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Abstract: Medical data privacy regulations pose significant challenges for sharing raw data between healthcare institu-
tions. These challenges are particularly critical when the data is vertically partitioned. In such scenarios, each
healthcare provider holds unique but complementary patient information. This makes collaborative learning
challenging while protecting patient privacy. As a result, developing effective machine learning models that
require integrated data becomes unfeasible. This leads to fragmented analyses and less effective patient care.
To address this issue, we developed a vertical federated learning framework using split neural networks to
enable secure collaboration while preserving privacy. The framework comprises three main stages: generating
symmetric keys to establish secure communication, aligning overlapping patient records across institutions
using a privacy-preserving record linkage algorithm, and collaboratively training a global machine learning
model without revealing patient privacy. We evaluated the framework on three well-known medical datasets.
Our evaluation focused on two critical scenarios: varying degrees of overlap in patient records and differing
feature distributions. The proposed framework ensures patient privacy and compliance with strict regulations,
providing a scalable and practical solution for real-world healthcare networks. It effectively addresses key
challenges in privacy-preserving collaborative machine learning.

1 INTRODUCTION
Over the past decade, the rapid digitization of health
systems and the exponential growth of digital med-
ical data have transformed the healthcare landscape.
This evolution offers new opportunities to revolution-
ize medical research and improve patient care delivery.
Machine learning (ML) algorithms provide researchers
with new ways to efficiently analyze and manage med-
ical data. These advances drive innovations that im-
prove outcomes and streamline healthcare processes.
Such algorithms enable predictive, personalized, and
cost-effective data management. They can analyze
medical images and patient records to predict diseases
and help healthcare providers develop effective treat-
ment plans. Moreover, they help prevent complications
by enabling early disease detection through advanced
medical systems. For example, Riedel et al. (2023) em-
ployed ResNetFed, a modified ResNet50 model, to de-
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tect COVID-19 pneumonia on chest radiographs. Sim-
ilarly, Mali et al. (2023) used artificial neural models to
predict heart disease.

The integration of ML algorithms into medi-
cal systems delivers significant benefits to healthcare
providers, patients, and society. Despite their poten-
tial, ML applications in medical research face signif-
icant challenges. One key challenge is the distribu-
tion of medical data. Privacy regulations, such as
HIPAA and GDPR, restrict data sharing across health-
care providers, preventing the creation of centralized
repositories (Antunes et al., 2022). Hence, the data re-
main within organizational boundaries.

In fact, patient records are distributed across multi-
ple healthcare providers or institutions rather than cen-
tralized in a single repository (Allaart et al., 2022). Al-
laart et al. also believed that the distribution of medical
data generally follows two patterns: horizontal or ver-
tical, as shown in Figure 1. The horizontal distribution
involves sharing similar features across different pop-
ulation groups. In contrast, the vertical distribution in-
volves sharing data about the same individuals, but with



(a) Horizontal.

(b) Vertical.
Figure 1: Data Distribution Types.

different attributes. For example, in the vertical distri-
bution, a data provider might store attributes such as pa-
tient ID, gender, and heart attack status. Another might
have details such as gender, age, and ST slope. This
distributed nature of medical data highlights the need
for a decentralized ML framework that enables collab-
orative model training without sharing raw data. This
framework ensures the privacy and security of sensitive
medical information.

Therefore, McMahan et al. (2017) introduced a
new decentralized approach to collaboratively train
the global model without compromising data privacy,
known as federated learning (FL). FL has two main cat-
egories based on the data distribution: horizontal fed-
erated learning (HFL) and vertical federated learning
(VFL). In HFL, each training sample shares the same
feature space. As a result, each data provider creates
its own local model independently based on its local
training samples. These local models are then used to
iteratively train a global model. This kind of learning
improves the performance of the global model and re-
solves the data-shortage problem when the data size is
limited. Since HFL requires all data providers to access
the same feature space, it cannot be directly applied to
vertically distributed data.

To address the limitations of HFL for vertically par-
titioned data, a VFL was introduced. Unlike HFL, VFL
enables collaboration between institutions that hold dif-
ferent but complementary feature sets. To facilitate
deep learning in VFL, split neural networks were in-
troduced (Vepakomma et al., 2018). This architecture
partitions the neural network layers among participants,
ensuring privacy by exchanging only intermediate out-
puts and gradients instead of full neural network up-
dates. Since data providers possess distinct feature sets,
this method allows collaborative model training with-
out exposing raw data. Recent research has widely
adopted this architecture as a baseline for VFL frame-
works. For example, Sun et al. (2023) optimized com-
munication efficiency in split learning, while Anees
et al. (2024) explored its application in scenarios with
limited overlap between participants, addressing real-
world data sharing challenges.

These studies often ignore practical implementation

details. They also fail to evaluate split learning per-
formance on diverse datasets, feature distributions, and
overlap conditions, leaving key VFL challenges unre-
solved. Data heterogeneity is one of the main chal-
lenges in the VFL framework. It requires handling di-
verse feature distributions, which can degrade model
performance. In addition, incomplete overlap between
healthcare providers complicates the record linking and
training process in the VFL framework. Moreover,
none of the existing studies provides systematic evalu-
ations across diverse datasets and real-world scenarios.

