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Abstract
Despite the similar structures of human faces, existing face alignment methods cannot learn unified knowledge from multiple
datasets with different landmark annotations. The limited training samples in a single dataset commonly result in fragile
robustness in this field. To mitigate knowledge discrepancies among different datasets and train a task-agnostic unified face
alignment (TUFA) framework, this paper presents a strategy to unify knowledge from multiple datasets. Specifically, we
calculate a mean face shape for each dataset. To explicitly align these mean shapes on an interpretable plane based on their
semantics, each shape is then incorporated with a group of semantic alignment embeddings. The 2D coordinates of these
aligned shapes can be viewed as the anchors of the plane. By encoding them into structure prompts and further regressing the
corresponding facial landmarks using image features, a mapping from the plane to the target faces is finally established, which
unifies the learning target of different datasets. Consequently, multiple datasets can be utilized to boost the generalization
ability of the model. The successful mitigation of discrepancies also enhances the efficiency of knowledge transferring to a
novel dataset, significantly boosts the performance of few-shot face alignment. Additionally, the interpretable plane endows
TUFA with a task-agnostic characteristic, enabling it to locate landmarks unseen during training in a zero-shot manner.
Extensive experiments are carried on seven benchmarks and the results demonstrate an impressive improvement in face
alignment brought by knowledge discrepancies mitigation. The code is available at https://github.com/Jiahao-UTS/TUFA

Keywords Face alignment ·Knowledge discrepancy mitigation · Semantic alignment · Structure prompt · Few-shot learning ·
Zero-shot-learning
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1 Introduction

Facial landmark serves as an important intermediate fea-
ture in many downstream tasks, such as face recognition
(Xu et al., 2021), facial emotion recognition (Otberdout,
Daoudi, Kacem, Ballihi, and Berretti, 2022; Tanfous, Drira,
and Amor, 2020) and facial image synthesis (H. Tang, Shao,
Torr, and Sebe, 2023). Despite significant progress in recent
years, few existing face alignment methods focus on mitigat-
ing the knowledge discrepancies among datasets, resulting
in very limited usage of dataset knowledge. Consequently,
despite the similar structure of human faces, most existing
methods can be only trained on a single dataset. The limited
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training samples lead to unsatisfied generalization ability.
When applying a model to a group of newly defined land-
marks, the entire model still needs to be re-trained. As a
result, these knowledge discrepancies lead to performance
degradation and high costs for downstream tasks.

As shown in Fig. 1, similar to other vision tasks (Pour-
panah et al., 2023; G. Huang, Laradji, Vázquez, Lacoste-
Julien, andRodríguez, 2023), there are three types ofmethods
that can train a face alignment model: many-shot, few-shot,
and zero-shot learning. Many-shot learning is a widely used
method in face alignment. It does not consider sharing knowl-
edge among multiple datasets, directly training a model on
a dataset with consistent landmark annotations. Hence, the
training can be very costly and time-consuming. To relief the
reliance on the number of training samples, few-shot face
alignment has been explored in recent works (Browatzki &
Wallraven, 2020; He, Bharaj, Ferman, Rhodin, and Garrido,
2023). Similar to few-shot learning in other tasks(G. Huang,
Laradji, Vázquez, Lacoste-Julien, and Rodríguez, 2023;
Jiang et al., 2023), few-shot face alignment transfers the
knowledge learned from a large-scale base dataset to the
target landmarks using very few samples. Explicitly miti-
gating the knowledge discrepancies between the base and
target datasets can significantly increase the efficiency of
knowledge transferring, while this problem is ignored by
existing methods. Further mitigating these discrepancies can
extend the learned knowledge from predefined landmarks to
the overall face structure, making the model task-agnostic.
Consequently, using semantic information as a prompt can
locate landmarks that were unseen during training in a zero-
shot manner. Unfortunately, no work has been done on this
topic yet.

In this paper, we propose a novel strategy to mitigate the
knowledge discrepancies among multiple datasets for task-
agnostic unified face alignment (TUFA). Instead of treating
each facial landmark as an independent regression target, our
strategy uses labeled facial landmarks to learn a mapping
from an interpretable plane to the target faces. This approach
unifies the learning objective and provides a foundation for
mitigating knowledge discrepancies. Specifically, we calcu-
late a mean face shape for each dataset. To align the mean
shapes frommultiple datasets on the same plane according to
their semantics and eliminates their semantic ambiguity, we
incorporate each mean shape with a group of semantic align-
ment embeddings. They transform these mean shapes during
training and finally find optimal positions on the plane to
represents their semantics. Consequently, the semantic ambi-
guity can be eliminated. Each point from these aligned shapes
from different datasets can be view a anchor on the plane. As
a result, the learning targets of datasets are unified and their
knowledge discrepancy are largely mitigated. By encoding
them into structure prompts and regressing the positions of

Fig. 1 A schematic diagram of many-shot, few-shot, and zero-shot
learning in face alignment. (a) many-shot face alignment directly trains
the model on a large-scale dataset labeled with target landmarks. (b)
few-shot face alignment pre-trains the model on a base dataset, and
then further transfer the model using a few samples labeled with target
landmarks. (c) zero-shot face alignment also pre-trains the model on a
base dataset, while the model directly locates the target landmarks via
semantic information without training

their corresponding landmarks, the mapping to target face
can be established using multiple datasets.

Moreover, previous face-alignment methods based on
heatmap regression and coordinate regression treat each land-
mark regression as a separate task, resulting in task-specific
knowledge. Although human faces share a similar structure,
it remains challenging to extend this knowledge to unseen
facial landmarks. Nevertheless, by mitigating the knowledge
discrepancies using the proposed strategy, the learned knowl-
edge is not only limited to the labeled landmarks in training
but also includes task-agnostic knowledge: the entire face
structure. The learned task-agnostic knowledge can be effi-
ciently transferred to a group of newly defined landmarks
using only a few labeled samples, which significantly boosts
the performance of few-shot face alignment. Moreover, by
explicitly representing the face on an interpretable plane and
encoding its coordinates into structure prompts, this knowl-
edge can also be used to localize unseen facial landmarks
without fine-tuning. Therefore, TUFA also achieves zero-
shot face alignment for the first time, predicting not only
the pre-defined landmarks, but also those landmarks unseen
during training, as shown in Fig. 2.

We train TUFA using four widely used datasets and carry
out four within-dataset validations and three cross-dataset
validations in a many-shot manner. TUFA achieves state-of-
the-art performance on these seven validations using only
one unified model. This pre-trained model demonstrates
strong generalization ability, making it particularly useful for
further few-shot face alignment. Thanks to the mitigated dis-
crepancies, the TUFA trained with only 10 labeled samples
can even outperform the state-of-the-art few-shot face align-
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Fig. 2 Teaser of TUFA. TUFA employs the aligned face shapes as
anchors tomapping an interpretable plane to target faces. Consequently,
it maximizes the knowledge use from multiple datasets to improve the
generalization ability. By explicitly representing face structure using
this plane, TUFA is able to locate both pre-defined landmarks and those
landmarks unseen during training in inference phase

ment methods trained on the entire training set. Moreover,
due to its task-agnostic property, TUFA achieves zero-shot
face alignment for the first time. The quantitative results show
that TUFA even outperforms some fully supervised methods
in a zero-shot manner.

Overall, the main contributions of this paper can be sum-
marized as follows:

• This paper presents a novel strategy to mitigate knowl-
edgediscrepancies amongmultiple face alignment datasets
by unifying their learning objectives and eliminating
their semantic ambiguity. Based on this strategy, a task-
agnostic unified face alignment model with stronger
generalization ability can be trained across multiple
datasets.

• To efficiently transfer the knowledge learned across mul-
tiple datasets to newly defined landmarks, we propose a
few-shot and zero-shot face alignment strategy using the
structural information contained in the proposed struc-
ture prompts and the learned interpretable plane.

• Extensive experiments and ablation studies are carried
out onwidely used benchmarks. TUFA achieves state-of-
the-art performance in the setting of many-shot, few-shot
and zero-shot face alignment, which demonstrates the

strong generalization ability and transferable capability
of TUFA.

2 RelatedWorks

It has been noticed that the performance of many-shot face
alignment has improved significantly in recent years. How-
ever, the high cost of dataset annotation has shifted the
focus of recent works towards few-shot & zero-shot face
alignment. Moreover, the existing models still generalizes
poorly in a cross-dataset validation setting, especially for
those landmarks have a big gap compared to the seen land-
marks.Multi-dataset learning in face alignment, which is
a potential strategy to address this problem, has also gained a
lot of attention in recent years. Therefore, we present a con-
cise review focusing on these three topics, given that they
represent the primary challenges tackled in this paper.

