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ABSTRACT With the growing demand for computational and storage capabilities of modern learning
models, performing their computation exclusively in a centralized manner has become increasingly
impractical. Executing the inference of foundation models in a distributed manner presents significant
challenges, particularly in optimizing both computing and communication resources. This work introduces
a novel deployment scheme for large language model (LLM) layers that jointly considers computation and
communication efficiency within an edge network environment to address these issues. Specifically, we
resort to the matching theory to effectively orchestrate the distributed deployment of the LLM layers across
the edge nodes of the networks, where nodes have varying computational capacities and communication
speed. This framework is based on a two-sided game, enabling each layer to express its individual
preferences for node allocation while allowing nodes to prioritize their preferred layers. This mutual
selection process minimizes inference latency in the learning process and models the bubble time as
game externalities, assuming a sequential pipeline execution. The algorithmic solution reaches a stable
matching outcome. Performance evaluation was conducted considering both simulations and a small-scale
testbed to measure the effectiveness of the proposed algorithm compared to state-of-the-art alternatives.
In particular, the small-scale testbed was developed to distribute an LLM to support autonomous driving,
leveraging the vision-language model paradigm. The results highlight performance improvements of up
to around 10% in comparison to the Koklata game alternative.

INDEX TERMS Foundation models, distributed inference, matching theory, edge intelligence.

. INTRODUCTION

HE RAPID evolution of foundation models has revolu-

tionized the design and functionality of next-generation
intelligent networks, unveiling new opportunities and enabling
capabilities that were previously beyond reach. A foundation
model refers to any model developed through extensive
training on large-scale datasets, typically using self-supervised
learning paradigms. These models are inherently versatile,
as they can be fine-tuned and adapted to perform a wide
plethora of downstream tasks with remarkable learning
performance [1], [2], [3], [4], [5], [6], [7]. Notable examples
include BERT [8] and GPT-3 [9], which exemplify the

transformative impact of these models across various domains.
From a technological perspective, the core principles of
foundation models are deep neural networks and self-
supervised learning, which are not novel concepts as they have
been integral components of machine learning for decades.
However, what distinguishes modern foundation models is
their unprecedented scale and the breadth of their applications.
By leveraging billions of parameters and datasets encom-
passing an Internet-scale corpus, foundation models exhibit
the remarkable ability to generalize to unseen data without
undergoing additional training phases, following the zero-shot
learning paradigm. This characteristic significantly enhances
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their adaptability and opens the door to more dynamic use
cases. Furthermore, these models can undergo fine-tuning,
a process of retraining on smaller, task-specific datasets to
optimize their performance for targeted applications, ensuring
high precision and robustness [10].

Alongside these rapid advancements, the development
and deployment of foundation models bring significant
computational challenges, particularly during both their pre-
training and inference phases. The pre-training process for
these models demands substantial computational resources,
including high-performance hardware such as GPUs or
TPUs, and often spans weeks or even months. This results
in considerable costs in terms of energy consumption
and the infrastructure required to manage such large-scale
computations. For instance, training state-of-the-art models
like GPT-3 involves processing billions of parameters over
extensive datasets, necessitating advanced optimization tech-
niques and parallel processing capabilities [11]. However,
the computational demand does not end with pretraining.
The inference phase, where these models are deployed to
process real-time requests, is equally resource-intensive. Due
to their large size and complex architectures, foundation
models require significant memory and processing power to
perform tasks such as text generation, contextual reasoning,
or decision-making. Moreover, the reliance on cloud-based
architectures introduces challenges such as latency, band-
width constraints, and data privacy concerns [12], [13].
This challenge is particularly pronounced in latency-sensitive
applications or edge environments, where limited compu-
tational resources may struggle to meet the demands of
large-scale inference. These dual pressures highlight the
necessity for innovations in both training efficiency and
inference optimization to make the use of foundation models
more sustainable and accessible.

Edge computing has recently emerged as a promising
processing paradigm for performing collaborative distributed
inference [14]. Accordingly, edge nodes host shards of
foundation learning models and exchange intermediate out-
put values to complete the autoregressive inference. During
the inference process of foundation models, every input
token must sequentially pass through the entire stack of
transformer layers that comprise the model. This archi-
tectural requirement creates significant challenges when
implementing distributed inference across a heterogeneous
edge network, i.e., a network composed of devices with
differing capacities [11]. Each layer processes intermediate
representations of the input data, which must then be
communicated to the next processing node in the sequence.
Resource-constrained nodes may struggle to handle even a
subset of transformer layers, necessitating careful schedul-
ing and load distribution strategies. Additionally, ensuring
synchronization between nodes while maintaining the strict
sequential flow of data through the model poses addi-
tional operational challenges. Therefore, the distributed
inference process is tightly coupled to the model architecture,
as the placement of transformer layers across different
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nodes directly influences both performance and resource
utilization.