Therefore, to address these limitations, we pro-
pose a novel privacy-preserving VFL framework us-
ing split neural networks (PPVFL-SplitNN). It is de-
signed to enable secure and efficient collaboration
among healthcare providers while preserving patient
privacy. PPVFL-SplitNN incorporates three key stages.
First, symmetric key generation establishes a secure
communication channel among participants, prevent-
ing unauthorized data access during the linking and
training process. Next, record linkage uses privacy-
preserving algorithms to accurately align overlapping
patient records across institutions while enabling error-
tolerant comparisons. Finally, split model training ex-
changes intermediate embeddings and gradients instead
of raw data to collaboratively train a global model.
These components address data heterogeneity, limited
participant overlap, and strict privacy constraints, offer-
ing a practical solution for vertically partitioned medi-
cal data.

The proposed framework has been evaluated on
three diverse medical datasets under varying overlap
percentages and feature distributions. The results show
that the framework achieves predictive performance
comparable to centralized learning (CL) while preserv-
ing privacy. This makes it a robust and secure solu-
tion for collaborative model training. To the best of our
knowledge, this is the first work to systematically eval-
uate split learning across a broad range of distributed
patient data scenarios. It highlights the potential of
split learning to enable effective collaborative learning
in real-world healthcare networks. The main contribu-
tions of this paper are summarized as follows:

• Development of a Privacy-Preserving VFL
Famework: The proposed framework trains split
neural networks that are distributed among a server
and a number of healthcare providers. This frame-
work is significant as it enables collaborative model
training on vertically partitioned medical data while
preserving patient privacy. It ensures compliance
with data protection regulations and addresses chal-
lenges such as incomplete overlap and data hetero-
geneity.

• Implementation of Key Stages: The framework



includes three core stages: symmetric key gener-
ation, record linkage, and training split learning
model. These stages ensure secure communication,
accurate alignment of overlapping patient records,
and collaborative training without sharing raw data.
Together, they address critical challenges such as
privacy preservation, data heterogeneity, and lim-
ited overlap. This enables secure and efficient
model training on vertically partitioned datasets.

• Comprehensive Evaluation and Identification of
Challenges: We evaluated the framework’s predic-
tive performance on three diverse medical datasets
with varying overlap percentages and feature dis-
tributions. The results demonstrate its robustness
in real-world conditions. The results show that
the framework achieves predictive accuracy and F1
scores comparable to CL while preserving privacy.
However, the evaluation reveals key challenges in
current VFL frameworks, including communica-
tion overhead, suboptimal performance under lim-
ited overlap, and sensitivity to heterogeneous fea-
ture distributions. These findings highlight areas for
future research, such as improving record linkage
algorithms, optimizing communication efficiency,
and enhancing robustness against feature hetero-
geneity.

2 SYSTEM OVERVIEW
2.1 System Design
This study proposes a privacy-preserving VFL frame-
work designed to address the challenges of training ML
models on vertically partitioned medical data. The sys-
tem consists of two types of entities: a central server
and multiple clients (healthcare providers), as illus-
trated in Figure 2a.

A. Server: In a medical context, the server acts as a
central authority, such as a hospital group or ana-
lytics provider. It ensures data privacy during col-
laborative training. Figure 2a highlights the server’s
primary roles including:

• Symmetric Key Generation: It is responsi-
ble for generating and distributing cryptographic
keys for secure communication during the record
linkage and training process.

• Record Linkage: The server identifies overlap-
ping patients across participating hospitals us-
ing their identifier attributes. Techniques like
the Bloom filter are used to align patient records
while safeguarding privacy.

• Training and Updating Global Model: It has
the capability to store all the labels and the global
model, as shown in Figure 2b. In addition,

(a) Entities Types.

(b) Architecture.
Figure 2: Framework Overview.

it has the computing power to train and ana-
lyze the distributed model and make predictions
by aggregating the embeddings from healthcare
providers. The server is also responsible for up-
dating the global model and calculating the gra-
dients to update the local model.

B. Client: Each client corresponds to a healthcare
provider, such as hospitals and laboratories, that
holds complementary patient attributes. For exam-
ple, in Figure 2a, Client 1 is a Cardiology Clinic
holding data on patient’s heart and blood vessels.
Client m stores radiological images, like chest X-
rays and MRIs, to help diagnose diseases and plan
treatments. Each healthcare provider can usually
store a large number of training samples that can
be used to train the ML model locally, as shown in
Figure 2b. As feedback, each client receives from
the server the indices of the overlap records and the
gradients to shuffle its local data and update the lo-
cal model, respectively. Note that any client can act
as a “VFL server” if it has the labels. We commonly
refer to it as an active party, while a passive party
refers to the client holding features only.
In this paper, we adopt a semi-honest model in

which all entities honestly follow the protocol but ex-
ploit any opportunity to extract private data from inter-
mediate results generated during the execution of the
proposed system. Therefore, each client cannot inter-
act with each other directly.