2.1 Many-shot Face Alignment

As a very pivotal technology in computer vision, many-shot
face alignment has undergone over two decades of intensive
research and exploration. At the very early stage, constrained
local model (CLM) (Cristinacce & Cootes, 2006), active
shape model (ASM) (Cootes, Taylor, Cooper, and Graham,
1995), active appearance model (AAM) (Cootes, Edwards,
and Taylor, 2001; Asthana, Marks, Jones, Tieu, and Rohith,
2011; Liu, 2009) dominated this task. Their core idea is
to align a statistical mean shape to a new face and that is
why this task is named as face alignment rather than facial
landmark detection. To overcome the fragile robustness and
generalization, cascaded shape regression (CSR) methods
(Burgos-Artizzu, Perona, and Dollár, 2013; Xiong & De la
Torre, 2013; Z.-H. Feng, Kittler, Christmas, Huber, and Wu,
2017; S. Zhu, Li, Loy, and Tang, 2015; Z. Feng, Kittler,
Christmas, Huber, and Wu, 2017) are proposed to achieve
face alignment with multi-steps. Lately, the development of
CNN and vision transformer (ViT) (Dosovitskiy et al., 2021)
significantly boost the performanceof face alignment.Recent
many-shot face alignment methods can be roughly divided
into two categories: heatmap regression methods and coor-
dinate regression methods. They set each landmark as an
independent regression target and their learned models are
task-specific.

Coordinate regression methods directly project image
features into 2D landmark coordinates with fully connected
(FC) layers. To extract more fine-grained image feature, cas-
caded networks (Lv, Shao, Xing, Cheng, and Zhou, 2017;
Kowalski, Naruniec, and Trzcinski, 2017; H. Liu, Lu, Guo,
Wu, and Zhou, 2020), recurrent networks (Trigeorgis, Snape,
Nicolaou, Antonakos, and Zafeiriou, 2016; S. Xiao et al.,
2016) and face local patches (H. Liu, Lu,Guo,Wu, andZhou,
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2020; C. Zhu, Wan, Xie, Li, and Gu, 2022) are widely used.
The regular shape of human faces serves as an important
prompt in face alignment, and recent coordinate regression
methods further improve the performance by retaining the
prompt in networks. Lin et al. (Lin et al., 2021) represent
face structure with an adjacent matrix and Li et al. (Li et
al., 2020) make the matrix learnable. Xia et al. (Xia et al.,
2022), Xia et al. (Xia et al., 2023) and Prados-Torreblanca et
al. (Prados-Torreblanca, Buenaposada, and Baumela, 2022)
further encourage the model to learn a case-dependent inher-
ent relation based on the attention mechanism. However,
the learned face structure is represented in high-dimensional
latent space, making it hard to be understood and edited by
human. In this paper, TUFA represents the face structure on
an interpretable plane, making the prompt can be edited by
human for the first time.

Heatmap regression methods differ significantly from
coordinate regression methods, as they generate a high-
resolution likelihood heatmap for each landmark using a deep
network (J.Wang et al., 2021;Newell, Yang, andDeng, 2016;
B. Xiao,Wu, andWei, 2018; Z. Tang, Peng, Li, andMetaxas,
2020). Although the semantic supervision enables heatmap
regression methods to perform better with limited training
samples, they still have some drawbacks. For instance, to
transfer the predicted heatmaps into 2D coordinates, they
consider the pixelwith highest intensity as the optimal output.
Therefore, the predicted coordinates can only be integers,
resulting in a quantitative error due to lower resolution of the
output heatmap than the input image. To mitigate the error,
Zhang et al. (J. Zhang, Hu, and Feng, 2020), Jin et al. (Jin,
Liao, and Shao, 2021) and Lan et al. (Lan, Hu, and Cheng,
2021) predict the decimal part of landmark coordinate on
heatmaps with an additional head; Tai et al. (Tai et al., 2019),
Chen et al. (Chen, Su, and Ji, 2019), Kumar et al. (Kumar
et al., 2020) and Zhou el al. (Zhou et al., 2023) achieve
subpixel landmark localization on heatmap by estimating
landmark distribution. Furthermore, it is more challenging
for heatmap regression methods to model the regular struc-
ture of human faces because they do not explicitly learn a
representation for each individual landmark. Despite the uti-
lization of facial boundaries as a key indicator in heatmap
regression models (Wu et al., 2018; X.Wang, Bo, and Fuxin,
2019; Y. Huang, Yang, Li, Kim, and Wei, 2021) to main-
tain face structure, these models still overlook the long-term
relation that exists among landmarks. Their network struc-
ture also makes it impossible for them to predict an arbitrary
number of landmarks. Therefore, for any newly defined land-
mark, these methods must be re-trained.

2.2 Few-shot & Zero-shot Face Alignment

Given that existing methods require both model re-training
and dataset re-annotation for predicting a group of newly

defined landmarks, recent research (Qian, Sun,Wu,Qian, and
Jia, 2019;Browatzki&Wallraven, 2020;He,Bharaj, Ferman,
Rhodin, and Garrido, 2023) has increasingly focused few-
shot face alignment. It enables the swift adaptation to new
face alignment tasks. Qian et al. (Qian, Sun, Wu, Qian, and
Jia, 2019) expand the training set by style transfer so that the
model learns a more generalized result with a limited num-
ber of training samples. However, the synthetic images have
a significant domain gap to the real images, which can lead to
performancedegradation.And, the style transfer network still
requires hundreds of samples for training. Browatzki et al.
(Browatzki&Wallraven, 2020) andHeet al. (He,Bharaj, Fer-
man, Rhodin, and Garrido, 2023) set face reconstruction as
a pre-text task. With the feature learned from reconstruction,
the models can be transferred into face alignment with few-
shot examples. Nevertheless, as the experiment results shown
in (He,Bharaj, Ferman,Rhodin, andGarrido, 2023), the large
discrepancies between face alignment and image reconstruc-
tion can result in performance degradation when the samples
for fine-tuning are relatively sufficient. Therefore, mitigating
knowledge descrepancies in few-shot face alignment is quite
crucial, but no study has focused on this problem yet. Self-
supervised (Mallis, Sanchez, Bell, and Tzimiropoulos, 2023)
and unsupervised landmark detection (Thewlis, Bilen, and
Vedaldi, 2017; Y. Zhang et al., 2018; Lorenz, Bereska, Mil-
bich, and Ommer, 2019; Jakab, Gupta, Bilen, and Vedaldi,
2018; He, Wandt, and Rhodin, 2022) have also gained more
attention as they eliminate the need for manual annotation.
Nevertheless, the unpredictability of semantic definitions for
the landmarks discovered during training, which cannot be
manually assigned, presents a challenge when applying them
to downstream tasks. Zhang et al. (H. Zhang et al., 2024)
align textual prompts with visual features to extend landmark
detection model to unseen categories in zero-shot manner.
However, textual prompts are difficult to describe the struc-
ture relations among landmarks, making it hard to extend
the model to unseen landmarks. This work implements zero-
shot learning in landmark-level for the first time, significantly
broadening the application range of face alignment.

3 Multi-datasets Learning in Face Alignment

In this section, we first introduce the overall training pipeline
for TUFAand explain its approach to achieving task-agnostic
face alignment. Next, we describe the proposed method
for mitigating the knowledge discrepancies among differ-
ent datasets, as well as the loss function of TUFA. Finally,
we discuss the strategy for achieving few-shot and zero-shot
face alignment using TUFA.
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Fig. 3 Overall training pipeline of TUFA. It mainly consists of three
parts: a ViT-based encoder, a structure prompt encoder and a decoder.
TUFA first splits input images into patches and extracts image features
F with a ViT-based encoder. Each image has a corresponding statistical
mean shape determined by its dataset. For multi-dataset learning, the
learnable semantic alignment embeddings are added to themean shapes
to align their semantics on a shared plane. During each iteration, TUFA

randomly masks these input shapes, keeping only a certain number of
landmarks as the input anchors to form a batch. Then, the structure
prompt encoder encodes 2D positions of the input anchors into struc-
ture prompts E using sine and cosine functions. The structure prompts
finally serve as queries, mapping the mean shapes to target landmarks
based on the image features. The detailed structure of the decoder is
shown at the bottom right

3.1 Task-agnostic Unified Face Alignment

The overall training pipeline of TUFA is demonstrated in
Fig. 3. It mainly consists of three parts: a ViT-based encoder
for image feature extraction, a structure prompt encoder that
generates structure prompts from the 2D coordinates of the
input anchors, and a decoder aimed at mapping the input
shapes to target faces.

