MFGAN: OCT Image Super-resolution and Enhancement with Blind
Degradation and Multi-frame Fusion

Zongqi He", Zhe Xiao", Zhuoning Xu*, Yunze Li*, Zelin Song*, Calvin LeightonT, Li W;lng*, Shanru
Liu", Shiun Yee Wong", Wenfeng Huang', Wenjing Jia", and Kin-Man Lam”

“The Hong Kong Polytechnic University, Hong Kong, China
TUniversity of Technology Sydney, Sydney, Australia

ABSTRACT

Optical coherence tomography (OCT) is crucial in medical imaging, especially for retinal diagnostics. However, its ef-
fectiveness is often limited by imaging devices, resulting in high noise levels, low resolution, and reduced sampling rates,
which hinder OCT image diagnosis. This paper proposes a generative adversarial network (GAN) based OCT image super-
resolution framework that leverages a blind degradation and Multi-frame Fusion mechanism, namely MFGAN, for retinal
OCT image super-resolution. Our method jointly performs denoising, blind super-resolution, and multi-frame fusion,
which can reconstruct high quality OCT images without requiring paired ground-truth data. We employ a blind degra-
dation model to handle OCT image degradation and a denoising prior to effectively process noisy inputs. Experimental
results on the PKU37 dataset and the VIP Cup 2024 dataset demonstrate that MFGAN excels in both visual quality and
quantitative performance, outperforming existing OCT image super-resolution methods.
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1. INTRODUCTION

Optical coherence tomography (OCT), a non-invasive cross-sectional imaging technique, is essential in various medical
applications, particularly in retinal diagnostics.! However, the effectiveness of OCT-based diagnosis is hindered by some
challenges. OCT images are inevitably corrupted by speckle noise due to the low coherence interferometry imaging
modality.> Additionally, to expedite the image acquisition process and mitigate the effects of unconscious eye movements
during a B-scan, a low sampling rate is often employed. While this approach reduces motion artifacts, it results in low-
resolution OCT images.®> These two issues, i.e., speckle noise and low resolution, significantly degrade the quality of the
generated OCT images, which are critical for accurate disease diagnosis. Therefore, it is essential to develop an effective
network that achieves image denoising, super-resolution, and enhancement.

Over the past decades, various methods have been proposed to enhance the quality of OCT images. Hardware methods
improve the light source and structure of the imaging system, while software post-processing algorithms like BM3D,*
nonlocal-means,” and noise adaptive wavelet thresholding® have been developed. Although both approaches can reduce
certain types of noise, they often leave residual artifacts or sacrifice structural details. Inspired by the remarkable success of
deep learning in various vision tasks,’~!? deep learning-based methods have demonstrated superior performance in speckle
noise reduction, OCT image super-resolution, and detail enhancement, leveraging optimized network architectures.'!

Various OCT super-resolution techniques have been developed to address low sampling rates and improve image resolu-
tion. Traditional interpolation methods often struggle to recover high-resolution (HR) details from noisy and low-resolution
(LR) images. To overcome this challenge, Fang et al,'? introduced sparsity-based simultaneous denoising and interpola-
tion (SBSDI). However, this method is computationally demanding and requires precise alignment of LR and HR images,
which is challenging due to the motion artifacts commonly found in OCT imaging. In recent years, deep learning methods
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have shown promising advancements in super-resolution, but many still rely on simple bicubic downsampling prior,'3 14
which is not suitable for depicting OCT image degradations. In light of the impressive performance achieved by deep learn-
ing models in various vision tasks,'>~!7 blind super-resolution has emerged to handle complex and unknown degradations,
making it more adaptable to real world scenarios. Some methods utilize explicit degradation models'® that incorporate
factors like blur, downsampling, noise, and JPEG compression to approximate real-world degradations (see Section 2.2.1).
However, due to the high variability and complexity of real-world degradation, these methods often struggle in practical
applications. Alternatively, others leverage implicit models, such as generative adversarial networks (GANSs), to learn
degradation patterns directly from data distributions,'®>>?? though these approaches may not generalize well to unfamiliar
degradation types.

In this work, we propose a novel OCT image processing pipeline that addresses the limitations of existing methods,
particularly in handling the complexities of real-world retina OCT images characterized by varying degradation states and
significant noise. Our approach incorporates a denoising prior applied to the input image, which helps mitigate the effects
of noise before super-resolution. By utilizing a blind degradation module, we avoid the requirement for accurately paired
HR and LR images, which are often challenging to obtain. Additionally, we implement a multi-orientation processing
strategy where the input image is rotated by multiples of 90 degrees to generate four distinct perspectives. Each version is
then processed independently, and the outputs are subsequently fused to produce the final enhanced image. This method
effectively enhances OCT images with significant noise and low resolution, refining their detail for clinical diagnosis.

The contributions made in this paper can be summarized as follows:

* We propose a novel framework for OCT retinal image super-resolution that integrates denoising prior, super-resolution,
and multi-frame fusion. This approach addresses the unique challenges of noise and limited resolution in OCT im-
ages, significantly enhancing their quality.