2.2 Proposed Framework
The proposed framework has been divided into three
main stages: symmetric key generation, record linkage,



Figure 3: Symmetric Key Generation.

and training and updating a global model. Each stage
involves the roles of the server and the clients.

• Stage 1: Symmetric Key Generation. The server
agrees first on two public parameters (g and p)
where p should be a large prime number and g is
a primitive root modulo p (Rodriguez-Henriquez
et al., 2007), as follows:

gk mod p, ∀k ∈ {1,2, . . . , p−1}. (1)

Then, each participant chooses a secret key and ex-
changes its public key with the server only. Next,
each participant computes the shared secret key us-
ing the shared public key. The secret key should
be the same for both parties (server and health-
care provider). Then, each participant converts the
shared secret key to a symmetric key using a se-
cure cryptographic hash function such as SHA-256
(Suman et al., 2022).
Figure 3 shows the complete process of the sym-
metric key generation. After generating the sym-
metric key, all messages between the server and the
client will be encrypted and decrypted using the
generated key. Adding this stage to the proposed
system helps enhance its security level during the
record linkage and model training.

• Stage 2: Record Linkage. The first preprocess-
ing step in VFL to start a collaboration training
process is to link distributed records that belong to
the same sample ID anonymously using a privacy-
preserving algorithm. This algorithm is called a
long-term cryptographic key (CLK) and was pro-
posed in (Hardy et al., 2017) and (Nock et al.,
2018). It uses Bloom filters to preserve the privacy
of identifier attributes while enabling error-tolerant
comparisons.
At this stage, each participant must securely re-
ceive a hashing secret key from the server, along
with essential identifier attributes that uniquely dis-
tinguish each patient. These attributes, including
patient ID, age, and gender, are critical for ensur-
ing accurate and reliable identification throughout

Figure 4: Record Linkage Process.

the process. The server encrypts these informa-
tion using the generated symmetric key and shares
them with all participants. Each client decrypts
these information using the same symmetric key
and starts clustering the training sample using the
K-means algorithm to minimize the mean distances
between the user data points and their closest clus-
ter centers. Followed by creating a set of CLKs
for each entity using a BLAKE2 hash function.
Then, each client encrypts and exchanges the cre-
ated CLKs with the server only. The server decrypts
and computes the similarity between the three sets
of CLKs using a dice coefficient. It then extracts
the indices of all possible pairs above the given
threshold. After aligning the overlapping patient
records using the privacy-preserving algorithm, the
server encrypts the indices of the matched records
and securely shares them with all clients. This en-
sures that each client can identify and use only the
aligned records for collaborative training without
compromising patient privacy.
Figure 4 shows the complete process of the record
linkage between three parties, a server and two
clients, in order to find matching records without
revealing patient privacy. It is important to note
that all participants must formalize a combination
of personal characteristics, such as age and gender,
in the same data formats and presentations before
starting the linking process. The data formalization
process ensures that similar records are matched ac-
curately while maintaining the confidentiality of the
data involved.

• Stage 3: Training Split Learning Model. Due
to the medical data heterogeneity problem in
VFL, split learning is used to enable collabora-
tive model training while preserving patient pri-
vacy. This approach offers several advantages,
including enhanced privacy, efficient communica-
tion, and adaptability to heterogeneous data distri-
butions. At this stage, each client trains the bot-
tom model of the global model using the over-
lapped samples only. Then, each client shares only
the output of the trained model, known as embed-



Figure 5: Model Overview.

dings, with the server instead of sharing the com-
plete model parameters or the patient raw data in
order to preserve the patient’s privacy, as shown in
Figure 5. The server concatenates all the received
embeddings and feeds them as input to the server-
side top model. It completes the training process,
makes predictions, and computes the gradients re-
quired to update the global model. To maintain
the privacy-preserving advantage, the server splits
the computed gradients for each client and shares
them individually. Each client then updates its lo-
cal model using its respective gradients. This pro-
cess ensures that raw data and client-side model de-
tails remain private throughout the training process.
Split learning reduces communication overhead by
avoiding the need to share complete model param-
eters. It also works well with vertically partitioned
datasets, where healthcare providers hold different
features.
Figure 6 illustrates the complete process of training
and updating the global model that splits into two
sub-models: the bottom and the top models located
at the clients and the server side, respectively. This
training process iterates until the model converges
or a maximum number of iterations is met.

3 PRIVACY-PRESERVING
ALGORITHM

This section presents the formalization process of the
privacy-preserving record linkage algorithm and the
practical implementation of the split learning algo-
rithm.

3.1 Record Linkage Algorithm
Several solutions have been proposed to link the med-
ical record, including traditional merging techniques,
record linkage toolkit (De Bruin, 2019), dedupe (Gregg
and Eder, 2022), and splink (Linacre et al., 2022).
However, these solutions do not guarantee the preserva-
tion of patient privacy when performing the record link-
age process. Therefore, to address this issue, we select
the CLK algorithm to link matching records without

Figure 6: Training Split Learning Model.

compromising individual privacy. This method was in-
troduced by Hardy et al. and Nock et al. to link related
records anonymously. It encodes identifier attributes
using BLAKE2, which is a family of hash functions
(Aumasson et al., 2014). This method also uses Bloom
filters to construct a set of CLKs as follows:

clk =
k

∑
j=1

(l j), (2)

where k represents the number of different independent
hash functions to compute the indices for an entry, and
l is the length of the bit array. Using the BLAKE2
hash function to encode identifier attributes, the pos-
sibility of a collision attack is minimized (Aumasson
et al., 2014).