3.1.1 ViT-based Encoder

We employ a ViT-based encoder to extract an image features
F that later serve as essential clues in constructing the map-
ping between the pre-defined plane and various target faces.
Given an input image I ∈ R

HI×WI×3, the ViT-based encoder
first splits it into regular patches with size (HP,WP). Then,
each patch is projected into a vector with C dimensions by
a CNN layer and is further added with learnable positional
embeddings P ∈ R

L×C to retain spatial information, where
L = HI

HP
× WI

WP
. Finally, the encoder learns the image feature

F ∈ R
L×C via the attention mechanism. F is further fed into

the cross-attention block of the decoder.

3.1.2 Structure Prompt Encoder

A human face can be represented on a 2D plane because it is
the surface of the human head and has a regular shape. Dur-
ing single dataset learning, to constrain the representation

of the human face to the 2D plane, we calculate a statistical
mean shape from the training samples, and the coordinates of
the mean shape are normalized in the range of [−1, 1]. The
mean shape, which explicitly represents the regular structure
of faces, later serves as the anchors of this plane. By regress-
ing target landmarks based on the structure prompts of these
anchors, we can establish a mapping between the 2D plane
and various faces. Moreover, the mean shape also ensures
that the face structure representation on the plane is easily
understood by humans, allowing the structure prompts to be
readily edited. During multi-dataset learning, the additional
semantic alignment embeddings A should be incorporated
into the mean shapes to mitigate the knowledge discrepan-
cies among multiple datasets. The details of the semantic
alignment embeddings A will be discussed in Section 3.2.

Before feeding the mean shapes into the structure prompt
encoder, TUFA randomly masks part of these shapes dur-
ing each iteration, retaining only Na landmarks as the input
anchors (Na is set to 24, 25% of 98 landmarks). The use
of the mean shape masking is threefold: 1) the masked
mean shape is much sparser, encouraging TUFA to learn the
mapping based on long-term landmark relation rather than
the relation between neighbouring landmarks. It can effec-
tively prevent overfitting and facilitate a coherent mapping
for improved performance. 2) The computational complex-
ity of the decoder during the training phase is significantly
reduced with fewer structure prompts, which enhances train-
ing speed and reduces GPU memory consumption. 3) For
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multi-dataset learning, it ensures the consistency in the input
anchors numbers across different datasets, allowing them to
form a training batch.

To encode the 2D coordinates of masked shapes into
high-dimensional vectors while retaining their geometric
relations, we utilize cosine and sine functions. The high-
dimensional vector can be written as:

EX
(x,2c) = sin(x/τ (2c/0.5C)),

EX
(x,2c+1) = cos(x/τ (2c/0.5C)),

(1)

EY
(y,2c) = sin(y/τ (2c/0.5C)),

EY
(y,2c+1) = cos(y/τ (2c/0.5C)),

(2)

where EX
x and EY

y are two vectors with 0.5C dimensions,
representing the landmark coordinate (x, y) on X-axis and
Y-axis respectively. c ∈ [0,C/4) is the index of dimension
and τ is a hyperparameter that determines the wavelengths
(τ is set to 10000 in this paper). The final structure prompt
E can be formulated as:

E(x,y) = Concat(EX
x ; EY

y ), (3)

where Concat means concatenation process. For any fixed
offset (�x,� y), the vectors EX

x+�x and E
Y
y+�y can bewritten

as:

[
EX

(x+�x,2c)
EX

(x+�x,2c+1)

]
=

[
cos( �x

τ 2c/0.5C
) sin( �x

τ 2c/0.5C
)

−sin( �x
τ 2c/0.5C

) cos( �x
τ 2c/0.5C

)

] [
EX

(x,2c)
EX

(x,2c+1)

]
,

(4)

[
EY

(y+�y,2c)
EY

(y+�y,2c+1)

]
=

[
cos( �y

τ 2c/0.5C
) sin( �y

τ 2c/0.5C
)

−sin( �y
τ 2c/0.5C

) cos( �y
τ 2c/0.5C

)

] [
EX

(y,2c)
EX

(y,2c+1)

]
.

(5)

Thus, EX
x+�x and EY

y+�y can be viewed as a linear function

of EX
x and EY

y respectively, and the transformation matrix
is determined by the corresponding offset. This property
enables the 2D geometric relationships of the mean shape
landmarks to be well retained in the high-dimensional vector
for the learning of the mapping.

3.1.3 Decoder

The decoder is the key component for learning the mapping
from the 2D plane to target faces. As shown at the bottom left
in Fig. 3, the decoder mainly consists of three blocks: multi-
head self-attention (MSA) block, multi-head cross-attention
(MCA) block, and feed-forward network (FFN). Besides,

there is an extra LayerNorm (Ba, Kiros, and Hinton, 2016)
before each block.

Themapping between the 2Dplane and target faces should
be determined by multiple anchors, not just a single one.
Therefore, the MSA block is crucial because it enables the
structure prompts to share their geometric information for
the mapping determination. The key (K z), query (Qz), and
value (V z) of the z-th head in MSA block can be calculated
as:

K z =(T z + Ez)Wk
z , Qz =(T z + Ez)W

q
z , V z =T zWv

z , (6)

where E ∈ R
Na×C and T ∈ R

Na×C are the face struc-
ture prompts and the input to the MSA block respectively.
E and T are further divided into Nh (Nh is the number
of heads) sequences equally with Ch = C/Nh dimensions.
Wk

z ∈ R
Ch×Ch , Wq

z ∈ R
Ch×Ch , and Wv

z ∈ R
Ch×Ch are three

learnable matrices. The output of z-th head H z can be cal-
culated as:

H z = softmax

(
QzK

T
z√

Ch

)
V z . (7)

The final output of MSA block can be written as:

FMSA(T ) = Concat(H1; ...; HNh)WMSA, (8)

where WMSA ∈ R
C×C is also a learnable matrix for linear

projection.
The mapping also depends on the input face. Therefore,

the MCA block is essential since it aggregates the image
feature F learned by the ViT-based encoder based on the
structure prompts, enabling the learned mapping to be case-
dependent. The key (K ′

z), query (V ′
z) and value (V ′

z) of the
z-th head in MCA block can be formulated as:

K ′
z =(Fz+P z)Wk′

z ,Q
′
z =(T ′

z+Ez)W
q′
z ,V

′
z = FzWv′

z , (9)

where T ′ ∈ R
Na×C and F ∈ R

L×C are the input to MCA
block and image feature respectively. We reuse the learn-
able positional embeddings P ∈ R

L×C in the ViT-based
encoder to retain the spatial information of image. Simi-
lar to the MSA block, T ′, F and P are further divided
into Nh sequences equally with Ch = C/Nh dimensions.
Wk′

z ∈ R
Ch×Ch , Wq′

z ∈ R
Ch×Ch , and Wv′

z ∈ R
Ch×Ch are

three learnable matrices. The output of z-th head H ′
z can be

written as:

H ′
z = softmax

(
Q′

zK
′T
z√

Ch

)
V ′

z . (10)

The final output of MCA block can be formulated as:

FMCA(T ) = Concat(H ′
1; ...; H ′

Nh
)WMCA, (11)
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Fig. 4 (a) the mean shapes of 29 & 98 landmarks before/after
adding semantic alignment embeddings A. (b) the predicted 29 & 98
landmarks on the test image. The red and blue points indicate the 29
landmarks and 98 landmarks respectively (Color figure online)

where WMCA ∈ R
C×C is also a learnable matrix.

Moreover, a FFN block fuses the features aggregated from
F in the channel-wise, further enhancing the expressive abil-
ity of the network. It allows the decoder to model a more
fine-grained mapping between the target face and 2D plane.

Finally, the output features of the decoder are fed into an
MLP for regressing the coordinates of the mapped anchors.

3.2 Semantic Alignment Embedding

The calculated mean shape reflects the semantic definitions
and statistically geometric relationships between the pre-
defined landmarks. Based on the fact that human faces have
a regular structure, the semantics of pre-defined landmarks
across different datasets can be aligned on the same 2D
plane, regardless of the variations in landmark definition and
number. This alignment effectively mitigates the knowledge
discrepancies amongmultiple datasets andunifies their learn-
ing targets.

