and number of contours. Each parameter was varied at three 
distinct levels as shown in Table 1 and their ranges were suit-
ably determined from printing trials. Other fixed parameters 

are also listed in Table 2 for reference. It was worth not-
ing that Z-offset calibration was automatically calibrated 
and was not the focus of this study. Regardless of varied 
layer thicknesses, total number of layers was 16. To further 
determine the effects of those key process parameters, the 
fracture surfaces and internal structures of the samples were 
observed via conducting an SEM analysis using a scanning 
electron microscope (SEM) JEOL JSM-6510.

Utilising the Taguchi array yielded a total of 27 dis-
tinct combinations of the five key FFF printing process 
parameters. Each of these combinations, referred to as 
a “run”, encapsulated a unique configuration of extru-
sion temperature, infill density, layer thickness, printing 
speed, and number of contours. Within each run, a batch 
was composed of five identical samples (Fig. 2a) which 
were subsequently used for tensile testing purposes. The 
mechanical testing process was conducted using a 5-kN 

Table 1   FFF varied process 
parameters and their levels

Parameter Notation Units Number of 
levels

Level 1 Level 2 Level 3

Extrusion temperature (ET) X1 °C 3 234 237 240
Layer thickness (LT) X2 mm 3 0.1 0.2 0.3
Printing speed (PS)  X3 mm/s 3 40 70 100
Number of contours (NC)  X4 - 3 1 2 3
Infill density (ID)  X5 % 3 40 70 100

Table 2   FFF fixed process parameters

Parameter Units Value

Build orientation - Longitudinal
Raster angle - 0°/90°
Fan speed % 15
Nozzle diameter mm 0.4
Platform temperature °C 100
Retraction speed mm/s 30 mm/s
Fill pattern - Line
Cross angle - 90°

Fig. 2   a A batch of testing samples for run 21 and b tensile test setup
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Instron Machine – Instron 3365 with a strain rate of 1 mm/
min (Fig. 2b). The values presented in Table 3 for tensile 
strength (TS) in each run represent the average across all 
samples. Likewise, the build time (BT) listed in Table 3 
for each run corresponds to the build time required for 
manufacturing a single sample. Since Taguchi array is an 
experimental method, build time could be measured by 
clock physically [33]. However, prior tests demonstrated 
insignificant difference between computed and actual build 

time; the build time from the slicer was recorded to reduce 
the cost of experiment, aiming to automate the optimisa-
tion process.

To develop the RSM and ANN models, a total of 27 data 
in Table 3 were used as training set. Table 4 presents the test 
set experiments, which were designed to assess the ANN 
models’ effectiveness in response to changes in three critical 
process parameters: layer thickness, number of contours, 
and infill density, yielding a dataset of 30 points.

Table 3   Training set Run ET LT PS NC ID Tensile strength (MPa) Build 
time 
(mins)

1 234 0.1 40 1 40 11.4 ± 1.92 16.0
2 234 0.1 40 1 70 17.1 ± 0.98 21.8
3 234 0.1 40 1 100 33.8 ± 0.87 27.7
4 234 0.2 70 2 40 17.5 ± 0.66 9.0
5 234 0.2 70 2 70 21.0 ± 1.04 11.5
6 234 0.2 70 2 100 33.3 ± 1.44 13.8
7 234 0.3 100 3 40 21.9 ± 1.14 7.2
8 234 0.3 100 3 70 27.0 ± 0.58 8.7
9 234 0.3 100 3 100 33.7 ± 0.54 10.2
10 237 0.1 70 3 40 23.0 ± 2.74 16.8
11 237 0.1 70 3 70 30.5 ± 1.08 20.8
12 237 0.1 70 3 100 35.7 ± 0.79 25.0
13 237 0.2 100 1 40 13.2 ± 1.46 8.2
14 237 0.2 100 1 70 17.9 ± 0.45 10.8
15 237 0.2 100 1 100 33.7 ± 0.47 13.5
16 237 0.3 40 2 40 15.5 ± 1.35 7.8
17 237 0.3 40 2 70 20.2 ± 1.28 9.8
18 237 0.3 40 2 100 32.5 ± 0.76 11.7
19 240 0.1 100 2 40 18.6 ± 0.97 15.2
20 240 0.1 100 2 70 24.3 ± 1.09 19.7
21 240 0.1 100 2 100 36.2 ± 0.79 24.2
22 240 0.2 40 3 40 25.2 ± 0.77 11.5
23 240 0.2 40 3 70 26.7 ± 0.74 13.7
24 240 0.2 40 3 100 34.6 ± 0.87 16.2
25 240 0.3 70 1 40 13.5 ± 1.99 6.3
26 240 0.3 70 1 70 20.2 ± 0.35 8.2
27 240 0.3 70 1 100 32.5 ± 0.48 10.2

