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Introduction
Disulfide bonds maintain protein structure and func-
tions in many pathophysiological conditions. Protein 
disulfide isomerase (PDI), a prototypical member of the 
thiol isomerase family, is a multi-functional enzyme criti-
cal for protein folding and redox homeostasis within the 
endoplasmic reticulum (ER). By catalyzing the forma-
tion, isomerization, and reduction of disulfide bonds, 
PDI ensures proper tertiary structure of nascent poly-
peptides. It can also serve as a chaperone to facilitate 
protein folding. PDI has four domains and an x linker 
arranged in the order of a-b-b′-x-a′ (Fig.  1). The a and 
a’ domains contain catalytic motifs CGHC (Cys-Gly-
His-Cys), whose sequences are similar to thioredoxin 
(TRX), while the b and b’ domains are catalytically inac-
tive, with tertiary structure also similar to TRX [1]. The 
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Abstract
Protein disulfide isomerase (PDI) catalyzes the reduction, oxidation, and isomerization of disulfide bonds. Although 
initially discovered as an endoplasmic reticulum (ER)-residing protein, PDI has been demonstrated to play critical 
roles on cell surfaces and in the extracellular milieu under different pathophysiological settings. During thrombosis 
extracellular PDI regulates both platelet activation and coagulation, while during vascular injury PDI modulates 
proinflammatory neutrophil recruitment and the homeostasis of vascular cells. The identification of PDI substrates 
using mass spectrometry-based techniques such as mechanism-based kinetic trapping and differential cysteine 
alkylation has significantly advanced our understanding of the mechanisms whereby extracellular PDI regulates 
these pathophysiological processes. PDI may reduce or oxidize allosteric disulfide bonds and change the function 
of adhesive receptors, coagulation-related plasma proteins and signaling molecules that are important during 
thrombosis and vascular injury responses. The catalytic cysteines of PDI can also be post-translationally modified 
to enable PDI to transmit redox active species. This review aims to summarize the most recent advances about 
the roles of extracellular PDI in thrombosis and vascular injury and their mechanisms. With the discovery of novel 
PDI inhibitors, this body of knowledge will provide novel opportunities to develop strategies for the treatment of 
thrombotic and vascular diseases.
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CGHC motifs confer the oxidoreductase and isomerase 
activities on PDI, while the b′ domain has a hydropho-
bic region that is composed of Leu242, Leu244, Phe258, 
Ile272, and is mainly responsible for substrate binding 
[2–5]. The x linker has 19 amino acids that are essential 
for conformational alteration that allows for substrate 
access [6, 7]. The C-terminus is highly acidic and contains 
a KDEL (Lys-Asp-Glu-Leu) motif, which is important for 
its retention in the ER [8–10]. Notably, the C-terminus of 
PDI is critical to stabilize its chaperone activity, and oxi-
dation of a′ domain promotes the exposure of b’ domain 
therefore facilitating the chaperone activity [10, 11].

Emerging evidence shows that PDI is also functional on 
cell surfaces and in the extracellular milieu. This unique 
pool of PDI has been detected in many different cell types 
such as platelets, endothelial cells, neutrophils, vascular 
smooth muscle cells, etc. [12]. Extracellular PDI has been 
implicated in various pathophysiological conditions, 

including thrombosis, cancer progression, immune and 
inflammatory responses, vascular homeostasis and eryth-
rocyte physiology. The exact functions of PDI, whether 
it behaves as a thiol reductase, oxidase, isomerase or 
chaperone, depend on the distinct substrates and the 
pathophysiological scenarios. In general, the most well-
characterized activity of extracellular PDI is thiol reduc-
tase, especially in platelets, neutrophils and tumor cells 
[12–15], while the oxidase activity was reported particu-
larly in vascular smooth muscle cells (VSMCs) [16, 17]. 
The pathophysiological roles of cell surface and extracel-
lular PDI have been extensively reviewed in our previous 
publication [12]. The recent advances in the development 
of PDI inhibitors have been reviewed elsewhere [18]. In 
this review, we focus on the roles of extracellular PDI 
in thrombosis and vascular injury, aiming to provide an 
overview of recent advances on the mechanisms whereby 

Fig. 1 The domain structures of PDI. The three-dimensional structure of reduced PDI was downloaded from the Protein Data Bank (PDB) database (PDB 
ID: 4EKZ). PDI has four domains with the b’ for substrate binding
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extracellular PDI derived from platelets and neutrophils 
modulates these diseases.

