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Abstract—This paper studies the beamforming and trajectory
design in unmanned aerial vehicles (UAV) assisted wireless
networks, where a UAV equipped with a reconfigurable intelligent
surface (RIS) flies over a selected area to reflect signals from the
BS toward users experiencing link blockages. The objective is to
improve energy efficiency while considering the minimum data
rate requirements. In this regard, we define a stochastic optimiza-
tion problem that optimizes both UAV trajectory and RIS phase
shifts to maximize network energy efficiency while considering
the achieved data rate by each user. A learning framework
based on deep reinforcement learning (DRL) is proposed to
solve the formulated problem. In the proposed algorithm, a
dual computational approach is utilized, where extensive offline
training is conducted on a central cloud server while an edge
server performs online decision-making. This setup allows for
efficient optimization of UAV trajectories and RIS phase shifts
in response to the dynamically changing network conditions. The
simulation outcomes highlight the proposed algorithm’s success
in fulfilling the Qualit-of-Service (QoS) of each user, alongside
augmenting the system’s energy efficiency.

Index Terms—RIS, UAV, DRL, reliability, energy efficiency,
UAV-aided wireless networks.

I. INTRODUCTION

A. Background and Motivations

Fifth-generation (5G) wireless networks have marked sig-
nificant advancements in wireless technology, offering remark-
able improvements in data rate, latency, and connectivity.
However, one of the most vital issues in 5G networks is
the limited coverage range, especially when utilizing higher
frequencies such as millimeter Wave (mmWave) bands. These
limitations often require more infrastructure, e.g., base sta-
tions, to provide effective coverage, which can be costly and
challenging. Moreover, supporting diverse applications with
distinct requirements across dense urban areas presents a
significant challenge in maintaining reliable connectivity and
optimal performance. These environments often contain sev-
eral physical obstructions such as buildings, walls, and other
infrastructure that impede signal propagation and degrade
network performance. Additionally, the demand for more data
and faster speed connections in 5G systems increases energy
consumption. Addressing these limitations necessitates the de-
velopment of sixth-generation (6G) wireless technology, which
aims to provide a more flexible, energy efficient, and adaptive
network infrastructure. In particular, 6G wireless networks
target enabling real-time applications such as tactile internet
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and holographic communications and support an extremely
high density of connected devices, facilitating the growth of
IoT ecosystems. Additionally, 6G systems target enhanced
energy efficiency to support sustainable network operations
and reduce the environmental impact. Seamless integration of
artificial intelligence (AI) for intelligent network management
and automation is also a key feature of 6G [1].

Reconfigurable Intelligent Surfaces (RIS) and Unmanned
Aerial Vehicles (UAVs) are increasingly being recognized
as key technologies that could play a pivotal role in en-
abling 6G wireless systems due to their significant potential
transformative in wireless networks. RIS, with its capability
to programmatically control electromagnetic wave propaga-
tion, offers opportunities for optimizing signal quality and
reducing energy consumption. By dynamically adjusting the
phase shifts of incident signals, RIS can effectively steer
the communication beams to optimize signal paths, thereby
improving coverage and capacity. In this regard, aligning
RIS with millimeter-wave (mmWave) networks is a promising
approach to mitigate the limitations of mmWave communica-
tions, including short communication range, high susceptibility
to path loss, and vulnerability to obstructions. Despite this,
deploying RIS, specifically in urban areas, presents specific
challenges. In particular, building density in urban regions can
limit the effective field of view of RIS, making it challenging
to sustain high-quality communication links and serve multiple
users. Furthermore, the dynamic nature of urban environments,
where users’ density and mobility patterns can change rapidly,
adds complexity to RIS configuration and deployment.

On the other hand, UAVs, owing to their mobility and de-
ployment flexibility, can be strategically positioned to augment
network coverage and enhance reliability, especially in chal-
lenging environments. The dynamic repositioning capabilities
of UAVs make them particularly advantageous for supplement-
ing or even replacing traditional ground-based infrastructure.
Their flexible mobility and three-dimensional freedom enable
them to serve as flying base stations or aerial relays that can
extend network coverage, improve signal quality, and facilitate
high-speed data exchange. This is especially beneficial in
scenarios that pose challenges for traditional ground-based
network infrastructures, such as remote or densely-populated
areas, disaster-stricken regions, or complex terrains. Despite
these advantages, the integration of UAVs into wireless net-
works introduces challenges such as UAV power consumption.
The power consumption limitation is further increased when
UAVs operate in the mmWave frequency bands due to the
energy-intensive nature of high-frequency communications.
In particular, mmWave communications require high transmit
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power due to the high path loss and atmospheric absorption,
limiting the operational time of UAVs with constrained energy
resources.

Integrating UAVs with RIS technology presents a promising
solution to overcome the limitations of static RIS deployments
and the energy constraints of UAVs. This approach allows for
flexible and dynamic deployment, enabling real-time adapta-
tion to varying network conditions and user densities. The
mobility of UAVs, in particular, enables RIS to be strategically
positioned in three-dimensional space, optimizing performance
and mitigating the limitations associated with static installa-
tions. Furthermore, RIS-empowered UAVs can create optimal
reflected links without the need for additional transmit power.
The passive reflection capability of RIS reduces energy con-
sumption, enhancing the overall energy efficiency of UAVs
and offering a promising solution for energy-efficient wireless
networks, aligning with the vision and requirements of 6G
networks. However, optimizing such complex wireless systems
with multiple elements is challenging. To fully realize the ben-
efits of RIS-UAV integration, efficient optimization algorithms
are required that can handle large-scale network dimensions
and dynamically adapt to changes in the wireless environment
over time. Classical model-driven optimization techniques of-
ten fall short in providing optimal performance in time-varying
systems. Additionally, while data-driven learning-based meth-
ods have recently gained significant interest in optimizing
wireless networks, they often face challenges in large-scale
and uncertain environments. These methods require substantial
amounts of training data and computational resources to effec-
tively model large-scale wireless networks [2]. Furthermore,
the inherent uncertainty in wireless environments, such as
unpredictable channel states and fluctuating user demands,
limits the ability of data-driven methods to maintain robust
performance [3]. This necessitates the development of efficient
learning frameworks that efficiently handle training large-
size data and are augmented with robust optimization models
specifically designed to perform well under such challenging
conditions.