Table 4   Test set Run ET LT PS NC ID Tensile strength (MPa) Build 
time 
(mins)

28 240 0.12 100 1 50 14.5 ± 0.28 13.7
29 240 0.22 100 2 70 23.9 ± 0.81 10.5
30 240 0.28 100 3 90 32.5 ± 0.86 9.7
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2.3 � Mathematical models

2.3.1 � Response surface methodology model

The RSM model is a statistical technique used to approximate 
and optimise complex relationships between input variables 
and responses of interest in various experimental settings. 
The relationships between the output variable Y and the set 
of key FFF printing process parameters X1,X2,X3,X4, andX5 
can be captured through Eq. (1). Equation (2) shows a regres-
sion model based on the relationship of input and output 
parameters.

Based on the standard regression equation, the math-
ematical model for selected parameters can be represented 
as Eq. (3).

where, Y is the response corresponding to the selected pro-
cess parameters; K0,Ki,Kii, andKij are constant, linear, square, 
and interaction coefficients, respectively; X1,X2,X3,X4, andX5 
are the input parameters; ε is the residual error.

After eliminating the irrelevant terms, the final math-
ematical models were loaded as fitness functions into the 
multi-objective GA.

(1)Y = f (X1,X2,X3,X4,X5)

(2)Y = K0 +

n
∑

i=1

KiXi +

n
∑

i<j

KijXiXj +

n
∑

i=1

KiiX
2

i
+ 𝜀

(3)

Y = K
0
+ K

1
ET + K

2
LT + K

3
PS + K

4
NC + K

5
ID

+ K
12
ET ∗ LT + K

13
ET ∗ PS + K

14
ET ∗ NC

+ K
15
ET ∗ ID + K

23
LT ∗ PS + K

24
LT ∗ NC

+K
25
LT ∗ ID + K

34
PS ∗ NC + K

35
PS ∗ ID

+K
45
NC ∗ ID + K

11
ET

2 + K
22
LT

2 + K
33
PS

2

+K
44
NC

2 + K
55
ID

2

2.3.2 � Artificial neural network model

Addressing the existing research gap, this study explores 
the effectiveness of a recently introduced neural network 
regression model, fitrnet, available in MATLAB 2022®. 
A distinctive feature of this model lies in its capacity to 
autonomously optimise an extensive spectrum of hyper-
parameters, encompassing variables such as the number 
of hidden layers, neurons, activation functions, and the 
regularisation parameter lambda. To determine the optimal 
architecture, the search was extended up to a maximum of 
five hidden layers and 400 neurons, accompanied by an 
assessment of three commonly employed transfer func-
tions: relu, sigmoid, and tanh. Because the cross-valida-
tion was adopted, the dataset was split with a 90:10 ratio, 
resulting in 27 data points for training and 3 for testing. 
Recognising the extensive search domain, the limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm 
(LBFGS) and Bayesian optimisation approach were har-
nessed to streamline computational efficiency.

Throughout the training process, the Bayesian opti-
misation method orchestrated a reduction in cross-vali-
dation loss, depicted as a function m(x) in Eq. (5) which 
involves mean squared error (MSE) loss function com-
puted in Eq. (4), culminating in the determination of the 
optimal set of hyperparameters upon reaching the maxi-
mal objective evaluations [34, 35].

Notably, it was observed that the optimal architectural 
configuration did not invariably align with the final objective 
evaluation. Further insights into the hyperparameters 
optimisation process can be found in Table 5.

(4)MSE =
1

N

N
∑

i=1

(

Yi − Ŷi

)2

(5)m(x) = ln(1 + loss) = ln(1 +MSE)

Table 5   Hyperparameter 
optimisation

Type of network Feedforward network

Optimisation method Bayesian optimisation
Solver Limited-memory Broyden–Fletcher–

Goldfarb–Shanno algorithm 
(LBFGS)

Activations Relu, Sigmoid, Tanh
Number of hidden layers range (1, 5)
Number of hidden neurons range (1, 400)
Regularisation parameter lambda range (2.4e-7, 2.4e + 3)
Maximum objective evaluations 60
K-fold cross-validation 10
Data division Train set: 90%, test set 10%
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Figure 3 shows the ANN architecture used in the current 
study with five inputs as extrusion temperature, layer thick-
ness, printing speed, number of contours, and infill density 
and one single response as a separate model was built for 
both tensile strength and build time. For fastening the train-
ing process, all the inputs were normalised to (− 1, 1) using 
Eq. (6) where Xn,Xr,Xrmin

, and Xrmax are the normalised, 
raw, minimum, and maximum values of input parameters, 
respectively [6].

