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 A B S T R A C T

Digital twins (DTs) are advancing biotechnology by providing digital models for drug discovery, digital 
health applications, and biological assets, including microorganisms. However, the hypothesis posits that 
implementing micro- and nanoscale DTs, especially for biological entities like bacteria, presents substantial 
challenges. These challenges stem from the complexities of data extraction, transmission, and computation, 
along with the necessity for a specialized Internet of Things (IoT) infrastructure. To address these challenges, 
this article proposes a novel framework that leverages bio-network technologies, including the Internet of 
Bio-Nano Things (IoBNT), and decentralized deep learning algorithms such as federated learning (FL) and 
convolutional neural networks (CNN). The methodology involves using CNNs for robust pattern recognition 
and FL to reduce bandwidth consumption while enhancing security. IoBNT devices are utilized for precise 
microscopic data acquisition and transmission, which ensures minimal error rates. The results demonstrate 
a multi-class classification accuracy of 98.7% across 33 bacteria categories, achieving over 99% bandwidth 
savings. Additionally, IoBNT integration reduces biological data transfer errors by up to 98%, even under worst-
case conditions. This framework is further supported by an adaptable, user-friendly dashboard, expanding its 
applicability across pharmaceutical and biotechnology industries.
1. Introduction

In biotechnological cyber–physical systems, Digital Twins (DTs) 
serve as digital representations of objects, assets, humans, and living 
organisms, enabling the precise creation of immersive models for bio-
processes, medical systems, microorganisms, organs, and even entire 
humans [1–5]. Hence, to make such DTs more reliable and real-time, a 
wide array of components, including processors, sensors, and Internet 
of Things (IoT) within laboratories, hospitals, clinics, and pharma-
ceutical industries, are utilized [6]. An advanced version of a DT in 
biotechnology and medical science surpasses a simulation of diseases, 
patients, biological assets, and organs [7]. Thus, DTs effectively fa-
cilitate the analysis, monitoring, and adaptation of the lifecycle of 
microscopic creatures, biological entities, and equipment assets [8–10]. 
It becomes a nuanced digital, dynamic, highly detailed counterpart 
of living and physical biological assets, extracting data from their 
interactions with the environment [4]. Accordingly, DTs represent a 
perfect blend of the digital and physical worlds in biotechnology. They 
go beyond the traditional IoT model, which is limited by restricted 
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connectivity and one-way data transfer from the physical to the virtual 
world [9]. Looking ahead, industrial DTs will be a significant factor 
in fostering the expansion of virtual environments like the Metaverse 
with numerous applications, including digital healthcare [10], drug 
development [11], and digital biotechnology [12].

Developing quick and dependable DTs in biotechnology presents 
significant challenges [7]. Meanwhile, the primary issue arises from the 
inherent variability and complexity of biological assets [13], which are 
unpredictable and intricate compared to engineered systems [14,15]. 
As a result, this complexity makes accurate modeling significantly more 
difficult and unreliable [16]. Another critical issue is maintaining se-
curity and privacy of biological data, particularly human-related data, 
which is sensitive and voluminous [17,18]. Therefore, safeguarding 
this data while keeping it accessible for digitalization is a major chal-
lenge [19]. Additionally, the necessity for real-time data processing 
in biological systems demands that digitization operates with high 
efficiency [20]. For this reason, the intricate nature of biological data 
complicates instantaneous processing and reaction, essential for the 
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effective functioning of DTs. Furthermore, integrating diverse biolog-
ical data, ranging from organismal to molecular levels, remains a 
significant obstacle [16,21]. Moreover, transmission errors represent a 
critical challenge in data communication, which is quantified by the 
error rate that measures the frequency of errors occurring during data 
transfer. Furthermore, elevated error rates can result in substantial data 
loss and diminished system reliability, particularly in the context of 
biological data transfer, where precision and accuracy are of utmost 
importance [22].

The Internet of Bio-Nano Things (IoBNT) is an advanced IoT tech-
nology specifically developed to address the challenges of measure-
ment and communication in biological assets [17,23,24]. IoBNT in-
tegrates nanoscale biological devices with communication networks, 
which facilitates accurate monitoring and control of biological systems. 
Therefore, this integration facilitates advanced applications in medical 
diagnostics, environmental monitoring, and biomanufacturing, ensur-
ing more accurate, efficient, and reliable biotechnological processes. 
Furthermore, the specifications of IoBNT offer a powerful solution for 
synchronizing and effectively analyzing diverse data sets. As a result, 
this ability is crucial for the precise and effective use of DT in biotech-
nology, enabling smooth integration and real-time data processing. 
In addition, IoBNT provides the infrastructure needed to handle the 
complexity of biological data, facilitating sophisticated data analysis 
and interpretation. Thus, by leveraging IoBNT technology, researchers 
can precisely monitor and control biological systems, leading to more 
reliable and efficient biotechnological processes. Therefore, the exist-
ing challenges faced by DT-enabled biological systems and assets are 
expected to be addressed and potentially overcome by the integration 
of IoBNT [25].

Additionally, an important advantage of using IoBNT is its ability 
to optimize error rates. IoT systems, utilizing conventional wireless 
communication technologies such as Wi-Fi (IEEE 802.11) and cellular 
networks, typically suffer from Bit Error Rate (BER) ranging from 1% to 
5% [26]. These error rates lead to substantial data losses when transfer-
ring large datasets. The errors are primarily due to packet loss, signal 
degradation, and interference, especially in high-noise environments, 
as indicated by IEEE 802.15.4 standards for low-rate wireless personal 
area networks [27]. In contrast, IoBNT is specifically designed for bio-
nano scale data communication, following the IEEE P1906.1 standards 
for nanoscale and molecular communication frameworks, which aim 
to minimize BER and enhance data reliability. IoBNT demonstrates 
significantly lower BER, ranging from 0.01% to 0.1% [22]. However, 
incorporating DTs-based biological applications within IoBNT intro-
duces its unique challenges, especially concerning sensor allocation at 
the nanoscale [24]. Meanwhile, the complexity and diversity of the data 
necessitate advanced analytical capabilities [8,28]. AI methods offer 
solutions for DT-based biological applications within IoBNT, which 
address challenges in pattern recognition and computer vision and 
manage the complexity and diversity of the data [29,30]. However, 
applying these methods demands high bandwidth to support services in 
laboratories and hospitals. Increased bandwidth use in biotechnology 
puts pressure on networks, slows data processing, and raises costs, 
reducing efficiency and scalability.

Thus, a robust solution to these issues is to integrate Convolutional 
Neural Networks (CNNs) with Federated Learning (FL) frameworks [31,
32], enabling efficient analysis and processing. Integrating CNNs with 
FL results in a powerful algorithm for image analysis and process-
ing. CNNs excel at identifying spatial hierarchies in images, making 
them ideal for tasks like image classification, segmentation, and ob-
ject detection. At the same time, FL allows for decentralized training 
across devices, maintaining data privacy and minimizing data trans-
fer [33,34]. In addition, this synergy leverages the image processing 
capabilities of CNNs [35] and the privacy-preserving and scalable 
features of FL [36]. Simultaneously, FL enables models to learn from di-
verse datasets without centralizing data, improving generalization and 
minimizing data breach risks. It also optimizes bandwidth usage and 
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computational efficiency by processing data locally on edge devices. 
Therefore, integrating IoBNT with CNNs and FL can significantly en-
hance biological DTs’ capabilities. IoBNT involves nanoscale biological 
devices connected through communication networks, enabling precise 
data collection from biological systems. Hence, when combined with 
CNNs and FL, IoBNT facilitates real-time monitoring and control of 
biological assets, and this integration enables continuous and accurate 
data collection, which CNNs process efficiently. Additionally, FL en-
sures effective data utilization across devices without compromising 
privacy, enhancing scalability and security. Together, these technolo-
gies significantly advance biological DTs, offering new possibilities in 
medical diagnostics, environmental monitoring, and biomanufacturing.

This study introduces an innovative framework that incorporates 
DT technology with IoBNT, specifically designed for applications in the 
biotechnology industry. This framework bridges the gap between DTs 
and IoBNT by incorporating advanced deep learning techniques. The 
system enables laboratories and hospitals (clients) to collaboratively 
process biological data in real time, improving data security, privacy, 
and accuracy without relying on central data storage. The approach 
also reduces complexities in creating DTs at micro and nano scales, 
especially for bacterial modeling, and achieves substantial bandwidth 
savings while providing a user-friendly dashboard for monitoring bi-
ological processes. Accordingly, IoBNT devices, specifically sensors, 
handle data extraction and transmission, collecting information and 
sending it to each client’s local server within the FL framework. Thus, 
this approach not only addresses integration challenges but also has 
the potential to transform the biotechnology industry. Moreover, this 
framework offers essential features for extracting, transferring, prepar-
ing, and processing biological data to build reliable and real-time DT 
in biotechnology.

The hypothesis evaluated in this study posits that the integration of 
IoBNT with CNN and FL enhances the performance of DTs for biological 
assets at micro and nano scales. This innovative approach addresses 
critical challenges associated with biological data transmission, error 
reduction, and bandwidth optimization. The proposed framework im-
proves data fidelity, security, and real-time processing capabilities, 
thereby providing a reliable and highly efficient approach for biotech-
nology applications. In summary, the most significant contributions and 
features of the proposed framework are as follows:

• The framework provides a unified and seamless aggregation, 
easing data security and privacy management.

• IoBNT can drastically reduces the error rates in biological data 
transfer, achieving up to 98% improvement.

• It uniquely reduces the complexities of micro and nano-scale DTs 
in biotech, especially for bacterial modeling.

• The proposed CNN-FL algorithm extracts critical insights from 
raw image data, achieving 98.5% accuracy.

• It achieves over 99% bandwidth savings by using FL to avoid 
central server dataset transfers.

• It features a user-friendly web-based dashboard for users to mon-
itor DTs of bacteria and microorganisms.

The structure of the paper is as follows: Section 2 provides a 
comprehensive description of the proposed framework’s architecture, 
which is organized into four key components: physical twins, IoBNTs, 
CNN integrated with FL, and a DT dashboard. In Section 3, we present 
the performance metrics and evaluations conducted using established 
benchmarks. Section 4 delves into a thorough analysis of the findings, 
highlighting their broader significance. Finally, Section 5, encapsulates 
the main contributions of the work and suggests directions for future 
research.
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2. Related works

2.1. Introduction to DTs in biotechnology

In biopharma, DTs have encountered limitations stemming from low 
signal-to-noise ratios in biological systems, which complicate mathe-
matical modeling and development pathways. This stands in contrast 
to other industries where DTs are more mature and widely estab-
lished [37]. A study on DTs in biotechnology highlighted the benefits 
of process modeling, supporting workflows from development to man-
ufacturing across diverse feedstocks, enabling efficient, cost-effective 
digitalization. By integrating Quality-by-Design principles, the study 
showcased predictive and financial benefits for consistent process mod-
eling in biopharmaceutical applications [37]. Research has also focused 
on developing bioprocess DTs for mammalian cell cultures to en-
hance biomanufacturing efficiency [38]. This integration of in-line 
data collection and machine learning provided improved operational 
strategies and decision-making capabilities. However, limitations such 
as insufficient real-time data for model accuracy, complex cellular 
dynamics, and high regulatory compliance barriers were significant 
challenges [38].

The application of process analytical technology (PAT) as a key 
enabler for DTs in continuous biomanufacturing has been investi-
gated [39]. By integrating real-time data and predictive models, DTs 
optimized process control and quality in biologics production. The 
benefits of PAT-driven DTs included consistent product quality, reduced 
costs, and improved scalability through advanced analytics and au-
tomation. Challenges included data acquisition, model accuracy, and 
the integration of PAT with existing processes due to high variabil-
ity in bioprocesses and the need for continuous, precise measure-
ments [39]. A flexible DT framework tailored for the biomanufacturing 
of advanced therapeutic medicinal products (ATMPs) was developed, 
focusing on CAR 𝑇  cell therapy [40]. This framework facilitated the 
digitalization, monitoring, and management of complex production 
processes by integrating both manual and automated operations. The 
challenges involved managing high process complexity, ensuring reg-
ulatory compliance, and integrating manual tasks with automation, as 
well as addressing the variability of patient-specific therapies, which 
posed significant difficulties for standardization and consistent data 
acquisition [40].

Hybrid modeling approaches in DTs have also been explored to op-
timize complex biomanufacturing processes [41]. By combining data-
driven and mechanistic approaches, these models enhanced process 
understanding, control, and prediction, thereby improving decision-
making and operational efficiency. Hybrid DTs effectively managed 
process variability and uncertainty. Challenges included integrating 
diverse data sources, handling process variability, and establishing 
standardized protocols. Limited real-time data and complex regulatory 
requirements further hindered the effective implementation of DTs in 
biopharma [41]. In medicine, DTs have been leveraged for control 
and optimization in various applications such as diabetes management 
and anesthesia [42]. These virtual models of biological systems, uti-
lizing real-time data and AI, improve personalized therapies, biomed-
ical design, and drug delivery. DT support preclinical and clinical 
research, enabling better predictions and customized healthcare so-
lutions. However, limitations included challenges in data integration, 
real-time monitoring, and synchronization of physical and digital mod-
els [42]. Despite the promising potential of DTs in biotechnology, 
several challenges must be overcome to unlock their full capabilities. 
The inherent complexity of biological systems, marked by high vari-
ability and low signal-to-noise ratios, presents significant barriers to 
achieving accurate modeling and real-time data acquisition. Advancing 
the future of DTs in biotechnology will likely require the development 
of more sophisticated hybrid modeling techniques capable of address-
ing the intricate nature of biological systems. Effective integration of 
DT in biotechnology requires adaptable frameworks that evolve with 
technological progress and regulatory updates.
3 
2.2. Challenges in implementing micro and nano-scale DTs

The implementation of micro and nano-scale DTs presents numerous 
challenges, primarily due to the complexities of capturing accurate 
real-time data and integrating it effectively. At these scales, biologi-
cal systems exhibit high variability and complex interactions, which 
significantly complicate the development and validation of robust DT 
models. This variability, combined with the unpredictable nature of 
biological processes, leads to difficulties in ensuring the accuracy and 
consistency of DTs, unlike in larger-scale applications where such chal-
lenges are more manageable [43]. Moreover, achieving the requisite 
precision in data acquisition for micro- and nano-scale DTs remains 
a significant challenge. Researchers frequently face obstacles in repli-
cating the intricate conditions essential for these systems, where even 
slight variations can result in substantial discrepancies between the 
digital and physical twins. As a result, this imprecision diminishes the 
fidelity of DTs, thereby compromising their efficacy in biotechnology 
applications [44]. Additionally, the absence of standardized protocols 
for data collection and processing at these scales further complicates 
matters, as it prevents the establishment of consistent methodologies 
across different studies and use cases [44].