B. Contributions
This work integrates RIS technology with mmWave fre-

quencies in UAV deployments, taking advantage of the high
data rates and large bandwidths that mmWave offers while
mitigating its inherent challenges like high path loss. The main
contributions of this paper are summarized in the following:

• Joint UAV, RIS, and BS Stochastic Optimization Prob-
lem: We formulate a stochastic optimization problem
that jointly optimizes UAV trajectories, RIS phase shifts,
and BS transmit power. The objective is to maximize
overall system energy efficiency while ensuring that each
user’s minimum data rate requirements are met. This
optimization framework takes into account various factors
influencing energy efficiency, including UAV hovering
energy, RIS power consumption, and BS transmit power.
The minimum data rate constraint is expressed as a
chance constraint to address the inherent uncertainties in
the network environment and ensure reliable performance
under variable conditions.

• Dual-Operation DRL-based Framework: We develop
an efficient DRL-based algorithm to solve the optimiza-
tion problem. The proposed DRL framework employs a
dual-operation approach, combining offline training at a
cloud server with online decision-making at the BS. This
approach leverages the extensive computational resources
of cloud servers to perform intensive training, while the
BS handles real-time execution, thereby enhancing the
practical viability and adaptability of the solution. The
framework is designed for continuous improvement: the
BS continuously collects network data and feeds it back
to the cloud server, which iteratively updates and refines
the model. This feedback loop ensures that the algorithm
remains adaptive and increasingly efficient over time.

• Simulation Analysis and Performance Evaluation: We
provide simulation analysis for validating the effective-
ness of the proposed algorithm. Furthermore, we compare
the algorithm with related state-of-the-art methods to
comprehensively assess the performance of the proposed
framework.

II. LITERATURE REVIEW

UAV-assisted wireless networks have drawn significant in-
terest in recent research works. For instance, the study in
[4] detailed three primary applications in UAV-aided wireless
systems, namely, ensuring widespread coverage, facilitating
relaying functions, and enhancing information dissemination
and data collection. The work in [5] provided a review of the
latest advancements in UAV wireless communications, with
a particular focus on their integration into 5G and future
wireless networks. The authors of [6] explored the design
of uplink communications in a network architecture involving
multiple UAVs and users, adopting the CoMP approach. In [7],
the authors investigated methods to reduce the flight duration
of UAVs and ensure that user-specific data requirements are
met through a joint optimization of UAV paths and resource
allocation. Studies in references [8]–[10] evaluated the use of
UAVs as mobile base stations to augment network coverage,
addressing challenges in trajectory optimization, interference
management, and resource allocation.

Additionally, several works have been done on the inherent
constraints of UAV-aided wireless networks, such as size,
weight, and power limitations, as discussed in [11]–[13]. The
studies in [12] and [13] proposed methods for optimizing UAV
3D-trajectories to overcome the UAV’s constraints. Specifi-
cally, the approach in [12] was based on convex optimization
techniques, while [13] introduced a DRL-based strategy. The
authors of [14] focused on enhancing the minimal data rate
for users on the ground by optimizing both the UAV trajectory
and user scheduling in a UAV-aided wireless system. The
study in [15] concentrated on refining the UAV’s trajectory to
efficiently distribute data across various ground users within
the shortest possible time. Meanwhile, [16] presented a joint
optimization of the UAV’s trajectory and the transmission
power of ground terminals. This study particularly examined
both circular and linear trajectories to understand the balance
between UAV propulsion energy and the energy needed for
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Table I: Summary of Literature on RIS-UAV Integration

Reference Objective Methodology

Xiao Liu, et al.
[24]

Minimize energy consumption in UAV-enabled
wireless networks while enhancing service
quality through the integration of RIS and
employing NOMA for spectrum efficiency

Proposing a D-DQN algorithm for optimizing UAV’s trajectory, RIS
phase shifts, power allocation from UAV to mobile users, and
dynamic decoding order.

Y. Li, et al. [25] Enhance URLLC through UAVs equipped with
RIS, acting as signal repeaters from the MBS
to users

Proposing a framework for UAV deployment, MBS power allocation,
RIS phase-shift, and URLLC blocklength optimization using a deep
neural network.

A. Khalili, et al.
[26]

Minimize total transmit power while
maintaining QoS in RIS-UAV HetNets

Proposing DQN learning and SCA algorithm for optimizing RIS
phase shifts, and subcarrier allocations.

Lin, Shuying et
al. [27]

Maximize ergodic throughput in RIS-equipped
UAV-enabled wireless powered
communications with outdated CSI

Develop a two-timescale active and passive beamforming framework
leveraging deep learning to address non-linear energy harvesting and
partial reciprocity problems.

Yu, Yingfeng et
al. [28]

Maximize the minimum throughput among all
users by optimizing RIS beamforming and
UAV trajectory

Propose a successive convex approximation and an iterative
optimization algorithm to jointly optimize the UAV trajectory, RIS
passive beamforming, power control, and vehicle scheduling.

Zhang, Jiaying et
al. [29]

Enhance minimum throughput among ground
users in an RIS-assisted UAV-enabled WPCN

Develop an alternating optimization-based algorithm to jointly
optimize the UAV’s horizontal location, users’ transmit power,
transmission time allocation, and RIS passive beamforming vectors.