Therefore, we introduce extra learnable semantic embed-
dings Ai ∈ R

Ni
D×2 to the mean shape of each dataset, where

i is the index of dataset and Ni
D is the number of the pre-

defined landmarks in the i-th dataset. A ensures that each
landmark of the mean shapes has a corresponding learnable
2D offset. As shown in Eq. 4 and Eq. 5, adding A to the
meanshape equals to applying a linear transformation to the
initial structure prompts. Because the coordinates of mean
shapes are normalized in the range of [−1, 1], the transfor-
mation matrices are continuous and unique for any offset. It
ensures that the structure prompts after linear transformation
are also continuous and unique. As a result, it is possible for
TUFA to find an optimal offset for the semantic alignment.

As shown in Fig. 4 (a), after adding the semantic align-
ment embeddings, the mean shapes of both the 98 and 29
landmarks still retain a clear face structure, which illus-
trates that these semantic alignment embeddings specifically
incorporate the face structure information. The predicted

results shown in Fig. 4 (b) demonstrates that even the land-
marks from different datasets, defined similarly, still exhibit
semantic variance due to different annotation methods. For
instance, the eye corners in the 29 landmarks are always
located above the eye corners in the 98 landmarks. This can
be also viewed as a kind of knowledge discrepancies. There-
fore, directly using unaligned mean shapes for training may
lead to semantic ambiguity and degrade performance fur-
ther. After semantic alignment, the geometric relationship
between the predicted 29 & 98 landmarks is consistent with
that of themean shapes of 29&98 landmarks, and the knowl-
edge discrepancies are largely mitigated. Therefore, with the
semantic alignment embeddings, the semantics of the land-
marks from different datasets have been aligned on a plane
successfully.

3.3 Loss Function

When the input anchors are dense enough, TUFA can learn
a mapping from a 2D plane to a very complex surface by
minimizing the distance between themapped anchors and the
corresponding labeled landmarks. We measure the distance
using L1 loss as follows:

L = 1

NbatchNa

Nbatch∑
j=1

Na∑
k=1

∣∣∣(x jk
map, y

jk
map) − (x jk

gt , y jk
gt )

∣∣∣ , (12)

where Nbatch is the batch size, (x
jk
map, y

jk
map) is the position of

the k-th mapped anchor in j-th sample, and (x jk
gt , y jk

gt ) is the
corresponding labeled position.

3.4 Zero-shot & Few-shot Face Alignment

The transformer-based decoder enables TUFA to accept an
arbitrary number of structure prompts as the input, and the
interpretable plane, learned based on the statistical mean
shape, allows for easy editing of these structure prompts.
Leveraging the structure prompts, the gap between the seen
and unseen landmarks can be bridged. To locate an unseen
landmark,we can determine its corresponding position on the
plane, based on its geometric relationship with the anchors
used during training. By encoding this 2D coordinate into
a structure prompt, TUFA can locate the coordinate of the
unseen landmark across different faces. As shown in Fig.
5, we randomly generate three scratch shapes and locate
the corresponding landmarks on the target faces. We can
clearly observe that the geometric relationship between the
scratch shapes and the training anchors on the plane remains
consistent with that geometric relationship on the target
faces. Moreover, the semantics of the located landmarks also
keep consistent across different faces. This demonstrates the
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Fig. 5 (a) the red points are used to generate face structure prompts
for zero-shot face alignment. The blue points represent the mean shape
of 98 landmarks, which serves as anchors during training. (b) the red
points represent the zero-shot face alignment results under various con-
ditions (color figure online)

editability of the predicted target in TUFA, as well as the
successful implementation of zero-shot face alignment.

The unified learning target also enables TUFA to be easily
transferred to a group of newly defined facial landmarks in
a few-shot manner. We first calculate a mean shape from
the very few training samples. This mean shape is then
added with a group of newly defined learnable semantic
alignment embeddings. Finally, the pretrained TUFA is fine-
tuned end-to-end on the new dataset without any changes of
the structure. Despite the semantic difference in the newly
defined landmarks, TUFA can still be efficiently transferred
to the dataset. This is because TUFA explicitly learns the
face structure, unifying the learning target across different
datasets. Therefore, TUFA can easily inherit the knowl-
edge learned from pre-trained datasets in few-shot learning,
regardless of the differences in landmark semantics. Even
with fewer training samples, TUFAsignificantly outperforms
other state-of-the-art few-shot face alignment methods.

4 Experiments

4.1 Datasets

• WFLW (Wu et al., 2018): WFLW consists of 10,000
faces (7,500 for training and 2,500 for testing) from
WIDER Face (S. Yang, Luo, Loy, and Tang, 2016). Each
face is fully manual annotated with 98 landmarks and
attribute labels. Compared to other datasets, the WFLW

ismore challenging because it contains a large number of
samples under extreme conditions, such as heavy occlu-
sion and profile view.

• 300W (Sagonas, Tzimiropoulos, Zafeiriou, and Pan-
tic, 2013a): 300W consists of 3,837 faces (3,148 for
training and 689 for testing) from AFW (X. Zhu &
Ramanan, 2012), HELEN (Le, Brandt, Lin, Bourdev, and
Huang, 2012), LFPW (Belhumeur, Jacobs, Kriegman,
and Kumar, 2011) and IBUG (Sagonas, Tzimiropoulos,
Zafeiriou, andPantic, 2013a). Each face is annotatedwith
68 landmarks using a semi-automaticmethodology (Sag-
onas, Tzimiropoulos, Zafeiriou, and Pantic, 2013b). The
testing set can be further divided into a challenging subset
(135 faces) and a common subset (554 faces). More-
over, 300W also provides additional 600 faces named
as 300W-private to test the generalization ability of the
trained model.

• Masked 300W (C. Zhu, Li, Li, and Dai, 2021): Masked
300W is a variant of 300W (Sagonas, Tzimiropoulos,
Zafeiriou, and Pantic, 2013a) used exclusively for testing
the performance of face alignment under heavy occlu-
sion. It synthesizes 689 masked faces from the testing set
of 300W, and the landmark annotation remains consistent
with the original 300W.

• MERL-RAV (Kumar et al., 2020): MERL-RAV manu-
ally re-annotates 19,314 faces from AFLW (Köstinger,
Wohlhart, Roth, and Bischof, 2011) with 68 landmarks,
providing 15,449 samples for training and 3,865 sam-
ples for testing. MERL-RAV further categorizes facial
landmarks into unoccluded, externally occluded and self-
occluded landmarks. Only unoccluded and externally
occluded landmarks are provided with location informa-
tion.

• COFW (Burgos-Artizzu, Perona, and Dollár, 2013):
COFW collects 1,007 challenging faces with an aver-
age occlusion of over 23% from a variety of sources. It
uses 500 of these faces and 845 samples from LFPW
(Belhumeur, Jacobs, Kriegman, and Kumar, 2011) train-
ing set for training, and tests on the remaining 507 faces.
Each face is annotated with 29 landmarks.

• COFW68 (Ghiasi&Fowlkes, 2014):COFW68, a variant
of COFW (Burgos-Artizzu, Perona, and Dollár, 2013),
is used for cross-dataset validation. The testing set of
COFW is manually re-annotated with 68 landmarks in
this variant.