Extracellular PDI in thrombosis
Extracellular PDI in platelets
PDI is secreted and relocates to cell surface with other 
thiol isomerases upon platelet activation [19, 20]. 
Although the route of PDI externalization is not fully 
understood, it has been shown that extracellular PDI 
directly interacts with β3 integrin on the platelet sur-
face following vascular injury [21]. Notably, this interac-
tion only occurs with active conformation of β3 integrin. 
Wang et al. reported that the b′ domain of PDI binds to 
integrin β3 on the surface of activated platelets, while the 
a and a′ domains optimize the binding [22]. Although the 
extracellular fraction of PDI accounts for less than 10% 
of total PDI in activated platelets [21], it plays important 
roles in platelet activation and thrombus formation. In 
a murine model of thrombosis induced by laser injury, 
blocking extracellular PDI by a monoclonal antibody or 
PDI inhibitor impeded both platelet thrombus formation 
and fibrin generation [23]. In addition, mice with platelet-
specific deletion of PDI exhibited defects in platelet accu-
mulation, but displayed intact initial adhesion of platelets 
and normal fibrin generation, a phenomenon attributed 
to PDI released from endothelial cells [24, 25]. Further, 
the CGHC motif in the a’ domain instead of the a domain 
is important for the role of PDI during thrombosis [26].

It has long been proposed that extracellular PDI 
directly modulates disulfide exchange on platelet integ-
rins and thus induces conformational change and integ-
rin activation [27, 28]. This premise is mainly based on 
the observation that the activation of platelet integrins 
such as αIIbβ3 is associated with exposure of free sulhy-
dryl groups in the extracellular region [29, 30], and phar-
macological inhibition or genetic deletion of PDI blocks 
platelet activities such as adhesion and aggregation 
attributed to integrins [24, 31]. Although site-directed 
mutagenesis studies have identified potential functional 
disulfide bonds that are important for integrin conforma-
tion, e.g., Cys560-Cys583 in αIIbβ3 and Cys523-Cys544 
in αvβ3 [32], there is currently no evidence that extra-
cellular PDI directly targets these disulfides. In addition 
to the oxidoreductase activity, the redox inactive PDI 
mutant was shown to regulate integrin-mediated cell 
adhesion, indicating PDI may also serve as a chaper-
one for conformation change of integrins [33]. Another 
example of substrates of PDI in platelets is glycoprotein 
Ibα (GPIbα). GPIbα and PDI reside closely on platelet 
surface, and a PDI-blocking antibody reduces GPIbα 
activation and thus impedes the interaction between 
platelets and von Willebrand factor (vWF) [19]. Li et al. 
using mass spectrometry and platelet-specific knockout 
mice showed that extracellular PDI cleaves two allosteric 

disulfide bonds (Cys4-Cys17 and Cys209-Cys248) in 
GPIbα to control its ligand binding activity and platelet-
neutrophil interaction [34].