Our work Improving energy efficiency in RIS-UAV
integrated wireless networks by optimizing
UAV trajectory, RIS phase shifts, and BS
precoding

Formulating a stochastic optimization problem and developing a
practical dual-operation DRL-based framework to solve it. The
framework uses offline training on a central cloud server and
online decision-making on an edge server.

ground communication. The paper in [17] offered an analysis
of coverage capabilities, proposing a UAV deployment strategy
tailored for emergency situations. The work in [18] delved into
determining the altitude for UAVs to minimize transmission
power while ensuring coverage over a designated area. In
[19], the authors optimized the horizontal positioning of UAVs
while maintaining a constant altitude to reduce the number of
UAVs necessary for covering a set number of static users. The
study in [20] explored UAV cell placement optimization in a
three-dimensional framework, presenting insights into spatial
deployment strategies.

The work in [21] studied the problem of minimizing the
average weighted energy consumption of mobile devices and
the UAV in a UAV-assisted mobile edge computing (MEC)
system, considering stochastic computation tasks. The authors
employ a Lyapunov-based approach to handle task queue
dynamics and propose a joint optimization algorithm for com-
putation offloading, resource allocation, and UAV trajectory
scheduling. The study in [22] considered a UAV-enabled
wireless power transfer and relay communication network,
where a UAV harvests and relays data between ground users
and a base station while optimizing energy efficiency. The
authors proposed a joint optimization framework for trans-
mission durations, power allocation, and UAV trajectory to
minimize UAV’s power consumption. The work in [23] studied
distributed edge learning in wireless networks, focusing on
the integration of learning and communication optimization
to overcome issues such as signaling overhead, processing
delays, and unstable convergence. The study provided an
overview of dual-functional edge learning techniques, dis-
cussing key performance metrics, enabling technologies, and
their applications in beyond 5G networks, including goal-
oriented semantic communication and distributed learning-
based optimization.

A. Integration of UAV-Assisted Networks with RIS

The operation of UAVs is limited by their energy con-
straints, which limits their ability to provide continuous net-
work coverage and data transmission to all users. Integrating
RIS with UAVs is an efficient way to improve wireless
network performance and extend network coverage while
meeting the energy consumption constraint of UAVs. This
integration allows UAVs into work as dynamic reflectors rather
than direct signal transmitters, thereby boosting their energy
efficiency. Some recent works have studied the advantages of
RIS in UAV-assisted wireless systems. The authors in [30]
proposed an algorithm to jointly optimize UAV trajectory and
RIS phase shifts aiming at maximizing network downlink
capacity. The study in [31] focuses on maximizing secure
energy efficiency by optimizing UAV trajectory, RIS phase
shifts, user association, and transmit power. The works in [32],
[33] studied improving the minimum SNR of each user by
jointly optimizing the RIS phase shifts and UAV placement.
Specifically, the authors proposed a decomposition-based op-
timization method to solve the joint RIS phase shifts and UAV
placement optimization problem. The work in [24] studied
the integration of RIS in UAV-enabled wireless networks
to enhance service quality, employing NOMA for spectrum
efficiency. The authors formulated an energy consumption
minimization problem that optimizes UAV movement, RIS
phase shifts, power allocation, and dynamic decoding order.
A D-DQN algorithm is proposed to solve the optimization
problem. The study in [34] explored using a RIS-assisted UAV
for data gathering from IoT devices within a set timeframe.
The paper optimized phase shift configurations of the RIS, IoT
devices’ transmission scheduling, and the UAV’s trajectory.
A DRL approach, specifically PPO, is proposed for solving
the UAV trajectory planning, while BCD is used for RIS
configuration. In [25], the authors proposed an aerial RIS-
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assisted URLLC system using UAVs to reflect signals from
a macro base station to users. The study introduced an
optimization framework to optimize UAV deployment, MBS
power allocation, RIS phase-shift, and URLLC blocklength.
A DNN approach is used to obtain UAV placement and an
optimal resource allocation strategy.

The authors of [26] presented a framework for enhancing
HetNet performance using UAV-mounted RISs to minimize
total transmit power. The formulated optimization problem
is tackled by dividing it into subproblems related to UAV
trajectory, RIS phase shifts, and subcarrier allocations. A
dueling DQN learning approach and SCA are applied for
optimization. The work in [27] studies optimizing the ergodic
throughput in UAV-based wireless networks using RIS. The
authors addressed challenges related to outdated CSI and
non-linear energy harvesters through a two-timescale active
and passive beamforming framework. A deep learning-based
approach is proposed to maximize ergodic throughput in
the presence of outdated CSI. In [28], the authors studied
optimizing RIS-UAV systems for mobile vehicles, focusing
on achieving equitable downlink communication. The study
proposed a method to maximize minimum throughput by
jointly optimizing UAV trajectory, RIS passive beamforming,
power control, and mobile vehicle scheduling. This complex
problem is divided into subproblems solved through successive
convex approximation and an iterative optimization algorithm.
The study in [29] focused on WPCN enhanced by an RIS-
assisted UAV. The objective is to optimize the minimum
throughput among users by optimizing the UAV’s location,
user transmit power, transmission time, and RIS’s passive
beamforming. A low-complexity algorithm is developed to
solve the formulated multi-variable optimization problem. The
work in [35] focused on optimizing the UAV’s trajectory and
the RIS’s phase-shift to maximize data transfer rates while
minimizing propulsion energy using DRL.