In particular, the modeling of particle breakage mechanics illus-
trates these challenges vividly. Studies have demonstrated that replicat-
ing the complex interactions and conditions at nano and micro scales 
is exceedingly difficult, often resulting in significant discrepancies be-
tween simulated behaviors and real-world outcomes [45]. Furthermore, 
the significant computational demands necessary to model these intri-
cate processes introduce another layer of complexity, which renders 
the validation and implementation of these DTs exceedingly resource-
intensive. The variability in material properties at these scales further 
compounds the challenge, as it heightens the difficulty of constructing 
accurate predictive models. Consequently, the development of flexible 
and adaptive modeling approaches capable of addressing these variabil-
ities is imperative for advancing DT applications in this domain [45]. In 
addition, biomanufacturing has encountered its own unique challenges 
in implementing DTs at the micro and nano scales. The inherent 
complexity of biological systems, combined with the variability of 
process parameters, renders high-fidelity DT development particularly 
demanding. This is further exacerbated by the absence of real-time 
data integration, which is essential for accurate modeling and control. 
Moreover, the lack of adaptable frameworks capable of accommodat-
ing different scales and systems has created significant barriers to 
achieving reproducibility and robust operation in biomanufacturing 
processes [25]. For instance, the integration of multiscale informa-
tion, necessary for developing precise predictive models, is hampered 
by the need for significant computational resources and standardized 
validation protocols [25].

To address some of these challenges, IoBNT has been proposed as 
a transformative framework for the digitalization and automation of 
biotechnology. IoBNT enables real-time monitoring and precise control 
at the molecular level, which is particularly advantageous for advanc-
ing the capabilities of DTs in micro and nano-scale applications [46]. 
By integrating nano-sensors and actuators within biological environ-
ments, IoBNT facilitates seamless communication through biological 
channels, such as blood vessels, allowing for innovative applications 
in early disease detection and personalized medicine. Nevertheless, 
integrating IoBNT with existing systems comes with new challenges. 
Ensuring precise molecular communication between devices is com-
plex and can be significantly affected by environmental factors like 
temperature and pH, which disrupt communication efficiency and data 
reliability [47]. These disruptions pose significant challenges for the 
effective functioning of DTs, as consistent and accurate data are critical 
for maintaining the integrity of these models. Therefore, developing 
new security protocols that can protect biological data without compro-
mising the functionality of IoBNT systems is essential for their broader 
adoption [47]. Addressing these concerns is crucial, as failure to do so 
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could hinder the integration of IoBNT into DT frameworks and limit 
their potential benefits in healthcare and biomanufacturing.

Despite these hurdles, the potential advantages of incorporating 
IoBNT into micro and nano-scale DTs remain substantial. Moreover, 
IoBNT has the potential to enable advanced biomedical applications, 
such as targeted drug delivery and automated therapeutic interven-
tions, which surpass the capabilities of traditional DTs [48]. However, 
to maximize these benefits, significant advancements in biocyber in-
terfaces and the seamless integration of IoBNT with existing digital 
networks are needed. Achieving this integration is critical for enabling 
the real-time data processing and automation necessary for effective DT 
deployment in biotechnology [48]. Looking ahead, the future of DTs 
in micro and nano-scale applications will likely depend on the con-
tinued development of IoBNT frameworks that can overcome current 
limitations in data acquisition, integration, and security. Addition-
ally, interdisciplinary collaboration between biologists, engineers, and 
data scientists will be essential for tackling the complex challenges 
associated with modeling and controlling biological systems at these 
scales [49]. By creating more advanced and flexible frameworks, the 
capabilities of DTs can be expanded beyond their existing boundaries. 
Ultimately, addressing the challenges associated with implementing mi-
cro and nano-scale DTs is essential for unlocking the complete potential 
of these technologies in revolutionizing the biotechnology industry.

2.3. Combinations of FL with CNN and FL with DTs

Recent advancements in ML methods have significantly impacted 
e-health and biotechnology, offering powerful tools for data analysis, 
diagnosis, and treatment optimization [50]. Approaches like artificial 
neural networks (ANNs) have been enhanced by hybrid algorithms, 
such as invasive weed optimization combined with differential evolu-
tionary models, improving the accuracy and efficiency of training [51]. 
Deep learning techniques, including CNN and LSTM ensembles, are 
also enabling more sophisticated image captioning for medical imag-
ing [52]. These innovations are further supported by mixed analog–
digital infrastructure, fostering better classification in biomedical sys-
tems. Together, these advancements are shaping the future of e-health 
and biotechnology [53].

The combination of FL with DTs and CNNs has been recognized as 
a promising strategy to address concerns regarding data privacy and 
to improve model performance across various applications. However, 
despite its significant potential, the deployment of these integrated 
frameworks encounters numerous challenges, which include computa-
tional complexity and communication overhead [12]. This subsection 
explores related works on the combination of FL with DTs and FL 
with CNNs across different domains, highlighting both the oppor-
tunities and limitations of these methods. In the healthcare sector, 
the combination of FL and CNNs has been widely applied for secure 
medical image analysis. One study focused on using FL to train CNN 
models on distributed MRI data for brain tumor detection, preserving 
patient privacy without the need for data centralization [54]. Local 
CNN models were independently trained at each medical institution, 
and their weights were combined using FL. This approach achieved 
a classification accuracy of 91.05%, which was marginally lower than 
that of traditional centralized models. The main challenges highlighted 
included the computational complexity of training CNNs on large-scale 
datasets and the communication overhead associated with aggregating 
model parameters. Moreover, ensuring consistent model performance 
across diverse local datasets with varying quality and characteristics 
proved challenging, underscoring the limitations of FL [54].

Expanding on this concept, researchers developed a framework that 
integrated FL with CNN-LSTM models for Autism Spectrum Disorder 
(ASD) detection [55]. This system processed multimodal datasets from 
various clinical laboratories, utilizing FL to aggregate results securely 
for optimized ASD prediction. The combined use of CNNs for feature ex-
traction and LSTM models for temporal sequence learning enabled ac-
curate detection of ASD, achieving around 99% accuracy. However, the 
4 
framework faced scalability issues, particularly in resource-constrained 
environments. Furthermore, the inability to update models in real-
time hindered the framework’s effectiveness in supporting dynamic 
patient treatments, illustrating the need for more efficient integration 
strategies to enhance the performance and scalability of FL-based sys-
tems [55]. In another study, FL was combined with transfer learning 
techniques to classify breast cancer images while preserving data pri-
vacy [56]. By utilizing multiple local environments, the researchers 
were able to train CNN models without sharing sensitive patient data. 
This decentralized methodology enabled effective feature extraction 
and classification through the use of FeAvg-CNN and MobileNet mod-
els, which demonstrated high accuracy and recall rates. Despite these 
achievements, the study identified several challenges, including com-
munication overheads that impacted the overall model performance. 
The decentralized structure of FL posed difficulties in maintaining 
consistent accuracy across diverse datasets, particularly when data 
distributions varied significantly among different local environments. 
Additionally, the resource-intensive nature of FL, combined with the 
requirement for frequent communication between local nodes and the 
central server, presented substantial barriers to its broader adoption in 
resource-constrained healthcare settings [56].

Within the framework of the Industrial Internet of Things (IIoT), 
FL has been applied to improve the integration of DTs by enabling 
distributed learning without data centralization [57]. This method 
improved model accuracy and decision-making by enabling DT to 
learn from decentralized data sources in real time. Despite these ad-
vantages, the study identified several challenges, including limited 
communication bandwidth and high computational demands. How-
ever, synchronizing DTs with real-world conditions and ensuring data 
integrity remained significant obstacles, limiting the framework’s effi-
ciency in dynamic industrial environments [57]. These results suggest 
that further research is needed to develop better communication pro-
tocols and synchronization methods for integrating FL with DT in 
IIoT applications. In 6G-enabled Industrial IoT environments, FL was 
incorporated with DTs to support efficient and secure data processing 
within Digital Twin Wireless Networks (DTWN) [58]. The inclusion 
of blockchain technology ensured data integrity and privacy while 
optimizing edge computing resources. Nevertheless, the study faced 
challenges related to high communication costs, limited bandwidth, 
and dynamic network conditions. Managing resource allocation and 
latency remained critical concerns, as maintaining synchronization be-
tween DTs and their physical counterparts was essential for effective 
operation in complex IoT scenarios) [58]. This highlights the need for 
advanced resource management and scheduling strategies to improve 
the integration of FL and DTs in such environments.

Furthermore, a study explored the use of FL in Industrial IoT to 
address challenges related to data privacy and communication effi-
ciency in DTs [57]. The researchers applied an asynchronous FL scheme 
combined with deep reinforcement learning to manage aggregation 
frequency and clustering. This approach exhibited superior perfor-
mance with respect to convergence and energy savings when compared 
to traditional methods. However, addressing the computational and 
communication overheads associated with FL remained challenging, 
particularly in maintaining consistent model updates across diverse 
devices. Privacy concerns arising from decentralized data sources also 
presented significant obstacles to the adoption of FL in industrial 
settings. The study highlighted the necessity for developing more robust 
and efficient FL algorithms capable of meeting the unique requirements 
of Industrial IoT environments [57].

Overall, while the integration of FL with DTs and CNNs provides 
promising solutions for improving data privacy and model perfor-
mance across various applications, numerous challenges persist. The 
complexity associated with managing communication overhead and 
addressing computational demands must be resolved to fully exploit 
the potential of these frameworks. Future research should concentrate 
on the development of adaptive learning strategies, efficient resource 
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Fig. 1. The proposed framework for creating bacterial DTs using CNN, FL, and IoBNT technology; A: Real bacteria samples are observed and analyzed under a microscope, 
representing the physical counterparts of the DTs; B: IoBNT devices capture microscopic images of bacteria and transmit this data to local CNN models for initial processing and 
analysis; C: The FL framework collects and combines the weights from multiple local CNN models, creating a robust global model without sharing raw data, thus preserving 
privacy; D: An intuitive dashboard enables users to observe and interact with the DTs of bacteria in real time, accessible via a monitor or VR headset through an online HTML 
interface.
management techniques, and scalable frameworks capable of accom-
modating the diverse requirements of various domains. By overcoming 
these challenges, the integration of FL, DTs, and CNNs can unlock 
unprecedented opportunities for secure and efficient data processing in 
healthcare, smart cities, and industrial environments.

3. Materials and methods

Fig.  1 illustrates the architecture of this framework, which consists 
of four sections: physical twins, IoBNTs, CNN-FL, and the DT dash-
board. A physical twin is the actual asset, human, object, creature, 
or any entity that serves as the real-world counterpart for creating 
its corresponding DT [59,60]. In this work, the term physical twins 
specifically refers to the actual bacteria being studied to evaluate the 
framework. Moreover, Fig.  1A clearly depicts the physical presence of 
bacteria in laboratories and hospitals, showcasing real-world samples.
5 
As we explore the framework in greater detail, Fig.  1B emphasizes 
the role of IoBNT in facilitating efficient data extraction and transmis-
sion. Additionally, the integration of CNN-FL within the framework is 
illustrated in Fig.  1C, showcasing its functionality in data processing 
and analysis. Finally, Fig.  1D depicts a user-friendly dashboard that vi-
sualizes DTs for users, accessible through a web interface or VR headset. 
The proposed framework seeks to address the limitations of integrating 
DTs with IoBNT in biological systems by employing advanced deep 
learning algorithms, such as FL and CNN. Notably, in Fig.  1C, the client 
represents laboratories participating in the FL network, which include 
entities like organizations engaged in the collaborative learning process 
of the FL algorithm [32]. Furthermore, IoBNT specifically refers to 
sensors responsible for data extraction and transmission, which collect 
data and transmit it to the local server of each client within the FL 
framework.

Building on the framework’s components, the setup for CNNs in-
volves configuring them to achieve precise pattern recognition and 
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advanced image processing, which is crucial for modeling bacterial 
images within DTs. Moreover, FL is applied across a network of IoBNT 
devices with CNN capabilities, allowing localized data processing on 
each device. This approach boosts privacy and reduces the need for 
data transfer. For evaluation, 10% of the dataset is allocated for testing 
and 90% for training, with both CNN-FL and CNN models using iden-
tical datasets. In the CNN-FL framework, the training data is evenly 
distributed among three clients, while the test data assesses the global 
model’s performance [61]. Moreover, the CNN-FL model trains for 100 
rounds. A custom-trained CNN is developed from the ground up to 
match the unique attributes of our dataset. As a result, data collected 
from various IoBNT devices enhances the CNN models, improving their 
precision in detecting bacterial activity. This fusion of CNN-FL with 
IoBNT seamlessly combines nanoscale biological data interpretation 
with distributed data processing, achieving unprecedented precision 
and robustness.