2.4 � Optimisation

2.4.1 � Multi‑objective genetic algorithm

The optimisation of process parameters is of paramount 
importance in ensuring the desirable performance of a 
given system. However, it is worth noting that achieving the 
optimal condition for a specific response variable may not 
necessarily align with the optimal settings for other response 
variables, potentially leading to conflicting objectives. This 
intricacy underscores the necessity for multi-objective opti-
misation strategies, which seek to strike a harmonious bal-
ance between diverse and often conflicting objectives. In this 
work, the RSM and ANN models were incorporated with the 
multi-objective genetic algorithm (GA) to seek the optimal 

(6)Xn = 2
Xr − Xr min

Xr max − Xr min

− 1

conditions, aiming to optimise both the tensile strength and 
build time. The tensile strength was subjected to maximise 
while minimising the build time. GA originated from John 
Holland’s work in the 1960s and was inspired by the process 
of natural evolution. GA involves creating a population of 
potential solutions, selecting the best-performing individu-
als, applying genetic operations like crossover and mutation 
to create new solutions, and repeating this process iteratively 
to evolve towards optimal solutions for complex optimisa-
tion problems [36].

2.4.2 � TOPSIS method

In this study, TOPSIS was adopted to determine the best 
optimal parameters from sets of solutions provided by RSM-
GA and ANN-GA. TOPSIS plays a pivotal role in multi-
objective optimization by systematically ranking alternatives 
based on their closeness to both the ideal and anti-ideal solu-
tions, aiding in informed decision-making. The main steps of 
TOPSIS involve constructing a normalised decision matrix 
from the original data, calculating the weighted normalised 
decision matrix by assigning appropriate weights to each 
criterion, determining the ideal and anti-ideal solutions, and 
then calculating the distances of each alternative from these 
solutions. Finally, a preference index is obtained by com-
paring the distances and ranking the alternatives to guide 
decision-making in multi-criteria scenarios [37].

Fig. 3   ANN model with five inputs and one output
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3 � Results and discussion

3.1 � RSM models

The RSM models for tensile strength and build time are 
shown in Eqs. (7) and (8). The statistical significance of 
the process parameters is evaluated using p and f  values 
of ANOVA. The fitted model should have p < 0.05 . Coef-
ficient of determination R2 defines the fitness of data with 
the regression line. The higher value of R2 signifies the good 
fit of model.

Table 6 displays the ANOVA findings concerning the 
prediction of the tensile strength. The mathematical model 
demonstrates a satisfactory predictive capacity, yielding a 
R2 value of 98.02%. The contribution of each factor was 
calculated as its sequential sum of squares (Seq SS) divided 

(7)

TS = 1349 − 11.9 ET − 0.6 LT + 0.104 PS + 6.10 NC + 0.84 ID

+ 0.0263 ET ∗ ET + 7.3 LT ∗ LT + − 0.000659 PS ∗ PS + 0.745 NC ∗ NC

+ 0.003459 ID ∗ ID − 0.00369 ET ∗ ID − 0.139 LT ∗ ID

+ 0.000085 PS ∗ ID − 0.0781 NC ∗ ID

(8)

BT = 632 − 5.3 ET − 137.18 LT − 0.1055 PS − 0.250 NC + 0.684 ID

+ 0.0113 ET ∗ ET + 282.4 LT ∗ LT + 0.000638 PS ∗ PS + 0.407 NC ∗ NC

+ 0.000021 ID ∗ ID − 0.00185 ET ∗ ID − 0.5046 LT ∗ ID

− 0.000262 PS ∗ ID − 0.01389 NC ∗ ID

by the total sequential sum of squares (SST), expressed as a 
percentage. In terms of contribution percentages, infill den-
sity (ID) emerges as the foremost influential factor, account-
ing for 73.66% of the variation, followed by the number of 
contours (NC) contributing 14.58%. Moreover, the number 
of contours (NC) maintains statistical significance with a 
p-value below 0.05. Additionally, both the terms ID*ID and 
NC*ID exhibit notable statistical significance.