Unlike the existing works, this paper aims to address the
limitations of mmWave communications in dense urban areas
by integrating UAVs with RIS technology to create flexible
signal reflectors. Specifically, we formulate a stochastic op-
timization problem to optimize UAV trajectories, RIS phase
shifts, and BS transmit power considering dynamics and
uncertainties in the wireless environment. The optimization
framework includes three-dimensional UAV positioning by
optimizing UAV altitude in addition to horizontal movement,
which is crucial in complex environments such as urban
areas. Furthermore, our work focuses on enhancing the energy
efficiency of the system by considering UAV hovering energy,
RIS energy consumption, and BS transmit power, aligning
with the 6G vision of green communications. Additionally,
unlike conventional DRL techniques, which often suffer from
slow convergence and poor performance in large-scale action
space environments, we propose an efficient dual-operation
DRL framework. This framework allows for a separate training
of deep neural networks on a high-performance central server
while enabling online decision-making by a DRL agent at the
BS. A periodic update mechanism between the execution and
training units is considered to ensure continuous improvement
in decision-making performance over time. Table I highlights

the main differences of this paper compared to the most related
works.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Spatial Deployment of UAV-RIS System

We examine a scenario where a BS serves a set K of
dynamic users via the downlink at the mmWave frequencies,
as shown in Fig 1. The BS is equipped with M antennas,
while all users have a single antenna. A UAV is considered
within the BS coverage region, which carries an array of
RIS elements to assist communication between the BS and
users. We focus on the scenario with no direct link between
the BS and users. In Cartesian coordinates, the location of
the BS is denoted as Lb = (xb, yb, 0). The location of
each user varies over time and is denoted at time slot t as
Lk(t) = (xk(t), yk(t), 0). The altitude of the UAV can be
adjusted such that hmin ≤ h(t) ≤ hmax where hmin and hmax

are the minimum and maximum allowed height, respectively.
Thus, the UAV coordinates at time slot t can be represented
as Lu(t) = (xu(t), yu(t), h(t)). The UAV’s movement is
modeled as discrete steps over a grid in the x-y plane as shown
in Fig. 1. At each time slot, the UAV can move to an adjacent
position—right, left, up, or down, or remain stationary. The
list of used notations in this paper is presented in Table II.

Table II: Summary of Main Notations

Notation Definition

K The set of dynamic users.
N Number of RIS reflecting elements.
M Number of BS antenna elements.
Lk(t) Coordinates of user k.
Lu(t) UAV coordinates.
G(t) Channel between the BS and the RIS elements.
gk(t) Channel between the RIS and user k.
Φ(t) RIS coefficient matrix.
W BS precoding matrix.
rk(t) Data rate of the user k at time slot t.
B System bandwidth.
Phov UAV hovering power consumption.
PRIS RIS power consumption .
PUAV Total power consumption of the UAV.
η(t) Energy efficiency of the system.
R(t) The network reward function.
β(t) Time variance adjustable parameter.
A,S Action and state spaces.
Q(a, s) The state-action Q-function.
π DRL decision policy.

B. Communication Model

Let N be the number of the reflecting elements carried by
the UAV, and N = {1, 2, . . . , N} define the set of all RIS
elements. The phase shift of each element n ∈ N is defined
as

ϕn =
ιπ

2c−1
, ι ∈ {0, 1, . . . , 2c − 1}, ∀n ∈ N , (1)

where c is the number of the re-programmable meta-material
bits, and the amplitude coefficient is given by κn ∈ [0, 1].
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Figure 1: Considered system model.

Accordingly, the reflection coefficient of the RIS carried by
the UAV is given by

Φ = diag
(
κ1e

jϕ1 , · · · , κNejϕN
)
. (2)

The BS precodes the transmit signal with a precoding vector
x ∈ CM×1 as follows

x =

K∑
k=1

wksk, (3)

where wk ∈ CM×1 is the the precoding vector of user k, and
sk is the kth user information symbol.

Let G ∈ CN×M define the channel model between the BS
and the RIS and gk ∈ C1×N represent the reflected channel
from the RIS towards the user k. At time slot t, the channel
gain between the BS and the RIS carried by the UAV is
modeled as

G(t) =
√
g0d

−α
b,u (t)

[
1, e−j 2πξ

λ ϑu(t), · · · , e−j
2(M−1)πξ

λ ϑu(t)
]T
,

(4)
where g0 represents the channel gain at a distance of 1 m,

db,u(t) =

√
|(xtu, ytu)− (xb, yb)|2 + h2 is the distance be-

tween the BS and the UAV and ϑu(t) =
xu(t)−xb

db,u(t)
represents

the arrival angle of the signal from the BS to the RIS at
time slot t, ξ represents the antenna separation, and finally
λ represents the carrier wavelength.

The reflected channel gain from the RIS towards user k is
given by

gk(t) =
√
g0d

−α
u,k(t)

[
1, e−j 2πξ

λ ϑk(t), · · · , e−j
2(N−1)πξ

λ ϑk(t)
]T
.

(5)

Accordingly, the received signal at the user k at time slot t
is given as follows:

yk(t) = [gkΦG]xk(t) + uk, (6)

where uk is an additive white Gaussian noise with variance
σ2. Thus, the signal-to-interference-and-noise-ratio (SINR) at
the user k is defined as

SINRk(W ,Φ,L) =
|gkΦGwk|2∑

i ̸=k,i∈K |gkΦGwi|2 + σ2
, (7)

where W ∈ CM×K is the BS precoding matrix. To this end,
the total obtained data rate by the user k at time slot t can be
defined as

rk(t) = B log2 (1 + SINRk(t)) , (8)

where B represents the system bandwidth.

C. Power Consumption Model of the UAV

The power consumption of the UAV is a composite of the
power consumed in hovering Phov, the circuit power consump-
tion Pc, and the power consumed by the RIS hardware PRIS.
In our model, the RIS is integrated with the UAV; thus, the
power consumption of the RIS is a part of the overall power
consumption of the UAV.