3.1. DTs in biotechnology

DTs, which are sophisticated virtual counterparts of physical entities 
or systems, simulate real-time behaviors [9]. In biotechnology and 
biomanufacturing, DTs are extensively used for the design, optimiza-
tion, monitoring, and control of bioprocesses and bioproducts [62–64]. 
To create effective DTs for biotechnological applications, a systematic 
methodology that integrates both data-driven and model-driven ap-
proaches is proposed. These methodologies enable the accurate simula-
tion of complex biological systems, thereby enhancing the optimization 
of processes for producing biomaterials, drugs, and vaccines. Initially, 
the development of DTs begins with high-quality data collection, which 
is subsequently utilized to construct detailed models representing the 
target bioprocesses or bioproducts [65]. Subsequently, iterative testing 
in virtual environments validates and refines these models, ensur-
ing reliable replication of physical behaviors. This process not only 
accelerates deployment but also reduces the time-to-market for new 
bioproducts [1–3]. Furthermore, DTs facilitate the simulation of diverse 
scenarios, enabling the optimization of processes within a controlled 
digital environment. For instance, DTs can model drug interactions with 
biological systems, providing predictions of outcomes and optimizing 
formulations without the need for extensive experimental trials. They 
are also instrumental in simulating disease progression and treatment 
responses, advancing the development of personalized medicine. In 
the domain of biomanufacturing, DTs enhance biological process op-
timization, ensuring both quality and efficiency. Moreover, DTs are 
employed to model ecosystems and microbiomes, predicting their re-
sponses to environmental changes. Similarly, they simulate plant and 
animal growth in agricultural applications, aiming to optimize yields 
and the efficient use of resources. Consequently, this methodology 
accelerates development cycles and enhances product precision and re-
liability by identifying potential issues and evaluating solutions without 
the necessity of physical trials.

In the biopharmaceutical sector, DTs play a crucial role in optimiz-
ing cell fermentation processes and managing supply chains, providing 
a platform for precise modifications to enhance efficiency and foster 
innovation [62]. Additionally, DTs incorporate data from physical envi-
ronments, facilitating uninterrupted observation and adaptive control, 
which allow processes to be fine-tuned for optimal performance. Nev-
ertheless, the management and analysis of large datasets, alongside 
the development of complex models, demand significant computational 
resources and specialized expertise, both of which are vital for ensuring 
the effectiveness of DTs in biotechnology. Finally, maintaining the 
reliability and accuracy of models is imperative, as these models must 
consistently adapt to and accurately predict the behavior of the physical 
entities they represent.
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3.2. Optimizing DT performance

Optimizing DT performance involves real-time monitoring, data 
processing, and model refinement [9,63]. To achieve this, a robust 
infrastructure with high-resolution sensors and data acquisition sys-
tems is essential for the continuous collection of data on bioprocesses 
and bioproducts [65]. Furthermore, advanced computational systems 
are required to process these vast data streams to extract action-
able insights, which are crucial for timely anomaly detection and 
maintaining process stability [1]. Therefore, it is imperative to utilize 
high-performance computing and sophisticated algorithms for real-time 
data analysis. Moreover, AI techniques play a pivotal role in processing 
and interpreting data, thereby optimizing bioprocesses and predicting 
outcomes. To replicate biological entities under various conditions, it 
is necessary to develop dynamic models. Consequently, iterative testing 
and refinement are essential to ensure accurate predictions, identifying 
potential issues before they affect actual processes. By integrating 
CNNs with FL and IoBNT, we can significantly enhance DT capabili-
ties. Specifically, CNN-FL enables decentralized learning for continuous 
model updates [61], while IoBNT ensures real-time interaction between 
digital and physical domains, thereby improving model accuracy.

Additionally, continuously updating DT models with real-time data 
and feedback is crucial. Regularly refining models with new data 
improves efficiency, safety, and consistency. In our framework, these 
technologies are utilized to enhance DT performance, including precise 
real-time data extraction, effective deep learning model training for bio-
logical data, optimized bandwidth usage for data transmission between 
physical twins and DT, and addressing security and privacy challenges.

3.3. CNN-FL integration

CNNs are a class of deep neural networks known for their efficacy in 
visual imagery analysis [15]. CNNs automate feature extraction, which 
enhances efficiency and accuracy in identifying and extracting patterns 
from data. They have revolutionized fields such as image classification 
and object detection, playing a pivotal role in the advancement of AI.

A typical CNN structure comprises the following components:
1. Convolutional Layer: This layer applies convolutional operations 

to the input data to generate feature maps. 

𝐎𝑘
𝑖𝑗 =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
𝐈(𝑖+𝑚−1)(𝑗+𝑛−1) ⋅𝐊𝑘

𝑚𝑛 + 𝑏𝑘, (1)

where 𝐎𝑘
𝑖𝑗 is the output feature map at position (𝑖, 𝑗) for the 𝑘th filter, 

𝐈 represents the input image, 𝐊𝑘 denotes the 𝑘th convolution kernel (a 
filter that slides over the input image), and 𝑏𝑘 is the bias term added 
to the convolution result.

Eq.  (1) performs the convolution operation, which involves element-
wise multiplication of the input image patch with the filter, summing 
the results, and adding a bias term.

2. Activation Function: The activation function, typically the Rec-
tified Linear Unit (ReLU), is applied element-wise to introduce non-
linearity into the model. 
𝐀𝑘
𝑖𝑗 = max(0,𝐎𝑘

𝑖𝑗 ), (2)

where 𝐀𝑘
𝑖𝑗 is the activation output at position (𝑖, 𝑗) for the 𝑘th filter.

The ReLU activation function outputs the input directly if it is posi-
tive; otherwise, it outputs zero. This helps in introducing non-linearity 
and allows the network to learn complex patterns.

3. Pooling Layer: Pooling layers reduce the spatial dimensions of 
the feature maps, which can reduce computational load and controlling 
overfitting. In max pooling: 
𝐏𝑘
𝑖𝑗 = max

(𝑚,𝑛)∈
𝐀𝑘
(𝑖+𝑚)(𝑗+𝑛), (3)

where 𝐏𝑘
𝑖𝑗 is the pooled output at position (𝑖, 𝑗) for the 𝑘th filter, and 

is the pooling window.
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Max pooling selects the maximum value from the feature map patch 
covered by the pooling window. This operation helps in downsampling 
the feature map, reducing its dimensions while retaining important 
features.

4. Fully Connected Layer: This layer maps the extracted features to 
the output classes. 
𝐳 = 𝐖𝐡 + 𝐛, (4)

where 𝐳 is the output vector (e.g., class scores), 𝐖 is the weight matrix, 
𝐡 is the flattened input feature map, and 𝐛 is the bias vector.

The fully connected layer multiplies the flattened input feature map 
by the weight matrix, adds the bias vector, and outputs the result. This 
operation is similar to a traditional neural network layer and is used to 
make final predictions.

To enhance flexibility and scalability for embedded vision ap-
plications, we integrate MobileNetV2 [66] into our framework. Mo-
bileNetV2 is designed for efficient image classification on mobile and 
embedded vision applications, leveraging inverted residuals and linear 
bottlenecks. FL is a cutting-edge approach to machine learning that 
enables multiple participants, referred to as clients or workers, to col-
laboratively train a model while keeping their data decentralized and 
private [31,32]. This technique contrasts with traditional centralized 
CNN methods where data is pooled into a single location [61]. In FL, 
each participant trains its model based on its local data and shares 
model updates, not the data itself, with a global server. The server 
consolidates these updates to enhance the overall model, preserving 
privacy and security while leveraging distributed data sources.

The CNN-FL integration involves the following steps:
1. Local Model Training: Each client 𝑖 trains its local model 𝐰𝑖 using 

its own data 𝑖. The local update rule is 
𝐰(𝑡+1)
𝑖 = 𝐰(𝑡)

𝑖 − 𝜂∇𝑖(𝐰
(𝑡)
𝑖 ;𝑖), (5)

where 𝐰(𝑡+1)
𝑖  is the updated local model weights at iteration 𝑡 + 1, 𝐰(𝑡)

𝑖
is the local model weights at iteration 𝑡, 𝜂 is the learning rate, and 
∇𝑖(𝐰

(𝑡)
𝑖 ;𝑖) is the gradient of the local loss function 𝑖 with respect 

to the model weights, computed using the local data 𝑖.
This equation updates the local model weights by taking a step in 

the direction of the negative gradient of the loss function, scaled by the 
learning rate.

2. Global Model Aggregation: The central server aggregates the local 
models from all clients to update the global model 𝐰: 

𝐰(𝑡+1) =
𝑁
∑

𝑖=1

𝑛𝑖
𝑛
𝐰(𝑡+1)
𝑖 , (6)

where 𝐰(𝑡+1) is the updated global model weights at iteration 𝑡 + 1, 𝑁
is the total number of clients, and 𝑛𝑖 is the number of data samples 
on client 𝑖. 𝑛 =

∑𝑁
𝑖=1 𝑛𝑖 is the total number of data samples across all 

clients, and 𝐰(𝑡+1)
𝑖  is the updated local model weights for client 𝑖 at 

iteration 𝑡 + 1.
The expression in (6) performs a weighted averaging of the local 

model weights, where the weight for each client is proportional to the 
number of data points it holds.

3. Federated Averaging (FedAvg): The Federated Averaging algo-
rithm aggregates the local model updates using weighted averaging: 

𝐰(𝑡+1) = 𝐰(𝑡) − 𝜂
𝑁
∑

𝑖=1

𝑛𝑖
𝑛

(

𝐰(𝑡+1)
𝑖 − 𝐰(𝑡)

)

. (7)

This equation adjusts the global model weights based on the
weighted difference between the local model updates and the current 
global model weights.

When CNNs are integrated with FL, they leverage the power of 
CNNs to process and learn from image data in a privacy-preserving 
manner across distributed datasets [61]. This combination is particu-
larly powerful for applications where data privacy is paramount and 
where training data is naturally distributed across multiple locations, 
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such as in medical imaging analysis across different hospitals. The 
proposed CNN-FL algorithm is represented as follows:

1. Local Model Update: Each client 𝑖 trains a local CNN model 𝐰(𝑡+1)
𝑖

using its own subset of data. The local loss function 𝑖 is typically a 
cross-entropy loss for classification tasks [67]: 

𝑖(𝐰𝑖) = − 1
|𝑖|

∑

(𝑥,𝑦)∈𝑖

𝑦 log 𝑓𝐰𝑖
(𝑥), (8)

where 𝑖(𝐰𝑖) is the local loss function for client 𝑖, |𝑖| is the size of 
the local dataset 𝑖, 𝑥 and 𝑦 are the input and label, respectively, and 
𝑓𝐰𝑖

(𝑥) is the prediction of the CNN with weights 𝐰𝑖.
The expression in (8) calculates the cross-entropy loss, which mea-

sures the difference between the predicted probabilities and the actual 
labels.

2. Global Model Update: The global model 𝐰(𝑡+1) is updated by 
averaging the local models: 

𝐰(𝑡+1) =
𝑁
∑

𝑖=1

𝑛𝑖
𝑛
𝐰(𝑡+1)
𝑖 . (9)

The expression in (9) is the same as previously described, performing 
a weighted averaging of the local model weights to update the global 
model.

3. Objective Function: The overall objective function for the CNN-
FL framework can be defined as the weighted sum of the local loss 
functions: 

(𝐰) =
𝑁
∑

𝑖=1

𝑛𝑖
𝑛
𝑖(𝐰), (10)

where (𝐰) is the overall objective function, 𝑖(𝐰) is the local loss 
function for client 𝑖, 𝑛𝑖 is the number of data points on client 𝑖, and 
𝑛 =

∑𝑁
𝑖=1 𝑛𝑖 is the total number of data points across all clients.

This equation defines the overall objective as the weighted sum 
of the local loss functions, ensuring that each client’s contribution is 
proportional to the size of its dataset.

4. Communication and Synchronization: After each local training 
epoch, clients communicate their updated models to the central server, 
which synchronizes the global model. This process continues iteratively 
until the model converges.

By integrating CNNs with FL, the framework leverages the strengths 
of both technologies: the powerful feature extraction capabilities of 
CNNs and the privacy-preserving distributed learning approach of FL. 
This combination is particularly effective for applications requiring 
secure and distributed data analysis, such as medical imaging.

3.4. Decentralized CNN training with FL implemented using flower (FLWR)

We use Flower (FLWR) with various adjustments in the proposed 
framework to enhance customization and adaptability in our frame-
work [68]. Such embedded characteristics address diverse application 
requirements while ensuring adaptability. Flower facilitates the coor-
dination of multiple clients, each training on a distinct portion of the 
dataset without necessitating centralized data storage, which ensures 
data privacy and adheres to distributed data policies. The clients, 
uniformly configured with an equal allocation of training and vali-
dation images, independently train their models using a standardized 
architecture. During each round, every client trains its model for one 
epoch and transmits the resulting model weights to a central server. 
The server functionality in Flower aggregates these weights through 
a weighted average approach, ensuring that the contribution of each 
client is proportional to the size of its respective dataset. This approach, 
along with the flexibility and scalability of Flower, enables efficient 
model training across distributed nodes while reducing communication 
overhead and ensuring data security.



M. Jamshidi et al. Computers in Biology and Medicine 189 (2025) 109970 
3.5. Implementing IoBNT in biotechnology

IoBNT combines nanotechnology, biotechnology, and information 
technology to create interconnected networks of biological and nano-
engineered devices [24,69]. This methodology details the systematic 
steps for developing and implementing IoBNT systems, which can 
revolutionize biotechnology applications in healthcare and environ-
mental monitoring. The development process begins with designing and 
fabricating molecular sensors, actuators, and miniature computational 
components capable of interacting with biological systems at cellular 
and molecular levels [25]. Biocompatible materials ensure the seamless 
integration of these devices within biological environments. IoBNT 
devices are embedded to monitor and interact with biological entities 
in real-time, enabled to collect, process, and transmit biological data 
efficiently through advanced interfaces.