• CelebA-aligned (Z. Liu, Luo, Wang, and Tang, 2015):
CelebA-aligned contains 10,000 identities with 200,000
face images. Each face is labeled with 5 landmarks and
aligned to center. As suggested by (Thewlis, Bilen, and
Vedaldi, 2017), CelebA can be subdivided into three
subsets: CelebA training set without MAFL (160,000
images), MAFL training set (19,000 images) and MAFL
testing set (1,000 images).
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Table 2 Evaluation results in FR0.1 and AUC0.1 on WFLW. Key: [Best, Second Best, �=trained with multiple datasets]

Method FR0.1(%)↓ AUC0.1↑
Full Pose Exp. Ill. Mu. Occ. Blur Full Pose Exp. Ill. Mu. Occ. Blur

3FabRec� 8.28 34.35 8.28 6.73 10.19 15.08 9.44 0.484 0.192 0.448 0.496 0.473 0.398 0.434

ATF� 2.52 13.19 2.23 2.44 0.49 5.03 3.88 0.560 0.301 0.546 0.566 0.581 0.487 0.489

PIPNet - - - - - - - - - - - - - -

AWing 2.04 9.20 1.27 2.01 0.98 4.21 2.72 0.590 0.334 0.572 0.596 0.602 0.528 0.539

HIH 2.96 15.03 1.59 2.58 1.46 6.11 3.49 0.597 0.342 0.590 0.606 0.604 0.527 0.549

ADNet 2.72 12.72 2.15 2.44 1.94 5.79 3.54 0.602 0.344 0.523 0.580 0.601 0.530 0.548

FaRL� 1.76 - - - - - - 0.602 - - - - - -

STAR 2.32 11.69 2.24 1.58 0.98 4.76 3.24 0.605 0.362 0.584 0.609 0.622 0.538 0.551

AV w. SAN� 4.08 18.10 4.46 2.72 4.37 7.74 4.40 0.591 0.311 0.549 0.609 0.581 0.516 0.551

SDFL 2.72 12.88 1.59 2.58 2.43 5.71 3.62 0.576 0.315 0.550 0.585 0.583 0.504 0.515

SDL 3.04 15.95 2.86 2.72 1.46 5.29 4.01 0.589 0.315 0.566 0.595 0.604 0.524 0.533

SLPT 2.76 12.27 2.23 1.86 3.40 5.98 3.88 0.595 0.348 0.574 0.601 0.605 0.515 0.535

SPIGA 2.08 11.66 2.23 1.58 1.46 4.48 2.20 0.606 0.353 0.580 0.613 0.622 0.533 0.553

DSLPT 2.52 13.19 2.23 2.44 0.98 4.89 3.49 0.607 0.353 0.586 0.614 0.623 0.535 0.549

TUFA (ViT-S/16) 2.92 14.42 3.50 2.29 2.43 5.84 4.53 0.570 0.296 0.540 0.579 0.571 0.497 0.524

TUFA (ViT-S/16)� 1.72 8.28 1.59 1.29 1.46 3.53 2.59 0.604 0.359 0.584 0.613 0.616 0.534 0.551

TUFA (ViT-S/8) 2.44 12.27 1.91 2.15 1.46 5.30 3.49 0.585 0.321 0.553 0.593 0.591 0.513 0.535

TUFA (ViT-S/8)� 1.52 7.36 1.27 0.86 1.46 2.99 2.33 0.610 0.371 0.592 0.620 0.622 0.540 0.553

4.2 EvaluationMetrics

Followingpreviousworks (Wuet al., 2018), (Y.Huang,Yang,
Li, Kim, andWei, 2021), (Xia et al., 2022), (Xia et al., 2023),
we use Normalized Mean Error (NME), Failure Rate (FR)
and Area Under Curve (AUC) to quantitatively measure the
performance of TUFA. NME is the mean of L2 distance
between the predicted landmarks and the annotated land-
marks. The mean distance is then normalized by a factor,
denoted as dnorm. For inter-pupil NME, dnorm represents the
distance between pupil centers, while for inter-ocular NME,
it stands for the distance between outer eye corners. In the
case of NMEbox, dnorm is defined as the geometric mean of
the labeled box, calculated as dnorm = √

Wbox × Hbox. FRα

represents the percentage of the testing cases in which the
NME exceeds a certain threshold, denoted as α. AUC indi-
cates the area beneath the Cumulative Errors Distribution
(CED) curve from 0 to the threshold of FR α, which can be
formulated as

∫ α

0 f (ε) dε.

4.3 Implementation Details

The input image is the face region cropped from the ini-
tial image and is then resized to a fixed size (256 × 256).
For training data, we apply augmentation techniques, which
include random translation (±10 pixels), random rotation
(±30◦), random scaling (±5%), random horizontal flipping
(50%), random gray (20%), random brightness adjustment

(50%,±0.3), random occlusion (50%), random shearing
(33%). In TUFA, We employ two types of encoders : ViT-
S/16 and ViT-S/8 (Dosovitskiy et al., 2021), both of which
are pretrained on ImageNet (Deng et al., 2009) with DINO
(Caron et al., 2021). The parameters of the decoder and
semantic alignment embeddings are initialized from scratch.
By default, the batch size is set to 16 and the layer number
of the decoder is set to 6. TUFA is trained with AdamW
(Loshchilov and Hutter, 2019), setting the initial learning
rate to 1 × 10−4 for ViT-S/8 and 5 × 10−5 for ViT-S/16.
For multi-dataset learning, we employ the training sets of
WLFW, 300W, MERL-RAV and COFW for training. The
model is trained for 100 epochs, with the learning rate
decaying by a factor of 0.1 at the 80th and 90th epochs
respectively. The learned result is then tested on the WFLW,
300W, 300W-private, masked 300W, MERL-RAV, COFW
and COFW68 simultaneously. For single-dataset learning,
due to the smaller number of training samples, the model is
trained for 140 epochs, with the learning rate decaying by a
factor of 0.1 at the 120th and 130th epochs respectively.

4.4 Comparisons inWithin-dataset Validation

WFLW: we report the inter-ocular NME, parameter size
and flops of TUFA and other state-of-the-art methods in
Table 1. FR0.1 and AUC0.1 are tabulated in Table 2. With-
out increasing any computational complexity, the ability of
TUFA o mitigate knowledge discrepancies across multiple
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Table 3 Performance comparison against state-of-the-art methods on 300W. Key: [Best, Second Best, �=trained with multiple datasets]

Method Inter-Ocular NME (%) ↓
Common Challenging Fullset

3FabRec (Browatzki & Wallraven, 2020)� 3.36 5.74 3.82

HIH (Lan, Hu, and Cheng, 2021) 2.93 5.00 3.33

PIPNet (Jin, Liao, and Shao, 2021) 2.78 4.89 3.19

ATF (Lan, Hu, and Cheng, 2022)� 2.75 4.86 3.17

AWing (X. Wang, Bo, and Fuxin, 2019) 2.72 4.53 3.07

ADNet (Y. Huang, Yang, Li, Kim, and Wei, 2021) 2.53 4.58 2.93

SLPT (Xia et al., 2022) 2.75 4.90 3.17

FaRL (Zheng et al., 2022)� 2.70 4.64 3.08

SPIGA (Prados-Torreblanca, Buenaposada, and Baumela, 2022) 2.59 4.66 2.99

DSLPT (Xia et al., 2023) 2.57 4.69 2.98

STAR (Zhou et al., 2023) 2.52 4.32 2.87

TUFA (ViT-S/16) 2.92 5.05 3.34

TUFA (ViT-S/16)� 2.68 4.58 3.05

TUFA (ViT-S/8) 2.82 4.90 3.23

TUFA (ViT-S/8)� 2.59 4.45 2.95

Table 4 Performance
comparison against
state-of-the-art methods on
COFW. The FR0.1 in
Inter-Ocular and Inter-Pupil
normalization are reported. Key:
[Best, Second Best, �=trained
with multiple datasets]

Method Inter-Ocular Inter-Pupil
NME↓ FR ↓ NME↓ FR↓

SDFL (Lin et al., 2021) 3.63% 0.00% - -

ATF (Lan, Hu, and Cheng, 2022)� 3.32% - - -

AWing (X. Wang, Bo, and Fuxin, 2019) - - 4.94% 0.99%

ADNet (Y. Huang, Yang, Li, Kim, and Wei, 2021) - - 4.68% 0.59%

SLPT (Xia et al., 2022) 3.32% 0.00% 4.79% 1.18%

DSLPT (Xia et al., 2023) 3.33% 0.20% 4.79% 1.36%

STAR (Zhou et al., 2023) 3.21% 0.00% 4.62% 0.79%

PIP (Jin, Liao, and Shao, 2021) 3.08% - - -

TUFA (ViT-S/16) 3.49% 0.20% 5.03% 0.79%

TUFA (ViT-S/16)� 3.18% 0.20% 4.58% 0.39%

TUFA (ViT-S/8) 3.40% 0.20% 4.91% 1.18%

TUFA (ViT-S/8)� 3.07% 0.20% 4.43% 0.39%

Fig. 6 The comparisons of CED curves between TUFA and other
state-of-the-art methods on WFLW full set.

datasets maximizes the utilization of extra training samples.
We observe a significant improvement of 7.09% in NME on
the full set compared to TUFA (ViT-S/8) trained on a single
dataset, even though TUFA uses fewer extra samples than
other methods trained on multiple datasets.