The UAV hovering power is defined by [36]

Phov =
ξ
√
ξ

ζ
√

0.5πqr2ρ
, (9)

where ξ represents the thrust, which is contingent on the
UAV’s mass. The term ζ indicates the power efficiency of the
UAV, and q refers to the number of rotors equipped on each
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UAV. The parameter r denotes the diameter of each rotor,
and lastly, ρ represents the air density (in kg/m

3). The RIS
is a passive component, eliminating the need for additional
transmission power. Therefore, the power consumption of the
RIS can be expressed as [37]

PRIS = N [Pd + Ps(c)] , (10)

where Pd represents the power required by a diode in forward-
biased mode, and Ps(c) corresponds to the power consumption
of each phase shifter with c-bit resolution. Note that both
phase resolution and the number of RIS elements affect the
RIS power consumption.

Accordingly, the total UAV power consumption can be
expressed as

Puav = Phov + PRIS + Pc. (11)

D. Problem Formulation

Our goal is to optimize the RIS phase shifts, the 3-D
trajectory of the UAV, and the transmission power at the
BS to maximize the energy efficiency of the network. This
optimization takes into account the QoS requirements of each
user. We define the system’s energy efficiency in terms of
bit-per-Joule, calculated as the ratio of the network’s cumu-
lative data rate to its total power usage. The total power
consumption includes the sum of the power used by the BS for
transmission and the power consumed by the UAV, denoted
as Ptot =

∑
k∈K ||wk||2 + Puav. Consequently, the energy

efficiency at any specific time t can be articulated as

η(t) =

∑
k∈KB log2 (1 + SINRk(t))∑

k∈K ||wk||2 + Puav
. (12)

In the optimization problem, we take into account the
minimum data rate requirement for each user as a probability
constraint. Consequently, for each time slot t, we impose the
QoS constraint for each user k as

Pr[rk(t) ≥ rmin
k ] ≥ 1− ε,∀k ∈ K, (13)

where rmin
k is the minimum required data rate by user k and

ε defines the threshold for the maximum allowable violation
probability. In particular, the probability constraint (chance
constraint) can accommodate the inherent uncertainties and
dynamic variations in wireless channels. This approach allows
for a more practical and robust optimization and ensures
that the system’s performance remains stable even under
fluctuating network conditions.

Accordingly, we formulate the following optimization prob-
lem:

maximize
x,y,h,w,Φ

∑
t∈T

1

T
η(t) (14a)

subject to Pr{rk(t) ≥ rmin
k } ≥ 1− ε, ∀k ∈ K, (14b)∑

k∈K

||wk||2 ≤ Pmax, (14c)

Φ = diag(b1ejϕ1 , . . . , bNe
jϕN ), (14d)

ϕn =
κπ

2c−1
, κ ∈ {0, 1, . . . , 2c − 1}, (14e)

bn ∈ [0, 1], ∀n ∈ N , (14f)
hmin ≤ h(t) ≤ hmax, ∀t ∈ T , (14g)
xmin ≤ x(t) ≤ xmax, (14h)
ymin ≤ y(t) ≤ ymax, (14i)

Optimization problem (14) aims to enhance the system’s
energy efficiency by optimizing UAV positioning, BS precod-
ing, and RIS reflection coefficients. The objective function is
formulated as the average energy efficiency over time slots to
achieve stable and practical long-term energy efficiency. This
mitigates short-term fluctuations and ensures consistent perfor-
mance in dynamic environments. Constraint (14b) ensures that
the probability of each user k achieving at least a minimum
data rate rmin

k in every time slot is above a certain threshold.
Constraint (14c) ensures that the total power of the precoding
matrix does not exceed the maximum power Pmax. Constraint
(14d) defines the RIS reflection coefficients in terms of phase
shifts ϕn and amplitudes bn. Constraint (14e) Quantizes the
phase shifts, and constraint (14f) restricts the amplitudes to
be within [0, 1]. Constraints (14g), (14h), and (14i) define the
permissible ranges for UAV’s altitude h(t), and its x and y
coordinates x(t) and y(t) respectively.

This optimization problem is inherently complex due to
the high dimensionality of the decision variables and the
presence of linear, nonlinear, and non-convex constraints.
Furthermore, the problem involves a mix of discrete and
continuous variables, which typically complicates the solution
space. Given these factors, this problem falls into the category
of NP-hard problems. Solving such a problem typically re-
quires computational methods that grow exponentially with the
network size, making it intractable for large-scale instances.
Therefore, in the subsequent section, we introduce a DRL-
based algorithm designed to provide online solutions for (14).
In particular, the DRL approach is well-suited for dealing with
high-dimensional, dynamic environments as it can adapt in
real-time to changes in network conditions.

IV. PROPOSED DRL-BASED SOLUTION APPROACH

In this section, we leverage DRL techniques to develop an
algorithm to solve problem (14) that can adapt seamlessly to
the ever-changing network conditions caused by mobile users.
First, we model problem (14) as a MDP; then, we propose a
learning framework to solve it. In the following subsections,
we model the formulated problem (14) as MDP by defining the
agent, states, actions, and reward function. Then, we introduce
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Figure 2: Block diagram of the developed dual-operation DRL-based framework.

a learning framework based on the policy gradient method
within an Actor-Critic architecture.

A. Markov Decision Process Model

The optimization problem presented in (14) is modeled as
a MDP. The MDP framework is comprised of states and
potential actions, symbolized by S and A, respectively. S
represents network conditions, encompassing user channel
properties. At any discrete instance t, the agent assesses the
present network condition, expressed as s(t) ∈ S, and chooses
actions according to the strategy π(t), which correlates S with
A. In general, the architecture of this model includes four
primary elements: the decision-making agents, the states they
encounter, the range of actions accessible to them, and the
rewards linked to these actions.

Agent: The agent comprises two key components: the actor
and the critic networks. This agent is responsible for monitor-
ing the current network states and initiating actions based on
the policies it has been trained on. Then, the agent receives
feedback in the form of rewards from the environment, which
then transits to the subsequent network state.

State Space: The state space is considered a collection of
users’ states at each time slot. Consequently, the agent’s state
at a given time slot t is encapsulated by s(t) = {gk(t),G(t)}.
Here, the first element denotes the channel information linking
the BS and the UAV, while the second element reflects the
channel gain experienced between the RIS and the users.