Next, the constructed CLKs are used by the server
to assess the similarity between the two clients (A and
B) as follows:

mi =

{
1 i f Dclk

A ∼ Dclk
B , and

0 otherwise , (3)

where the operator ∼ can be interpreted as “the most
likely match”.

More precisely, the server uses the Dice coefficient
algorithm to compare between bit strings as follows:

DA,B =
2h

a+b
, (4)

where h represents the number of bit positions that are
set to 1 in both bit strings, a denotes the number of bit
positions set to 1 in A, and b denotes the number of bit
positions set to 1 in B (Schnell et al., 2009).

Figure 7 shows how the identifier attributes in client
1 are hashed using the BLAKE2 hash function along
with the secret hash key to add an additional level of
security to the record linking algorithm. After creating
the CLKs, each participant sends its own set of CLKs
to the server. The server then measures the similarity
between the two sets of CLKs to extract the indices of
the overlapped samples xmo .

In this paper, we consider that there are com-
mon identifier attributes shared between all clients to
uniquely identify the same sample ID using the method



Figure 7: Compute the Similarity between Two sets of CLKs.

proposed in Hardy et al. and Nock et al.. This as-
sumption is often considered in real-world healthcare
systems to match similar records across institutions ac-
curately (Sun et al., 2022). Therefore, the training
sample set of each client is divided into overlapped
samples Xmo ∈ RNmo×dm and non-overlapped samples
Xmn ∈ RNmn×dm , where Nmo and Nmn represent the num-
ber of training samples in the two datasets, respectively
Nm = Nmo + Nmn . In addition, the server stores the
ground truth labels Yo ∈ 0,1No×C for the overlapped
samples, where C represents the possible number of
classes.

Algorithm 1 describes a general procedure of record
linkage using CLK. The server first generates the se-
cret hash key and calculates the encryption parameters,
which are distributed to all clients, as shown in Fig-
ure 4. The server also selects and specifies identifier
attributes to uniquely identify each sample and shares
the encrypted attribute with the participants. Then, us-
ing the K-means algorithm, each participant clusters its
own data to minimize the mean distances between the
user data points and their closest cluster centers. Next,
each client uses a BLAKE2 hash function to implement
Bloom filters and create the set of CLKs with Equa-
tion (2) and sends it to the server. The server computes
the similarity between the three sets of CLKs using the
dice coefficient method according to Equation (4) and
returns the results Xmo to all participating clients to re-
shift their local data using reshiftDataFrame function.

After the record Linkage process, each participant
has to delete the non-overlap samples Xmn ∈ RNmn×dm

and uses only the overlapped samples Xmo ∈ RNmo×dm

to train the local neural network. Finally, using this
algorithm, which combines personally identifiable at-
tributes, the proposed system is able to link individual
records and extract machining records while preserving
patient privacy.

3.2 Split Learning Algorithm
Each client at this stage can start training the split learn-
ing model using the overlapped samples Xmo only in
the privacy-preserving setting. The server initializes
the training parameters θs and sends them to all clients.
Each client trains the local model hmo with parameters

Algorithm 1: Privacy Preserving Record Linkage Al-
gorithm

Input: hashing secret key (HSKey) and identifier attributes
(IDAttr)

Output: Xmo ∈ RNmo×dm

Server:;
∥HSKey∥,∥IDAttr∥← encrypt(HSKey, IDAttr);
Send ∥HSKey∥ and ∥IDAttr∥ to all clients;
for each client m = 1,2, . . . ,M in parallel do

HSKey, IDAttr = decrypt(∥HSKey∥,∥IDAttr∥);
clusterData f rame = ∑

n
i=0 min(||xi−µ j ||2);

clks = ∑
k
j=1 l j ;

Send clks to the server;

Server:;
Xmo = 2h

a+b ← Equation (4) ;
Send the index of Xmo to all clients;
for each client m = 1,2, . . . ,M in parallel do

Xmo ← reshiftDataFrame(Xmo );

θmo={xi
mo ,b

i
mo}. The output of the local model train is

called embedding or feature embedding, which repre-
sents the data patterns within each client. hmo is defined
as follows:

u0
mo = xmo ,

ui
mo = σi

(
wi

moui−1 +bi
mo

)
, i ∈ {1,2, . . . , I},

hmo = uI
mo ,

(5)

where σ⊙ is a linear function and ui
mo is the ith layer

of the neural network (Li et al., 2023). The server re-
ceives and concatenates all client embedding vectors in
a weighted manner (i.e. w=[h1⊙; ...;hm⊙]). Concate-
nated embedding vectors act as input to the server top
model θ0 that is connected to the interactive layer to
predict ŷno . The server then calculates the loss function
L ⊙ as follows:

f (Θ) = L(hs(θ0,w);yn) ,

with w =

 h1(θ1;d1)
...

hm(θm;dm)

 , m ∈ {1,2, . . . ,M},
(6)

where Θ = θM
i=0 represents the global model that con-

tains M local models (θ1, ...,θM) and the top model θ0
(Li et al., 2023).