For instance, transferring intermediate activations between
layers located on separate nodes incurs communication
overhead, which must be minimized to achieve low-latency
responses. Simultaneously, computational workloads need to
be balanced across nodes with varying processing capabilities
to ensure efficient utilization of resources. One additional
significant challenge in implementing distributed inference
for foundation models is the problem of bubble-time in
model parallelism. This phenomenon arises when different
portions of the model are allocated to separate devices, and the
sequential nature of the transformer architecture creates idle
periods on some devices while others are actively processing.
Since each token must propagate through the transformer
layers in sequence, the devices hosting later layers cannot
begin processing until they receive the intermediate results
from the preceding layers. This leads to underutilization
of computational resources, as certain devices remain idle
during these waiting periods, forming bubbles of unproductive
time [14], [15]. To overcome these obstacles, it is essential
to design strategies that jointly optimize communication
and computation resource allocation, taking into account
the specific requirements and constraints imposed by the
foundation model architecture and network resources. In
so doing, distributed inference can enable the deployment
of foundation models in resource-constrained environments,
unlocking their potential for real-time and scalable appli-
cations [11], [14], [15]. Traditional centralized optimization
approaches may be computationally expensive and infeasible
in dynamic environments, while other game-theoretic models,
such as auction-based or bargaining formulations, introduce
complexities such as communication overhead, as nodes
must continuously exchange bids. To tackle these challenges,
we adopt a matching theory approach, which provides a
scalable and distributed framework for resource allocation.
Unlike conventional optimization methods, matching theory
explicitly considers the preferences and constraints of both
Large Language Model (LLM) inference tasks and edge nodes,
leading to an adaptive allocation mechanism.

This paper aims to develop an innovative matching theory-
based algorithm to optimize the LLM layer deployment
across a heterogeneous edge network. The theory of match-
ing provides a structured method for associating elements
from two distinct groups based on their preferences, aiming
to establish mutually advantageous pairings. The objective
of a matching game is to reach a stable outcome in
which no two participants have an incentive to deviate
by exchanging their assigned partners. The proposed game
model is established between LLM layers and edge nodes,
where communication and inference time contributions are
considered as metrics of the two sets involved in the game.
The main objective of the matching game is to minimize
the inference latency. In order to reduce bubble times,
the waiting time experienced by batches is modeled as
game externalities, assuming a sequential pipeline execution.
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The stability of the designed matching algorithm is proved
and discussed. A small-scale testbed is also presented to
demonstrate the performance of the proposed approach in a
real-world use case.

The contributions of this paper can be summarized as
follows.

o Formulation of the distributed inference optimization
problem for LLMs to minimize the inference latency.
The problem addressed considers a heterogeneous edge
network, i.e., a network where edge nodes have different
computation and communication facilities;

« Development of a novel matching theory-based algo-
rithm to achieve a sub-optimal solution to the problem
formulated. The designed matching models the deploy-
ment of LLM layers among edge nodes, and bubble
times represent game externalities.

e Proof and analysis of the stability of the matching
game, where the preferences of players are influenced
by dependencies and relationships within the system.
Externalities arise when the ranking of a specific
match for one participant depends not only on their
direct preferences but also on the assignments of
other participants in the system. This interdependence
introduces significant challenges to achieving stable
matchings, as traditional stability criteria do not account
for such complex dynamics.

o Experimental results to provide a critical comparison
between the proposed matching solution and alterna-
tive algorithmic approaches. Furthermore, a small-scale
testbed is discussed to showcase the application of a
distributed LLM as a support system for autonomous
driving. In this scenario, the LLM is employed to
assist in tasks such as contextual decision-making,
natural language-based navigation guidance, and real-
time environmental analysis. The experimental results
highlight the practical feasibility and effectiveness of
the proposed framework, emphasizing its potential to
perform effective LLM shards deployment.

The rest of the paper is articulated as follows. In Section II,
we present an accurate literature review. The problem
statement is detailed in Section III, and the proposed approach
isdescribed in Section IV. Performance evaluation is discussed
in Section V, and conclusions are drawn in Section VI.