Table 7 presents the ANOVA findings pertaining to the 
prediction of the build time. The mathematical model exhib-
its a commendable predictive capability, culminating in a R2 
value of 99.63%. In the context of contribution percentages, 
layer thickness (LT) takes centre stage as the most influential 
factor, encompassing 70.17% of the variability, trailed by 
infill density (ID) contributing 18.04%. Furthermore, layer 
thickness (LT) preserves its statistical significance with a 
p-value below 0.05. Additionally, noteworthy statistical 
significance is observed in the terms PS, LT*LT, PS*PS, 
LT*ID, and NC*ID.

A recommended practice for evaluating the goodness 
of fit of a model is to apply the Anderson–Darling test to 
the residuals. This test assesses the extent to which data 
points deviate from the fitted line on a probability plot. If 
the p-value from the Anderson–Darling test is lower than 
the chosen significance level (e.g. 0.05 or 0.10), it suggests 
that the data do not follow a normal distribution. Figure 4a 
and b show the normal probability plots of residuals, both 
of which exhibit p-values greater than the significance level 

Table 6   Variance for tensile 
strength

Source DF Seq SS Contribution Adj SS Adj MS F-value P-value

Regression 14 1586.19 98.20% 1586.19 113.299 46.79 0.000
ET 1 12.75 0.79% 0.31 0.307 0.13 0.728
LT 1 9.94 0.62% 0.00 0.001 0.00 0.983
PS 1 4.97 0.31% 2.35 2.348 0.97 0.344
NC 1 235.52 14.58% 11.73 11.727 4.84 0.048
ID 1 1189.73 73.66% 1.21 1.211 0.50 0.493
ET*ET 1 0.34 0.02% 0.34 0.335 0.14 0.716
LT*LT 1 0.03 0.00% 0.03 0.032 0.01 0.911
PS*PS 1 2.11 0.13% 2.11 2.113 0.87 0.369
NC*NC 1 3.33 0.21% 3.33 3.330 1.38 0.264
ID*ID 1 58.14 3.60% 58.14 58.143 24.01 0.000
ET*ID 1 1.33 0.08% 1.33 1.327 0.55 0.473
LT*ID 1 2.10 0.13% 2.10 2.095 0.87 0.371
PS*ID 1 0.07 0.00% 0.07 0.069 0.03 0.868
NC*ID 1 65.83 4.08% 65.83 65.834 27.19 0.000
Error 12 29.06 1.80% 29.06 2.421
Total 26 1615.25 100.00%
Std 1.56
R
2 98.20%

R
2(adj) 96.10%

R
2(pred) 91.21%



5440	 The International Journal of Advanced Manufacturing Technology (2025) 137:5431–5449

of 0.05. Therefore, the experimental residuals demonstrate 
good fit, and it is reasonable to assume that they exhibit a 
normal distribution.

3.2 � Effect of 3D printing process parameters 
on selected responses

The experimental results show the significant impact of 
those five key FFF printing process parameters on selected 
responses. The main effects plot for tensile strength are pre-
sented in Fig. 5.

The most vivid characteristic is the rapid increase in 
tensile strength when the infill density changes from 40 
to 100%. Indeed, increasing infill density creates a denser 
internal structure with enhanced material bonding, reduc-
ing voids and defects, and increasing stiffness, all of which 
collectively contribute to better load distribution and resist-
ance to applied forces. In their study, Tura, Lemu [20], 
also discovered that a 100% infill density maximises ten-
sile strength when investigating the combined impact of 
infill density, extrusion temperature, and printing speed. 
In another investigation [38], the influence of infill density 
across a range of 20 to 100%, alongside variables like layer 
thickness, extrusion temperature, and infill pattern, were 
explored and a consistent upward trend in tensile strength 
was found with the highest point observed at an infill den-
sity of 100%. As the contour consists of deposited fila-
ment aligned with the applied load, increasing number of 

contours can lead to the enhancement in tensile properties 
[13], which are evident in Fig. 5. This finding aligns with 
the research findings by Singh, Singh [39], which identified 
the highest tensile strength at 3 contours, the optimal level 
while exploring the impact of raster angle, number of con-
tours, layer thickness, infill density, and solid layers on FFF 
printed dog-bone tensile strength. Additionally, another 
literature supported this trend by demonstrating the con-
sistent enhancement of dynamic modulus with an increase 
in the number of contours [40]. As depicted in Fig. 5, a 
trend emerges where lower layer thickness corresponds to 
improved strength. This finding is supported by numer-
ous research as decreasing the layer thickness promotes 
finer inter-layer bonding, minimising the risk of delamina-
tion and surface defects, resulting in a more cohesive and 
uniform structure that can better withstand applied forces 
[12, 28, 39, 41]. Apart from strongly enhancing tensile 
strength, lower layer thickness was also agreed to reduce 
the surface roughness [8, 26, 42] and improve dimensional 
accuracy [43, 44]. Although those studies highlighted 
that the increase of layer thickness could negatively affect 
the tensile strength, this study shows that its effect is not 
significant compared to the number of contours and infill 
density. Furthermore, increasing the printing speed and 
extrusion temperature within the defined range is observed 
to enhance tensile properties, indicating the viability of 
employing higher printing speeds to decrease build time 
without compromising strength.