In addition to the above adhesive receptors on plate-
let surface, it has also been shown that multiple com-
ponents in platelet α-granules such as vitronectin and 
thrombospondin-1 (TSP-1) are substrates of extracellular 
PDI during thrombosis. Using mechanism-based kinetic 
trapping strategy, a method involving PDI mutants that 
form stable disulfide-linked complexes with its substrates 
allowing for mass spectrometric identification, Bowley et 
al. showed that PDI via its CGHC motifs formed disul-
fide bond(s) with vitronectin and TSP-1 in platelet-rich 
plasma [35]. Reduction of 2 disulfide bonds of vitronec-
tin (Cys137-Cys161 and Cys274-Cys453) by PDI induces 
the exposure of cryptic hemopexin-like domains and 
therefore promotes vitronectin binding to β3 integrins 
and thrombus formation [35]. Earlier studies have shown 
that redox modification of disulfides on TSP-1 by PDI 
promotes the exposure of adhesive motif and alters its 
adhesive activities [36]. It was also shown that PDI pro-
motes the interaction of thrombin-antithrombin with 
TSP-1 [37] and vitronectin [38], respectively, by catalyz-
ing the formation inter-molecular disulfide bonds. More 
recently, the study by Khan et al. indicated that PDI uses 
thrombin-antithrombin complex as a template to pro-
mote its interaction with substrates and influence blood 
coagulation rates [39]. Nevertheless, the in vivo physi-
ological relevance to thrombosis and the biochemical 
details of PDI-mediated disulfide reactions in these stud-
ies remain elusive. The proposed substrates and possible 
disulfide bond(s) targeted by PDI during thrombosis are 
listed in Table 1.

The activity of extracellular PDI is determined by mul-
tiple factors including the redox potential in the extra-
cellular milieu, the interplay between intracellular and 
extracellular redox couples, the kinetics of the redox 
reactions, the enzymatic modulation by other oxido-
reductases, and the posttranslational modification [12, 
40]. Post-translational modification of cysteines in the 
catalytic CGHC motifs provides a mechanism whereby 
extracellular redox stress influences the activity of PDI 
and therefore thrombus formation [12]. It has been 
reported that the catalytic cysteines could be modified 
by S-nitrosylation [41], S-glutathionylation [42], and 
lipid aldehydation [43]. Notably, S-nitrosylation of PDI in 
response to extracellular reactive nitrogen species such 
as S-nitrosothiols confers the role of S-transnitrosylase 
on cell-surface PDI which transmits nitric oxide into the 
cytosol to inhibit platelet activation and thrombus forma-
tion [44]. Recently, Yang et al. reported that PDI could 
be S-sulfenylated in response to oxidative stress during 
atherosclerosis, inflammation, and aging [45]. S-sulfenyl-
ation of PDI in the a domain promotes its oxidase activity 
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and platelet aggregation, thus leading to oxidized low-
density lipoprotein (oxLDL)-augmented thrombus for-
mation. Further, the activity of PDI on the platelet surface 
is also subjected to regulation by another oxidoreductase. 
Wang et al. showed that endoplasmic reticulum (ER) 
oxidoreductase-1α (Ero1α) oxidizes PDI on the plate-
let surface and the Ero1α/PDI system oxidizes reduced 
glutathione (GSH), therefore establishing a redox poten-
tial in the extracellular milieu that is optimal for platelet 
aggregation [46]. However, a more recent study by Jha 
et al. [47] using platelet-specific Ero1α-deficient mice 
showed that Ero1α catalyzes the rearrangement of allo-
steric disulfide bonds on Ca2+ signaling molecules and 
regulates their functions and therefore intracellular Ca2+ 
mobilization in platelets. The study suggests that it is the 
intracellular Ero1α that is critical for platelet activation 
and thrombus formation, and the mechanism is inde-
pendent of extracellular PDI. The reason for the different 
observations is currently unknown but may be attributed 
to the different concentrations of recombinant oxidore-
ductases employed between the two studies [47].

In addition to PDI, multiple members of the thiol isom-
erase family including ERp5 [48–50], ERp57 [51–53], 
ERp72 [54, 55], ERp46 [56], ERp18 [57, 58], ERp29 [59], 
TMX1 [60–62], TMX4 [63], etc., have been identified 
as positive or negative regulators of platelet activity and 
thrombus formation. It is possible that these thiol isom-
erases have different spectra of substrates, but with par-
tial overlapping, during thrombus formation. The nature 
of complexity and multiplicity of the roles of thiol isom-
erases may provide a mechanism of “redundancy” in the 
regulation of thrombus formation, and offer a mechanis-
tic explanation whereby PDI inhibitors reduce thrombus 
formation without increasing bleeding risks [64, 65].