Il. RELATED WORKS

In recent works, matching theory is widely adopted to
perform assignment in distributed computing systems. For
example, in paper [16] authors propose a dynamic matching
game that jointly optimizes task offloading and resource
allocation in fog computing environments. The model
incorporates externalities to reflect the interdependence of
decisions across users and servers, adapting to chang-
ing workloads and link conditions over time. Paper [17]
tackles joint optimization of content caching, service place-
ment, and task offloading in UAV-enabled MEC networks.
The framework considers latency, energy, and mobility to
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dynamically allocate tasks across flying and ground servers,
optimizing user experience in aerial edge scenarios. A
cross-layer matching game for cloud-assisted mobile edge
networks is designed in [18], where task scheduling spans
both the service and trading layers. The model integrates
overbooking strategies and forward contracts to manage
uncertainty and enable risk-aware service allocation in
dynamic environments. Authors in [19] introduce a tripartite
matching model for UAV-assisted covert communications.
The framework forms stable associations among UAVs,
users, and jammers by leveraging game theory and auction
mechanisms, focusing on security, interference mitigation,
and low-complexity matching under covert constraints.
Similarly, in [20] a matching game-based framework for
resource allocation in space communication networks under
incomplete information is developed. The system addresses
relay selection and downlink scheduling by integrating
reinforcement learning with matching theory, achieving
robust decisions in uncertain environments.

A. LLMS FOR NETWORKS

In [21], the authors explore the role of large-scale Al models
in advancing sixth-generation (6G) wireless networks. The
study discusses the opportunities these models present,
including their ability to enable novel applications and
improve network performance, while also identifying key
technical and operational obstacles. Suggestions for future
research are provided to enhance the integration of Al
models within 6G ecosystems. The work in [22] introduces
a framework that leverages large language models (LLMs)
to empower autonomous edge computing for connected
intelligence. This research highlights the capability of LLMs
to enable edge devices to manage complex tasks with
minimal human involvement, focusing on their usability
in distributed systems and environments with constrained
resources. In [23], the authors propose a system called
LLMind, designed to merge the power of LLMs with IoT
infrastructures to address intricate tasks. The paper examines
orchestration strategies that align the abilities of LLMs with
IoT data processing needs, emphasizing challenges related
to scalability, real-time operations, and task adaptability.
The authors of [24] propose a new approach for using
LLMs to enhance multi-agent systems within the context
of 6G communication networks. This work outlines how
LLMs can improve collaboration, decision-making, and
dynamic adaptability in multi-agent environments, with a
particular focus on optimizing communication efficiency
and task coordination. Similarly, [25] presents LAMBO,
a framework that incorporates LLMs into distributed edge
intelligence systems. The study examines how LLMs can be
deployed on edge devices to offer intelligent services despite
resource limitations. The authors address challenges such as
resource management, latency reduction, and task-specific
optimization. The application of LLMs within 6G edge
computing environments is further analyzed in [26]. This
work offers a comprehensive review of the opportunities,
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challenges, and vision for deploying LLMs at the edge,
tackling issues such as computational limitations, data pri-
vacy, and real-time processing within decentralized networks.
The Cached Model-as-a-Resource paradigm is introduced
in [27], which provisions LLM agents for edge intelligence in
space-air-ground integrated networks. The framework lever-
ages cached LLMs to enhance computational efficiency and
optimize resource allocation in dynamic and heterogeneous
environments. Key challenges addressed include reducing
latency, improving scalability, and enabling task-specific
adaptability, thereby laying the groundwork for more robust
edge applications. The potential and future applications of
Large Language Models (LLMs) within the networking
domain are thoroughly discussed in [28], where the authors
outline innovative solutions and propose directions for future
research. Additionally, [29] emphasizes the significance of
multi-modal LLMs—foundation models designed to handle
diverse downstream tasks. The paper stresses the need
to rethink LLM architectures to accommodate distributed
systems, particularly for managing computer vision traffic.
Distributed training architectures are explored to address
the challenges arising from communication-intensive training
paradigms. In [30], a systematic review examines the use of
LLMs in anomaly detection and forecasting, with particular
attention to the challenges posed by time series data, such as
seasonal patterns and limited dataset availability. The review
also evaluates major LLM models and their capabilities in
predicting rare events. Similarly, [31] presents a compre-
hensive survey on integrating LLMs with edge intelligence,
delving into architectures, applications, and issues of security
and trustworthiness for LLM-based systems deployed at the
edge. Time series forecasting with LLMs is further explored
in [32], focusing on designing effective prompts to enable
LLMs to determine periodic patterns within datasets. The
study uses the LLMTime model with GPT-3.5-Turbo, GPT-4-
Turbo, and LLaMA-2, applying these models to open-source
datasets such as AirPassengersDataset, AusBeerDataset,
GasRateCO2Dataset, and others. In [33], the combination
of hybrid Convolutional Neural Networks (CNNs) and
LLMs is surveyed for Intrusion Detection Systems (IDS)
in sensor-based environments. The paper highlights how
CNNs can extract spatial features while LLMs capture
contextual relationships, resulting in improved detection
performance. A systematic review of LLM applications
in cybersecurity is presented in [34], where the authors
explore tasks such as threat detection, malware analysis,
incident response, and phishing prevention. The review high-
lights challenges including the need for large, high-quality
datasets, enhancing model interpretability, and adapting to
evolving threats. The use of LLMs for optical network
log analysis is investigated in [35], with a focus on the
LLaMA-2 model enhanced through instruction tuning. The
study demonstrates how this approach facilitates effective
log interpretation, anomaly detection, troubleshooting, and
network performance optimization. Finally, [36] examines
the application of LLMs for optimizing wireless access point
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placement and quantity, comparing the results with Ant
Colony Optimization. The findings confirm the potential of
LLMs to deliver robust and efficient solutions for wireless
network design. While the above studies provide valuable
insights into the integration of LLMs within networking and
edge computing, most of them focus on enabling intelligent
behavior at the application level [21], [22], [23], [24],
[25], or present high-level architectural visions for future
6G systems [26], [27], [28]. These contributions emphasize
the potential of LLMs to enhance network services and
intelligent coordination but do not address the concrete
problem of how to deploy LLM inference workloads in a
distributed manner. In particular, they typically do not model
the fine-grained layer-wise execution constraints, nor the
communication overhead introduced by model parallelism
in heterogeneous networks. Other studies investigate LLMs
in contexts such as anomaly detection [30], [34], intrusion
detection systems [33], time series forecasting [32], and
log analysis [35], often leveraging LLMs as general-purpose
predictors or feature extractors. While relevant, these works
do not consider the deployment side of LLMs at the
system level. A few papers explore distributed training or
inference architectures [29], [31], but they do not formalize
the problem using optimization or game-theoretic techniques.
In contrast, our work introduces a formal matching-based
framework to address the deployment of LLM inference
layers onto edge devices, taking into account heterogeneity,
inter-layer dependencies, and communication latency. To the
best of our knowledge, this is the first attempt to model such
a problem using matching games with externalities, enabling
stable and interpretable allocations that are amenable to
practical planning under real-world constraints.

