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Abstract—Swept Source Optical Coherence Tomography
(OCT), a non-invasive cross-sectional imaging technique, has been
widely used in diagnosing and treating various vision-related
diseases. However, OCT images often suffer from heavy noise
issues, due to the limitations of imaging devices, making analysis
and disease classification a great challenge. This paper proposes
a Multi-Perceptual Learning Network (MPLN) for retina OCT
image denoising and classification. We adopt a triplet cross-fusion
GAN approach and use three unpaired OCT images to conduct
perceptual learning. In addition, we integrate the Frequency Dis-
tribution Loss into GAN to preserve both the structural integrity
and perceptual quality of the denoised OCT images, enabling
better classification. The method can significantly reduce the noise
of highly noisy images. Our proposed method is evaluated on
the VIP Cup 2024 dataset in terms of the CNR, MSR, and TP
scores. Our model achieves a CNR score of 6.351, and an MSR
score of 11.573, which outperforms many existing methods on
OCT images. In classification, our MPLN improves accuracy by
more than one percent. These results demonstrate that our model
can significantly enhance image quality and improve classification
accuracy, highlighting its potential for clinical applications.

I. INTRODUCTION

Optical coherence tomography (OCT), a non-invasive cross-
sectional imaging technique, plays a crucial role in various
medical applications, particularly retinal diagnostics [1]. How-
ever, two main issues hinder the development of OCT-based
diagnosis. First, OCT images are inevitably corrupted by heavy
speckle noise due to the low coherence interferometry imaging
modality [2]. Second, OCT image analysis heavily relies on
manual labor, which increases the burden on ophthalmologists
and leads to potential bias due to subjective opinions. There-
fore, an automatic and reliable OCT image analysis algorithm
is essential for the efficient diagnosis of eye diseases, which
will help alleviate the strain on medical resources.

Over the past decades, several approaches have been pro-
posed to enhance the quality of OCT images. One approach to
denoise OCT images involves capturing a sequence of repeated
B-scans from the same position and then registering and
averaging them to produce a less noisy image [3]. However,
this method significantly increases the image acquisition time,
making it impractical for clinical use. Another approach is
model-based OCT denoising, where a single B-scan image
is denoised using digital filters based on the statistical mod-
els of signal and noise [4], [5], or through deep/dictionary
learning techniques [6], [7]. While these methods can reduce
noise, they often result in over-smoothing or loss of fine

details. Inspired by the remarkable success of deep learning
in various vision tasks, deep learning-based methods for OCT
denoising have shown superior performance in both speckle
noise reduction and structure preservation. Researchers have
improved denoising performance by optimizing deep network
architectures [8], [9] and designing structure-sensitive loss
functions [10], [11]. However, these methods require paired
noisy-clean OCT images for training, which are difficult to
obtain due to involuntary eye or body movements during
scanning [12].

In addition to image reconstruction, OCT image analysis,
especially classification, is also a highly important topic in
clinical applications. This field has witnessed a growing num-
ber of diverse OCT classification methods over the past years
[13]–[15]. Some of them are relatively straightforward, such
as the utilization of Support Vector Machines (SVMs) and
Random Forests [16], [17], while others are more effective
and sophisticated, leveraging significant advancements in the
computer vision community [18]. For example, as one of
the most prominent deep learning techniques, Convolutional
Neural Networks (CNNs) have been widely investigated and
explored for OCT image classification. However, when CNNs
are applied to noisy OCT images, their classification per-
formance is notably degraded. Applying conventional image
processing techniques, including denoising, to OCT images
may also lead to the loss or alteration of critical details,
ultimately affecting classification results. Additionally, it has
been demonstrated that some OCT image classification algo-
rithms can only perform well on specific datasets, and their
performances heavily depend on the characteristics of the data.
To address the abovementioned issues, we propose a Multi-
Perceptual Learning Network (MPLN) for retina OCT image
processing, which jointly tackles the challenges in denoising
and classification of OCT images.