Extracellular PDI in coagulation system
As a critical part of thrombus formation, activation of 
the coagulation system is also regulated by extracellular 
PDI. Several members of the coagulation cascade includ-
ing tissue factor (TF), factor XI (FXI) and factor V (FV) 
have been proposed as potential substrates of PDI during 
thrombosis. Although it remains a subject of debate, the 
role of PDI was implicated in the encryption and decryp-
tion of TF. PDI was proposed to catalyze the reduction/
oxidation of a single allosteric disulfide bond Cys186-
Cys209 [66]. In line with this hypothesis, peripheral 
blood mononuclear cells (PBMCs) with PDI deficiency 
exhibited decreased thrombin generation in the plasma 
in a TF-dependent manner [67]. It was also reported that 
PDI targets the Cys362-Cys482 disulfide bond of FXI to 
regulate its activation. The reduced form of FXI can be 
more efficiently activated by thrombin and FXIIa in the 
coagulation cascade [68]. Stopa et al. showed that PDI 
forms disulfide bond(s) with FV and promotes the activa-
tion of FV in platelets. Inhibition of PDI suppresses FVa 
production and therefore reduces platelet-dependent 
thrombin generation [69]. Other mechanisms whereby 
PDI modulates coagulation reactions have also been pro-
posed. It was reported that PDI regulates the exposure of 
phosphatidylserine on endothelial cells, which is a critical 
step for the initiation of coagulation cascade [70]. Khan 
et al. showed that PDI binds to thrombin-antithrombin 
complex to regulate the activity of antithrombin and 
other PDI substrates, and thus blood coagulation [39]. 
More recently, using mechanism-based kinetic trapping 
experiment [71], it was shown that histidine-rich glyco-
protein (HRG) is a substrate of PDI during thrombosis. 
HRG is a multifaceted plasma protein. In the context of 
blood coagulation, PDI has multiple binding partners 
including heparin, FXIIa, and heparan sulfate on endo-
thelial cells [72]. HRG binds to heparin/heparan sulfate 

Table 1 Proposed substrates and possible allosteric disulfide bonds targeted by extracellular PDI in thrombosis
Target Possible Disulfides Effect on substrate References
β3 Cys560-Cys583 (αIIbβ3, αvβ3),

Cys523-Cys544 (αvβ3)
Promote integrin activation  [108]

GPIbα Cys4-Cys17,
Cys209-Cys248

Increase ligand binding affinity  [34]

Vitronectin Cys137-Cys161,
Cys274-Cys453

Increase ligand binding affinity  [35, 38]

Thrombospondin-1 ND* Increase the adhesive and binding activity  [36, 38]
Thrombin-antithrombin complex ND* Promote the binding with PDI substrates and 

influence coagulation rates
 [39]

TF Cys186-Cys209 Promote decryption  [109]
FXI Cys362-Cys482 Enhance enzyme activation  [68]
FV ND* Enhance enzyme activation  [69]
HRG Cys306-Cys309 Increase ligand binding affinity  [71]

Cys390-Cys434
Cys409-Cys410

*ND, not determined
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to displace antithrombin, thus exerting prothrombotic 
effect. HRG also binds to FXIIa to inhibit the intrinsic 
coagulation, thus exerting antithrombotic effect. The 
study by Lv et al. showed that PDI cleaves three allo-
steric disulfide bonds, Cys306-Cys309, Cys390-Cys434 
and Cys409-Cys410, in HRG. Reduction of HRG by PDI 
promotes the exposure of the histidine-rich region, and 
therefore enhances HRG’s binding to endothelial heparan 
sulfate and FXIIa. Physiologically, such redox modifica-
tion of HRG by PDI allows for rapid initiation of blood 
coagulation by inhibiting antithrombin, and prevents 
excessive blood clotting by inhibiting the intrinsic path-
way. Therefore, the PDI-HRG pathway represents a novel 
mechanism whereby blood coagulation is fine-tuned to 
differentiate thrombosis and hemostasis [71].