B. DISTRIBUTED LLMS

The work in [11] investigates the decentralized training
of foundation models within heterogeneous environments,
where computational nodes vary significantly in capacity and
connectivity. The proposed framework enables collaborative
training by partitioning the training process into manageable
segments distributed across nodes with diverse resources.
To address the inherent challenges of heterogeneity, the
study introduces adaptive resource allocation methods and
gradient synchronization techniques that reduce bottlenecks
caused by disparities in node performance. The results
demonstrate how decentralized training can accelerate model
development while lowering the reliance on centralized
infrastructures, paving the way for more inclusive and
scalable intelligent systems. Paper [15] explores the chal-
lenges and solutions for performing distributed inference
and fine-tuning of large language models (LLMs) across
the Internet. The authors propose a framework that enables
collaborative inference, where different segments of the
model are processed across geographically distributed nodes.
Additionally, the study delves into fine-tuning strategies
that incorporate decentralized datasets, allowing for task-
specific optimization while preserving data privacy. The
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work addresses key challenges, including synchronization
across nodes, communication efficiency, and adapting LLM
architectures to distributed environments, offering insights
into scalable LLM deployment for diverse applications. The
authors in [14] introduce a novel approach to optimizing
LLM inference by leveraging collaborative edge comput-
ing. The study focuses on partitioning LLM architectures
across multiple edge nodes, enabling efficient utilization
of distributed computational resources. By dividing the
model into shards and deploying them strategically across
a network of edge devices, the framework reduces latency
and minimizes bandwidth usage during inference. Key
contributions include techniques to balance computational
load among nodes and strategies to mitigate communica-
tion overhead, making it a viable solution for deploying
LLMs in resource-constrained environments while main-
taining high performance and scalability. While the above
studies present valuable contributions to distributed LLM
deployment, their focus is mainly on architectural design
and system-level orchestration. For instance, [11] and [15]
address collaborative training and inference in heterogeneous
or wide-area networks, with emphasis on synchronization
protocols and data privacy. The work in [14] proposes a
practical sharding mechanism to reduce inference latency
by splitting LLMs across multiple edge devices. Although
it explicitly considers latency constraints, the allocation of
layers do not involve stability guarantees. Furthermore, prior
works often assume centralized control or static resource
views, which may limit their adaptability in dynamic
edge environments with fluctuating loads and heterogeneous
capabilities. The deployment of large language models
(LLMs) in edge networks is still an emerging research area.
Few works address the specific challenges of distributing
LLMs across heterogeneous edge nodes. Most existing
studies focus on model compression, offloading strategies,
or federated learning. However, they often neglect the
impact of network constraints, assuming ideal or simplified
communication models. This omission leads to solutions that
may be computationally efficient but impractical in real-
world edge environments where both communication and
computation play a crucial role. Additionally, prior works
predominantly rely on heuristic-based placement strategies
or centralized optimization approaches, which lack flexibility
and scalability in dynamic edge network scenarios. They
fail to provide a structured, adaptive mechanism to balance
computation and communication trade-offs. In contrast, our
work introduces a matching-theory-based framework that
explicitly incorporates both computational and communi-
cation constraints in the LLM deployment process. By
formulating the problem as a two-sided matching game, we
offer a distributed and scalable solution that dynamically
optimizes LLM allocation while ensuring fairness among
edge nodes. This approach differentiates our work from
existing heuristics and optimization-based methods, making
it more adaptable to real-world edge Al deployments.
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FIGURE 1. System model.