IoBNT technologies transform medical diagnostics and treatment in 
healthcare, providing highly personalized medical interventions. Real-
time data collected from IoBNT devices fosters personalized medicine 
by enabling precise monitoring of patient health conditions and timely 
treatment adjustments [10,69]. In the realm of environmental biotech-
nology, IoBNT devices exhibit exceptional precision and sensitivity 
in identifying contaminants and microbial threats, enabling advanced 
strategies for environmental surveillance and sustainable management. 
As IoBNT technologies advance, they will enable more sophisticated 
integration of biological and digital systems, leading to breakthroughs 
in diagnostics, environmental management, and personalized health-
care [6]. This evolution promises to enhance the accuracy and respon-
siveness of biotechnological applications, ultimately driving innovation 
and improving quality of life across diverse fields.

3.6. Metrics and measurement for evaluating performance

This study utilizes a set of essential metrics – accuracy, precision, 
recall, and the F1-score [70] – to rigorously evaluate our classification 
models. These measures collectively offer an in-depth assessment of 
the model’s capability to produce precise predictions and effectively 
address class imbalances.

Accuracy signifies the classifier’s ability to produce correct predic-
tions across all instances. It is calculated as the proportion of correctly 
classified samples to the total number of predictions made. 

Accuracy =
Correctly Classified Instances

Total Predictions (11)

Precision quantifies the reliability of positive classifications, mea-
suring the proportion of correctly identified positive cases among all 
instances predicted as positive, including false positives. 

Precision = True Positives
True Positives + False Positives (12)

Recall, also known as sensitivity, evaluates how effectively the 
classifier detects all actual positive cases. It is determined by the ratio of 
true positives to the total number of actual positives, considering both 
correctly identified cases and those mistakenly classified as negatives. 

Recall = True Positives
True Positives + False Negatives (13)

F1-score serves as a balanced metric that harmonizes precision 
and recall, offering a single numerical representation of the classifier’s 
performance. This measure is particularly advantageous when dealing 
with imbalanced datasets, ensuring that both false positives and false 
negatives are fairly accounted for. 

F1-score = 2 × Precision × Recall
Precision + Recall (14)

By integrating precision and recall into a unified evaluation, the 
F1-score delivers a comprehensive insight into a model’s classification 
effectiveness. This makes it a crucial benchmark for assessing scenar-
ios where the consequences of false classifications must be carefully 
managed.
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3.7. Dataset preparation

The dataset used in this study was obtained from a previously 
published study in Elsevier [71], ensuring its peer-reviewed validation. 
It comprises 2033 RGB images of bacteria collected from blood, urine, 
and skin samples of patients. Following pure culture, the bacteria were 
stained using the Gram method, and species identification was con-
ducted by laboratory experts. The images were captured using a Nikon 
E200 microscope equipped with a 100x objective lens. Importantly, no 
data augmentation techniques were applied to this dataset to maintain 
its original characteristics. To avoid bias in the analysis, the number of 
images representing each species was balanced. The preprocessing of 
this dataset involved several crucial steps to ensure the images were 
prepared correctly for the machine learning framework. First, each 
image was normalized, which involved scaling the pixel values to a 
range between 0 and 1, making the data easier for the neural network to 
process. Additionally, the images were resized to a standard dimension 
of 224 × 224 pixels, ensuring consistency in input size.

Next, the normalized and resized images were paired with their 
corresponding labels, which represented various bacterial species, en-
abling the machine learning model to associate each image with its 
correct category. The dataset was subsequently divided into batches 
to facilitate efficient processing during training, validation, and testing 
phases. During the training process, these batches were shuffled to 
prevent the model from learning any specific sequence of the images. 
Following prediction, the batched data was unwrapped, and the pre-
dicted labels were converted from numerical values back into their 
respective class names, thereby enhancing the interpretability of the 
results. The dataset was split with 90% used for training and 10% 
for testing. In the FL setup, the dataset was evenly distributed among 
clients. Each client trained its model locally on its subset of data and 
sent updates to the central server. Batches were created for efficient 
processing, and early stopping was employed during training to avoid 
overfitting. After training, the model was evaluated on the indepen-
dent test dataset, ensuring it was tested on unseen data for unbiased 
performance assessment. Table  1 provides an overview of the number 
of images collected for each of the 33 bacteria species used in training 
the proposed framework.

3.8. Experimental setting

The proposed architecture leverages MobileNetV2, a lightweight 
CNN, as the core model to address the unique computational constraints 
of IoBNT devices. This CNN backbone is initialized with weights pre-
trained on ImageNet to maximize transfer learning benefits, enhancing 
feature extraction while reducing training time. Following the Mo-
bileNetV2 layers, a Global Average Pooling layer compresses spatial 
dimensions, facilitating efficient aggregation of feature maps. This 
pooling layer connects to a dense layer with 33 softmax-activated units, 
allowing for the classification of 33 distinct classes. Such a streamlined 
architecture ensures high accuracy in feature extraction with minimal 
trainable parameters, making it suitable for real-time deployment in 
resource-limited IoBNT environments. Each learning cycle involves lo-
calized training of CNN models on individual client devices, an essential 
component of FL where data remains on the device, thus enhancing 
data privacy and security. For training efficiency and stability, a batch 
size of 32 and an input resolution of 224 × 224 pixels are used, while 
a learning rate of 5 × 10−5 is carefully chosen to balance convergence 
speed and generalization. To mitigate overfitting, early stopping with 
a patience threshold of three epochs monitors validation loss trends, 
halting training if improvement plateaus.

After local training, updated model weights are transmitted to a 
central server where Federated Averaging (FedAvg) aggregates these 
updates. FedAvg, a weighted averaging technique, accounts for the 
number of data samples per client, thus allowing a more accurate 
and representative global model that reflects data heterogeneity across 
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Table 1
The number of images within each of the 33 bacteria categories.
 Bacteria species Collected data 
 Veillonella 58  
 Streptococcus agalactiae 65  
 Staphylococcus saprophyticus 60  
 Staphylococcus epidermidis 59  
 Staphylococcus aureus 64  
 Pseudomonas aeruginosa 63  
 Proteus 60  
 Propionibacterium acnes 61  
 Porphyromonas gingivalis 65  
 Neisseria gonorrhoeae 69  
 Micrococcus spp 63  
 Listeria monocytogenes 63  
 Lactobacillus salivarius 60  
 Lactobacillus rhamnosus 60  
 Lactobacillus reuteri 60  
 Lactobacillus plantarum 61  
 Lactobacillus paracasei 60  
 Lactobacillus johnsonii 61  
 Lactobacillus jensenii 66  
 Lactobacillus gasseri 61  
 Lactobacillus delbrueckii 59  
 Lactobacillus crispatus 57  
 Lactobacillus casei 60  
 Fusobacterium 62  
 Escherichia coli 59  
 Enterococcus faecium 57  
 Enterococcus faecalis 60  
 Clostridium perfringens 62  
 Candida albicans 62  
 Bifidobacterium spp 64  
 Bacteroides fragilis 65  
 Actinomyces israelii 67  
 Acinetobacter baumannii 60  
 Total 2033  

clients. Reproducibility is crucial in FL, especially for IoBNT applica-
tions with non-deterministic edge devices. Therefore, random seeds 
for key libraries, including NumPy, TensorFlow, and Python’s ran-
dom library, are uniformly set across clients and the server, ensuring 
consistency in data splits, model initialization, and other stochastic 
processes. The local models employ the categorical cross-entropy loss 
function to optimize multi-class classification, combined with the Adam 
optimizer to balance computational efficiency and model convergence. 
Data handling is facilitated by TensorFlow’s Dataset API, which not 
only manages data batching and loading but also implements tech-
niques such as shuffling and parallel loading, thereby enhancing com-
putational efficiency during each training cycle. For data preprocessing, 
images undergo normalization to standardize pixel intensity ranges, 
optimizing inputs for the MobileNetV2 architecture. Resizing is applied 
to align with the CNN’s input dimensions, ensuring that each image 
adheres to the 224 × 224 pixel resolution required by the model. The 
normalization of input data not only reduces potential biases but also 
aligns with best practices in deep learning, where standardized input 
distributions improve convergence rates.

In this FL framework, the FedAvg strategy is pivotal, as it enables a 
decentralized yet unified model that benefits from diverse client data 
distributions. By averaging weights proportionally to each client’s data 
volume, FedAvg maintains a balanced representation of heterogeneous 
data sources, which is particularly advantageous for IoBNT applications 
where each client may capture unique biological or environmental 
information. Consequently, the global model achieves improved gener-
alization, leveraging insights from localized data without compromising 
privacy, a key consideration in medical or sensitive applications within 
the IoBNT ecosystem. This FL setup not only optimizes the model’s 
performance across diverse data but also maintains privacy and data 
integrity, making it a robust choice for real-time IoBNT deployments.

Furthermore, to address the concern of overfitting, several tech-
niques were implemented in our framework. First, we applied early 
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stopping to halt training when validation accuracy plateaued, pre-
venting the model from over-learning. Additionally, dropout layers 
were used for regularization, randomly deactivating neurons during 
training to improve generalization. We also performed cross-validation 
by partitioning the dataset, which ensured that the model was tested on 
different data subsets, enhancing its ability to generalize. Furthermore, 
our FL approach, where the model trains across multiple clients with 
varied data subsets, further helped to avoid overfitting and improve 
robustness to unseen data.

4. Results

4.1. Convergence rate

In a centralized CNN framework, the central server is tasked with 
processing the entire dataset, which leads to considerable computa-
tional bottlenecks and inefficiencies. For instance, a dataset comprising 
2033 RGB images, each with a resolution of 224 × 224 pixels, corre-
sponds to approximately 304 million pixels in total. This substantial 
data volume can result in delays and heightened resource consumption 
on the server, thereby decelerating both training and inference proce-
dures. Centralized systems often experience latency and inefficiencies 
because all data must be processed centrally, which slows down up-
dates and reduces the accuracy of real-time analysis. Furthermore, 
transferring the entire dataset to a central server demands significant 
bandwidth and poses critical privacy concerns. In such a centralized 
CNN configuration, the server is responsible for 100% of the data 
processing, further intensifying delays and aggravating computational 
bottlenecks.

In contrast, our framework, which incorporates CNN-FL, efficiently 
distributes the computational workload across multiple clients, thereby 
alleviating the limitations associated with centralized data processing. 
In a setup involving 3 clients, each client processes approximately 678
images, which significantly reduces the computational burden on a sin-
gle server and facilitates more efficient processing. This decentralized 
methodology enables more accurate and responsive updates for DTs by 
integrating real-time data from multiple sources. Our proposed frame-
work demonstrates considerable enhancements in training speed when 
compared to conventional centralized CNN models. The results reveal 
a remarkable improvement in training convergence using the CNN-
FL framework, which substantially outperforms traditional centralized 
CNN configurations. The performance evaluation, as presented in Fig. 
2, provides a detailed comparison of various configurations. Specifi-
cally, Fig.  2A illustrates an inefficient training accuracy convergence, 
requiring 120 rounds for the centralized CNN model to stabilize. Con-
versely, Fig.  2E and Fig.  2I depict a significant advancement, achieving 
training accuracy convergence in only 40 rounds. This substantial 
improvement underscores the efficacy of the proposed configurations 
in expediting the training process.

The CNN-FL framework with 2 and 3 clients (Fig.  2E and Fig.  2I) 
achieves 95% accuracy within the first 20 rounds, compared to the 
centralized CNN model which requires over 110 epochs to reach the 
same level of accuracy (Fig.  2A). Moreover, our framework attains over 
98% accuracy in only 40 rounds, whereas centralized CNNs need 120 
epochs for similar results. This dramatic reduction in training rounds 
underscores the effectiveness of our optimization strategies, enabling 
faster deployment and iteration of models across multiple laboratories. 
The efficiency gains of the CNN-FL framework are further highlighted 
through the analysis of convergence training graphs. The logarithmic 
perspective of the convergence training graph for the centralized CNN 
(Fig.  2B) reveals an inefficient training process, with prolonged sta-
bilization times. In contrast, Fig.  2F and Fig.  2J illustrate the fast 
and efficient convergence of our CNN-FL framework. These graphs 
provide a clear visualization of the efficiency gains achieved through 
our proposed framework, demonstrating a significant reduction in the 
number of training rounds required to achieve high accuracy.
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Fig. 2. Performance evaluation of the proposed CNN-FL framework (CNN-FL-2 and 
CNN-FL-3) compared to centralized CNN model (CNN); A: Convergence training 
graph (centralized CNN); B: Logarithmic convergence graph (centralized CNN); C: 
Loss convergence graph (centralized CNN); D: Logarithmic loss convergence graph 
(centralized CNN); E: Convergence training graph (CNN-F with 2 laboratories); F: 
Logarithmic convergence graph (CNN-F with 2 laboratories); G: Loss convergence graph 
(CNN-F with 2 laboratories); H: Logarithmic loss convergence graph (CNN-F with 2 
laboratories); I: Convergence training graph (CNN-F with 3 laboratories); J: Logarithmic 
convergence graph (CNN-F with 3 laboratories); K: Loss convergence graph (CNN-F with 
3 laboratories); L: Logarithmic loss convergence graph (CNN-F with 3 laboratories).
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Accordingly, the convergence training graph of the loss for the 
traditional CNN model (Fig.  2C) exhibits slower stabilization compared 
to the CNN-FL framework employing 2 and 3 clients (Fig.  2G and Fig. 
2K). Furthermore, the logarithmic representation of the convergence 
training loss graph for the centralized CNN model (Fig.  2D) and the 
CNN-FL framework with 2 and 3 clients (Fig.  2H and Fig.  2L) highlights 
the efficiency and effectiveness of the proposed approach. This detailed 
analysis underscores the enhanced performance of the CNN-FL frame-
work in terms of both convergence speed and accuracy. The primary 
factor driving these improvements in training speed and accuracy is 
the decentralized nature of the framework, which distributes the com-
putational workload across multiple clients. This distribution mitigates 
the bottlenecks and inefficiencies characteristic of centralized systems, 
where the central server is required to process the entire dataset.