Table 7   Variance for build time Source DF Seq SS Contribution Adj SS Adj MS F-value P-value

Regression 14 905.907 99.63% 905.907 64.7076 233.20 0.000
ET 1 0.039 0.00% 0.060 0.0596 0.21 0.651
LT 1 638.039 70.17% 59.250 59.2496 213.53 0.000
PS 1 19.358 2.13% 2.420 2.4205 8.72 0.012
NC 1 2.988 0.33% 0.020 0.0197 0.07 0.795
ID 1 164.006 18.04% 0.801 0.8015 2.89 0.115
ET*ET 1 0.062 0.01% 0.062 0.0622 0.22 0.644
LT*LT 1 47.852 5.26% 47.852 47.8524 172.45 0.000
PS*PS 1 1.977 0.22% 1.977 1.9774 7.13 0.020
NC*NC 1 0.996 0.11% 0.996 0.9959 3.59 0.083
ID*ID 1 0.002 0.00% 0.002 0.0021 0.01 0.933
ET*ID 1 0.333 0.04% 0.333 0.3333 1.20 0.295
LT*ID 1 27.502 3.02% 27.502 27.5023 99.12 0.000
PS*ID 1 0.669 0.07% 0.669 0.6690 2.41 0.146
NC*ID 1 2.083 0.23% 2.083 2.0833 7.51 0.018
Error 12 3.330 0.37% 3.330 0.2775
Total 26 909.237 100.00%
Std 0.53
R
2 99.63%

R
2(adj) 99.21%

R
2(pred) 97.06%
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The interactive impacts of the studied parameters on 
build time are illustrated in Fig. 6. This aligns with those 
findings in Table 7, where transitioning layer thickness 
from 0.1 to 0.3 mm correlates with a notable reduction in 
build time. Kumar, Gupta [6], similarly identified the note-
worthy influence of layer thickness while pursuing optimi-
sation of build time and surface roughness. In a separate 
investigation, layer thickness emerged as the most influ-
ential factor with a contribution of 84.6%, highlighting its 
significance in achieving reduced build time, particularly 
at lower layer thickness levels [45].

On the other hand, increasing infill density results in a 
more compact structure, consequently elongating the print-
ing duration, as evidenced by an upward trend of build time 
when the infill density varied from 40 to 100%. Intuitively, 
elevating the printing speed should logically reduce the 
printing duration, as agreed by Kumar et al. [6]. Neverthe-
less, no considerable distinction is noted when the printing 
speed is adjusted between 70 and 100 mm/s. Notably, while 
the number of contours plays a pivotal role in enhancing 
tensile strength, its influence on build time remains rela-
tively insignificant. Hence, when the printing geometry and 

Fig. 4   Anderson–Darling nor-
mality test: (a) residuals TS and 
(b) residuals BT
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conditions permit a substantial number of contours, printing 
the parts with a reasonable number of contours can boost the 
strength without compromising on the build time.

3.3 � ANN models

Upon conducting 60 evaluations, the architectural optimisa-
tion for ANN models concluded, encompassing all hyper-
parameters outlined in Table 8. Interestingly, the predictive 
model for tensile strength necessitates only one layer and 
34 neurons, whereas the build time model necessitates four 

layers. Evidently, executing this process using a standard 
manual approach proves impractical due to the requirement 
for up to 372 maximum hidden neurons. As observed in 
Fig. 7, the optimisation process was notably successful, as 
evidenced by the correlation coefficient Rs for both the ANN 
models to predict the tensile strength and build time. This 
finding further confirms the effectiveness of our method 
developed to construct the ANN discussed in the previous 
study [46]. It was noted that for the test set, with a maximum 
error of merely 4.51%, the ANN models proved adequately 
effective in aiding designers to strike a balance between 

Fig. 5   Main effect plots for 
tensile strength

Fig. 6   Main effect plots for 
build time
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diverse parameters while maintaining desired levels of ten-
sile strength and build time. In addition, the developed ANN 
model has proved capable of forecasting the tensile strength 
and build time at various combination of process parameters. 
Therefore, this model can be adopted in practical where sev-
eral applications opt for reduced layer thickness and infill 
density to optimise material usage or when the part geom-
etry limits the number of contours.