lll. PROBLEM STATEMENT

As illustrated in Fig. 1, we consider a set £ = {1,..., L} of
L layers. Each layer [, VI =1, ..., L, consumes »; memory.
We consider a set of edge nodes & = {1,...,e,...,E},
where c, represents the memory capacity of node e. The
residual available capacity of node e can be expressed as

> maye., (M

where o, is a binary variable equal to 1 when u is served by
the LLM placed on e, zero otherwise. Each layer / occupies
m; storage to be processed by the edge node e, and such
computation requires a time #;, to process the layer / on the
edge node e. Edge nodes are connected by high-speed links,
and the rate of the link between the edge nodes e and ¢
is denoted with R, .. Consequently, the transmission time
results to be

S, =c, —

o = )

e,e Re,e’

in which s; expresses the size of the intermediate value

produced by layer /. Note that when successive layers are

hosted on the same edge node, the transmission time is zero.
Therefore, the inference latency results to be [14]

1= Z Z o0 ¢ + Z Z Z al,eal—&-l,e’ré’e/- 3)

leL ec& leL ecE €&

The proposed planning model assumes that node resources
are released upon completion of layer computation.
Accordingly, the execution time on each node accumulates
the durations of all previously scheduled layers. While this
allows resources to be reused, the model also captures
potential idle periods, referred to as bubble time [14],
arising when a node must wait for data from a preceding
layer computed on a different device. These dependencies
are modeled through inter-layer externalities. Although this
abstraction omits fine-grained tensor-level dynamics, it offers
a tractable and effective way to capture key scheduling
constraints in distributed inference.

The main objective of this paper is to produce an allocation
matrix A € {0, 1}2*£, whose generic element is ., capable

3799



PICANO et al.: MATCHING GAME FOR LLM LAYER DEPLOYMENT IN HETEROGENEOUS EDGE NETWORKS

of minimizing the inference latency of the LLM. In formal
terms we have

min Z, “4)
st. Y ae=1, VIeL, (5)
ec€
Zm;al,e <c., Veek. (6)
lel

Constraint (5) imposes that each layer can be hosted by one
and only one edge node, and condition (6) expresses that the
allocated layers cannot exceed the total memory capacity of
the corresponding edge node.

The problem expressed by (4)—(6) has an NP-hard com-
plexity. The theorem can be proved by reduction. In fact,
the problem formulated can be cats to the 0-1 knapsack
problem [37]. The objective function can be equivalently
expressed as maxZ~!, subject to ZIEE myet;e < cp. Since
ar. € {0,1}, by mapping c, in the knapsack capacity
parameter, and Z-! and my in the weight and volume of the
generic item, respectively, we obtain the formulation of the
0-1 knapsack problem [37].

Consequently, a distributed and sub-optimal strategy must
be devised to provide an appropriate solution to the problem
formulated.

IV. A MATCHING GAME FOR DISTRIBUTED LLM
INFERENCE

A. MATCHING GAME

Unlike centralized optimization, which requires global
coordination and can become computationally intractable,
matching theory enables a distributed decision-making pro-
cess where each agent autonomously selects the best option
while still ensuring system-wide stability. This approach
is particularly suited to LLM inference deployment, as it
allows inference tasks to express preferences over edge
nodes based on computational power and communication
latency, while edge nodes prioritize tasks according to
their resource availability. By incorporating these mutual
preferences, matching ensures a fair and stable allocation
where no inference task or edge node has an incentive
to deviate from the assigned deployment, eliminating the
need for extensive global coordination. The adoption of a
matching game formulation is motivated by the intrinsic two-
sided nature of the layer-to-node allocation problem. In this
setting, both LLM layers and edge servers express prefer-
ences: layers aim to minimize inference latency and avoid
resource bottlenecks, while edge nodes seek assignments that
align with their current computational and communication
capabilities. Matching theory offers a principled and efficient
framework to handle these mutual preferences, ensuring
stable allocations without the need for global coordination
or repeated training. Compared to auction-based or learning-
based methods, this approach is lightweight, interpretable,
and naturally robust to the heterogeneity and dynamics of
edge networks. We formulate a matching game between
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the set of layers, i.e., £, and the edge nodes, ie., &.
Matching theory provides a quantitative framework for
decision-making, aiming to establish mutually advantageous
relationships between elements from two distinct sets, based
on their respective preferences. The foundation of matching
theory lies in preference lists, which quantify the satisfaction
level of each element when paired with a counterpart from
the opposite set. In this context, each element in £ assigns
a ranking to the elements of &, reflecting its preference for
being processed on a specific edge node, while the elements
in & similarly rank the layers based on their own preferences.