The server calculates the gradients of the global
model αι

αΘ(t)
to update the global model Θt+1. It also

computes the gradients for each client αι

αhmo
and sends

them back to all the clients. Then, each client performs
a backward propagation and updates its local model as
follows:

∇θm ι =
∂ι

∂θm
= ∑

i

∂ι

∂hi−1
m

∂hi−1
m

∂θm
, (7)

Next, each client obtains the new ht+1
mo and sends

it to the server. The server repeats the process until



Algorithm 2: Training Split Learning Model
Input: Feature data {Xm}M

m=1, learning rate η, batch size β, number
of rounds T

Output: Global model parameters Θ

Server: Initialize top model parameters Θ(0) and send Θ(0) to all
clients;

for each round t = 0,1, . . . ,T −1 do
for each client m = 1,2, . . . ,M in parallel do

Client m computes hm = σ(θm ·Xm);
Client m sends hm to the server;

Server: w = {hm}M
m=1;

L(t) = L( f (Θ(t),w),y);
Θ(t+1) = Θ(t)−η∇ΘL(t);
∇hm L(t) for each client’s output;
Send ∇hm L(t) to all clients;
for each client m = 1,2, . . . ,M in parallel do

Client m ∇θm L(t);

Client m θ
(t+1)
m = θ

(t)
m −η∇θm L(t);

the global model converges or the maximum number of
iterations is met.

Algorithm 2 describes the pressure for standard
VFL training based on split neural networks using
adaptive moment estimation (ADAM). The server first
initializes the top model θ0 and sends the initialization
parameters to all clients. Each client then trains and
computes the local model output hmo = σ(θm,xmo) in
a mini-batch β of samples Xmo and sends hmo to the
server. With all {hmo}M

(m=1), the server concatenates the
embeddings in a weighted manner (w= [h1⊙; ...;hm⊙])
and computes the loss function following Equation (6).
It also updates its global model Θ using the calculated
gradients αι

αΘ
. Next, the server computes the gradi-

ents αι

αhm
for each client and sends them back to all

clients. Finally, each client computes and updates its
local model θm with Equation (7). This procedure it-
erates until the global model Θ converges or the maxi-
mum number of iterations is met.

4 Performance Evaluation
The effectiveness of the proposed framework is evalu-
ated on three well-known medical datasets. The first
section describes the simulation setups, including the
setting of three datasets and training parameters. We
then discuss the obtained results in detail. All experi-
ments are performed on a single machine using an Intel
(R) Core (TM) i7-8565U CPU.
4.1 Experimental Setups
4.1.1 Datasets
General information is provided on the three datasets
that were used to train and test the split learning model:
Diabetes Prediction Dataset (Mustafa, 2023), Breast
Cancer (Wolberg, 1990) and Gliomas (Tasci, Erdal
et al., 2022). The description of each dataset is as fol-
lows.

• Diabetes Prediction: This dataset is a public col-
lection of medical and demographic data from the
Kaggle website. It is used to predict the possibil-
ity of developing diabetes in patients based on their
medical history and demographic records. It ini-
tially contains 100,000 records, each with eight fea-
tures along with the patient’s diabetes status that is
categorized as “Yes” and “No” indicating the pres-
ence or absence of diabetes. For this dataset, the
learning rate is set to 0.001, and the batch size is
256. Furthermore, the dataset is significantly im-
balanced, which can lead the model to dispropor-
tionately favor the majority class (e.g., non-diabetic
cases) during training. To address this issue and
ensure fair representation, it is crucial to reduce
the volume of data in the majority class, thereby
achieving a balanced distribution with the minority
class (e.g., diabetic cases).

• Breast Cancer: This database was obtained from
the University of Wisconsin Hospitals in 1992.
It is used to classify the cell nuclei of breast
masses as malignant or benign. Initially, it con-
tains 699 records, each with nine multivariate at-
tributes, along with the target value that describes
whether breast cancer is benign or malignant. For
this dataset, the learning rate is set to 0.001, and the
batch size is 32.

• Glioma: This dataset represents the histological
medical records of patients with brain tumor (i.e.,
glioma) grading. It initially contains 839 records,
each with 20 mutated genes and three clinical fea-
tures along with the grade value that determines
whether a patient is a lower grade glioma or a mul-
tiforme glioblastoma. For this dataset, the learning
rate is set to 0.001, and the batch size is 32.

To train the ML model efficiently, the quality of the
input data must be maintained because it significantly
impacts the output results. Therefore, it is essential to
preprocess the selected datasets before making predic-
tions by cleaning the data, checking for missing data
and duplicate records. There are no missing data for the
diabetes prediction dataset. However, it has 3854 dupli-
cated records. Therefore, duplicated records have been
deleted. Furthermore, records that do not provide valu-
able information, such as a person with unclear gen-
der information or records with “no information” in the
smoking history variable, were not included. However,
the breast cancer dataset has some missing data and du-
plications. Due to the limitation of the dataset size, the
missing values were filled in with the mean, and du-
plicate records were kept the same as in the Glioma
dataset. Finally, the datasets are divided into two por-
tions: training and testing using the following ratio 8:2.