It is now clear that extracellular PDI has a broad spec-
trum of substrates in platelets and the coagulation system. 
While the overall effect of PDI is to positively contribute 
to thrombosis, the exact effects of PDI on platelet activa-
tion, blood coagulation and kinetics of thrombus forma-
tion depend on the distinct substrates, which are further 
subjected to in vivo temporal and spatial regulation. In 
the “master switch” hypothesis proposed by Furie et al., 
the secretion of PDI along with other thiol isomerase 
family members following vascular injury serves as a 
hub of initiation signaling that unleashes the functions of 
many vascular and plasma components whose functions 
are “clamped” in an inactive state by functional disul-
fide bonds under normal condition to prevent untoward 
blood clotting [73]. Although the overall working model 
whereby PDI and other thiol isomerases orchestrate 
thrombosis and hemostasis remains elusive, growing 
pieces of observations regarding PDI interactions with 
individual substrates are now accumulating to build up a 
more comprehensive scenario.

Extracellular PDI in vascular injury responses
Extracellular PDI in neutrophils
The recruitment of peripheral neutrophils to inflamed 
endothelium is a critical contributor to neutrophil-
mediated vasculopathy. The heterotypic interactions 
between neutrophils and endothelial cells are mediated 
by pairs of adhesive receptors. The tethering/rolling of 
neutrophils is mediated by interactions between selec-
tins and their ligands [74]. The firm adhesion and crawl-
ing of neutrophils are mediated by integrins, mainly β2 
integrins including αLβ2 (LFA-1) and αMβ2 (Mac-1), 
and their counter receptors on endothelial cells such as 
intercellular adhesion molecule-1 (ICAM-1) [75]. Con-
sistent with the hypothesis on the roles of PDI in integ-
rin activation [27, 28], PDI has been reported to regulate 
Mac-1 activity. Hahm et al. showed that PDI modulates 
the sulfhydryl exposure of αM subunit in lipid rafts and 
the ligand-binding activity of Mac-1 but not LFA-1 on 

neutrophil surface [15]. Notably, this study did not iden-
tify a conformation change of Mac-1 induced by PDI, 
which, instead influences the clustering of Mac-1, which 
is a critical step for the increase of ligand-binding activ-
ity of integrins during neutrophil activation [15, 76]. A 
recent study by Dupuy et al. showed that PDI cleaves 
the Cys224-Cys264 disulfide bond in β2 subunit. Break-
age of this disulfide bond in the βI domain changes the 
conformation of β2 and allosterically alters the expo-
sure of an αI epitope, leading to a lower binding affinity 
of Mac-1 integrin. Functionally, PDI-induced shift in the 
binding affinity of Mac-1 releases neutrophils from endo-
thelial cells at the trailing edge and promotes its direc-
tional movement under shear [14]. It is noteworthy that, 
in addition of PDI, thiol isomerase ERp72 has also been 
shown to regulate Mac-1 functions. A recent study by 
Li et al. demonstrates that ERp72, also in the lipid rafts, 
cleaves the Cys654-Cys711 disulfide bond at the inter-
face between the thigh and genu domains of αM subunit. 
Breakage of this bond induces the shift of αM to an open 
extended conformation with increased binding affinity 
with ligand ICAM-1, and promotes neutrophil crawling 
and adhesion [77]. Other mechanisms involving PDI that 
indirectly modulates leukocyte recruitment have also 
been reported. For instance, the activity of a disinteg-
rin and metalloprotease-17 (ADAM17), which regulates 
the shedding of L-selectin, an adhesive molecule impor-
tant for neutrophil rolling, is regulated by PDI-mediated 
disulfide isomerization [78]. Extracellular PDI directly 
binds to the membrane-proximal domain of ADAM17 
on neutrophil surface to prevent its dimerization and 
substrate recognition, thus blocking ADAM17-mediated 
cleavage of L-selectin and promoting neutrophil tether-
ing and rolling [79, 80].