Considering efficiency,we also implemented aTUFAwith
a lighter backbone, ViT-S/16. Similarly, training on multi-
ple datasets achieves an impressive improvement of 8.68%
in NME on the full set compared to single dataset training.
Despite havingmuch lower computational complexity (flops)
than most heatmap regression methods, it still yields the sec-
ond best performance in NME and FR0.1. It also outperforms
DSLPT in NME on the full set and all subsets with com-
parable flops. Moreover, the entire training process for this
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TUFA can be completed within five hours on a single A40
GPU, demonstrating the high efficiency of our method.

Most existing methods, such as DSLPT, SPIGA, ADNet,
and STAR, achieve competitive performance based on a
multi-stage approach, while TUFA locates facial landmarks
using only a single stage. For a comprehensive analysis,
we plot the CED curves of several multi-stage methods and
TUFA (using multi-dataset learning) in Fig.6. Note that the
official implementation of ADNet performs slightly better
than the results reported in their original paper. The CED
curves of DSLPT and SPIGA are higher than that of TUFA in
the range of [0, 0.025]. It suggests the proportion of the sam-
ples with very small NME predicted by DSLPT and SPIGA
is larger than that of TUFA, despite that TUFA (using multi-
dataset learning) performs better in NME. This indicates that
these multi-stage face alignment methods primarily reduce
the NME on easy samples for better numerical results. How-
ever, their improvements under challenging conditions are
relatively insignificant. Despite the fact that these conditions
are long-tailed, they are critical as they ultimately determine
the quality of face alignment in real-world scenarios. By
employing extra data, TUFA significantly improves the per-
formance on these challenging conditions. As a result, TUFA
achieves improvements of 26.9%, 36.9% and 33.3% in FR0.1

on full set, largepose subset and occlusion subset respectively
compared to SPIGA.

300W: as tabulated in Table 3, multi-dataset learning
also improves the performance of TUFA on common set,
challenging set and full set by 8.16%, 9.18% and 8.67%
respectively in the metric of NME. Heatmap regression
methods, such as ADNet, Awing and STAR, commonly
demonstrate superior performance on 300W, especially the
challenging subset, compared to coordinate regression meth-
ods. This is because they provide semantic supervision to the
network by encoding the annotated landmarks into heatmaps,
which delivers better performance with limited training sam-
ples. However, the unique properties of TUFA successfully
address this limitation of coordinate regression methods,
achieving the best performance in NME on the challenging
set, as low as 4.45%, even though TUFA is a single-stage face
alignment method. This demonstrates that the multi-dataset
learning of TUFA promises a very competitive generaliza-
tion ability. Compared to FaRL and ATF, which are also
trained with multiple face datasets, TUFA outperforms them
by 4.22%and 6.94% respectively inNMEdespite fewer extra
faces used in training.

COFW: with the very limited number of training samples
and an average occlusion of over 23% on the testing faces,
COFWpresents a significant challenge for all face alignment
methods. As shown in Table 4, despite the competitive per-
formance on other datasets, existing state-of-the-artmethods,
such as DSLPT, ADNet and STAR, often suffer from over-
fitting on this dataset. Similarly, TUFA, when trained with aTa
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single dataset, also tends to overfit the training set, achiev-
ing only 3.40% in the metric of NME. Nevertheless, TUFA
successfully mitigates the knowledge discrepancies among
multiple datasets and utilizes the knowledge learned from
other face datasets, thereby significantly improving the NME
metric by9.71%andyielding thebest performance.Although
ATF also leverages extra datasets, it fails to consider the
ambiguity between the landmarks with similar definitions,
which inadvertently introduces noise into the training and
leads to a less significant improvement.

MERL-RAV: the results on MERL-RAV are shown in
Table 5. The proportions of unoccluded, externally occluded
and self-occluded landmarks in MERL-RAV full set are
76.56%, 10.81% and 12.63% respectively. Because the posi-
tion annotations of the self-occluded landmarks are not
provided, the numerical results on the full set and its sub-
sets exclude the results of these landmarks. Therefore, these
numerical results are largely determined by the performance
on the easy samples. Asmentioned before, multi-stagemeth-
ods tend to perform better on the easy samples compared
to one-stage methods. Therefore, TUFA only demonstrates
comparable performance to these multi-stage methods. Nev-
ertheless, when we investigate the externally occluded land-
marks separately, we can find that the multi-dataset learning
still improves the performance on these challenging land-
marks effectively, despite the relatively fewer extra samples
provided by WFLW, 300W and COFW compared to the
training set of MEAL-RAV. Moreover, the qualitative results
shown in Fig. 7 illustrate TUFA performs well on the
self-occluded landmarks based on the knowledge of other
datasets, even though MERL-RAV does not provide their
position labels for training.

4.5 Comparisons in Cross-dataset Validation

COFW68: the cross-dataset validation aims at evaluating the
generalization ability of face alignment methods. In the case
of TUFAwith single dataset learning, the model is trained on
300W training set. For TUFA trained with multiple datasets,
the model used in four within-dataset validations is directly
evaluated on COFW68. The evaluation results are show in
Table 6. Despite not re-training the TUFA for COFW68,
it still outperforms existing state-of-the-art methods by a
significant margin. Compared to single dataset learning,
the multi-dataset learning approach of TUFA demonstrates
much stronger generalization ability, achieving an impressive
improvement of 9.98% in NME.

Masked 300W: the setting of cross-dataset validation
on Masked-300W is kept consistent with the setting on
COFW68, and the evaluation results are displayed in Table 7.
The testing faces are with an average occlusion of over 50%,
leading to a significant domain gap between the training and
testing faces. To minimize this gap, existing state-of-the-art

Fig. 7 (a) Results in profile view predicted by the TUFA with multi-
dataset learning. (b) Results in profile view predicted by the TUFA
with single dataset learning. The red points represent the predicted
landmarks (Color figure online)

methods have optimized the data augmentation, randomly
masking each training sample with several blocks of varying
sizes. Although this approach can improve the quantitative
results in cases with heavy occlusion, it also results in per-
formance degradation under other conditions. Without any
modification in data augmentation techniques, the TUFA
learned from multiple datasets still achieves an impressive
result, as low as 5.58% in NME. This outcome also demon-
strates the remarkable generalization ability and robustness
of TUFA.

300W-private: we carry out cross-dataset validation on
300W-private using the same settings as those for COFWand
Masked 300W. Similarly, the improvement brought to TUFA
by multi-dataset learning is also significant. Even though
most samples from 300W-private are under common condi-
tions, which are easily handled by othermulti-stagemethods,
TUFA still yields the best performance across all metrics on
the full set. The FR0.08 of TUFA is as low as 0.17%, which
means only one sample failed to be aligned by TUFA in the
entire dataset. This demonstrates that TUFA is highly robust
compared to all existing methods.

4.6 Few-shot Face Alignment

We pretrain TUFA (ViT-S/8) on COFW, 300W and MERL-
RAV (29 & 68 landmarks) and implement few-shot face
alignment on WFLW (98 landmarks) as described in Sec-
tion 3.4. Note that there are large differences between the
semantic definitions of 29&68 landmarks and 98 landmarks.
We randomly select a certain number of training samples in
each experiment. We repeat each experiment five times and
report the mean NME with each training set size in Table
9. With only 10 training samples, TUFA still demonstrates
superior performance compared to other methods, outper-
forming 3FabRec and He et al. trained with 7500 annotated
faces. When we fine-tune TUFA on WFLW using 100% of
the original training set (7500 samples), the NME on the
testing set improves to 3.99%. This performance is compa-
rable to the NME of the TUFA when trained with all four
datasets together. This result indicates that TUFA can effec-
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Table 6 Performance
comparison of cross-dataset
validation on COFW68. The
NME and FR0.1 under
inter-ocular normalization are
reported. Key: [Best, Second
Best, �=trained with multiple
datasets]

Method NME(%)↓ FR0.1(%)↓
AV w. SAN (Qian, Sun, Wu, Qian, and Jia, 2019)� 4.43 2.82