Action Space: The action space encompasses the decision
variables of the optimization problem (14), defined as A =
{x,y,h,w,Φ}. Specifically, the first two components, x and
y, represent the UAV’s trajectory coordinates. The third entry,
h, denotes the UAV’s altitude. The last two elements, w and

Φ, correspond to the BS’s precoding matrix and the RIS’s
phase shift adjustments, respectively.

Reward: The reward function acts as an indicator that
evaluates the impact of an agent’s actions in a specific state.
It plays a pivotal role during training, where the training
engine allocates a corresponding reward upon the agent’s
action decision. This reward informs the refinement of the
policy π, steering it towards an optimal state characterized
by higher rewards. In alignment with the goals set in the
optimization problem (14), the reward function is designed to
maximize the network’s energy efficiency while also ensuring
user-specific QoS requirements are met. The reward function
is formulated as follows:

R(t) = η(t) + β(t)
∑
k∈K

[
rk(t)− rmin

k

]
, (15)

where the parameter β(t) is dynamically adjustable according
to the system’s requirements over time, ensuring the minimum
data rate requirements over different time slots. The agent,
upon receiving the network state s(t), makes policy-driven
decisions π(s, a). Subsequently, the reward R(t) is computed
as per (15), based on the chosen action and the updated net-
work state. This feedback mechanism facilitates the continual
learning and evolution of the policy.

B. Proposed DRL-based Framework

In the proposed framework, a hybrid computational model
is implemented, including offline training and online execution
components, as depicted in Fig. 2. The offline component
involves training the algorithm at a centralized cloud server,
leveraging its substantial computational resources and data
storage capabilities. The trained model is deployed for online
execution at a network edge server. This enables online
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decision-making based on the current network conditions. The
proposed algorithm performs periodic training to adapt to
changes in the dynamic network parameters. This approach
allows for the periodic updating of the neural network model,
including adjustments to its input and output dimensions, if
necessary, to reflect changes in the network environment such
as changes in the number of users. These updates occur at
the end of training epochs, which span several time slots,
rather than at each individual time slot. This provides a balance
between the stability of the model and its ability to adapt to
longer-term trends in network dynamics.

A learning algorithm based on the policy gradient technique
within the actor-critic architecture is considered for training
processes. The actor-network is responsible for choosing ac-
tions based on the policy π that it has learned. Concurrently,
the critic network evaluates the efficacy of these actions by
the following state-action

Qπ (a, s) = Eπ

[ ∞∑
τ=0

γτR(t+ τ + 1) | st = s,at = a

]
,

(16)
where γ, with values in the interval (0, 1], serves as the
discount factor that diminishes the value of future rewards. The
primary aim is to refine the state-action function in a manner
that leads to the optimal policy, π∗. This process involves
iterative adjustments of the weighting parameters in both the
actor and critic networks toward convergence.

In the actor part of the framework, the initial policy setup
is based on the network parameter vector θ, defined as:

π(s,a;θ) = Pr(a|s,θ). (17)

To steer the optimization process, we use the following objec-
tive function:

J(π;θ) =

∫
S

∫
A

π(s,a;θ)Qπ(s,a)dads. (18)

Subsequently, the parameters of the actor network, θ, are
iteratively updated in accordance with:

θ(t+ 1) = θ(t) + ρa∇θJ(π;θ), (19)

where ρa denotes the learning rate of the actor network, and
∇θJ(π;θ) represents the gradient of the objective function
J(π;θ) relative to θ.

Within the critic part, a function estimator technique is em-
polyed to approximate the state-action function Qπ(s,a). The
approximation is achieved using a linear function estimator,
expressed as:

V (s,a) = ξTψ(s,a) =
∑
i∈S

ξiψi(s,a), (20)

here, ψ = [ψ1, . . . , ψS ]
T represents the basis function, and

ξ = (ξ1, . . . , ξS)
T is the corresponding weight vector. To

identify the error between the actual and the estimated values,
we apply the Temporal-Difference approach:

δ(t) = R(t+ 1) + γV
(
st+1,at+1

)
− V

(
st,at

)
. (21)

The vector ξ(s,a) is updated using gradient descent as
follows:

ξ(st+1,at+1) = ξ(st,at) + ρcδ(t)∇ξV (s,a)

= ξ(st,at) + ρcδ(t)ψ(s,a), (22)

where ρc is the critic learning rate. The value function detailed
in (20) undergoes updates in line with the changes in ξ(s,a),
as specified in (22).

To enhance the stability of the training process, we in-
corporate experience replay technology within the training
process. This involves maintaining a replay buffer with a ca-
pacity of D. Periodically, the training unit performs minibatch
sampling of size d from the experience buffer, which serves
as input for the actor-critic network training process. This
approach enhances the learning process by re-utilizing past
experiences. The execution agent, located at the edge server,
uses the trained model to make instantaneous decisions on the
optimal UAV trajectories, RIS phase shifts, and BS transmit
power. The agent obtains the reward and relays it to the
cloud server with the network observations. This continuous
feedback loop ensures that the model is constantly evolving
and adapting. Furthermore, the proposed algorithm performs
periodic training to adapt to changes in the number of users,
as well as other dynamic network parameters. This approach
allows for the periodic updating of the neural network model,
including adjustments to its input and output dimensions,
if necessary, to reflect changes in the network environment.
These updates occur at the end of training epochs, which
span several time slots, rather than at each individual time
slot. This provides a balance between the stability of the
model and its ability to adapt to longer-term trends in network
dynamics. Furthermore, in the proposed approach, we trained
initial models on a variety of learning tasks and environments
to enhance the adaptability of the models to new learning tasks
and environments with minimal re-training samples.