In the initial stage of our model, a Generative Adversarial
Network (GAN), comprising a DnCNN [19] generator and a
PatchGAN [20] discriminator, is employed. We incorporate the
Frequency Distribution (FD) Loss [21] into the network. This
FD Loss function introduces perceptual learning by converting
image features into the frequency domain and computing
the distribution distance. This process not only enhances the
perceptual quality, but also safeguards the structural integrity
of images. The generator loss function includes GAN loss,
consistency loss, FD loss, PSNR loss, and SSIM loss. In ad-



dition, inspired by the Triplet Cross-Fusion Learning (TCFL)
scheme [22], our model accepts a triplet combination of inputs,
consisting of two noisy images and one clean image, which
are unpaired. We enable perceptual learning between the input
images to help the network extract the most relevant and
significant features. This triplet input strategy significantly
expands the training dataset by incorporating an arbitrary
number of noisy and clean images. These OCT images do
not need to be matched pairs and there is no restriction on the
quantity. This broadens the scope and flexibility of our training
mechanism.

In the second stage, for retina OCT image classification, we
adopted and further improved the Lesion-Aware Convolutional
Neural Network (LACNN) [13]. Inspired by the remarkable
performance achieved by deep learning models in various
vision tasks [23]–[27], we applied the Residual Network
(ResNet) to the Lesion Detection Network (LDN) [13] to
generate an attention map that highlights the lesion areas in
each OCT image. This attention map is then used to compute
a weighted feature map, which is subsequently combined with
the original convolutional feature maps to obtain the lesion-
aware feature map. This map serves as input to the subsequent
convolutional layers, allowing the model to focus on clinically
relevant lesion regions during classification.

In this study, we advance the LACNN architecture by
replacing the original backbone of the LACNN with ResNet,
which significantly enhances the model’s ability to accurately
classify OCT images. This improvement provides a valuable
tool for the early detection and differentiation of ocular dis-
eases in clinical practice. In addition, we demonstrate that the
MPLN model enhances image perceptual quality. Our model
facilitates multi-perceptual learning among images, providing
effective denoising and improving the perceptual quality of
images. FD loss serves as a crucial element for improving
image quality, and this enhancement is validated through
classification experiments. The results show that the model
trained on denoised images by the MPLN model achieves
higher accuracy, confirming the effectiveness of our approach.

In summary, our main contributions are as follows:
• We propose an MPLN framework that effectively ad-

dresses both OCT image denoising and classification
tasks in a unified approach, leading to improved overall
performance in image interpretation.

• We introduce the FD Loss into the GAN architecture,
which helps preserve the structural integrity of OCT
images during denoising. This facilitates multi-perceptual
learning, enhancing both the quality of the denoised
images and the classification accuracy.

• We incorporate LDN with ResNet to obtain the refined
lesion-aware attention map, which is then combined with
LACNN to classify the OCT images more accurately.

II. THE PROPOSED MPLN METHOD

A. MPLN Denoising
1) Network Architecture: Our proposed MPLN method

makes use of a triplet cross-fusion GAN [22] and employs

three unpaired OCT images for perceptual learning. In this
approach, a speckle noise-corrupted OCT image X can be
expressed as the sum of its clean component C and its speckle
noise Y , as follows:

X = C + Y. (1)

Specifically, in our approach, the clean components and
the noisy components for training consist of three unpaired
images: two noisy OCT images X1 and X2, and one clean
OCT image C0. These three unpaired images undergo multi-
perceptual learning to help the network extract and learn
the speckle noise properties, thereby improving denoising
accuracy even with a small dataset. We used a total of 5 clean
images and 10 noisy images, all of which are unpaired. The
total number of combinations of clean and noisy images is(
5
1

)
×
(
10
2

)
= 225, which significantly enlarges the training set.