4.1.2 Training Details
The proposed framework is designed to handle verti-
cally partitioned data efficiently while ensuring data
privacy. In this setup, the training features are split ver-
tically between two healthcare providers and the labels
are stored exclusively on the server side. Each partic-
ipant is equipped with specific neural network compo-
nents tailored to the dataset being trained.

For the Diabetes Prediction and Breast Cancer
datasets, each healthcare provider trains a bottom
model consisting of two fully connected layers with
Linear-ReLU activations. The server holds the top
model, which comprises a single Linear-Sigmoid layer.
The units of these fully connected layers are 16, 8 and
1, respectively.

For the Glioma dataset, which has a higher fea-
ture dimensionality, the architecture is expanded to ac-
commodate the complexity of the data. Each client’s
bottom model consists of two fully connected Linear-
ReLU layers, while the server’s top model includes
three Linear-ReLU layers followed by a sigmoid out-
put layer. The units of these fully connected layers are
32, 16, 16, 8, and 1, respectively.

The models are initialized with random weights us-
ing PyTorch’s default initialization method to ensure
consistent starting conditions across all training rounds.
The ADAM optimizer is used for training, with a learn-
ing rate of 0.001 to balance convergence speed and sta-
bility. Binary cross-entropy is used as the loss function
to handle binary classification tasks effectively.

The training process involves 200 rounds of com-
munication between the clients and the server. Dur-
ing each round, the clients process their local data and
compute intermediate embeddings, which are sent to
the server. The server concatenates these embeddings,
trains the top model, and computes gradients that are
propagated back to update global and local models.
This iterative process ensures the privacy of raw data
while enabling collaborative model training.

4.2 Performance Metrics
The performance of the proposed system is evaluated
using three key metrics: Accuracy, F1 Score, and the
Confusion Matrix.
1. Accuracy: Measures the proportion of correctly

predicted samples to the total predictions, reflect-
ing the overall performance of the model.

2. F1 Score: It captures the model’s ability to bal-
ance precision and recall, minimizing false posi-
tives (FP) and false negatives (FN). This is cru-
cial in healthcare applications due to the challenges
posed by imbalanced datasets.

3. Confusion Matrix: Visualizes the performance of
the classification model, showing the distribution of
true positives (TP), true negatives (TN), FP, and FN.

4.3 Evaluating Split Learning Algorithm
The performance of the proposed PPVFL-SplitNN
framework is evaluated against four scenarios:

• Baseline (CL): In this scenario, all data are inte-
grated into a single repository to train a CL model
and achieve optimal performance. However, this
approach violates privacy regulations by requiring
raw data sharing (Blue line in the plots).

• PPVFL-SplitNN (Stander): The proposed frame-
work incorporates privacy-preserving techniques
such as symmetric key generation, record linkage,
and split learning. It represents the ideal scenario
with fully overlapping records and consistent fea-
ture distributions (Orange line in the plots).

• PPVFL-SplitNN + Varying Overlap Percentage:
Evaluates the framework in conditions with limited
overlap among participants, simulating real-world
healthcare challenges (Green line in the plots).

• PPVFL-SplitNN + Differ Feature Distribution:
Tests the framework’s ability to handle data hetero-
geneity, where participants hold diverse feature dis-
tributions (Red line in the plots).

Table 1 presents the evaluation metrics of the model
trained with the PPVFL-SplitNN framework compared
to the CL, while Figures 8 to 10 visualize the confusion
matrices for each dataset, showcasing the number of
TP, TN, FP and FN. These results demonstrate that our
framework achieves comparable performance to the CL
framework while preserving patient privacy.

However, a slight performance gap is observed be-
tween the two approaches. This gap can be primarily
attributed to the communication overhead in split learn-
ing, which introduces latency and slows down conver-
gence due to the exchange of intermediate embeddings
and gradients between the server and clients. In con-
trast, CL benefits from seamless data integration and
optimization within a single environment. Addition-
ally, split learning suffers from the lack of end-to-end
gradient optimization across all model layers. Since
only partial gradients are visible during training, up-
dates to the bottom and top models may become sub-
optimal, especially when the client data features are
highly heterogeneous. Despite these challenges, the
confusion matrices in Figures 8 to 10 indicate that our
framework achieves similar TP and TN values as CL,
demonstrating its effectiveness for binary classification
tasks.