C. Computation Complexity Analysis

Let’s define L as the total number of layers of the DNN
used in our model, Zo as the input layer’s dimension, and Zl

as the count of neurons within the lth layer. The computational
complexity for an agent in each step of the process is then
represented by O(ZoZl +

∑L−1
l=1 ZlZl+1). Considering that

Ωepi represents the total number of episodes, with each
episode comprising T time steps, the overall computational
demand of the DNN is O

(
ΩepiT (ZoZl +

∑L−1
l=1 ZlZl+1)

)
.

Note that the DNN training is performed offline on a cloud
server due to the high complexity of the training process.

The complexity entailed in the decision-making process,
particularly when selecting an action a from the set A,
correlates with the size of the state and action spaces. Thus,
the computational complexity of the execution process is
quantified as O(|S|2×|A|). Consequently, the entire computa-
tional load of the algorithm is calculated as O

(
ΩepiT (ZoZl+∑L−1

l=1 ZlZl+1) + |S|2 × |A|
)

.
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Figure 3: Obtained reward over time steps during training.

V. PERFORMANCE EVALUATION

A. Simulation Settings

This section presents a thorough simulation analysis to
assess the effectiveness of the proposed algorithm in a UAV-
assisted wireless environment. The base station is equipped
with a 6× 6 uniform planar array, consisting of 36 RF chains
and M = 36 antennas. The RIS is considered with a matrix
of reflection elements, totaling N = Nrow × Ncol, where
Ncol = 20. The number of rows, Nrow, is varied to explore
different performance metrics under varying configurations.
Noise power across the network is uniformly maintained at
σ2
k,b = −90dBm for all users k in set K. The simulation

environment also considers the dynamic nature of the network,
with users entering the coverage area following a Poisson
distribution. The arrival rate, denoted as λ(t), varies over
time slots, reflecting the changing characteristics of traffic and
network demand.

We employ a deep neural network architecture featuring
three hidden layers. These layers are configured with 600,
300, and 250 neurons, respectively. The neuron count in the
input layer and output layer is aligned with the count of
network states and actions, respectively. A discount factor of
0.95 is employed, and the learning rate is tuned to 0.001.
The experience replay buffer is configured with a capacity
of 2000 transitions. During training, the agent samples mini-
batches of size 32. The simulations of the proposed algorithm
are conducted on a PC equipped with an Intel Core i5-2410M
CPU.

We thoroughly analyze the performance of the proposed
approach under various network settings and evaluate it using
multiple performance indicators. To further validate the effec-
tiveness of our algorithm, we compare its performance with
the following state-of-the-art approaches:

1) Fixed-UAV [38]: In this approach, a UAV equipped
with a RIS is hovering at a fixed location to reflect
signals from the BS to users. The RIS phase shifts are
optimized to direct signals toward users experiencing
blocked direct links. This baseline is chosen to highlight
the advantages of jointly optimizing both UAV trajectory
and RIS phase shifts, resulting in more flexible and
adaptable signal reflection.

UAV-RIS Fixed-UAV Static-Shifter Random
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Figure 4: Jain fairness of data rate among users.

2) Fixed-RIS [39]: This method involves installing a fixed
RIS on a building to reflect signals toward users with
link blockages. This approach has been widely consid-
ered in the literature; for instance, the work in [39].
Comparing our approach with this baseline demonstrates
the benefits of deploying RIS on a UAV, offering more
flexible and dynamic reflections compared to static in-
stallations.

3) Static-Phase-Shift: In this scenario, all phase shifters
are set to the same reflection angles, directing the signal
in a single direction at a time. This comparison is
motivated by the need to highlight the advantages of in-
dividually optimizing RIS reflection elements. Although
individually optimizing each element complicates the
optimization problem, it significantly enhances network
performance by allowing simultaneous signal reflection
to multiple users in different locations.

4) Random: Here, the RIS phase shifts are set randomly.
This baseline illustrates the benefits of optimizing RIS
reflection angles over simply setting RIS phase shifts
randomly.

B. Results Discussion

We analyze the convergence behavior of the proposed
algorithm in Fig. 3, which depicts the reward evolution over
time for two different user densities: K = 10 and K = 20.
The results demonstrate an improvement in reward values
over time as the algorithm iteratively refines its decision-
making process to adapt to the dynamic network changes.
Furthermore, we can observe that the algorithm exhibits stable
increasing behavior. The results also show the impact of user
density on convergence speed. Specifically, for the scenario
with K = 10 users, the algorithm converges faster and reaches
a stable state after approximately 7, 500 time steps. In contrast,
for the scenario with K = 20 users, the convergence occurs at
a slower rate and requires approximately 10, 000 time steps to
reach stability. This increase in convergence time with higher
user density is attributed to the larger action space, which
requires the learning agent to process a greater variety of
network conditions before arriving at an optimal strategy.

Figure 4 presents the fairness index among users obtained
using four different approaches: the proposed UAV-RIS ap-
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Figure 5: CDF of per-user data rate obtained over several
time slots.

proach, the Fixed-UAV approach, the Static-Shift approach,
and the Random scenario. The fairness index values are cal-
culated based on Jain’s Fairness Index [40], which is defined
as:

f(r1, ..., rK) =

( ∑
k∈K

rk

)2

K
∑
k∈K

r2k
. (23)

As illustrated in Figure 4, the proposed UAV-RIS approach
achieves the highest fairness index among all the evaluated
methods. This is due to the capability of the proposed approach
in optimizing the position of the UAV and adjusting the
RIS phase shifts simultaneously to enhance energy efficiency
while ensuring that all users achieve at least the minimum
required data rate (constraint 14b), preventing severe perfor-
mance degradation for any user. Specifically, the algorithm
optimizes the UAV location and adjusts the RIS phase shifts
at each time slot to steer reflected signals toward users with
poor or blocked channels. This ensures that users experienc-
ing unfavorable channel conditions receive adequate reflected
signal quality to mitigate potential data rate drops and hence
improving the fairness index. The Fixed-UAV and Static-Shift
approaches exhibit moderate fairness index values. The Fixed-
UAV approach involves a UAV equipped with an RIS fixed
in position, optimizing the phase shifts to improve signal
reflection. However, the lack of UAV mobility limits its ability
to address channel blockages dynamically. On the other hand,
the Static-Shift approach uses an RIS with static phase shift
settings, which can only be optimized for a limited set of
conditions. Finally, the results show that the Random scenario
shows the worst performance. In this approach, the phase shifts
of the RIS are set randomly without considering the status of
channel blockages or user locations. This lack of optimization
results in a lower fairness index as the randomness in phase
shift values fails to effectively mitigate channel blockages.