In addition, our proposed approach employs a GAN-based
denoising framework, which consists of three key components,
as shown in Fig. 1: generating clean images from noisy images,
synthesizing noisy images from clean images by adding esti-
mated noises, and generating clean images from synthesized
noisy images.

Fig. 1(a) shows the first component of the network, gener-
ation of predicted clean images from noisy images, where G
represents the Generator. The generator first takes in the two
noisy inputs X1 and X2. After passing through a perceptual
learning process, the first component outputs predicted clean
images predC ′

1 and predC ′
2. In the perceptual learning process,

the outputs of the generator Y1 and Y2 are the estimated noise
component of the noisy inputs X1 and X2. Subtracting the
estimated noise components from themrespectively produces
the estimated clean images of the two noisy inputs predC1 and
predC2. In the cross-fusion mechanism, the generated clean
images predC1 and predC2 are then added with the estimated
noise of the other noise components Y2 and Y1 respectively to
produce two more synthesized noisy images X ′

1 and X ′
2, as

the input for the following perceptual learning process.
Similar to the prediction from noisy images, we can add

the estimated noise Y to the input clean image to synthesize
a fake noisy picture X ′. Then, a generator can produce
their predicted clean images predC ′. Fig. 1(b) illustrates the
second component of the network, generation of predicted
clean images from a clean image. The noises Y1 and Y2,
predicted by the generator in the first component, are used
in this component. The input is the clean image C0, and the
outputs are predC ′

3 and predC ′
4.

The Discriminator’s role is to differentiate between gen-
erated images and clean images. As shown in Fig. 1(c),
the predicted images from the first two components of the
network, together with the clean image C0, are inputted to the
Discriminator D.

2) Loss Functions: The total loss of MPLN is defined as
follows:

LTotal = αLGAN+βLCon+γLFD+δLPSNR+ϵLSSIM , (2)
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Fig. 1. The MPLN triplet cross-fusion mechanism and GAN components.

where α, β, γ, δ, and ϵ are the weights for
the respective loss functions. The GAN loss LGAN

attempts to minimize E
[
(D(c)− 1)2

]
for the genera-

tor and minimize E
[
(D(C0)− 1)2 +D(c)2

]
for the dis-

criminator, where c denotes an element within the set
{predC1, predC ′

1, predC2, predC ′
2, predC ′

3, predC ′
4}.

LCon is the Consistency Loss; LFD indicates the FD
Loss [21] for computing the distribution distance in the fre-
quency domain; LPSNR and LSSIM denote PSNR and SSIM
losses, respectively.

The spatial Consistency Loss LCon is designed to differen-
tiate the real clean image C from the generated clean images
predC1, predC2, predC ′

3 and predC ′
3, and is computed as

follows:

LCon = L1
Con + L2

Con + µCon(L3
Con + L4

Con). (3)

where L1
Con, L2

Con, L3
Con and L4

Con are computed as follows:

L1
Con =∥ predC1 − predC ′

1 ∥1
L2
Con =∥ predC2 − predC ′

2 ∥1
L3
Con =∥ predC ′

3 − C0 ∥1
L4
Con =∥ predC ′

4 − C0 ∥1 (4)

where ∥ ∥1 denotes the L1 norm.
In addition to the spatial domain consistency, to achieve

better perceptual quality, we adopt the FD Loss [21] to
compute the distribution distances LFD of the predicted clean
images in the frequency domain, which can be calculated as:

LFD = L1
FD + L2

FD + µFD(L3
FD + L4

FD), (5)

where µFD is the loss weight, and L1
FD, L2

FD, L3
FD and L4

FD

can be computed as follows:

L1
FD = fdl(predC1 − predC ′

1),

L2
FD = fdl(predC2 − predC ′

2),

L3
FD = fdl(predC ′

3 − C0), and

L4
FD = fdl(predC ′

4 − C0), (6)

where fdl() represents the FD loss function, which uses a
pre-trained feature extractor to map the predicted and target
images to a feature space. Discrete Fourier Transform (DFT)
is applied, followed by Sliced Wasserstein Distance to measure
the distance among the target images in the frequency domain.
This approach effectively mitigates the interference of spatial
misalignment, thereby better capturing the perceptual proper-
ties of the images. The combinations of L1

FD, L2
FD, L3

FD,
L4
FD, together with L1

Con, L2
Con, L3

Con and L4
Con facilitate the

multi-perceptual learning of noises from different components.