In addition, Table 2 shows that our work achieves
comparable results to those reported by Guo et al.
(2020), Tasci et al. (2022) and Fadillah et al. (2023).
However, there are significant differences in the
methodology and the system design. Specifically, Tasci
et al. and Fadillah et al. relied on the CL approach,



Table 1: Evaluation Metrics in Comparison between the Centralize and the PPVFL-SplitNN framework

Database Name Training
Samples

Testing
Samples

Centralize PPVFL-SplitNN
Accuracy
(%)

F1 Score
(%)

Accuracy
(%)

F1 Score
(%)

Diabetes Prediction 5908 1478 88.70 90.22 85.38 86.55
Breast Cancer Wisconsin 559 140 96.42 94.38 95 92.30
Gliomas 671 168 86.30 86.22 80.95 77.77

Table 2: Evaluation Metrics of the CL

Database Name Reference Model Type Accuracy (%) F1 Score (%)

Diabetes Prediction

PPVFL-SplitNN NN 88.70 90.22

Fadillah et al. (2023)
K-Nearest Neighbors 87 86.64
Random Forest 90.70 90.41
Logistic Regression 88.64 88.45

Breast Cancer
Wisconsin

PPVFL-SplitNN NN 96.42 94.38
Guo et al. (2020) NN 95 92

Gliomas PPVFL-SplitNN NN 86.30 86.22
Tasci et al. (2022) SVM + RF + AdaBoost 86.4 84.2

Table 3: Training Accuracy (%) of Split Learning Model

Reference MNIST Titanic
PPVFL-SplitNN 81.16 68.16
Flower (Beutel et al., 2020) - 65
PyVertical (Romanini et al., 2021) 91.982 -

(a) CL. (b) PPVFL-SplitNN.
Figure 8: Show a Comparison between the CL, and the Model
Trained with PPVFL-SplitNN Framework when using the
Breast Cancer.

(a) CL. (b) PPVFL-SplitNN.
Figure 9: Show a Comparison between the CL, and the Model
Trained with PPVFL-SplitNN Framework when using the Di-
abetes Prediction.

which requires the aggregation of raw data from all
healthcare providers in a single repository. Although
their methods achieved high predictive performance,
CL raises substantial privacy concerns, particularly in
healthcare, where data sensitivity is critical and regu-
lations restrict data sharing. On the other hand, Guo
et al. (2020) adopted an HFL approach, achieving an
F1 score of 0.88 and an accuracy of 0.91, results

(a) CL. (b) PPVFL-SplitNN.
Figure 10: Show a Comparison between the CL, and the
Model Trained with PPVFL-SplitNN Framework when using
the Gliomas Prediction.

close to those obtained by our framework. However,
HFL assumes horizontally partitioned data, where data
providers share the same features but for different pa-
tients. This assumption limits the applicability of their
method in vertically partitioned settings, where differ-
ent providers hold complementary features for the same
individuals.

Our work addresses this limitation by implement-
ing a PPVFL-SplitNN framework, which enables col-
laborative training across vertically partitioned datasets
while preserving privacy. Importantly, our method
achieves predictive performance comparable to Guo
et al. while operating under stricter data constraints.
By exchanging only intermediate embeddings and gra-
dients, our framework ensures compliance with pri-
vacy regulations and enhances suitability for real-world
healthcare applications by eliminating the need to share
raw data.

On the other hand, in VFL, we compare the train-
ing accuracy of our framework with existing frame-
works such as Flower (Beutel et al., 2020) and PyVer-
tical (Romanini et al., 2021) using two well-known
datasets: MNIST and Titanic. As shown in Table 3,
our results are comparable to these frameworks, with a
slight improvement in training accuracy. In compari-



Table 4: Evaluation Metrics of Our Framework in Case if the Number of Overlap Records is Different

Overlap (%) Database Name Training
Samples

Testing
Samples

Accuracy (%) F1 Score (%)

100
Diabetes Prediction 5908 1478 85.38 86.55
Breast Cancer Wisconsin 559 140 95 92.30
Gliomas 671 168 80.95 77.77

60
Diabetes Prediction 3544 887 84.44 85.91
Breast Cancer Wisconsin 335 84 94.04 91.22
Gliomas 402 101 76.23 72.72

Table 5: Evaluation Metrics of Our Framework based on the Feature Distribution

Database
Name

Feature Distribution Accuracy
(%)

F1 Score
(%)Type Client 1 Client 2

Diabetes
Prediction

manual New ID, gender, age, hyper-
tension, heart disease

New ID, gender, age, smok-
ing history, bmi, HbA1c level,
blood glucose level

85.38 86.55

random New ID, gender, age, hyper-
tension, blood glucose level,
HbA1c level, BMI, smoking
history (e.g., ever, current)

New ID, gender, age, heart
disease, smoking history
(e.g., never, not current,
former)

84.57 86.11

Breast
Cancer
Wisconsin

manual New ID, Clump thickness,
Uniformity of cell size,
Uniformity of cell shape,
Marginal adhesion

New ID, Single epithelial cell
size, Bare nuclei, Bland chro-
matin, Normal nucleoli, Mi-
toses

95 92.30

random New ID, Bland chromatin,
Uniformity of cell shape, Uni-
formity of cell size, Normal
nucleoli, Single epithelial cell
size

New ID, Bare nuclei, Mitoses,
Marginal adhesion, Clump
thickness

92.14 89.32

Gliomas manual New ID, Gender, Age at di-
agnosis, IDH1, TP53, ATRX,
PTEN, EGFR, CIC, MUC16,
PIK3CA, NF1, PIK3R1, Race