By enabling each client to process a portion of the dataset, the 
framework significantly alleviates the computational burden on any 
single server, thereby accelerating convergence, as illustrated in the 
performance evaluation (Fig.  2). The convergence results demonstrate 
that the CNN-FL model attains 95% accuracy within only 20 rounds 
and exceeds 98% accuracy in 40 rounds, which directly results from 
distributing the learning process across multiple clients. This outcome is 
anticipated, as FL allows each client to perform training on its local data 
while transmitting only model updates instead of the entire dataset. 
This method not only preserves data privacy but also substantially 
reduces bandwidth requirements, as detailed in the bandwidth savings 
analysis (Table  2). The enhanced performance of the CNN-FL frame-
work can further be ascribed to its ability to aggregate knowledge from 
multiple sources, thereby generating more generalized and robust mod-
els. By training on decentralized data, the CNN-FL model effectively 
mitigates overfitting to the unique characteristics of individual datasets, 
leading to improved generalization across diverse clients. This feature 
is particularly critical in biological data, where variability between 
datasets commonly arises from differences in laboratory conditions, 
equipment, and methodologies.

4.2. Bacterial classification accuracy

The performance comparison between the proposed CNN-FL frame-
work and traditional CNN models is illustrated in Fig.  3. As observed, 
Fig.  3 highlights several key performance metrics through scatter plots 
and radar charts. This figure illustrates various aspects of the frame-
work’s performance, focusing on key metrics such as 𝐹1-score, recall, 
and precision. The evaluation is conducted under different configura-
tions to highlight the advantages of the CNN-FL framework, particularly 
in decentralized environments. This method assumes that all data in 
the network can be collected and trained by a single centralized node, 
which is an important consideration. Fig.  3A compares true labels 
(blue) and predicted labels (brown) for bacterial counts using a cen-
tralized CNN across three laboratories. Misclassifications are notable for
Clostridium perfringens (6), Enterococcus faecium (8), Escherichia coli (9), 
and Lactobacillus crispatus (12), indicating prediction errors. The shape 
of bacteria, such as rod-shaped Clostridium and spherical Cocci, affects 
CNN performance. Notably, this centralized approach shows slightly 
poorer performance than that of the proposed CNN-FL framework with 
2 and 3 clients. Fig.  3B shows our proposed CNN-FL framework with 2 
clients.

The accuracy of the results was rigorously validated, and the dataset 
utilized in this study was meticulously curated to ensure its high 
quality. The bacterial classification accuracy, as depicted in Fig.  3, 
illustrates the framework’s capability to manage diverse and com-
plex bacterial morphologies effectively. The observed misclassifica-
tions, such as those involving Lactobacillus johnsonii and Clostridium 
perfringens, underscore the challenges associated with distinguishing 
bacteria that exhibit similar morphological characteristics. These out-
comes were anticipated given the inherent limitations of image-based 
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Fig. 3. A: Centralized CNN model predicted versus actual bacterial counts; B: CNN-FL 
framework with 2 clients predicted versus actual counts; C: CNN-FL framework with 3 
clients predicted versus actual counts.

classification, in which shape and color similarities can present diffi-
culties even for advanced models. Nevertheless, the overall enhance-

ment in accuracy achieved with the CNN-FL framework, particularly in 
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the 3-client configuration, underscores the robustness of the proposed 
approach. The incorporation of additional clients introduces a more 
diverse training dataset, which subsequently improves the model’s 
capacity to differentiate between bacterial species.

Misclassifications are fewer and less pronounced, highlighting the 
framework’s effectiveness in improving accuracy. Notable errors in-
clude Lactobacillus johnsonii (21) and Propionibacterium acnes (25). Fig. 
3C displays results from the CNN-FL framework with 3 clients, showing 
further reduction in misclassifications compared to the centralized and 
2-client models. Notable errors include Clostridium perfringens (6) and
Lactobacillus johnsonii (21). This enhancement underscores the CNN-
FL framework’s robustness in addressing prediction errors related to 
bacterial shapes and overall improved classification performance. The 
proposed CNN-FL framework with 2 and 3 clients slightly reduces 
bacterial misclassification errors compared to the centralized CNN, 
highlighting the impactful role of client collaboration in improving 
accuracy and robustness in handling diverse bacterial shapes.

Fig.  4 presents radar charts comparing the performance metrics, 
including precision, recall, and F1-score of the centralized CNN model 
and the proposed CNN-FL frameworks with 2 and 3 clients. Fig.  4A 
illustrates the centralized CNN model. The chart shows relatively high 
precision but lower recall, leading to lower F1-scores. This indicates 
that while the model is good at identifying positive instances, it strug-
gles to capture all true positives, especially for bacteria with complex 
shapes like rod-shaped Clostridium and spherical Cocci. Fig.  4B depicts 
the performance of the CNN-FL framework with 2 clients. The radar 
chart demonstrates improved balance between precision and recall, 
resulting in higher F1-scores. This suggests that the distributed ap-
proach enhances the model’s ability to consistently classify and predict 
bacterial counts more accurately, mitigating some of the shortcomings 
observed in the centralized CNN model. Fig.  4C shows the CNN-FL 
framework with 3 clients. This configuration demonstrates superior 
performance, achieving consistently high precision, recall, and F1-
scores across all bacterial classifications. The inclusion of additional 
clients further enhances the model’s robustness and accuracy in manag-
ing diverse bacterial morphologies, thereby highlighting the efficacy of 
collaborative learning in improving both predictive performance and 
reliability. The radar charts highlight the superiority of the CNN-FL 
frameworks over the centralized CNN model, particularly with the ad-
dition of more clients, which significantly boosts the model’s precision, 
recall, and F1-scores.

Table  2 presents a comparative analysis of the classification per-
formance for three methods: CNN-FL with one client, CNN-FL with 
two clients, and a centralized CNN approach. The table summarizes 
key metrics such as mean precision, recall, and F1-score, along with 
their minimum, maximum, and standard deviation values. The CNN-FL 
methods, particularly with two clients, generally exhibit slightly better 
performance metrics and lower variability compared to the centralized 
CNN, which still maintains high accuracy but with marginally higher 
error rates in certain cases. The table highlights the robustness of FL 
methods, especially in scenarios with diverse and complex bacterial 
datasets.

4.3. Data exchange and error rates

The integration of IoBNT and FL within the proposed framework es-
tablishes a synergistic mechanism that promotes collaborative learning 
across diverse data sources. This enhances the precision and granularity 
of models for conducting detailed analyses of environmental data and 
micro-level biological components. The adoption of FL substantially op-
timizes data transmission by facilitating decentralized learning, which 
significantly reduces bandwidth consumption. Moreover, the imple-
mentation of IoBNT notably minimizes error rates in the extraction of 
biological data, ensuring precise and accurate data collection. This level 
of precision is crucial for developing highly representative DTs, en-
abling more reliable simulations and analyses. Additionally, FL allows 
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Fig. 4. Performance Comparison Using Radar Charts; A: Precision, recall, and F1-
score for the centralized CNN model; B: Precision, recall, and F1-score for the CNN-FL 
framework with 2 clients; C: Precision, recall, and F1-score for the CNN-FL framework 
with 3 clients.

various clients, such as laboratories and hospitals, to collaboratively 
engage in microorganism pattern recognition across multiple locations, 
thereby improving operational efficiency and further reducing error 
rates [32]. Sensors embedded within the IoBNT network play a pivotal 
role in gathering detailed biological data and transmitting it to the 
local servers of each client. This initial data acquisition by IoBNT 
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Table 2
Comparative analysis of classification methods.
 Metric CNN-FL 

(2 client)
CNN-FL 
(3 clients)

Centralized 
CNN

 Precision (mean) 0.987 0.988 0.986
 Precision (min) 0.800 0.714 0.833
 Precision (max) 1.000 1.000 1.000

 Recall (mean) 0.985 0.986 0.988
 Recall (min) 0.800 0.714 0.857
 Recall (max) 1.000 1.000 1.000

 F1-Score (mean) 0.986 0.986 0.986
 F1-Score (min) 0.800 0.833 0.909
 F1-Score (max) 1.000 1.000 1.000

 Standard Deviation (Precision) 0.041 0.049 0.044
 Standard Deviation (Recall) 0.047 0.054 0.035
 Standard Deviation (F1-Score) 0.039 0.041 0.029

 Weighted Avg. Precision 0.987 0.989 0.987
 Weighted Avg. Recall 0.985 0.986 0.986
 Weighted Avg. F1-Score 0.986 0.986 0.986

nodes establishes a strong foundation for comprehensive analysis and 
informed decision-making. These enhancements, which include band-
width optimization via FL and error rate reduction in biological data 
extraction through IoBNT, are elaborated in the subsequent sections.

4.3.1. Significant bandwidth optimization
Our framework achieves remarkable bandwidth reduction by dis-

tributing the computational load across clients. This approach effec-
tively reduces the bandwidth required for data transfer, optimizing 
resource usage. Key challenges in biotechnology and healthcare, such 
as scalability, accuracy, bandwidth, and privacy, are addressed through 
the integration of IoBNT, CNN, and FL technologies. By leveraging FL, 
our framework eliminates the need to transfer large image datasets to 
a central server for training, leading to substantial bandwidth savings. 
Instead, only the model weights and parameters are transmitted, signif-
icantly reducing data transfer volume and enhancing overall efficiency 
and scalability. The framework efficiently manages a dataset of 3.5GB
comprising 2,033 images by leveraging FL, significantly reducing data 
transfer requirements compared to centralized training methods. In a 
centralized training scenario, transferring the entire dataset between 
laboratories and servers necessitates each client to send approximately 
1.75GB of data, even with just two clients involved, resulting in sub-
stantial data transfer volumes. However, by employing FL, only the 
model weights and parameters are transmitted, drastically reducing 
uplink and downlink data transfer requirements and enhancing overall 
efficiency.

The MobileNetV2 model [72], used in our framework, has about 
2.2million parameters, which roughly translates to 8.8MB per model 
(assuming 32-bit precision). Therefore, in each round, the total data 
transmitted per client is just 8.8MB, a substantial reduction from the 
gigabytes required for image transfer. Thus, this mechanism leads to 
a significant reduction in the load on the communication channel, 
allowing the use of simpler and more cost-effective communication in-
frastructures. From an economic perspective, the reduced data transfer 
enhances the usability of the proposed framework. Furthermore, the 
efficiency in data handling supports rapid scaling, enabling the addition 
of numerous clients without compromising performance or incurring 
significant additional costs. Additionally, transmitting heavy data in 
real-time often poses implementation and hardware capacity problems. 
However, by reducing the data size, our framework maintains very 
fast training speeds while preserving privacy, overcoming these chal-
lenges effectively. Consequently, this translates to bandwidth savings 
per client of approximately 1.74GB, reducing network traffic by more 
than 99% (Table  3).

Extending this to a larger scenario involving 20million RGB images 
and 50 clients, the bandwidth savings are even more pronounced. 
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Table 3
Detailed bandwidth savings information.
 Description Details  

Small Scale (2 Clients)
 Dataset size 2,033 images, 3.5 GB  
 Max. transmitted data per client Centralized: 1.75 GB  
 Max. transmitted data per client per learning round FL: 8.8 MB  
 Bandwidth savings per transmission 1.7324 GB (99%)  

Large Scale (50 Clients)
 Dataset size 2 m images, 3.44 TB  
 Max. transmitted data per client Centralized: 68.8 GB  
 Max. transmitted data per client per learning round FL: 8.8 MB  
 Bandwidth savings per transmission 137.5824 GB (99.98%) 

Fig. 5. Optimization of bandwidth savings and noise reduction in data transfer using 
CNN-FL with IoBNT technologies; A: Data size of image transfer for small-scale and 
large-scale datasets; B: Total dataset size for both scenarios from a logarithmic per-
spective; C: Bandwidth usage in both scenarios for the proposed CNN-FL framework; D: 
Bandwidth usage in both scenarios for the Centralized CNN; E: Bandwidth optimization 
achieved for both small and large-scale scenarios.

Assuming each image would take at least 1MB minimum (assuming 
they are of high resolution), the total size of the dataset is 20TB.