* We propose a blind super-resolution method. By incorporating a degradation module, the method adapts effectively
to the diverse degradation conditions commonly encountered in medical imaging, improving the overall model’s
robustness for real-world clinical applications.

+ Extensive experiments on two benchmark datasets, PKU37%! and VIP Cup 2024, demonstrate the superiority of
the proposed method. The results show that our method achieves leading performance in both visual quality and
quantitative metrics, confirming its effectiveness for super-resolution medical image tasks.

2. METHODOLOGY
2.1 Network Architecture

The network of our MFGAN is shown in Figure 1. We employ a denoising module used in MPLN to process the LR
images, which are then rotated by multiples of 90 ° and passed through four parallel branches, each of which contains three
residual-in-residual blocks (denoted as “RR” in Figure I) to produce SR images. These images are then rotated back to
their original orientations and fused through multi-frame fusion to generate the final SR output.

2.2 MFGAN for OCT Image Super-Resolution

We propose a GAN-based network for OCT image super-resolution, which is trained with a blind degradation model.??
The high-resolution images are degraded by the blind degradation model to produce estimated LR images.

2.2.1 Blind Degradation Model

Traditional degradation models can be characterized by a blur kernel, downsampling, and noise, which can be expressed
as y = (x®k) |5 +n, where the LR image y is obtained by convolving the HR image x with a blur kernel k, followed
by downsampling with a scale factor s, and finally adding additive white Gaussian noise (AWGN) n. Different from the
traditional degradation model, we model the key factors, i.e., blur kernel, downsampling, and noise in a more sophisticated
way. Specifically, the blur kernel is modeled with two Gaussian blur operations, following the approach proposed in
a prior work;?? the downsampling includes bilinear and bicubic interpolations; the noise is modeled by AWGN, JPEG
compression noise, and processed camera sensor noise. Specifically, we perform two consecutive blur operations, each
using an isotropic Gaussian kernel or an anisotropic Gaussian kernel, termed as B; and Bg,,; with a certain probability. For
interpolation, we randomly choose between bilinear and bicubic interpolations. Considering OCT images are obtained
from imaging devices, we model the noise with processed camera sensor noise N.s.
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Figure 1: The network architecture of our MFGAN. The input image is denoised and rotated by multiples of 90 degrees
before entering the four generator branches. The outputs are then rotated back and fused to produce a fused SR image.
The block RR represents residual-in-residual blocks, and the block D represents the Discriminator.
2.2.2 Generative Adversarial Network

Inspired by previous works,'*2%24 the Generator in our MFGAN contains two levels of residual layers, termed as residual-
in-residual blocks (RR), to achieve dense connections. Following prior research,? we set a relativistic Discriminator to
predict a real HR image x,,; that is more realistic than a fake HR image x fak.:

Dr(xrealvxfake) = S(D(xreal) - E[D(xfake)}) =1,
Dr(xfakmxreal) = S(D(xfake) - E[D(xreal)]) — 0,

where S(-) denotes the sigmoid function, D(-) represents the original Discriminator output, and E[-] signifies the expecta-
tion operator. The Discriminator block D determines which of the SR and HR images is more realistic.

(6]

2.3 Multi-frame Fusion

As shown in Figure 1, we rotate each image by multiples of 90° and pass them through four parallel branches. After going
through the RR blocks, the four output images are rotated back to their original orientations. We then take a weighted sum
of the four images to produce the final output, with enhanced details. The multi-frame fusion process can be expressed as
follows:

4
£= Z Xgs )
where £ represents the fused SR output, wy, is the weight for the k-th image, and xlgR refers to the SR output after rotation.

3. EXPERIMENTS
3.1 Data Preparation

We conducted experiments using two datasets, the PKU37 dataset?! and the VIP Cup 2024 Test Set. The PKU37 dataset
comprises 37 subjects, each with around 50 noisy OCT images at a resolution of 640 x 640 pixels. For each subject, a
clean image was generated by averaging the frames of the noisy images. The VIP Cup 2024 Test Set includes data from
18 subjects, each with 70 to 300 B-scans at resolutions of either 300 x 150 or 300 x 200 pixels.

3.2 Implementation Details

We implemented the proposed method using the PyTorch framework and trained it with an NVIDIA GTX 4090 GPU.
We adopted two commonly used evaluation metrics, i.e., peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM). Following MPLN, we also measured two unsupervised metrics, i.e., contrast-to-noise ratio (CNR) and
mean-to-standard-deviation ratio (MSR) based on regions of interest (ROIs). Following the practice of TCFL,?! we selected
four ROIs to measure the non-reference metrics. As shown in Figure 2, three signal ROIs (green rectangles) are located at
or near the retinal layers, and the background ROIs (red rectangles) were selected in the homogeneous region.



(a) PKU37 dataset
Figure 2: The ROIs selected for calculating CNR and MSR on the PKU37 dataset (a) and (b) the VIP Cup 2024 Test Set,
respectively. The green rectangular ROIs are the foreground ROIs, and the red rectangular ROIs are the background ROIs.