B. Retina OCT Image Classification
To demonstrate the efficacy of the denoising model on the

downstream OCT image classification task, we designed a
classification model specially for denoised retina OCT images.

The core modules of our classification model, termed
“LACNN-ResNet”, are illustrated in Fig. 2. We adopted and
enhanced the LACNN approach [13] by incorporating residual
connections to learn more discriminative features for classifica-
tion. Additionally, we embedded the Lesion Attention Network
(LAN) [13] to strengthen the local lesion-related features while
also considering the global structures of the OCT images.

For a lesion attention block, denote x as the input image
tensor, Coni,c(x) as the output of a convolutional layer, and Ai

as the attention map generated by LAN, where i represents the
spatial position and c denotes the channel index. The weighted
feature map, represented by Wi,c, is defined as follows:

Wi,c(x) = Coni,c(x)×Ai, (7)

where × denotes the element-wise product of corresponding
spatial positions from attention maps and feature maps.

In addition, the feature maps generated by convolution are
superimposed with the weighted feature map of the corre-
sponding spatial positions. This is based on the consideration
that LAN can only mark lesion areas, while unmarked areas
may also contain information useful for classification. Thus,
the output of an LAN, denoted by Li,c(x), can be represented
as an element-wise summation of the corresponding spatial
positions from the attention maps and the weighted feature
maps, as follows:

Li,c(x) = Wi,c(x) + Coni,c(x). (8)
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Fig. 2. The core modules of the proposed LACNN-ResNet classification model.

III. EXPERIMENTAL SETUP AND RESULTS

A. MPLN Denoising

1) Experimental Setup: In the proposed MPLN method, we
adopted DnCNN [19] as the generator and PatchGAN [20] as
the discriminator. DnCNN is a classical denoising network and
serves as a noise predictor in this GAN-based network.

We implemented MPLN with PyTorch and used an NVIDIA
GTX 4090 GPU for training. The number of training epochs
was set to 50. We opted for cosine annealing learning rate and
set the cosine decay period to match the entire training cycle.
An initial learning rate was set to 2e-5, gradually decaying to
the final value of 1.2e-6. We empirically set α=1, β=3, γ=0.03,
δ=0.5, and ϵ=1 as the weights for the generator loss function.

During testing, input images from the VIP Cup 2024 Test
Set were normalized to the range [1, 3]. A dataloader was
established to load a triplet set of input images. We evaluated
the proposed MPLN method using the test set, which includes
B-scans from 18 subjects. Each subject’s dataset consists of
70 to 300 B-scans, which are noisy and have resolutions of
either 300 × 150 or 300 × 200 pixels.

2) Evaluation Metrics: To assess the performance of de-
noising methods, we adopted the Contrast-to-Noise Ratio
(CNR), Mean-to-Standard-deviation Ratio (MSR), and Texture
Preservation (TP) as evaluation metrics.

CNR evaluates the contrast between the foreground and
the background of generated images, which is calculated as
follows:

SCNR = 10 log

∣∣∣∣∣∣ µf − µb√
σ2
f + σ2

b

∣∣∣∣∣∣ , (9)

where µf and σf denote the mean and the standard deviation
of the foreground regions, respectively, and µb and σb denote
the mean and the standard deviation of the background re-
gion, respectively. The Regions of Interest (ROIs) are chosen
between different layers to show the change in contrast.