Each layer [ constructs its preference list V;(-) by ranking
each edge node e in ascending order according to

Vie) =tje + Bie, @)

where ;. models the bubble time, expressed as the waiting
time to receive the intermediate output values of previous
layers. Specifically, the term g, is defined as

,BI,e = Z th,ead,e + Z Z Z ad,e“d«kl,e’fgeu (8)

del’ ee€ del’ ee€ '€

where £/ = {1, ...,1—1}. As a consequence, the first choice
for the [-th layer is the node inducing the lowest processing
time. On the other hand, the edge node preference lists,
denoted with W,(l), are built in accordance with

We(l) = <} 9)

e*.e’
where e* is the edge node which hosts the (I — 1)-th layer.
Sorting equation (9) in ascending order, edge nodes select
the layer with minimum transmission time.
The proposed matching algorithm operates as follows.
1) Each unallocated layer creates its preference list
following (7);
2) Each unallocated layer proposes to be hosted on its
favorite edge node.
3) Each edge node creates its preference list accordingly
to (9).
4) Each edge node selects its most favorite layer among
the proposals received and rejects the others.
5) Repeat 2)-5) until all the layers are allocated or
resources are available.
The pseudocode of the matching game is presented in
Algorithm 1.

B. GAME STABILITY
The proposed algorithm assumes that preference lists are
dynamically updated after each iteration to maintain consis-
tency between the algorithm’s decisions and the current state
of the system, such as the residual available resources and
the queue length on each edge node. These updates introduce
dependencies among the players’ preferences, significantly
complicating the stability of the game, and resulting in a
non-trivial challenge in this class of matching problems.
To ensure that the proposed approach converges to a stable
matching outcome, denoted as M, the concept of a two-sided
exchange stable matching (S2ES) is revisited [38].
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Algorithm 1 Matching Game
1: for each layer / in £ do

2: Create the preference list

3: end for

4: for each edge node ¢ in £ do

5: Create the preference

6: end for

7: for each layer [ do

8: Send proposal to the most preferred node

9: end for

10: for each edge node e receiving at least one proposal do

—_
—_

Accept the favorite layer among those proposing,
reject the others
: end for

—_
[\

Definition 1: A final matching M is an S2ES matching
if no pair of layers (I1, l») exists s.t.:

1) Vi (M(B)) < Vi, (M(11)) and

2) V(M) < V,(M(k) and

3) Wman () = Wmay () and

4 Waay () < Waay) (l2) and

5 Ay e {1, I, M), M(lb)} s.t. at least one of the
conditions 1) —4) is strictly verified.

Theorem 1: The proposed matching algorithm converges
to a final S2ES configuration.

Proof: We prove stability by contradiction. Assume there
exists a deviation (1, [) such that the matching outcome M
is not S2ES. This implies that at least one of the conditions
in Definition 1 is strictly violated, meaning that at least
one layer or edge node could improve its allocation by
switching. However, we observe that the monotonicity of the
resource consumption process ensures that at each iteration,
the available resources of edge nodes decrease or remain
unchanged as layers are allocated step by step. Additionally,
since the system does not drop already allocated requests,
the waiting delay B; for any layer / can only remain the
same or worsen. Now, consider a target layer / allocated to
an edge node e at iteration k. If [ wants to deviate to another
edge node ¢/, it would need to satisfy conditions 1)-4) in
Definition 1, meaning that both [ and ¢’ must strictly benefit
from the deviation. However, since edge resources are non-
increasing and waiting time is non-decreasing, any deviation
would lead to at most the same or a worse allocation,
contradicting the assumption of a beneficial deviation. A
similar argument applies to edge nodes: once an edge node
accepts a layer, its available resources are reduced, making
it impossible to later regret a previous matching and switch
to a different configuration that satisfies S2ES conditions.
Therefore, condition 5) in Definition 1 is not satisfied
for any deviation, ensuring that the final matching M
is stable. |

Theorem 1 establishes the stability of the proposed
matching algorithm, ensuring that the system reaches a
S2ES configuration where no further reallocations occur.
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This result is fundamental in the context of edge resource
allocation, as it guarantees that the system does not experi-
ence perpetual oscillations or inefficient reassignment cycles.
Stability is crucial for maintaining predictable resource uti-
lization, minimizing communication overhead, and ensuring
consistent service quality across edge nodes. This proof
formalizes the convergence of the algorithm and highlights
how the iterative reduction of available resources enforces
stability in a distributed manner. Unlike classical centralized
optimization methods that require global coordination, this
approach guarantees convergence using only local preference
updates, making it highly scalable and well-suited to edge
Al deployments.