The findings of this section underscore why the limited 
exploration of up to three hidden layers and a constrained 
neuron count led to the failure of ANN to effectively 
capture the surface roughness pattern amid variations in 
layer thickness, infill density, printing speed, and extrusion 

temperature, resulting in notably low accuracy [17]. To 
transcend the trial-and-error limitations of initialising 
ANN models, Meiabadi, Moradi [47], employed a novel 
approach by integrating a genetic algorithm (GA) to opti-
mise the performance of ANN. Additionally, in another 
literature, the shortcomings of manual calibration were 
mitigated by amalgamating the outputs of all 36 models 
to yield superior performance compared to relying on a 
single network [19]. Nonetheless, these aforementioned 
approaches appear intricate and time-consuming in con-
trast to the current study’s proposed method, which con-
veniently automates architecture optimisation, a boon for 
researchers less acquainted with the intricacies of ANN.

Table 8   Optimal ANN 
architecture

Response Number of 
hidden layers

Activations Lambda Number of neurons in each hidden layer

Layer 1 Layer 2 Layer 3 Layer 4

Tensile strength 1 Sigmoid 7.40e-5 34 - - -
Build time 4 Sigmoid 5.62e-7 49 5 181 372

Fig. 7   Regression plots corresponding to optimal training algorithm for (a) tensile strength and (b) build time
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4 � Optimisation and validation

The chosen objectives inherently oppose one another, 
requiring the maximisation of tensile strength while con-
currently minimising build time. To address this dilemma, 
a multi-objective genetic algorithm in MATLAB 2022® 
was applied to optimise both RSM and ANN models, 
effectively identifying a comprehensive range of opti-
mised parameter sets. The constraints for all models are 
234 ≤ ET ≤ 240, 0.1 ≤ LT ≤ 0.3, 40 ≤ PS ≤ 100, 1 ≤ NC ≤ 3 , 
and 40 ≤ ID ≤ 100 . To address the multi-objective nature 
of the problem, specialised techniques were employed to 
compare and rank individuals based on their performance 
across different objectives. These techniques help identify 
a set of solutions known as Pareto optimal solutions. The 
Pareto front represents the trade-offs between the objectives, 
where improving one objective may lead to a degradation in 
another. After acquiring the list of optimal solutions ranked 
by TOPSIS, it was observed that the numerical values of top 
solutions were closely clustered and not practically achiev-
able for the 3D printer. Consequently, for each solution, the 
numerical values of extrusion temperature and number of 

contours were approximated to the nearest integer; the print-
ing speed and infill density were rounded to the nearest ten; 
and the layer thickness values were rounded to the nearest 
two decimal points. For example, if the original TOPSIS 
solutions resulted in 235.5°C ET, 0.206 mm LT, 85 mm/s 
PS, 2.5 NC, and 98% ID, the adjusted solutions would be 
236°C ET, 0.21 mm LT, 90 mm/s PS, 3 NC, and 100% ID. 
Subsequently, an additional step was executed to eradicate 
identical solutions before feeding the inputs into the RSM 
and ANN models for generating new predictive tensile 
strength and build time. In the end, TOPSIS was carried 
out again to rank the solutions using appropriate weights 
for the two responses. With this procedure, the adjusted 
TOPSIS tables covered a wider range of possible solutions 
for optimisation.

The optimal solutions for every RSM model are presented 
in Table 9. The RSM-GA-TOPSIS provided optimum tensile 
strength, and build time of 41.5 MPa, and 0.2 min, respec-
tively, corresponding to 240°C ET, 0.21 mm LT, 90 mm/s 
PS, 3 NC, and 100% ID.

Table 10 lists the set of optimal solutions for every ANN 
model. The ANN-GA-TOPSIS method resulted in 36.6 MPa 

Table 9   Suggested optimal 
solutions by GA for RSM 
models

Sol No. ET LT PS NC ID Tensile strength 
(MPa)

Build time 
(mins)

Ranking

1 240 0.21 90 3 100 41.5 0.2 1
2 240 0.20 90 3 100 41.7 0.9 2
3 240 0.19 90 3 100 41.8 1.7 3
4 240 0.18 90 3 100 41.9 2.5 4
5 240 0.17 90 3 100 42.0 3.4 5
6 240 0.16 90 3 100 42.1 4.4 6
7 240 0.15 90 3 100 42.3 5.4 7
8 240 0.14 90 3 100 42.4 6.4 8
9 240 0.13 90 3 100 42.5 7.5 9
10 240 0.12 90 3 100 42.6 8.7 10