New ID, Gender, Age at
diagnosis, FUBP1, RB1,
NOTCH1, BCOR, CSMD3,
SMARCA4, GRIN2A, IDH2,
FAT4, PDGFRA

80.95 77.77

random New ID, Gender, Age at diag-
nosis, FUBP1, NF1, ATRX,
BCOR, PDGFRA, PTEN,
MUC16, TP53, GRIN2A,
EGFR, RB1, NOTCH1, Race
(e.g., american indian or
alaska native, white)

New ID, Gender, Age at diag-
nosis, PIK3CA, IDH2, CIC,
PIK3R1, FAT4, CSMD3,
IDH1, SMARCA4, Race
(e.g., black or african Ameri-
can, asian)

80.95 77.14

son, Flower provides a general purpose FL framework.
However, it does not explicitly focus on vertical par-
titioning, which is essential in medical datasets where
data are distributed between healthcare providers with
complementary features. Similarly, PyVertical focuses
on vertical data. However, it does not implement ad-
vanced techniques for privacy record linkage or con-
sider varying overlap percentages, which are critical
factors affecting performance in real-world scenarios.

By addressing these limitations, our framework en-
sures better alignment of shared records and improved
training efficiency, leading to a slight yet consistent im-

provement in training accuracy. These results demon-
strate the practical applicability of our framework for
vertically partitioned medical data, where privacy and
performance must be balanced simultaneously. The ef-
fectiveness of our framework is further evaluated in two
distinct scenarios to analyze its performance under real-
istic medical data challenges. These evaluations high-
light the framework’s robustness in handling varying
overlap percentages and feature distributions, reflecting
the complexities of real-world healthcare applications.



(a) Testing Accuracy. (b) F1-Score.
Figure 11: Show the Model Performance under the Evaluated
Scenarios when using Breast Cancer.

4.3.1 Impact of Overlap Percentage
In this scenario, we consider the effect of incomplete
overlap, where fewer than 100% of patient records are
shared across participating hospitals. This situation re-
flects real-world challenges, such as fragmented health-
care systems where not all patients have records in ev-
ery hospital, particularly in rural or under-resourced ar-
eas. As shown in Table 4, lower overlap percentages
(e.g., 60%) lead to a slight degradation in model accu-
racy and F1 scores due to the reduced number of shared
samples available for training. This limits the server’s
ability to aggregate meaningful embeddings across par-
ticipants, impacting global model performance. How-
ever, the degradation is not dramatic, demonstrating
the robustness of our framework under incomplete data
conditions. These findings highlight the importance of
robust record linkage techniques to maximize shared
sample alignment and suggest opportunities to lever-
age non-overlapping samples for better data utilization
in future work.

4.3.2 Impact of Feature Distribution
In this section, we investigate the effect of the feature
distribution on the model performance using the three
medical datasets. Randomized feature distributions in-
troduce redundancy, imbalance, and noise, which de-
grade accuracy and F1 scores compared to manually
engineered distributions. As shown in Table 5, this
degradation underscores the critical role of feature en-
gineering in VFL. For instance, integrating heteroge-
neous data sources, such as imaging laboratories (hold-
ing radiology data) and clinical databases (storing de-
mographic and test results), requires careful feature se-
lection to ensure meaningful contributions from all par-
ticipants. Thus, performing feature engineering or fea-
ture selection within the VFL framework becomes es-
sential to maintain model performance.

4.4 Performance Analysis
The testing accuracy and F1 scores for the evaluated
scenarios are presented in Figures 11 to 13. The results
confirm that the CL achieves higher and more stable
performance due to seamless data integration and full
gradient optimization. However, CL is impractical for
healthcare applications because of privacy regulations
and the sensitive nature of patient data.

In contrast, our proposed framework preserves

(a) Testing Accuracy. (b) F1-Score.
Figure 12: Show the Model Performance under the Evaluated
Scenarios when using the Diabetes Prediction.

(a) Testing Accuracy. (b) F1-Score.
Figure 13: Show the Model Performance under the Evaluated
Scenarios when using the Gliomas Prediction.

medical data privacy while achieving performance
comparable to CL. This demonstrates its practicality
for collaborative model training in healthcare networks.
However, careful data utilization is critical to avoid
model degradation. Scenarios with reduced overlap
or randomized feature distributions highlight the need
for robust record linkage and feature engineering tech-
niques to maintain model performance.

5 CONCLUSIONS AND FUTURE
WORKS

In this paper, we proposed a privacy-preserving VFL
framework that uses split learning to address challenges
in the training of ML models on vertically partitioned
data. Our framework ensures privacy preservation, data
security, and collaboration among healthcare providers
in real-world scenarios. Evaluations on three medical
datasets show that the proposed framework achieves a
performance comparable to CL while preserving pa-
tient privacy. It demonstrates robustness in handling in-
complete overlap and diverse feature distributions, of-
fering a practical solution for sensitive healthcare net-
works. These findings highlight the potential of our
frameworks for advancing medical research and patient
care while maintaining privacy. Future work should fo-
cus on optimizing record linkage and reducing commu-
nication overhead to improve scalability and efficiency
in large-scale settings.
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