Similarly, MSR evaluates the concentration of pixel inten-
sity values and is calculated as follows:

SMSR =
µf

σf
. (10)

TP evaluates the conserving of texture between the noisy

Fig. 3. Visual comparison of the denoising results of HAT [28], TCFL [22],
DDPM [29], Swin2SR [30] and our MPLN.

image and the denoised image and is calculated as follows:

S
(m)
TP =

σ2
m(de)

σ2
m(noisy)

√
µde

µnoisy
, (11)

where σm(noisy) and σm(de) denote the standard deviation
of the m-th ROI in the noisy image and denoised image,
respectively, and µde and µnoisy denote their corresponding
means. The ROIs encompass the intra-layer regions. We take
the average of all the ROIs in the image as its TP score:

STP =
1

M

M∑
m=1

S
(m)
TP . (12)

3) Denoising Results and Comparison: We selected a rep-
resentative retina OCT image from the VIP Cup 2024 Test Set
and visually compared its denoising result with other existing
approaches in Fig. 3.

Both DDPM and HAT have reduced the speckle noise to a
certain extent. However, due to the heavy noise of the original
noisy image, some noise still remains, as highlighted by the
enlarged area in Fig. 3. While HAT produced smoother images
compared to our MPLN method, they suffer from excessive
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smoothness, which leads to the loss of critical structural details
or blood flow structure, as indicated by the box in Fig. 3. The
proposed MPLN effectively reduces the noise and improves
perceptual quality of the image.

Table I shows the quantitative results comparing the de-
noising performance of our MPLN with other methods. As
shown in this table, our MPLN obtained the best scores
across CNR and MSR. Although TCFL, DDPM, and Swin2SR
have marginally higher TP scores, they all obtain lower CNR
and MSR scores. HAT yields a low TP score, indicating its
over-smoothing problem. Our MPLN achieves balanced scores
across the evaluation matrices, effectively reducing the noise.

B. MPLN-denoised Retina OCT Image Classification

1) Experimental Setup: The proposed MPLN classification
was implemented using the same PyTorch framework and GPU
as in the earlier stage. We evaluated the proposed LACNN-
ResNet method utilizing the VIP Cup training dataset, which
includes approximately 18,000 retina OCT B-scan images from
100 patients. We applied our denoising method to the original
images and used them as training samples.

We used 90% of the VIP Cup 2024 training dataset for
training and the remaining 10% for testing. We evaluated
and analyzed the performance of our model under these two
configurations. To further enhance the training process, we
applied data augmentation to the dataset. Specifically, all input
images were resized, horizontally flipped, and rotated within
a range of -15 to +15 degrees, followed by normalization.

To further verify the improvement of the MPLN model
over mainstream denoising models, we randomly selected a
set of noisy images and used them as input for both the TCFL
model and the MPLN model, generating two separate test sets.
We then tested these sets using the LACNN-ResNet model,
which had been trained on noisy images, and compared their
accuracy.

2) Classification and Comparison: For each input image,
the model outputs the predicted probability distributions across
three classes: Normal, DME, and Non-DME. We determine the
class label according to the highest proportion of predictions
from the patient’s OCT images.

Two models were trained for comparison. The first model on
the original noisy VIP Cup 2024 training set, and the second
model on the denoised version of the same dataset. After each
epoch, testing was conducted on a test set approximately 1/9
the size of the training set (around 2,000 images). Results
shows that the LACNN-ResNet model trained on the denoised
dataset exhibited a 1.45% improvement in accuracy compared
to the model trained on noisy data. In addition, the classifi-
cation accuracy of MPLN denoised dataset is 5.82% higher
than that of TCFL. These results demonstrate that the MPLN
model effectively enhances classification performance for OCT
images by reducing noise interference.

IV. CONCLUSION

In this paper, we have proposed a Multi-Perceptual Learning
Network (MPLN) for denoising retina OCT images. To capture

TABLE I
QUANTITATIVE COMPARISON OF THE DENOISING PERFORMANCE OF OUR

MPLN WITH SOTA APPROACHES HAT [28], TCFL [22], DDPM [29]
AND SWIN2SR [30] ON THE VIP CUP 2024 TEST SET.