Figure 5 presents the CDF of data rates experienced by indi-
vidual users over multiple time slots with various network size
configurations, with the y-axis in log-scale for better clarity.
The results show that the performance of the proposed UAV-
RIS methodology outperforms both the Fixed-RIS and Fixed-
UAV approaches. This is because of the joint optimization

UAV-RIS Fixed-UAV Fixed-RIS Random
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Figure 6: Spectral efficiency(bits/second/Hz).

employed by the proposed method, which includes optimizing
the phase shifts of the RIS elements and the UAV positions, the
BS transmit power. This joint optimization approach enables
more effective and flexible signal reflection towards users in
areas with obstructed direct links. As illustrated in Figure 5,
the proposed approach achieves a data rate higher than the
Fixed-RIS method. Additionally, the obtained results show that
the Fixed-UAV approach achieves a data rate better than the
Fixed-RIS but still falls short of the proposed algorithm.

We analyze the spectral efficiency of the proposed UAV-RIS
approach in Figure 6 and compare its performance with Fixed-
UAV, Fixed-RIS, and Random methods. The results demon-
strate that the proposed UAV-RIS algorithm outperforms the
other baseline methods. The UAV-RIS algorithm achieves an
average spectral efficiency of approximately 6 bits/second/Hz.
The Fixed-UAV method shows lower performance with an av-
erage spectral efficiency of approximately 5.4 bits/second/Hz
due to the lack of adaptability in response to changing network
states as the UAV is located at a fixed position. The Fixed-
RIS method, which installs the RIS on a building instead of a
UAV, demonstrates an average spectral efficiency of about 5
bits/second/Hz. In particular, the fixed installation of the RIS
limits its ability to adapt to changing network conditions. The
Random method, which employs random configurations for
both UAV positioning and RIS phase shifts, exhibits the lowest
average spectral efficiency of around 3.7 bits/second/Hz. This
approach lacks any optimization strategy, resulting in ineffi-
cient use of the spectrum.

Figure 7 presents an analysis of how energy efficiency
correlates with the number of RIS elements and compares
the performance of the proposed approach with the Fixed-
UAV and Static-RIS methods. Initially, as the number of
RIS elements increases, there is a noticeable improvement in
energy efficiency. This improvement is primarily because more
elements redirect more signals toward the users, thus boosting
the data rate, which is a dominant contributor to energy
efficiency. However, as the number of elements continues to
rise, we reach a point where energy efficiency peaks and then
starts to decline. This is because the data rate achieves a
saturation point beyond which no further gains are realized
despite adding more reflection elements. At the same time,
the RIS power consumption continues to increase due to
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increasing the number of reflection elements. Consequently,
this leads to a decrease in energy efficiency as the number
of RIS elements increases beyond the optimal point. As
shown in Figure 7, the proposed approach provides superior
energy efficiency, peaking at an optimal point before gradually
declining. The Fixed-UAV approach follows a similar trend
but achieves slightly lower efficiency, as it lacks the dynamic
flexibility of the proposed method. The Static-RIS method, on
the other hand, shows the worst performance, particularly as
the number of elements increases, because it lacks the ability
to dynamically adapt to changing conditions.

The reliability of the proposed framework is analyzed in
Fig. 8. We define network reliability as the proportion of users
who achieve a data rate surpassing the minimum threshold.
This metric effectively measures the algorithm’s capability to
direct reflected signals to users with non-LoS connections.
As indicated in Fig. 8, the proposed algorithm demonstrates
superior reliability compared to other baseline methods. This
is because the proposed algorithm focuses on ensuring the
minimum data rate of all users by optimizing signal reflection
toward users experiencing lower data rates. Specifically, the
results of Fig. 8 show that the proposed approach maintains
a reliability level of approximately 97% when the minimum
required data rate (rmin) is set to 4 Mbps. At a higher threshold
of 8 Mbps for rmin, the proposed method still maintains an
acceptable reliability of about 80%. In contrast, the Fixed-UAV

and Random strategies exhibit lower reliability, approximately
64% and 55%, respectively.

VI. CONCLUSION

This paper has proposed a reliable communication system
where a UAV is equipped with RIS to provide LoS links
to users with poor wireless link connections. Specifically, an
optimization problem has been provided to obtain the optimal
UAV trajectory, RIS phase shifts and BS transmit power that
maximizes the system energy efficiency while considering
the QoS requirements of each user. We have proposed an
efficient dual-operation DRL-based algorithm that can observe
network states and make online decisions while performing
periodic offline training over time. The provided simulation
results demonstrated that the proposed approach ensures the
required QoS for each user while improving the energy effi-
ciency of the network. The results highlighted the advantages
of integrating UAVs with RISs to enhance connectivity in
densely built urban environments, meeting the requirements
of future wireless networks in terms of higher data rates,
reliable connectivity, and energy efficiency. Future works can
extend this paper to scenarios that involve multiple UAVs
and employ the multi-agent DRL approach to manage the
increased complexity and coordination required. Additionally,
integrating energy harvesting technologies can be explored to
enhance the sustainability and operationality of the UAV-RIS
systems.
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