(b) VIP Cup 2024 Test Set

Table 1: Quantitative comparison of various SR methods on the PKU37 dataset. The best and second-best results are
highlighted in red and blue, respectively, and “-” indicates the result is not available.

Methods x2 x4
PSNRT SSIMT CNRT MSRT | PSNRT SSIMT CNRT MSR?T
EDVR - - - - 14.81 0.536 6417 7953
BasicVSR - - - - 12.96 0.510 6464 7.988
SSL - - - - 12.91 0.506 6.344 7.705
EDSR 16.19 0.568 6.801 8.700 16.31 0.564 6242 7.701
RealESRGAN 15.74 0.593 6.709 8.516 15.98 0.600 7.625 10.996
SwinIR 16.14 0.593 6.748 8.523 16.16 0.604 743 10.727
DAT 16.21 0.568 6.797 8.684 16.31 0.563 6.262 7.628
DKP 16.14 0.566 6.173  7.376 16.00 0.566 6.356  7.683
MFGAN (ours) | 16.30 0.607 6.99  9.093 16.46 0.631 7.836 11.477

3.3 Experimental Results

We compared our method with other single image SR methods, including EDSR,!? RealESRGAN,?’ SwinIR,*® DAT?’
and DKP,?® as well as video SR methods, including EDVR,?’ BasicVSR,3? and SSL,?! using OCT image sequences as
inputs. We conducted experiments on the PKU37?! dataset. The noisy images are denoised before being inputted to all
the methods. Table I presents the quantitative results of different methods, showing that our method outperforms both
single-image and video SR methods. The visual results of different methods with a scale factor of 4 are shown in Figure 3.
Video SR approaches®*~3! reconstruct shifted content and may produce incorrect information. EDSR'? super-resolves the
noises in the LR input. RealESRGAN?" and DKP?® deliver promising outputs, yet still maintain a certain level of blur.
These results reveal that our method achieves superior performance in terms of visual quality and quantitative measures.
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Figure 3: Visual comparison of different methods on the PKU37 dataset by the scale of x4. (a) Reference image, (b) LR
of the area highlighted in red (denoised and enlarged by 4 times), (c) EDVR, (d) BasicVSR, (e) SSL, (f) EDSR, (g)
RealESRGAN, (h) DKP, (i) MFGAN (ours), and (j) GT.

To further validate the robustness of our approach, we compared it with other methods on the VIP Cup 2024 Test Set,
as shown in Table 2 and Figure 4. Since reference images are not provided, we focused on CNR and MSR as non-reference



metrics. According to Table 2, our method obtained the best scores across CNR and MSR. As illustrated in Figure 4, these
methods'32%27 produce similar results to the zoomed LR image, achieving little improvement. In contrast, our method
achieves satisfactory output compared to others.

3.4 Ablation Studies

In this section, we explore our proposed method in two aspects: multi-frame fusion and denoising. The CNR and MSR
scores of MFGAN on the VIP Cup 2024 dataset are illustrated as Table 3. It can be seen that both multi-frame fusion and
denoising can improve the image quality.

Table 2: Quantitative comparison of different single image Table 3: Quantitative results of MFGAN
super-resolution methods on the VIP Cup 2024 Test Set. The best and using proposed multi-frame fusion (“MF”)
second best results are highlighted in red and blue, respectively. and Denoising modules.
Scale | Metric | EDSR  SwinlR DAT DKP MFGAN MF Denoise CNR  MSR
<2 CNR?T | 3.014  3.067 3.084 2.883 4.141 1.756  8.230
MSRT | 7395 7411 7457 8394  12.206 4 1.864  8.533
d CNRT | 2934 3.018 3.011 - 3.994 4 3.994 13777
MSRT | 7265  7.261  7.347 - 13.777 4 v 4.263 15.532

| .
Reference LR EDSR*? SwinIR?? DAT30 MFGAN (Ours)

Figure 4: Visual comparison of different methods on the VIP Cup 2024 Test Set with a scale factor of x4.

4. CONCLUSION

In this paper, we have presented a novel framework for enhancing OCT retinal images that addresses the prevalent dual
challenges of clinical OCT imaging, i.e., noise and low resolution. Our approach integrates a denoising prior, a blind
super-resolution module, and multi-frame fusion, collectively forming a robust pipeline that adapts effectively to varying
degradation conditions in real-world retina OCT images. Unlike traditional methods, our method does not require paired
high-resolution and low-resolution images, making it more suitable for clinical settings where obtaining such pairs is
difficult. Experimental results on the PKU37%! and VIP Cup 2024 datasets have validated the effectiveness of our method,
demonstrating its superior performance in both visual quality and quantitative metrics. This method provides a promising
advancement for the super-resolution and enhancement of retina OCT images.

5. DISCUSSION

The proposed method adopts an L1 loss function, which encourages pixel-wise accuracy. While this loss function performs
well for overall structural restoration, it tends to over-smooth fine details. To address this limitation, future work can explore
integrating more advanced loss function, e.g., frequency domain perceptual loss, which can generate sharper textures and
edges. Furthermore, while the current approach employs a blind degradation model, incorporating task-specific priors
could make the method more robust to complex degradations observed in real-world OCT images.
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