LAB (Wu et al., 2018) 4.62 2.17

GlomFace (C. Zhu, Wan, Xie, Li, and Gu, 2022) 4.21 0.79

SDL (Li et al., 2020) 4.22 0.39

SDFL (Lin et al., 2021) 4.18 0.00

SLPT (Xia et al., 2022) 4.10 0.59

DSLPT (Xia et al., 2023) 4.03 0.20

SPIGA (Prados-Torreblanca, Buenaposada, and Baumela, 2022) 3.93 -

TUFA (ViT-S/16) 4.22 0.20

TUFA (ViT-S/16)� 3.72 0.00

TUFA (ViT-S/8) 4.11 0.20

TUFA (ViT-S/8)� 3.70 0.00

Table 7 Performance
comparison of cross-dataset
validation on Masked 300W.
Key: [Best, Second Best,
�=trained with multiple
datasets, †=data augmentation
adjustment]

Method Inter-Ocular NME (%) ↓
Common Challenging Fullset

Hourglass (Newell, Yang, and Deng, 2016) 8.17 13.52 9.22

FAN (Bulat & Tzimiropoulos, 2017) 7.36 10.81 8.02

LAB (Wu et al., 2018) 6.07 9.59 6.76

SAAT (C. Zhu, Li, Li, and Dai, 2021)† 5.42 11.36 6.58

GlomFace (C. Zhu, Wan, Xie, Li, and Gu, 2022)† 5.29 8.81 5.98

DSLPT (Xia et al., 2023) 6.01 10.19 6.83

DSLPT (Xia et al., 2023)† 4.78 8.10 5.42

TUFA (ViT-S/16) 6.08 9.52 6.76

TUFA (ViT-S/16)� 5.21 8.25 5.80

TUFA (ViT-S/8) 7.12 9.96 7.67

TUFA (ViT-S/8)� 4.98 8.08 5.58

tively leverage the knowledge learned from pretraining. This
is achieved because TUFA successfully unifies the learning
objectives of different datasets andmitigates their knowledge
discrepancies, rather than treating landmark regression as an
independent target. Because of this unique property, TUFA
can be transferred to a group of newly defined landmarks
efficiently, even with a very limited number of annotated
samples. 3FabRec, Autolink and He et al. set image recon-
struction as a pre-text task to encourage model to perform
better with very limited training images. However, He et al.
also found that this pre-text task may also lead to perfor-
mance degradation when the number of training samples is
sufficient. The main reason is that the learning objectives of
image reconstruction and face alignment are not aligned.This
large knowledge discrepancy significantly degrades perfor-
mance.

4.7 Zero-shot Face Alignment

CelebA-aligned: to evaluate the semantic consistency of
the landmarks predicted by TUFA in a zero-shot manner,
we follow the same evaluation protocol as other unsuper-
vised landmark detection methods (Jakab, Gupta, Bilen, and
Vedaldi, 2018), (Lorenz, Bereska, Milbich, and Ommer,
2019), (He, Wandt, and Rhodin, 2022) used on CelebA-
aligned (Z. Liu, Luo, Wang, and Tang, 2015). We randomly
generate a scratch shapewith a certain number of points Npre.
Then, the TUFA (ViT-S/8), trained with the four datasets,
directly predicts the corresponding landmarks onbothMAFL
training and testing subset. The predicted coordinates on
MAFL training subset are used to calculate a matrix that
projects the coordinates to the positions of the labeled land-
marks. We use this matrix to transfer the predicted landmark
coordinates on MAFL testing subset to the coordinates of
the labeled landmarks. Finally, we quantitatively measure
the performance with inter-ocular NME.
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Table 8 Performance comparison of cross-dataset validation on 300W-private. The NME, FR0.08 and AUC0.08 under inter-ocular normalization
are reported. Key: [ Best, Second Best, �=trained with multiple datasets]

Method Indoor subset Outdoor subset Full set
NME↓ AUC0.08 ↑ FR0.08 ↓ NME↓ AUC0.08 ↑ FR0.08 ↓ NME↓ AUC0.08 ↑ FR0.08 ↓

DAN (Kowalski,
Naruniec, and
Trzcinski, 2017)

- - - - - - 4.30% 47.00% 2.67%

SHN (J. Yang, Liu,
and Zhang, 2017)

4.10% - - 4.00% - - 4.05% - -

DCFE (Valle, Buena-
posada, Valdés, and
Baumela, 2018)

3.96% 52.28% 2.33% 3.81% 52.56% 1.33% 3.88% 52.42% 1.83%

SPIGA (Prados-
Torreblanca,
Buenaposada, and
Baumela, 2022)

3.43% 57.35% 1.00% 3.43% 57.17% 0.33% 3.43% 57.27% 0.67%

DSLPT (Xia et al.,
2023)

3.47% 56.60% 0.33% 3.47% 56.68% 0.00% 3.47% 56.64% 0.17%

TUFA (ViT-S/16) 3.89% 51.39% 0.67% 3.92% 51.11% 1.00% 3.91% 51.25% 0.83%

TUFA (ViT-S/16)� 3.51% 56.09% 0.33% 3.52% 55.96% 0.67% 3.52% 56.03% 0.50%

TUFA (ViT-S/8) 3.86% 51.98% 1.33% 3.86% 51.90% 1.00% 3.86% 51.94% 1.17%

TUFA (ViT-S/8)� 3.40% 57.48% 0.00% 3.42% 57.31% 0.33% 3.41% 57.40% 0.17%

Table 9 Performance comparison in inter-ocular NME (%)↓ with reduced training set on WFLW full set. Key: [Best, Second Best]

Method Training set size
1 10 20 50 375 1500 7500

AV w. SAN (Qian, Sun, Wu, Qian, and Jia, 2019) - - - - - 6.00 4.39

Xiao et al. (B. Xiao, Wu, and Wei, 2018) 43.0 21.9 19.3 17.6 10.6 7.08 5.62

Autolink (He, Wandt, and Rhodin, 2022) 14.9 13.5 13.3 11.2 7.68 7.31 6.35

3FabRec (Browatzki & Wallraven, 2020) 15.8 9.66 - 8.39 7.68 6.51 5.62

He et al. (He, Bharaj, Ferman, Rhodin, and Garrido, 2023) 12.4 9.19 8.62 7.90 6.22 5.61 5.38

TUFA 7.62 5.20 4.90 4.77 4.43 4.28 3.99

Table 10 Performance of TUFA in inter-ocular NME (Npre=10) on CelebA under the setting of zero-shot face alignment. The evaluation results
of state-of-the-art self-supervised and unsupervised methods also reported. Key: [ Best, Second Best]

Method type NME ↓
Thewlis et al. (Thewlis, Bilen, and Vedaldi, 2017) unsuper-vised 7.95%

Zhang et al. (Y. Zhang et al., 2018) unsuper-vised 3.46%

Lorenz et al. (Lorenz, Bereska, Milbich, and Ommer, 2019) unsuper-vised 3.24%

IMM (Jakab, Gupta, Bilen, and Vedaldi, 2018) unsuper-vised 3.19%

AutoLink (He, Wandt, and Rhodin, 2022) unsuper-vised 3.92±0.69%

Mallis et al. (Mallis, Sanchez, Bell, and Tzimiropoulos, 2023) self-supervised 3.83%

TUFA zero-shot 2.65±0.33%
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We conduct this experiment 10 times with 10 randomly
generated scratch shapes. The mean and variance of the
NMEs are reported inTable 10.AlthoughTUFA is not trained
with the 160,000 in-domain faces from CelebA training
set, unlike other self-supervised or unsupervised methods,
it still yields the best performance, significantly outper-
forming Mallis et al. and IMM, by 30.81% and 16.93%
respectively, in terms of NME. This result demonstrates
the landmarks predicted by TUFA in the zero-shot man-
ner display better semantic consistency in various cases, as
compared to other methods. Moreover, the semantic defini-
tions of the landmarks predicted by TUFA can be assigned
by humans via a manually generated shape, whereas those
in self-supervised or unsupervised methods are learned ran-
domly. Consequently, TUFA has a much broader application
range.

WFLW: to better evaluate the performance of zero-shot
face alignment in practical application, we carry out an
additional experiment. We first train TUFA (ViT-S/8) on
MERL-RAV(68 landmarks). Then,we align themean shape
on WFLW (98 landmarks) to the mean shape on MERL-
RAV using affine transformation. Finally, we evaluate TUFA
on the WFLW full set directly without re-training. Since
TUFA is the first framework for zero-shot face alignment,
we can only compare TUFA in the zero-shot setting with
some fully-supervisedmethods to quantitatively demonstrate
its performance. The evaluation results of zero-shot face
alignment with TUFA, and some fully supervised methods
released before 2018, are listed in Table 11. Despite the
large disparity in landmark semantics and numbers between
WFLW and MERL-RAV, TUFA in the zero-shot setting still
outperforms SDM, CFSS and DVLN by 42.66%, 34.95%
and 2.96% respectively in the metric of NME. The qualita-
tive results shown in Fig. 8 demonstrate the semantics of the
landmarks predicted by the zero-shot face alignment remain
highly consistent, regardless of heavy occlusion or profile
view. Therefore, TUFA can be easily applied to a group
of newly defined landmarks without any annotated training
samples and re-training processes, significantly broadening
the application range of existing face alignment methods.
Moreover, we can also conclude that TUFA learns a more
universal knowledge for face alignment,which explicitly rep-
resents the regular structure of human face.