Noisy HAT TCFL DDPM Swin2SR MPLN (ours)
CNR↑ 1.966 3.579 3.184 2.513 4.079 6.351
MSR↑ 6.872 9.702 7.972 7.623 10.302 11.573
TP↑ 1.000 0.342 0.685 0.670 0.578 0.554

perceptually significant features for denoising, our MPLN
model employs a cross-fusion GAN approach, utilizing three
unpaired noisy and clean OCT images for multi-perceptual
learning, while enforcing image consistency in both spatial
and frequency domains by minimizing frequency distribution
losses. Our MPLN has shown its ability to effectively reduce
noise, enhance OCT image quality, and improve retina OCT
image classification for eye disease diagnosis. Experimental
results on the VIP Cup 2024 dataset have demonstrated that the
proposed method outperforms state-of-the-art image denoising
models both visually and quantitatively in this challenge.
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krkonoše/karkonosze transboundary biosphere reserve,”
Remote Sensing, vol. 13, no. 13, 2021.

[17] A. Lang, A. Carass, E. Sotirchos, P. Calabresi, and
J. L. Prince, “Segmentation of retinal OCT images using
a random forest classifier,” in Medical Imaging 2013:
Image Processing, SPIE, vol. 8669, 2013, pp. 199–205.

[18] X. Huang, Z. Ai, H. Wang, et al., “Gabnet: Global
attention block for retinal OCT disease classification,”
Frontiers in Neuroscience, vol. 17, p. 1 143 422, 2023.

[19] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang,
“Beyond a gaussian denoiser: Residual learning of deep
cnn for image denoising,” IEEE Transactions on Image
Processing, vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[20] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks,” en, 2017 ICCV, Oct. 2017.

[21] Z. Ni, J. Wu, Z. Wang, W. Yang, H. Wang,
and L. Ma, “Misalignment-robust frequency distribu-
tion loss for image transformation,” arXiv preprint
arXiv:2402.18192, 2024.

[22] M. Geng, X. Meng, L. Zhu, et al., “Triplet cross-
fusion learning for unpaired image denoising in optical
coherence tomography,” IEEE Transactions on Medical
Imaging, vol. 41, no. 11, pp. 3357–3372, 2022.

[23] J. Xiao, W. Jia, and K.-M. Lam, “Feature redun-
dancy mining: Deep light-weight image super-resolution
model,” in ICASSP 2021-2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2021, pp. 1620–1624.

[24] J. Xiao, Q. Ye, R. Zhao, K.-M. Lam, and K. Wan, “Self-
feature learning: An efficient deep lightweight network
for image super-resolution,” in Proceedings of the 29th
ACM International Conference on Multimedia, 2021,
pp. 4408–4416.

[25] J. Xiao, X. Jiang, N. Zheng, et al., “Online video super-
resolution with convolutional kernel bypass grafts,”
IEEE Transactions on Multimedia, vol. 25, pp. 8972–
8987, 2023.

[26] J. Xiao, Q. Ye, T. Liu, C. Zhang, and K.-M. Lam,
“Deep progressive feature aggregation network for
multi-frame high dynamic range imaging,” Neurocom-
puting, vol. 594, p. 127 804, 2024.

[27] J. Xiao, Z. Lyu, C. Zhang, Y. Ju, C. Shui, and
K.-M. Lam, “Towards progressive multi-frequency rep-
resentation for image warping,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024, pp. 2995–3004.

[28] X. Chen, X. Wang, J. Zhou, Y. Qiao, and C. Dong,
“Activating more pixels in image super-resolution trans-
former,” in 2023 CVPR, 2023, pp. 22 367–22 377.

[29] D. Hu, Y. K. Tao, and I. Oguz, “Unsupervised denoising
of retinal OCT with diffusion probabilistic model,” in
Medical Imaging 2022: Image Processing, O. Colliot
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