Table 10   Suggested optimal 
solutions by GA for ANN 
models

Sol No. ET LT PS NC ID Tensile strength 
(MPa)

Build time 
(mins)

Ranking

1 240 0.30 100 3 100 36.6 10.1 1
2 239 0.30 100 3 100 36.4 10.2 2
3 240 0.29 100 3 100 36.6 10.4 3
4 240 0.28 100 3 100 36.7 10.9 4
5 240 0.30 100 2 100 35.7 9.8 5
6 240 0.27 100 3 100 36.7 11.5 6
7 239 0.30 100 2 100 35.5 9.8 7
8 240 0.25 100 3 100 36.8 12.0 8
9 240 0.26 100 3 100 36.8 12.1 9
10 240 0.22 100 3 100 36.9 13.6 10
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tensile strength, and 10.1 min build time corresponding to 
240°C ET, 0.3 mm LT, 100 mm/s PS, 3 NC, and 100% ID. 
In an overview, the proposed methodologies led to enhance-
ment in response parameters.

Validation experiments were carried out to ensure the 
reliability of the proposed methodologies. For each of the 
RSM-GA-TOPSIS and ANN-GA-TOPSIS methods, the 
first-rank solution was selected for part fabrication. Standard 
specimens were subsequently manufactured and subjected to 
mechanical property testing and build time records.

Table 11 presents the comparative results and percent-
age improvement in response corresponding to different 
methods.

It is worth noting that “predicted responses” only repre-
sent the values generated by the RSM and ANN models after 
inputting the optimal solutions. Therefore, experiments were 
carried out to collect data for “experimental response”. The 
purposes were to evaluate the efficiency of the predictive 
models and provide the actual tensile strength generated by 
the optimal solutions. For the ASTM test, the maximum 
tensile strength (MaxTS) was found at run 21 with 36.2 MPa 
and the time for fabricating one sample is 24.2 min. The 
experimental tensile strength achieved through the RSM-
GA method is 36.0 MPa, requiring 12.8 min for printing. 
While the tensile strength decreases by 0.6%, the build time 
shows an improvement of 47%. Notably, substantial discrep-
ancies exist between predicted and experimental values for 
RSM-GA, with deviations of 15.2% for tensile strength and 
98% for build time. On the other hand, through the ANN-
GA method, the experimental tensile strength reached 34.6 
MPa, with a printing time of 10.2 min. When comparing 
to MaxTS, despite a 4.4% decrease in tensile strength, the 
build time of ANN-GA demonstrated a superior enhance-
ment of 58%, which is 11% higher than the 47% enhance-
ment achieved by RSM-GA. Significantly, in evaluating pre-
dictive model efficacy, ANN-GA outperformed RSM-GA, 
exhibiting a mere 5.7% error in predicting tensile strength 

and a minimal 0.7% error in forecasting build time. Within 
this context, ANN-GA emerges as a more fitting model for 
comprehending the non-linear impact of key FFF printing 
process parameters and facilitating optimisation. A trade-off 
of 4.4% in the tensile strength in exchange for a 58% reduc-
tion in the build time is deemed acceptable.

5 � SEM analysis on fractography

As ANN-GA model yielded better prediction accuracy, the 
SEM images of the ANN-GA were captured to compared 
with the MaxTS. In addition, SEM images of run 28, run 29, 
and run 30 were also observed for demonstrating the effects 
of key FFF printing process parameters on internal struc-
tures of the specimens. Figure 8 presents the SEM images 
of MaxTS, ANN-GA, run 28, run 29, and run 30 captured 
at × 25 and × 100 magnifications, where yellow circles dem-
onstrate air voids inside the structure and blue rectangles 
indicate contour regions.

From the SEM images, there are two types of air voids 
observed in the internal structures. The first type is caused 
by the essence of infill density while the second one is 
induced by the intrinsic elements [30]. At a lower LT of 0.1 
mm, the MaxTS (Fig. 8a and b) illustrates less air voids then 
ANN-GA (Fig. 8c and d) printed at 0.3-mm LT, confirming 
the higher TS observed for MaxTS. Denser structures such 
as Max TS (Fig. 8a and b) and ANN-GA (Fig. 8c and d) 
were affirmed to yield a better strength based on the current 
literature [10, 12]. However, in term of part quality, MaxTS 
demonstrates a slight over-extrusion and warping. That was 
due to the effect of Z-offset of the nozzle. Although the 
Z-offset calibration was often carried out automatically by 
the printer, manual optimisation could further improve the 
part quality [48]. Therefore, the optimal set ANN-GA not 
only reduces the build time significantly but also improves 
the part quality despite of the 4.4% reduction in the TS. On 