If centralized training were employed, each of the 50 clients would 
need to send around 400GB of image data to the central server, calcu-
lated as: 
20TB

50 clients = 400GB/client. (15)

In contrast, with our CNN-FL framework, each client only needs to send 
the updated model weights. Given the MobileNetV2 model’s size of 
approximately 8.8MB per round for uplink, and the same amount for 
downlink, the total data per client per round is 17.6MB, calculated as: 
8.8MB (uplink) + 8.8MB (downlink) = 17.6MB/client. (16)

This represents a significant bandwidth saving, reducing the data 
transmitted from 400GB to just 17.6MB. Consequently, the bandwidth 
saving is approximately 399.9824GB, calculated as: 
400GB − 17.6MB ≈ 400GB − 0.0176GB = 399.9824GB. (17)

This translates to a reduction of over 99.9956% in data transfer 
requirements, calculated as: 
(

1 − 17.6MB
)

× 100% ≈
(

1 − 0.0176GB
)

× 100% ≈ 99.9956%. (18)

400GB 400GB
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Fig.  5A illustrates the volume of image transfer for two distinct 
scenarios: a small-scale dataset and a large-scale dataset comprising 20 
million images distributed among 50 clients. In small-scale scenarios, 
we achieved substantial bandwidth savings, thereby demonstrating the 
practical efficacy of our framework. These preliminary findings provide 
a foundation for evaluating the framework’s performance in large-scale 
scenarios. By leveraging the practical results obtained from smaller 
setups, we emphasize the scalability and efficiency of the proposed 
approach. Fig.  5B presents the total dataset size for both small-scale 
and large-scale scenarios using a logarithmic scale, which highlights 
the significant disparities in data volume between the two scenarios. 
Fig.  5C depicts the bandwidth usage in both scenarios for the proposed 
framework. Additionally, Fig.  5D shows the total dataset size per client 
for both small-scale and large-scale setups in a centralized CNN. Fig. 
5E demonstrates the bandwidth optimization achieved in both sce-
narios using our CNN-FL framework. In the small-scale scenario, the 
bandwidth requirement per client is drastically reduced from 1.75 GB 
to just 8.8 MB, representing savings exceeding 99%. Similarly, in the 
large-scale scenario involving a dataset of 20 million images distributed 
among 50 clients, the bandwidth requirement per client is reduced from 
400 GB to 17.6 MB, achieving an extraordinary savings of 99.9956%. 
Consequently, our FL approach, enhanced by IoBNT, not only ensures 
scalable and cost-effective training but also provides a robust and effi-
cient solution for managing extensive image datasets across distributed 
networks.

By utilizing IoBNT, which enhances the fidelity and efficiency of 
data communication, the framework achieves a seamless and noise-
reduced data transfer process. This integration ensures reliable con-
nectivity and a consistent flow of data, effectively mitigating network 
congestion while maintaining data privacy. Consequently, the FL ap-
proach, strengthened by IoBNT, delivers a scalable and cost-effective 
training solution that is also dependable and efficient for managing 
large-scale image datasets across distributed networks.

4.3.2. Optimizing error rates in biological data transfer
Our framework employs IoBNT technology for nanoscale and molec-

ular communication to optimize error rates in biological data transfer. 
Traditional IoT systems exhibit error rates ranging from 1% to 5% [26]. 
These error rates can result in significant data losses, ranging from 
35MB to 175MB when transferring a 3.5GB dataset, thereby com-
promising data fidelity. Fig.  6F compares error rates and data loss 
between IoT and our proposed framework. The gray section on the left 
represents IoT protocols (IEEE 802.11), with high error rates (1%–5%) 
and significant data loss (up to 175 MB). The white section on the 
right depicts our proposed IoBNT-based framework (IEEE P1906.1), 
showcasing minimal error rates (0.01%–0.1%) and data loss (up to 3.5 
MB).

For our proposed dataset size of 3.5GB (or 3, 500MB), the data loss 
due to these error rates can be calculated as follows:

• For an error rate of 1%, the data loss is 35MB.
• For an error rate of 5%, the data loss is 175MB.
Thus, conventional IoT systems experience data losses ranging from 

35MB to 175MB when transferring the entire 3.5GB dataset.
In contrast, IoBNT technology, guided by IEEE P1906.1 standards 

for nanoscale and molecular communication frameworks, demonstrates 
significantly lower error rates between 0.01% and 0.1%. For the same 
dataset size, the data loss due to these error rates can be calculated as 
follows:

• For an error rate of 0.01%, the data loss is 0.35MB.
• For an error rate of 0.1%, the data loss is 3.5MB.
Thus, IoBNT systems experience minimal data losses ranging from 

0.35MB to 3.5MB for the same dataset size, ensuring high data fidelity.
These results confirm the efficacy of our IoBNT framework in op-

timizing error rates, ensuring data integrity, and enhancing the over-
all efficiency of biological data transfer, making it a highly effective 
solution for modern biotechnological applications.



M. Jamshidi et al. Computers in Biology and Medicine 189 (2025) 109970 
Fig. 6. Comparison of error rates and data loss between IoT and IoBNT technologies 
in biological data transfer.

4.4. The powerful synergy between local CNN models and FL

We introduce CNN-FL to leverage the strengths of both CNN and 
FL for advanced biological data processing and bacteria analysis [31]. 
This synergistic combination of local CNN models and FL revolutionizes 
the processing of biological data, particularly in handling bacteria. By 
integrating FL with CNNs, the system is significantly enhanced in IoT 
environments, enabling it to handle extensive data from diverse sources 
without the need for centralizing data storage. This approach ensures 
data privacy, as sensitive biological information remains localized. 
Specifically, local CNN models, such as MobileNetV2 [72], process data 
with high efficiency, thereby enhancing the global model’s accuracy 
by integrating insights from diverse datasets. Furthermore, this system 
effectively addresses critical challenges in biotechnology, including 
scalability, accuracy, bandwidth optimization, and privacy. By dis-
tributing the data load across multiple clients, the CNN-FL framework 
achieves superior load management and more efficient data processing. 
For instance, in a 2-client configuration, each client manages approx-
imately 1017 images, while in a 3-client configuration, each client 
handles around 678 images. This approach not only improves system 
efficiency but also mitigates privacy concerns by keeping data local to 
each client, thereby minimizing the need for extensive data transfers 
and ensuring robust data security.

This architecture includes 53 convolutional layers organized into 
17 inverted residual blocks, significantly reducing computational load. 
Each block starts with a lightweight depthwise convolution followed 
by a pointwise convolution that expands and then compresses the 
channels. The model is topped with a global average pooling layer 
and a dense layer with 33 units corresponding to the number of 
bacterial classes, providing robust classification outputs with minimal 
computational overhead. Furthermore, this combination leads to a 
more efficient and advanced approach to creating DTs, where virtual 
models of 33 types of bacteria can be created and analyzed in real-
time. Consequently, this paves the way for more energy-efficient and 
sophisticated methods to realize DTs, enhancing our ability to monitor, 
understand, and manipulate biological systems with unprecedented 
precision and efficiency. The integration allows for the precise extrac-
tion and dynamic response to data changes at molecular and cellular 
levels, thereby dramatically improving the performance of DTs to a 
precision of 98.7% with 2 clients and 98.8% with 3 clients. The 
continuous monitoring and immediate adjustments enabled by IoBNT 
ensure more accurate and responsive simulations, which are essential 
for advancing biotechnological research and applications.

Fig.  7 presents three confusion matrices corresponding to the cen-
tralized CNN model, the proposed CNN-FL framework with 2 clients, 
and the CNN-FL framework with 3 clients, respectively. These confu-
sion matrices provide a comparative perspective on the classification 
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performance of different model architectures, offering valuable insights 
into the advantages of FL frameworks. Fig.  7A illustrates the confusion 
matrix for the centralized CNN model, where the diagonal elements, 
representing correct classifications, demonstrate high accuracy for sev-
eral bacterial species. This result suggests that the centralized CNN 
model is generally effective in accurately identifying many bacteria, 
serving as a robust baseline. However, the off-diagonal elements reveal 
instances of misclassification, underscoring the challenges associated 
with distinguishing bacterial species that share similar features or mor-
phological traits. For example, Staphylococcus Aureus is misclassified as
Clostridium Perfringens, likely due to similarities in specific morphologi-
cal or staining characteristics that confuse the model. Similarly, Proteus
is misidentified as Propionibacterium Acnes, and Pseudomonas Aerug-
inosa is mistaken for Staphylococcus Aureus. These misclassifications 
highlight the limitations of the centralized CNN model in addressing 
complex bacterial differentiation tasks, which may arise from overlap-
ping features or insufficient discriminative capability within the feature 
extraction layers. Addressing these errors may require the adoption 
of more advanced feature extraction techniques or the integration 
of enhanced training datasets to improve classification accuracy in 
challenging cases.

Furthermore, Fig.  7B depicts the confusion matrix for the CNN-FL 
framework with 2 clients, where the misclassifications are similar to 
those observed in the centralized CNN model. The similarity in these 
misclassifications implies that while FL provides significant advantages 
in terms of privacy and data decentralization, it does not inherently 
address the classification challenges posed by certain bacterial species. 
For instance, Micrococcus Spp is misclassified as Lactobacillus Salivar-
ius, which may result from insufficient diversity in the local datasets 
of individual clients, thereby limiting the model’s capacity to learn 
distinctive features for each bacterium. Other notable misclassifica-
tions include Staphylococcus Aureus as Porphyromonas Gingivalis and
Clostridium Perfringens as Staphylococcus Aureus. These errors under-
score the necessity for improved data-sharing mechanisms or augmen-
tation strategies within the FL framework to enhance classification 
accuracy. Fig.  7C illustrates the confusion matrix for the CNN-FL frame-
work with 3 clients, showing a notable reduction in misclassifications 
compared to both the centralized CNN model and the CNN-FL frame-
work with 2 clients. The decrease in misclassifications indicates that 
increasing the number of clients in the FL setup contributes to a more 
robust and generalized model, likely due to the integration of more 
diverse data. However, certain errors persist, such as Listeria Mono-
cytogenes being misclassified as Clostridium Perfringens, Staphylococcus 
Aureus as Clostridium Perfringens, and Staphylococcus Aureus also being 
misclassified as Lactobacillus Salivarius. These remaining misclassifica-
tions highlight that although FL improves overall accuracy, specific 
bacterial species continue to pose significant classification challenges, 
possibly due to intrinsic morphological similarities or limitations in the 
training data.

One of the more unexpected findings in this study was the sub-
stantial improvement in convergence speed observed in the CNN-FL 
models. Although faster convergence was anticipated due to the de-
centralized nature of FL, the reduction in training rounds from 120 in 
the centralized CNN to just 40 in the CNN-FL framework is particularly 
noteworthy. This outcome suggests that the aggregation of knowledge 
across clients not only enhances accuracy but also significantly accel-
erates the learning process, warranting further investigation. Another 
unexpected result was the model’s performance in classifying specific 
bacterial species, such as Staphylococcus Aureus, which was frequently 
misclassified across all models (Fig.  7). This finding highlights the need 
for further refinement of the feature extraction layers, especially for 
bacteria with similar morphological characteristics. Addressing these 
challenges will be critical to improving the model’s overall robustness 
in practical applications. This study contributes to the existing body of 
literature by demonstrating the feasibility and effectiveness of applying 
CNN-FL to bacterial classification, a domain that has traditionally relied 
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Fig. 7. Confusion matrices illustrating the classification performance of different 
models; A: The conventional centralized CNN model; B: The global model in the CNN-
FL framework with 2 clients; C: The global model in the CNN-FL framework with 3 
clients.
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on centralized data processing models. The integration of IoBNT with 
FL within this framework represents an innovative contribution, en-
abling more efficient data processing and bandwidth optimization. By 
decentralizing the learning process, this framework not only preserves 
data privacy but also enhances model performance.

Based on the provided confusion matrices, several bacteria have not 
been classified or mistaken for others. The frequent misclassifications 
highlight areas where the model’s feature extraction and classification 
processes could be further refined. These include Streptococcus Agalac-
tiae, Staphylococcus Saprophyticus, Staphylococcus Epidermidis, Neisseria 
Gonorrhoeae, Lactobacillus Rhamnosus, Lactobacillus Reuteri, Lactobacillus 
Plantarum, Lactobacillus Paracasei, Lactobacillus Johnsonii, Lactobacil-
lus Jensenii, Lactobacillus Gasseri, Lactobacillus Delbrueckii, Lactobacillus 
Crispatus, Lactobacillus Casei, Fusobacterium, Escherichia Coli, Enterococ-
cus Faecium, Enterococcus Faecalis, Candida Albicans, Bifidobacterium Spp,
Bacteroides Fragilis, Actinomyces Israeli, and Acinetobacter Baumannii. 
This comprehensive list underscores the complexity and diversity of 
bacterial species, which require sophisticated models to achieve high 
classification accuracy. The most frequently misclassified bacteria is
Staphylococcus Aureus. Its frequent misclassification highlights a critical 
area for improvement, as accurate identification of this bacterium 
is crucial for clinical diagnostics and treatment. It is mistaken for
Clostridium Perfringens in the centralized CNN model, misclassified as
Porphyromonas Gingivalis in the CNN-FL framework with 2 clients, and 
misclassified as both Clostridium Perfringens and Lactobacillus Salivarius
in the CNN-FL framework with 3 clients. The consistent misclassi-
fication of Staphylococcus Aureus across different models highlights 
the need for targeted improvements in the feature extraction and 
classification algorithms to enhance its identification. This indicates 
that Staphylococcus Aureus poses the greatest challenge for accurate 
classification across all models. Addressing this challenge is essential 
for improving the overall performance of bacterial classification mod-
els, which could involve incorporating more specific biomarkers or 
advanced learning techniques.

4.5. Monitoring and predicting DTs

DTs in bioprocess monitoring and prediction exhibit considerable 
effectiveness by leveraging real-time data and advanced modeling tech-
niques. These capabilities provide profound insights into the proper-
ties of bioproducts and the dynamics of bioprocesses, ensuring pro-
cess continuity and maintaining product integrity, which are essential 
in biotechnological applications [64]. DTs are particularly adept at 
real-time monitoring, anomaly detection, and predictive maintenance. 
Nevertheless, the deployment of DTs is accompanied by significant 
challenges. Developing accurate models for dynamic biological sys-
tems amidst large, complex datasets presents a notable difficulty. The 
intricate nature of biological data, combined with the demand for 
substantial computational resources, necessitates the use of sophisti-
cated algorithms and robust computational infrastructure. Despite these 
obstacles, the potential advantages of DTs in delivering precise and 
real-time insights into bioprocesses emphasize their critical role in 
advancing biotechnological research and applications.