The same reasoning applies to edge nodes, ensuring that
condition 5) of Definition 1 is not satisfied for any deviation.
Consequently, the outcome matching M is proven to be
stable.

C. COMPLEXITY ANALYSIS

To analyze the computational complexity of the proposed
framework under the worst-case scenario, we focus on the
situation where every edge node is capable of supporting
all layers. Each layer must sort the elements of the set £
based on the associated preference list metric. Consequently,
the time complexity for this sorting operation per layer
is O(ElogE). Considering all the layers in £ we have
a complexity of O(LElogE). Moreover, the computational
complexity associated with building the preference lists for
the edge nodes within the set £ is O(ELlogL). Since
typically E << L and the algorithm terminates in L
steps, the total computational complexity results to be

driven by
o (EL log L) .

Regarding termination, we observe that the proposed algo-
rithm is guaranteed to reach a fixed point in a finite
number of steps. In the worst-case scenario, where all
LLM layers initially target the same edge node (assumed to
have unbounded capacity), each node accepts at most one
proposal per iteration, and the algorithm terminates in at
most as many rounds as the number of LLM layers. From a
deployment perspective, the main scalability bottleneck is the
communication bandwidth required to support the exchange
of large model weights and activations. LLM inference
involves large model weights and activations, which require
high-throughput interconnects to avoid excessive transfer
delays. Without sufficient bandwidth, the benefits of layer-
wise distributed inference can be offset by communication
overheads. Importantly, the primary computational bottle-
neck arises when scaling to larger LLMs, i.e., increasing
the number of layers. In this case, distributed inference
becomes more appealing and potentially necessary, but also
more challenging to orchestrate efficiently. As model sizes
continue to grow, the trade-off between centralized and
distributed inference becomes increasingly relevant. While

10)
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centralized execution may avoid communication overhead,
it often lacks the computational scalability and geographic
proximity required by latency- sensitive applications. In
contrast, distributed inference enables layer-level parallelism
and load balancing, but introduces additional challenges in
scheduling, synchronization, and inter-node communication.
A comprehensive analysis of these trade-offs, especially
under varying model sizes and network constraints, repre-
sents a promising direction for future research.

V. PERFORMANCE EVALUATION

This section presents both results obtained through exten-
sive numerical simulations and a small-scale testbed. The
performance of the solution proposed are first investigated
through extensive simulations to assess the decision-making
capability of the matching game developed in solving
the LLM layer deployment problem, with comparisons to
alternative schemes. Then, a small-scale real-world testbed is
discussed to illustrate the behavior of the proposed strategy
in action.

A. SIMULATED PERFORMANCE ANALYSIS

To perform simulation, we consider an LLM architecture
structured as a sequential stack of Transformer layers,
where each layer is uniquely identified by its position
within the sequence. This sequential organization ensures
that each layer maintains its role in the model’s hierarchical
representation learning process. We further characterize each
layer based on computational cost and memory footprint as
follows. Based on empirical studies on LLM [14], [39], [40],
[41], as a reference scenario, we consider a heterogeneous
edge node network, where ‘L’é) » and 7, are uniformly selected
within [4,8] ms and [3,20] ms, respectively. Then, we
set a number of edge nodes uniformly distributed within
the interval [5, 12], considering a number of LLM layers
equal to 32. Furthermore, we consider my; as uniformly
distributed within [1.1,2.2] GB, whereas c, is uniformly
distributed in [4, 32] GB. Each simulation is repeated over
1,000 independent runs, and results are averaged to ensure
statistical reliability. All simulations were conducted on a
system powered by an Apple M1 Pro CPU with 32 GB
of RAM, providing a consistent and reliable computational
environment. All experiments are conducted in a controlled
environment using Python 3.10 and NumPy, with custom
logic implemented for matching dynamics and latency
computation.