Extracellular PDI in vascular cells
Extracellular PDI derived from vascular cells has been 
implicated in vascular injury responses such as post-
injury remodeling and aortic dissection. Surface and 
extracellular PDI promotes expansive remodeling and 
mechano-response of vessel wall via cytoskeletal rear-
rangement induced by β1 integrin, whose activity is 
subjected to redox regulation by PDI on the surface of 
VSMCs [16, 17]. It was reported that recombinant PDI 
influences the in vitro maturation of transforming growth 
factor-β (TGF-β), a cytokine that modulates vascular 
homeostasis [81, 82]. From this perspective extracellu-
lar PDI may also influence vascular remodeling by con-
trolling TGF-β signaling although the in vivo relevance 
is unclear. It was recently shown that overexpression of 
PDI protects against vascular rupture in murine models 
of aortic aneurysm and dissection. The mechanism is 
likely to be mediated by the extracellular pool of PDI in 
VSMCs since the phenotype is independent of ER stress, 
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a contributor to VSMC loss that is sensitive to intracellu-
lar PDI level in the ER [83]. Further, Gaspar et al. recently 
showed that surface and extracellular PDI in endothelial 
cells modulates platelet adhesion on endothelium under 
hyperglycemic condition. Mechanistically, the effect 
is mediated by PDI-dependent secretion of solute car-
rier family 3 member 2 (SLC3A2) and laminin subunit 
gamma 1 (LAMC1), two adhesion-related proteins which 
potentially affect endothelial membrane biophysics [84]. 
Notably, the effects of PDI on vascular injury responses 
also involve the contribution from the intracellular pool 
of PDI. Several studies have demonstrated critical roles 
of PDI in the regulation of NADPH oxidase 1 (Nox1), 
an important signaling molecule generating reactive 
oxygen species (ROS) and controlling the phenotype of 
VSMCs during vascular diseases [85]. PDI upregulates 
the transcription of Nox1 by promoting the transloca-
tion of Activating Transcription Factor 1 (ATF1) to the 
nucleus in VSMCs [86]. PDI also regulates the assembly 
and thus the activation of Nox1 by directly forming an 
inter-molecular disulfide bond between Cys400 of PDI 
and Cys196 of the p47phox subunit [87]. Fernandes et al. 
showed that PDI regulates the phenotype of VSMCs by 
controlling the expression of Nox1 and Nox4, which sup-
ports the phenotype of proliferation and differentiation, 
respectively [88]. Further, Pescatore et al. reported that 
PDI is required for the activation of small GTPase such as 
Rac1 and therefore the migration of VSMCs [89]. In addi-
tion to the findings regarding PDI and Noxes in vascular 
cells, Gaspar et al. reported that PDI interacts with Nox1 
in platelets downstream of glycoprotein VI (GPVI) recep-
tor. PDI and Nox1 together contribute to GPVI signaling 
and platelet aggregation [90]. In line with this finding, 
PDI was shown to regulate intracellular ROS produc-
tion and ROS-thromboxane A2 signaling pathway during 
GPVI-mediated platelet activation [91]. PDI also partici-
pates the release of platelet-derived extracellular vesicles 
[92]. It was also shown in leukocytes that PDI supports 
Nox activity by serving as a redox-dependent complex 
organizer in the cytosol via association with p47phox sub-
unit [93]. The proposed substrates and possible disulfide 

bond(s) targeted by extracellular PDI during vascular 
injury responses are listed in Table 2.