Table 11   Process parameters 
and their levels

Particular Parameter MaxTS RSM-GA ANN-GA

Optimised parameters ET (°C) 240 240 240
LT (mm) 0.10 0.21 0.30
PS (mm/s) 100 90 100
NC 2 3 3
ID (%) 100 100 100

Predicted response TS (MPa) - 41.5 36.6
BT (mins) - 0.2 10.1

Experiment responses TS (MPa) 36.2 ± 0.79 36.0 ± 0.53 34.6 ± 0.51
BT (mins) 24.2 12.8 10.2

Errors (%) TS (MPa) - 15.2 5.7
BT (mins) - 98.0 0.7

Improvement in TS, BT  − 0.6%, 47%  − 4.4%, 58%



5446	 The International Journal of Advanced Manufacturing Technology (2025) 137:5431–5449

the other hand, the SEM images of run 28, run 29, and run 
30 clearly indicates the change of internal structures at vari-
ous infill density, layer thickness, and number of contours. It 
is observed that higher LT leads to higher height and width 
ratios of the intrinsic elements, generating larger air voids 
between the elements. Meanwhile, the increase of contours 
does not affect the general quality of the internal structures 
and thus can be adopted to strengthen the printed product 
without compromising the build time.

6 � Conclusions

This study develops a systematic experimental and theoreti-
cal analysis and optimisation framework to optimise the FFF 
printing process for thermoplastics with adopting statisti-
cal methods and multi-criteria decision-making and using 
ABS as the exemplar. The validated model parameters were 

verified through experiments involving standard specimens 
and actual applications. The discussion of results yields sub-
sequent conclusions as follows.

•	 The significant improvement in tensile strength occurs 
by increasing ET (234 to 240°C), NC (1 to 3), ID (40 
to 100%), and decreasing LT (from 0.3 to 0.1 mm). The 
maximum experimental value tensile strength (36.2 MPa) 
was attained at run 21 with 240°C ET, 0.1 mm LT, 100 
mm/s PS, 2 NC, and 100% ID. However, the build time 
was compromised at these corresponding values.

•	 According to the percentage of contribution analysis, 
infill density emerged as the most influential factor affect-
ing tensile strength with 73.7% of contribution, followed 
by the number of contours with 14.6% of contribution. 
In contrast, build time was predominantly influenced by 
layer thickness with 70.2% of contribution, trailed by 
infill density with 18.0% of contribution.

Fig. 8   SEM images of MaxTS 
at × 25 (a) and × 100 (b); ANN-
GA at × 25 (c) and × 100 (d); 
run 28 at × 25 (e) and × 100 (f); 
run 29 at × 25 (g) and × 100 (h); 
and run 30 at × 25 (i) and × 100 
(j) magnifications (notes: 
Yellow circles show the air 
voids presented in the samples. 
Blue rectangles show contour 
regions)
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•	 Although the RSM-GA-TOPSIS resulted in a 0.6% 
decrease in tensile strength, the build time was improved 
by 47%, corresponding to 240°C ET, 0.21 mm LT, 90 
mm/s PS, 3 NC, and 100% ID. Similarly, ANN-GA-
TOPSIS compromised only 4.4% of tensile strength to 
reduce the build time by 58%, corresponding to 240°C 
ET, 0.30 mm LT, 100 mm/s PS, 3 NC, and 100% ID.

•	 Although the RSM-GA-TOPSIS approach demonstrated 
enhancement in properties, high discrepancies between 
the predictive and experimental values were recorded, 
18% for tensile strength, and 98% for build time. 
Therefore, this optimisation method is not recommended 
for future applications as it will produce experimental 
cost to validate the predictive optimal solutions.

•	 The ANN-GA-TOPSIS approach demonstrated a 
superior efficiency in capturing data patterns and con-
ducting optimisation. The proposed methodology for 
constructing ANN models proved successful, poised 
to replace the manual approach. Further experimental 
tests extended the utility of ANN models, facilitating 
designers in parameter optimisation while upholding 
both tensile strength and build time requirements.

Multi-objective optimisation methods have been proven 
much more effective in yielding optimal results compared 
to single-objective optimization. The findings of this study 
hold significant implications for designers and manufactur-
ers of domestic and small industrial components, aiding in 

the comprehensive understanding of how process param-
eters collectively influence part characteristics. Further-
more, the approach proposed in this study bears relevance 
for various applications, whether involving diverse materi-
als or response parameters.
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