To analyze the performance of the proposed matching
approach (PMA), we implement the following additional
decision-making schemes for comparison purposes

o Kolkata Game: the Kolkata repeated game, as described

in [42], is a matching game that relies on one-sided
preferences, meaning only one party in the game
specifies preferences for the other. Similar to the
PMA, in the Kolkata framework, layers express their
preferences based on (7). After layers submit their
allocation requests to edge nodes, each node randomly

3802

650 T T :
—f— PMA
Kolkata
—HF— Random
600 ——safp— Auction
u
g
>
S 550 +
g
o]
—
g 500
I
<
=}
—

4
Mean 7!, (ms)

FIGURE 2. Inference Latency as a function of the mean transmission time,
assuming a sequential architecture.

650 T T T
—F— PMA
Kolkata
=—— Random
—fe— Auction

600

Ut
t
(e}

(SN

o

o
T

S

o

S
T

Inference Latency (ms)
S
ot
(e}

w
(@Al
(=]
a

1 1 1

10 12 14 16
Mean ¢, (ms)

FIGURE 3. Inference Latency as a function of the mean processing time, assuming
a sequential architecture.

selects its preferred layer from the pool of proposals it
receives.

e Random Selection: each user selects an edge node for
computation by making a random choice based on a
uniform distribution.

o First-bid Auction Game: layers express their bids based
on 1/V(e), and nodes accept the highest bid among
those received.

Assuming a sequential processing architecture, Figure 2
illustrates the inference latency as a function of the mean
transmission time per layer. As it is evident, the infer-
ence latency increases as the transmission time grows.
Furthermore, the PMA outperforms the alternative strategies
here considered for comparison. In particular, the Kolkata
algorithm does not reach the inference values achieved by
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sequential architecture.

the PMA due to the random component that rules the
choices provided by edge nodes. Similarly, in Figure 3
the inference latency is expressed as a function of the
processing time. Comparison with alternative algorithms
confirms the superiority of the PMA in performing decision-
making, however, we can also appreciate the impact of
the processing time on the overall inference. Specifically,
reducing the processing time significantly improves the
overall inference time. In addition, Figure 4 exhibits the
behavior of the inference latency as the number of layers
increases. In our experimental setup, we consider a variable
number of layers ranging from 30 to 120, reflecting different
deployment scenarios in heterogeneous edge networks. This
range encompasses both moderate-scale models and deeper
architectures, allowing us to evaluate the impact of layer
granularity on system performance. For reference, LLaMA-
7B, a model widely used in various edge and cloud-based
applications, consists of 32 Transformer layers. Our selected
range extends beyond this, covering scenarios relevant to
scalability analysis in edge infrastructures. By varying the
number of layers, we analyze the trade-offs between latency,
resource utilization, and inference efficiency, investigating
adaptability across different edge computing environments.
High numbers of transformer layers clearly lead to a degra-
dation in inference performance, especially in a sequential
architecture. Nevertheless, the PMA manages to ensure
reduced inference times compared to other approaches.

B. TESTBED

To evaluate our algorithm in a real-world context, we
developed a small-scale testbed (Figure 5) consisting of four
edge nodes with the following configurations: A. an Intel
Core 17-12700K paired with an NVIDIA RTX 3090, B
Ryzen 7 3700X, C an Intel Core i7-9700K, and E an AMD
Ryzen Threadripper 1950X-16. Components F and D are
the network element and the UPS, respectively. We selected
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LLaMA-7B as the LLM for our experiments due to its
lightweight architecture, making it suitable for deployment
in resource-constrained environments. Inspired by recent
works [43], [44], we have applied the LLM to perform
decision-making actions for autonomous driving support.
The LLM interacts with a dynamic environment using
multi-modal, multi-view sensor data and natural language
instructions. We exploited a dataset of data clips, where
each clip includes one navigation instruction, several notice
instructions, a sequence of multi-modal, multi-view sensor
data, and control signals. Experimentation was performed in
CARLA-Leaderboard. The inference was tested distributing
LLaMA-7B among four edge nodes. In so doing, the
data batches were parallelized, obtaining the performance
illustrated in Figure 6. Figure 6 exhibits the inference latency
ruling the bandwidth of the connection among edge nodes.
Also in this use-case where the computation is parallelized,
the PMA achieves better performance in comparison to both
the Kolkata and Random alternatives.

VI. CONCLUSION

This paper addressed the problem of the LLM layer
deployment across an edge network, heterogeneous in both
computational and communication resources. The framework
developed is based on the matching theory principles,
and it is devoted to minimizing the inference latency
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of the distributed LLM. The game formulation presents
interdependencies among players’ preferences, meaning that
the stability is not trivial to prove. Performance evaluation is
provided in comparison to alternative state-of-the-art algo-
rithmic approaches. Finally, a small-scale testbed is proposed
to cast the solution designed to a real-world case study,
where the LLM exploits its ability in understanding NLP to
support next-generation autonomous driving scenarios.
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