Fig.  8 illustrates the user dashboard designed for accessing DTs 
of recognized bacteria. The system begins with the Database (Data 
Storage), where graphic elements and relevant data for generating DTs 
are stored. This database acts as a central repository, storing digital 
models and metadata related to different bacterial species. The External 
Data Sources block is responsible for integrating real-time location 
recognition and predictive data from various sources, ensuring that the 
DTs are updated with the latest environmental and contextual infor-
mation. These data sources are crucial for maintaining the accuracy 
and relevance of the DTs. The API Gateway (Data Exchange) facilitates 
communication between the database and other system components. It 
manages data requests and responses, ensuring efficient data flow and 
exchange. The Web Server (Data Processing) handles the processing of 
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Fig. 8. User Dashboard for Accessing DTs of Recognized Bacteria. The dashboard backend provides users with an output interface for the framework, presenting DTs of recognized 
bacteria. End users can access the results via a VR headset or monitor through an HTML page. This desktop interface offers a user-friendly experience, enabling real-time access 
and observation of results.
incoming data, converting raw inputs into structured formats that can 
be used for visualization. It processes data from both the database and 
external sources, preparing it for backend analysis. User Interface is the 
layer where users interact with the system. It provides an HTML-based 
interface that supports multiple devices.

This dashboard acts as the primary interface for users to interact 
with the framework’s output. Users can access the results through a 
Virtual Reality (VR) headset for an immersive experience or via a 
standard monitor through an HTML-based interface, ensuring flexi-
bility and ease of use. The desktop interface is specifically designed 
to offer a seamless and intuitive user experience, allowing real-time 
access and observation of results. This setup caters to a wide range 
of users, including researchers and medical professionals, by providing 
immediate and straightforward access to detailed bacterial data. The 
dual access methods (VR and HTML) ensure that the users can choose 
their preferred way of interacting with the data, making the dashboard 
a versatile tool for various applications.

5. Discussion

In this work, we present a highly efficient DT framework powered 
by CNN-FL and IoBNT to realize bacterial DTs. These DT models 
must accurately reflect their dynamics and interactions, represent-
ing biological systems in a scalable and secure manner. Predicting, 
optimizing, and analyzing the performance of IoBNT and biological 
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systems through methods and simulation tools constitute a crucial 
research area. Potential research directions include developing scalable 
simulation platforms and ML techniques to improve predictions, incor-
porating advanced data analytics, and enhancing model accuracy for 
complex, multi-scale biological systems [28]. Our proposed framework 
offers a robust solution for optimizing bandwidth, reducing error, 
processing biotechnological data, and digitizing biological assets. By 
leveraging CNN, FL, and IoBNT technologies, this approach addresses 
the challenges of employing DTs at nano and micro scales for modeling 
biosystems and biological assets such as bacteria. Integrating IoBNT 
with deep learning algorithms like FL and CNN significantly enhances 
the dependability, reliability, and efficiency of DTs in the biotechnology 
industry.

5.1. Addressing identified gaps: Framework performance and key features

Our proposed framework focuses on overcoming key challenges in 
the biotechnology domain, particularly when dealing with complex 
and diverse datasets, such as bacterial images collected from multiple 
sources. The framework offers a robust and scalable solution that 
effectively addresses challenges related to computational complexity, 
data privacy, and concerns associated with real-world deployment. 
Scalability is an essential consideration in modern frameworks designed 
for large-scale data processing, particularly in biotechnology, where 
data is frequently collected from diverse sources. The FL architecture is 



M. Jamshidi et al. Computers in Biology and Medicine 189 (2025) 109970 
deliberately selected to ensure scalability in contexts where datasets are 
extensive and distributed across multiple laboratories or IoBNT devices.

Moreover, the distributed architecture of FL facilitates local data 
processing on each IoBNT device and enables real-time updates of 
DTs without necessitating data centralization. This localized processing 
ensures that as the number of data points or IoBNT devices grows, 
the computational load is distributed across multiple clients rather 
than concentrated on a single centralized server. This approach effec-
tively alleviates potential bottlenecks when scaling to larger datasets 
or incorporating additional clients. Each device contributes to the 
training process by transmitting model updates instead of raw data, 
thereby significantly reducing network traffic and enhancing the sys-
tem’s scalability. Furthermore, the capacity to update DTs in real 
time is particularly critical for biotechnology applications, where rapid 
analysis and decision-making are imperative. The scalability of this 
framework makes it well-suited for scenarios involving extensive net-
works of IoBNT devices and laboratories, where each client supports 
the global model without overwhelming the system.

While the integration of CNNs with FL and IoBNT brings signifi-
cant benefits in terms of image analysis and data integration, it also 
introduces a degree of computational complexity. CNNs, especially 
when applied to high-resolution bacterial images, are computationally 
intensive. However, this framework addresses this complexity through 
a carefully designed preprocessing algorithm that ensures consistent 
and standardized image inputs. Biological data, such as bacterial im-
ages collected from various sources (e.g., microscopes), often suffers 
from inconsistent image quality, with variations in resolution, con-
trast, and color balance. These inconsistencies can negatively impact 
the performance of CNNs if not properly managed. To mitigate this, 
advanced image preprocessing techniques are used to standardize the 
image data. This ensures that regardless of the data source, the images 
maintain uniformity, which is critical for accurate and reliable analysis. 
By normalizing and standardizing the images, the CNN can focus on 
the biologically relevant features, such as bacterial morphology and 
texture, rather than being affected by noise or image quality issues.

Furthermore, the choice of CNN architecture plays a key role in 
managing computational complexity. Lightweight CNN models, such 
as MobileNetV2, are specifically designed to reduce computational 
load without sacrificing accuracy. These models use fewer parameters 
and require less memory, making them well-suited for deployment 
on IoBNT devices that may have limited computational resources. 
By leveraging MobileNetV2, the framework achieves an optimal bal-
ance between performance and efficiency, ensuring its practicality for 
deployment in real-world biotechnology environments without over-
burdening local devices. The federated architecture of the framework 
further aids in managing computational complexity. As each IoBNT de-
vice processes only its local data and contributes to the global model by 
transmitting model weights instead of raw data, the overall computa-
tional load is effectively distributed across the network. This distributed 
processing ensures that the complexity of integrating CNNs with FL 
does not overwhelm any single system. Instead, the workload is spread 
across multiple devices, each handling a portion of the computational 
requirements, thus improving overall efficiency.

The deployment of AI frameworks in real-world biotechnology set-
tings presents numerous challenges, particularly concerning data pri-
vacy, data quality, and computational resources. This framework is 
designed to address these challenges head-on, ensuring that it is prac-
tical and effective for use in diverse environments. One of the primary 
concerns in biotechnology applications is the variability of data quality. 
Bacterial images are often collected under varying conditions, leading 
to differences in image quality, resolution, and color. In terms of data 
privacy, the use of FL ensures that sensitive biological data remains 
localized. Data privacy is a critical concern in real-world deployments, 
especially in fields such as biotechnology where data may be subject to 
strict regulatory requirements. By keeping the data on local devices and 
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only sharing model updates (rather than the raw data itself), this frame-
work ensures that data privacy is maintained throughout the training 
process. This approach also minimizes the risk of data breaches, as no 
centralized database of sensitive information exists. Instead, the data 
remains under the control of each participating laboratory or IoBNT 
device.

The framework is also designed to overcome computational re-
source constraints found in real-world applications. Many IoBNT de-
vices, especially those in remote or limited-resource settings, have 
restricted processing power and memory. To enable deployment on 
such devices, lightweight CNN architectures and distributed learning 
strategies are used to reduce computational load on each device. By 
distributing processing tasks across multiple clients and leveraging effi-
cient models, the framework remains effective even in resource-limited 
settings. Furthermore, the framework is highly scalable, capable of 
accommodating an increasing number of clients as data volumes grow, 
with no predefined upper limit. The current setup with three clients is 
not a limitation, as the architecture allows adding more clients through 
FL, effectively distributing the computational load across the network. 
By utilizing lightweight CNNs like MobileNetV2, the framework re-
duces the processing burden on IoBNT devices. Only model updates, 
not raw data, are shared, minimizing bandwidth use. With 90% accu-
racy, the framework is robust and ready for real-world biotechnology 
applications, offering practical and scalable solutions across varied 
environments.

Embedding MobileNetV2 as our CNN model, combined with FL, 
yields promising results in creating bacterial DTs. Pre-trained on Im-
ageNet and fine-tuned on bacterial images, this CNN processes data 
in batches of 32, with each image resized to 224 × 224 pixels. Its 
compact architecture, with approximately 2.2 million parameters, en-
ables efficient training and inference across distributed nodes in an 
FL setup. This approach achieves over 98.7% accuracy for 33 bac-
terial classes, as evidenced by metrics such as accuracy, precision, 
and recall during training. Integrating MobileNetV2 allows for faster 
convergence and reduced communication overhead during federated 
updates, supporting efficient and scalable processing capabilities for 
real-time creation of bacterial DTs across multiple clients on mobile 
platforms. Its compact and efficient design positions our framework 
well for future commercial applications, driving widespread adoption 
in healthcare and environmental monitoring.

Moreover, using FL with CNN in the proposed framework signif-
icantly improves training speed and accuracy compared to traditional 
centralized CNN models. As a result, the CNN-FL framework with 2 and 
3 clients achieves 95% accuracy within the first 20 rounds, whereas 
the centralized CNN model requires over 110 epochs to reach the 
same level. Additionally, our framework attains over 98% accuracy in 
only 40 rounds, while centralized CNNs need 120 epochs for similar 
results. This dramatic reduction in training rounds underscores our 
optimization strategies’ effectiveness, enabling faster deployment and 
iteration of models across multiple laboratories. Therefore, achieving 
high accuracy in significantly fewer rounds allows for more efficient 
use of computational resources and reduces the time required for 
model training, particularly beneficial in environments where rapid 
deployment and iteration are critical. The superior performance of the 
CNN-FL framework highlights its potential for real-world applications, 
where optimizing convergence speed and accuracy is essential.

The foundation of our framework is rooted in computer vision 
and pattern recognition, enabling it to function effectively as long 
as an adequate number of species images are available for training. 
The framework’s ability to handle different data types makes it highly 
adaptable to various biological assets, as it does not rely on the specific 
type or properties of microorganisms. Its strength lies in detecting pat-
terns in the input data, regardless of species characteristics. Expanding 
this framework to encompass other biological assets, such as tissues, 
organs, or entire biological systems, is feasible by applying the same 
principles of image-based pattern recognition and deep learning. The 
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adaptability of the framework is attributed to the versatility of CNNs, 
which are capable of handling the increased complexity associated with 
these biological structures. For example, the system could be trained 
on histological images of tissues, 3D imaging data from organs, or 
microscopic data from bio-nano structures instead of bacterial cells. 
The primary challenge lies in ensuring the availability of a sufficiently 
diverse dataset of images for training the model, similar to the approach 
used for microorganisms.

The integration of IoBNT technology in the framework can be 
expanded to capture detailed data from biological systems at different 
scales. This would allow accurate modeling of larger biological assets 
while ensuring efficient data collection and transmission. For complex 
systems like organs or tissues, where interactions are more intricate 
than with microorganisms, additional pattern recognition layers, such 
as temporal or 3D spatial patterning, could be incorporated to process 
time-series or volumetric data. The framework’s key strength lies in 
its flexibility, meaning that with a well-structured dataset for training, 
it can adapt to various biological assets beyond microorganisms. This 
adaptability supports applications in biotechnology and digital health.

5.2. Implementation challenges

During the implementation of the framework, a variety of practical 
challenges were encountered, which significantly impacted its deploy-
ment within a laboratory environment. From hardware limitations to 
data privacy, each presented unique adjustments to make the frame-
work feasible. This section highlights these key challenges and how 
we addressed them, along with considerations for future improvements. 
Practical use of IoBNT required adapting our setup to specific hardware 
needs. One main issue was sourcing IoBNT sensors with the resolution 
necessary for capturing nano-scale biological data, as many existing lab 
sensors do not meet this precision. These specialized sensors required 
more processing power to run MobileNetV2 locally, pushing the lim-
its of the initial devices. Additionally, the continuous data collection 
increased energy consumption, prompting the need for low-power al-
ternatives to extend operation time without frequent recharging. Future 
work will focus on energy-efficient hardware optimized for nano-scale 
applications to support sustainable, long-term use.

Deploying FL on IoBNT devices increased processing demands, par-
ticularly for training MobileNetV2 locally. Each device had to complete 
training independently before syncing with the central server. Although 
MobileNetV2 is optimized for mobile use, handling larger biological 
datasets challenged the devices’ capabilities. Synchronization delays 
caused additional latency in data aggregation. To mitigate this, model 
complexity was reduced where possible, and the communication pro-
tocol was optimized. Using lightweight edge hardware, such as TPUs, 
could further lower latency and enable real-time processing. Data 
privacy was a key concern, as each IoBNT device handled sensitive bi-
ological data. The decentralized FL architecture ensured data remained 
on local devices, reducing exposure risks. However, securing model 
aggregation on the central server was crucial, as aggregated updates 
might reveal indirect data details. To address this, encrypted data 
transfers were implemented, regulatory standards were followed, and 
personnel were trained in privacy protocols to protect the framework. 
Future implementations could integrate additional privacy-preserving 
methods, such as differential privacy, to enhance security.

Initial testing conducted in controlled laboratory settings revealed 
certain validation challenges. Consistent data quality from IoBNT sen-
sors was essential for achieving high classification accuracy; however, 
real-world conditions introduced significant variability. Pilot tests en-
abled the identification and resolution of initial issues related to model 
consistency, yet scaling up the framework underscored the necessity for 
regular recalibration to sustain optimal performance. Continued vali-
dation in various lab environments will provide more robust insights 
into real-world applicability. Scaling the IoBNT-FL framework added 
practical considerations, particularly as the number of devices and data 
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volumes increased. Coordinating device synchronization and main-
tenance, such as software updates and recalibrations, became more 
complex. Planning for operational costs and implementing automated 
monitoring tools for proactive maintenance helped address these needs. 
Future implementations could benefit from modular hardware to ease 
scaling, as well as advancements in sensor technology and edge AI to 
improve efficiency.