PDI inhibitors for future therapeutics
Given the critical roles of extracellular PDI in thrombo-
sis and vascular injury responses, PDI inhibitors bear 
significant interest in the treatment of these diseases. In 
addition to the earlier nonspecific inhibitors such as baci-
tracin, which targets the catalytic domains of PDI, recent 
progress has led to the discovery of series of novel PDI 
inhibitors such as synthetic molecules PACMA31 [94], 
Bepristats [95, 96], LOC14 [97], ML359 [98], compounds 
containing 2-trifluoromethyl acrylamide [99], and those 
molecules from natural products such as rutin [96, 100], 
isoquercetin [64], myricetin [101], tannic acid [102], and 
piericone A [65]. In addition, zafirlukast, a cysteinyl leu-
kotriene receptor antagonist that is used to treat asthma, 
and its analogues were identified to be inhibitors of a 
broad spectrum of thiol isomerases including PDI, ERp57 
and ERp72 [103, 104]. ADTM, a derivative from natu-
ral products, also showed inhibitory effects on multiple 
thiol isomerases including PDI, ERp5, ERp57 and ERp72 
but with highest efficacy against ERp57 [105]. Yang et al. 
identified a class of galloylated polyphenols that inhibit 
multiple thiol isomerases [106]. Notably, many of these 
PDI inhibitors exhibit potent antithrombotic potential 
in animal models and isoquercetin has been shown to 
reduce thrombotic risks without causing major bleeding 
events in cancer patients in a phase II clinical trial [64]. 
Further investigation should be guaranteed not only for 
the development of novel inhibitors but also for the eval-
uation of their potential in future therapeutics in differ-
ent clinical scenarios.

Conclusions
In summary, extracellular PDI plays critical roles in 
thrombosis and vascular injury responses. In the con-
text of thrombus formation, PDI regulates both platelets 
and coagulation. PDI modulates the activity of adhesive 
receptors and α-granule components secreted onto the 
platelet surface. Modification of the catalytic cysteines 
of surface PDI not only influences its enzymatic activity, 

Table 2 Proposed substrates and possible allosteric disulfide bonds targeted by extracellular PDI during vascular injury
Target Cell type Possible Disulfide(s) Effect on substrate References
β2 Neutrophils Cys224-Cys264 Promote Mac-1 disengagement from ligand  [14]
αM Neutrophils Cys654-Cys711 (targeted by ERp72) Increase integrin binding affinity  [15, 77]
ADAM17 Lymphocytes ND* Prevent its dimerization and reduce enzymatic cleavage  [78, 79]
β1 VSMCs ND* Promote integrin activation  [16, 17]
SLC3A2, LAMC1 Endothelial cells ND* Promote their secretion  [84]
Nox1 VSMCs Cys196 Operate in the cytosol

Upregulate its transcription
Promote its assembly

 [85, 87, 88]

*ND, not determined
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but also enables its role to inward transmit redox active 
species. PDI also modulates the activities of coagulation-
related plasma proteins to affect the kinetics of blood 
coagulation. In the context of vascular injury, PDI influ-
ences both the inflammatory insult to the vessel, e.g., the 
recruitment of neutrophils, and the post-injury responses 
such as vascular remodeling. On the neutrophil surface 
PDI controls the functions of integrins and selectins dur-
ing chemotaxis. In vascular cells such as VSMCs, surface 
PDI, together with the intracellular pool of PDI, regulates 
cytoskeletal rearrangement, cell survival, membrane bio-
physics and phenotype switch between proliferation and 
differentiation. In line with this progress in the investiga-
tions of PDI functions, mass spectrometry-based tech-
niques including mechanism-based kinetic trapping and 
differential cysteine alkylation have led to the identifica-
tion of PDI substrates and the allosteric disulfide bonds 
it targets [35, 77, 107]. Future studies are needed to 
determine the pathophysiological consequences of PDI-
catalyzed modification of these substrates. With signifi-
cant advances in the development of novel PDI inhibitors 
[18, 65], unveiling these mechanism(s) mediated by sur-
face and extracellular PDI may provide novel therapeutic 
strategies for the treatment of thrombotic and vascular 
diseases.
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Mac-1  Macrophage-1 antigen
Nox1  NADPH oxidase 1
oxLDL  Oxidized low-density lipoprotein
PBMCs  Peripheral blood mononuclear cells
PDB  Protein data bank
PDI  Protein disulfide isomerase
ROS  Reactive oxygen species
SLC3A2  Solute carrier family 3 member 2
TF  Tissue factor
TGF-β  Transforming growth factor-β
TRX  Thioredoxin
TSP-1  Thrombospondin-1
VSMCs  Vascular smooth muscle cells
vWF   von Willebrand factor
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