5.3. The framework’s importance

The framework proposed in this study represents a fundamental 
shift in how biotechnological processes can be managed and optimized, 
with profound implications for several industries. In biotechnology, 
pharmaceuticals, and healthcare sectors, the DT framework can offer a 
robust solution for real-time monitoring, simulation, and optimization 
of biological systems. Specifically, the framework addresses a per-
sistent challenge in biomanufacturing, where ensuring the reliability 
and accuracy of production processes is paramount. By facilitating 
the development of real-time DTs for microorganisms and biological 
systems, the proposed framework significantly enhances the capacity 
of industries to predict system behavior, diagnose issues, and opti-
mize workflows, thereby reducing the reliance on extensive physical 
trials. For instance, in pharmaceutical manufacturing, where precision 
is paramount, this integration can allow for predictive modeling of drug 
interactions, optimizing dosages, and refining production processes 
with unprecedented accuracy. The ability to fine-tune these processes 
without halting production lines not only improves productivity but can 
also ensure higher quality control, potentially reducing costs and time 
to market.

Furthermore, the framework’s decentralized structure can allow for 
greater scalability, which is essential for industries with distributed 
manufacturing operations or research facilities. By utilizing FL, indus-
tries can train machine learning models collaboratively across multiple 
facilities without needing to centralize sensitive biological data, thereby 
ensuring privacy and compliance with data security regulations, such as 
the GDPR in Europe and HIPAA in the United States. This is particularly 
relevant for industries managing vast quantities of sensitive healthcare 
data, where security and privacy are of utmost concern. By enabling 
real-time modeling of patient-specific biological systems, the frame-
work can offer unprecedented opportunities for personalized treatment 
plans that adapt in real-time based on patient responses. This can mark 
a significant advancement in the delivery of healthcare, contributing to 
more effective, efficient, and tailored treatments.

The proposed DT framework expands the existing research on DT 
and Federated Learning, particularly in biotechnology and healthcare. 
While most DT studies focus on engineering and industrial applications, 
fewer have explored the challenges of biological systems. Integrating 
IoBNT into the DT framework introduces a new perspective to the 
literature. Although IoT applications are widely studied across various 
fields, IoBNT specifically addresses biological systems at nano and 
micro scales, an area that remains largely unexplored. Additionally, 
incorporating FL into this framework is a significant contribution, 
especially given the increasing focus on decentralized ML in medical 
and healthcare research. While existing studies on FL in healthcare 
predominantly focus on clinical data, this work extends those studies 
by applying FL to biological data generated by IoBNT systems. This ap-
proach not only addresses critical issues of privacy and security but also 
enhances the scalability of DTs within the domain of biotechnology. 
This work also contributes to the literature on bandwidth optimization 
in distributed networks, an important consideration in industries han-
dling large datasets. By demonstrating how FL can drastically reduce 
the bandwidth required for data transmission between laboratories 
and hospitals, the framework can offer a significant improvement over 
traditional centralized models, which can be bandwidth-intensive and 
difficult to scale.
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From a government and regulatory perspective, this framework can 
address several key challenges in biotechnology and healthcare, par-
ticularly around data privacy, security, and compliance. Governments 
worldwide are increasingly focusing on the need for secure and privacy-
compliant data handling systems, particularly in sectors like healthcare, 
where data breaches can have serious consequences. The decentralized 
architecture of the proposed framework, which utilizes FL to allow 
data to remain local while still enabling collaborative learning, aligns 
with the growing regulatory emphasis on privacy-preserving technolo-
gies. This framework can serve as a valuable tool for governments 
and public health agencies in pandemic preparedness and response. 
Real-time DT of biological systems can improve disease monitoring, 
allowing public health authorities to act more quickly and accurately. 
For instance, during the COVID-19 pandemic, real-time simulation of 
disease transmission and modeling the impact of different treatment 
strategies would have been highly beneficial.

Moreover, this framework can aid governments in managing health-
care infrastructure more efficiently. The ability to monitor and optimize 
the performance of biological systems in real-time can lead to more 
efficient use of medical resources, such as optimizing drug manu-
facturing processes or personalizing medical treatments. This aligns 
with governmental goals of reducing healthcare costs while improving 
patient outcomes, making the proposed framework a valuable asset for 
healthcare policymakers. Finally, the framework’s focus on integrating 
IoBNT with DTs offers significant potential for environmental monitor-
ing, a key concern for governments aiming to combat climate change 
and environmental degradation. By facilitating real-time monitoring of 
ecosystems at the nano and micro levels, this technology allows gov-
ernments to track biodiversity changes, monitor pollution levels, and 
predict the real-time impact of environmental policies. This approach 
is in alignment with global sustainability objectives, as it provides a 
robust mechanism to ensure that policy interventions achieve their 
intended outcomes.

5.4. Future directions

Moving forward, future research should focus on further refining 
the feature extraction capabilities of the model to address the misclas-
sification issues observed with certain bacterial species. Incorporating 
more sophisticated data augmentation techniques or integrating addi-
tional biomarkers into the model may help improve its accuracy for 
challenging classifications. Additionally, expanding the scope of the 
study to include more diverse datasets from different laboratories and 
environments will be essential for further validating the generalizability 
of the CNN-FL framework. As more data becomes available, it will 
be interesting to explore how the framework performs in real-world 
applications, particularly in biomanufacturing and clinical diagnostics. 
Another important direction for future research is the exploration of 
advanced FL algorithms, such as personalized FL, which can tailor the 
model to the specific characteristics of each client’s data while still ben-
efiting from collaborative learning. This would be particularly useful in 
scenarios where there are significant variations between datasets, such 
as in biotechnology and healthcare.

In addition, as a future research direction, our framework can 
be extended to significantly enhance efficiency in biomanufacturing 
within the biotechnology sector. A key focus lies in the development 
of advanced communication protocols for FL, which are essential for 
enabling seamless data sharing and integration across decentralized 
manufacturing units. These protocols will facilitate real-time mon-
itoring and optimization of production processes, thereby minimiz-
ing downtime and enhancing overall productivity. Additionally, fo-
cusing on improving the scalability of CNNs to handle large-scale, 
high-dimensional data will allow for more precise and rapid analy-
sis of biomanufacturing operations [15]. Overall, implementing these 
enhancements will lead to streamlined workflows, improved resource 
utilization, and higher throughput in biomanufacturing. Furthermore, 
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by targeting these research areas, our framework will contribute to 
significant advancements in biomanufacturing efficiency, ensuring that 
biotechnological production processes are more effective, reliable, and 
capable of meeting the industry’s growing demands.

Furthermore, the integration of Bio-Nano Things (BNTs) is essential 
for the IoBNT-empowered framework, necessitating accurate fabrica-
tion and design through synthetic nanotechnology and biology [24,69]. 
BNTs need to interface with cyber domains, actuate within biological 
domains, and possess sensing, communication, and data processing 
capabilities. Hence, energy efficiency, biodegradability, and biocompat-
ibility are critical aspects to address. Besides, enhancing the interface 
between biological systems and BNTs, exploring sustainable energy 
sources to improve their reliability and performance, and developing 
new techniques and materials for BNT fabrication could be future 
research focuses [17]. In addition, developing macro/nano interfaces, 
including microfluidic chips and nanofluidic channels, and bio/cyber 
interfaces, such as biosensors and bioactuators, is crucial [17,69]. Also, 
exploring advanced technologies and materials for innovative design 
principles to create more scalable and efficient interface systems, and 
developing methods to enhance data integration and signal translation 
between these domains, could be areas for future research [21].

Also, the creation of this pioneering framework, which substantially 
improves the safety and dependability of DTs across nano and macro 
scales, represents a central achievement of this study. Furthermore, 
security and energy efficiency are prominent characteristics of this 
methodology, offering a versatile and user-oriented platform. As a 
result, its flexibility enhances its applicability across various domains, 
including biomanufacturing, healthcare systems, and pharmaceuticals, 
underscoring its extensive potential impact. Moreover, future research 
will focus on extending this framework to areas such as personalized en-
vironmental monitoring and medicine, capitalizing on its adaptability 
to achieve broader societal and scientific advancements. Additionally, 
incorporating IoBNT within the biotechnology sector that relies on DTs 
constitutes an intriguing yet intricate research area, with numerous 
promising pathways and unresolved questions warranting further ex-
ploration. While molecular docking is a fast and widely used technique, 
primarily suited for exploring molecular interactions and drug discov-
ery, it may offer complementary insights in future studies related to 
bacterial classification. In this study, we focused on computer vision 
techniques to classify bacterial species based on image data, emphasiz-
ing computational efficiency and accuracy. Therefore, while theoretical 
approaches may have relevance in complementary studies, they do not 
directly align with our current study’s objectives and methodology. 
Future work could explore integrating molecular docking methods to 
enhance the biological insights of our classification framework.

In addition, several emerging technologies could further enhance 
the effectiveness of DTs in biotechnology. One promising area is the 
incorporation of augmented reality (AR), virtual reality (VR), and 
metaverse technologies into DT frameworks. These technologies would 
enable researchers and practitioners to visualize and interact with 
complex biological data in immersive environments, allowing for more 
intuitive manipulation and exploration of digital models, such as cells 
or organs. This immersive interaction can facilitate better decision-
making and understanding of intricate biological processes. Further-
more, the integration of Web3 technologies can significantly enhance 
data sharing and collaboration across global research networks by 
providing a decentralized and secure infrastructure. This would ensure 
both data integrity and accessibility, which are critical in collaborative 
scientific efforts. Looking forward, the adoption of newer deep learn-
ing algorithms, such as transformer-based models, could improve the 
accuracy and throughput of DT systems in biotechnology. Addition-
ally, adapting the framework to future communication technologies 
like 6G and Web 3.0 would further enhance its scalability and data 
transmission capabilities, expanding its potential applications across 
the biotechnology industry and beyond.
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Integrating Web 3.0 into the DT framework can enhance decen-
tralized and secure data exchange in biotechnology networks. Web 
3.0 leverages blockchain technology and decentralized applications 
(dApps) to ensure privacy and secure management of sensitive biolog-
ical data. By adopting these technologies, the DT framework can up-
hold data provenance, immutability, and trust across laboratories and 
biotechnological workflows. This reduces dependence on centralized 
authorities while improving transparency, data sharing, and collabora-
tion among biotech organizations and healthcare institutions. Addition-
ally, augmented and virtual reality can enhance user interaction with 
DT in biotechnology. By incorporating AR and VR, the framework can 
provide immersive and intuitive visualization of biological processes at 
molecular or cellular levels.

While 5G technology is currently being rolled out, the potential of 
6G in revolutionizing connectivity and data transmission cannot be ig-
nored. With 6G, the DT framework can leverage ultra-fast data speeds, 
low latency, and massive IoT device connections to support real-time, 
large-scale biotechnological processes. Implementing 6G technology 
will allow for the seamless transfer of massive biological data sets, 
even in environments where billions of nanosensors and IoT devices are 
working simultaneously. This improvement will allow for better real-
time monitoring, analysis, and management of biological entities across 
laboratories and hospitals, pushing the limits of what is possible with 
the current DT framework. The use of Web 3.0 combined with AR/VR 
will not only improve the backend processing but also create a seam-
less, user-friendly interface. For example, AR can be used to overlay 
data and insights from DT models onto real-world laboratory environ-
ments, helping biotech researchers or healthcare professionals visualize 
biological behaviors. Simultaneously, Web3-based decentralized net-
works can make access to DTs more inclusive and user-controlled. Users 
will have secure, authenticated access to the data they need without 
interference from intermediaries, enabling more efficient workflows in 
research and diagnosis.

The biotechnology and healthcare sectors require strict data secu-
rity and privacy due to the sensitivity of biological data. Web 3.0 
can address these challenges through encryption, decentralized iden-
tity management, and smart contracts. Integrating blockchain into the 
DT framework enables secure and transparent data sharing between 
clients, such as laboratories and hospitals, while ensuring that data 
ownership and access control remain with the data owners. AI algo-
rithms can optimize bandwidth usage, predict biological behaviors, 
and dynamically adjust network resources in real time. This reduces 
the strain on network infrastructure while ensuring critical data is 
transmitted without delay. Additionally, AI can enhance the accuracy 
and response time of DT by continuously learning from new data 
generated within the framework.

6. Conclusions

In this work, we presented a highly efficient DT framework pow-
ered by CNN-FL and IoBNT to create bacterial DTs. Our proposed 
framework offers a robust solution for optimizing bandwidth, reducing 
error, processing biotechnological data, and digitizing biological assets. 
Moreover, by integrating IoBNT with deep learning algorithms like 
FL and CNN, our framework significantly enhances the dependability, 
reliability, and efficiency of DTs in the biotechnology industry. This 
approach addresses the challenges of employing DTs at nano and micro 
scales, making it a highly effective solution for modern biotechno-
logical applications. Thus, these advancements lay a foundation for 
remarkable improvements in digital health interventions and biotech-
nological methodologies. Although the framework exhibits significant 
progress, there remain opportunities for further refinement and en-
hancement. One area of improvement could involve addressing the 
limitations of using less diverse datasets, which may affect the model’s 
generalizability. Incorporating more varied data and exploring cutting-
edge algorithms, such as transformer-based models, could significantly 
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improve processing efficiency. Moreover, adapting the platform’s com-
munication system to integrate with next-generation technologies like 
6G and Web 3.0 could boost data transmission capabilities and stream-
line biotechnological applications. These advancements would ensure 
that the framework remains both effective and adaptable within the 
context of a rapidly evolving industry.
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