4.8 Ablation Studies

Influence of the number of training datasets: the perfor-
mance of TUFA, when trained with different numbers of
datasets, is tabulated in Table 12. The quantitative results
on each dataset are significantly improved as the number
of training datasets increases, despite the large difference
between their annotation forms. This demonstrates TUFA
effectively mitigates knowledge discrepancies among multi-

Fig. 8 Zero-shot alignment results predicted by TUFA on WFLW.
The green points and red points represent the predicted landmarks
and ground truth respectively (Color figure online)

ple datasets andmaximizes the utilization of their knowledge.
Therefore, even though COFW only provides 1,345 labeled
faces, it still improves NME from 3.23% to 3.14% on 300W.
This improvement is quite competitive in face alignment
task. MERL-RAV provides the largest number of annotated
faces, leading to the most significant improvement on 300W,
COFW and WFLW. The unique property of TUFA also
enables its performance to be further improved with the
release of more high-quality face alignment datasets in the
future.

Influence of the semantic alignment embeddings: to
further investigate the influence of semantic alignment
embeddings, we also implement a version of TUFA that
does not incorporate these embeddings. Instead, we align
the mean shapes from different datasets using affine trans-
formation and train TUFA using these aligned mean shapes,
without adding the semantic alignment embeddings. The
comparison results between the TUFA with/without these
embeddings are shown in Table 13. The aligned mean shape
based on affine transformation cannot explicitly mitigate
the knowledge discrepancies among multiple datasets and
may lead to semantic ambiguity. Consequently, it inevitably
introduces a quantitative error into the predicted results.
Because 300W, 300W-private andMasked 300W are labeled
using semi-supervised methodology (Sagonas, Tzimiropou-
los, Zafeiriou, and Pantic, 2013b), their annotations exhibit
much smaller variance than manual annotations. There-
fore, the quantitative errors result in significant performance
degradation on these three datasets. With an average occlu-
sion of over 23%, the manually annotated landmarks on
COFWandCOFW68 exhibitmuch larger variance than other
datasets. Contrary to the results on 300W, 300W-private and
Masked 300W, the evaluation results on these datasets are
less sensitive to the quantitative errors. Nevertheless, the
absence of semantic alignment still leads to slight perfor-
mance degradation. Overall, the subtle semantic differences
between the landmarks with similar definitions cannot be
ignored. The semantic alignment embeddings, while only
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Table 11 Performance of TUFA
in inter-ocular NME (%)↓ on
WFLW under the setting of
zero-shot face alignment. The
evaluation results of some fully
supervised methods before 2018
are also reported. Key: [Best,
Second Best]

Method Full Pose Exp. Ill. Mu. Occ. Blur

Fully-supervised Face Alignment

SDM (Xiong & De la Torre, 2013) 10.29 24.10 11.45 9.32 9.38 13.03 11.28

CFSS (S. Zhu, Li, Loy, and Tang, 2015) 9.07 21.36 10.09 8.30 8.74 11.76 9.96

DVLN (Wu & Yang, 2017) 6.08 11.54 6.78 5.73 5.98 7.33 6.88

Zero-shot Face Alignment

TUFA 5.90 10.03 6.16 5.78 5.50 6.68 6.69

Table 12 The influence of
different numbers of datasets
used in training. The inter-ocular
NME on 300W, COFW and
WFLW, and the NMEbox on
MERL-RAV are reported. Key: [
Best, Second Best]

Method Training Datasets NME (%)↓
300W COFW WFLW MERL 300W COFW WFLW MERL

TUFA 1 (ViT-S/8) � - - - 3.23 - - -

TUFA 2 (ViT-S/8) � � - - 3.14 3.27 - -

TUFA 3 (ViT-S/8) � � � - 3.08 3.18 4.17 -

TUFA 4 (ViT-S/8) � � � � 2.95 3.07 3.93 1.54

Table 13 The influence of semantic alignment embeddings. The inter-ocular NME on 300W, COFW, WFLW, COFW68, Masked 300W and
300W-private, and the NMEbox on MERL-RAV are reported. Key: [Best, 300W-M=masked 300W, 300W-P=300W-private]

Method Semantic Alignment NME (%)↓
Embeddings 300W COFW WFLW MERL COFW68 300W-M 300W-P

TUFA1 (ViT-S/8) w/o 3.42 3.08 3.97 1.57 3.71 5.87 4.08

TUFA2 (ViT-S/8) w 2.95 3.07 3.93 1.54 3.70 5.58 3.40

slightly increasing the number of parameters in the training
process, effectively eliminate the quantitative error caused
by these semantic differences.

Comparison to multi-task learning: To further demon-
strate the importance of mitigating knowledge discrepancies,
we implement a model using multi-task learning under
the same settings and compare it to TUFA. We define a

learnable vector for each landmark to replace the structure
prompt for regression. The results are presented in Table 14.
Despite the similar semantics among the landmarks from
300W and MERL, they are treated as completely different
regression targets in multi-task learning, leading to conflicts
during training. Since MERL-RAV does not provide anno-
tations for self-occluded landmarks, the model primarily fits

Table 14 Performance comparison to multi-task learning. The inter-ocular NME on 300W, COFW, WFLW, COFW68, Masked 300W and 300W-
private, and the NMEbox on MERL-RAV are reported. Key: [Best, 300W-M=masked 300W, 300W-P=300W-private]

Method NME (%)↓
300W COFW WFLW MERL COFW68 300W-M 300W-P

Multi-task (ViT-S/8) 3.01 3.26 4.01 1.94 3.73 6.06 3.49

TUFA (ViT-S/8) 2.95 3.07 3.93 1.54 3.70 5.58 3.40

Table 15 The influence of
masking ratio on WFLW. The
inter-ocular NME, FR0.1,
AUC0.1 and the computational
complexity of Decoder (Flops)
are reported. Additionally, the
memory usage and training
speed on a single A40 are also
provided (with the batch size set
to 16). Key: [Best, Second Best]

Metric masking ration
0% 25% 50% 75% 80% 85% 90%

NME(%)↓ 4.265 4.256 4.233 4.229 4.229 4.241 4.682

FR0.1(%)↓ 2.800 2.360 2.360 2.440 2.320 2.440 3.920

AUC0.1↑ 0.582 0.582 0.584 0.585 0.584 0.582 0.546

Decoder Flops (G) ↓ 3.537 3.089 2.663 2.226 2.139 2.053 1.967

Memory usage (MB)↓ 14,004 13,792 13,608 13,502 13,490 13,436 13,368

Training Speed (samples/sec) ↑ 45.8 46.4 46.8 47.2 47.3 47.3 47.5
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Fig. 9 The zero-shot landmark predicted results of TUFA (column 1, 3, 5, 7, 9 and 11) and the corresponding mean cross attention maps
(column 2, 4, 6, 8, 10 and 12). The red points represent the predicted landmarks (color figure online)

300W. Consequently, TUFA improves NME by 20.62% on
MERL-RAV, which is significantly greater compared to the
improvement on other datasets. Additionally, the compar-
isons on other datasets illustrate that the proposed strategy
can maximize the utilization of knowledge from multiple
datasets and boost the generalization ability of model.

Influence of the masking ratio: to further explore the
influence of masking ratio, we train TUFA (ViT-S/8) with
different masking ratios on WFLW. The results are reported
in Table 15. As the masking ratio increases, the performance
of TUFA is improved. The primary reason is that randomly
masking a certain ration of landmarks encourages TUFA
to learn the mapping using the relationship between dis-
tant landmarks. This relationship ensures a more coherent
mapping between the 2D plane and target faces, while the
landmarks that are close together often introduce bias into
the learned mapping. Moreover, increasing the masking ratio
also significantly reduces the computational complexity of
theTUFAdecoder.When the ratio is set to 75%, the computa-
tional complexity of TUFAdecoder is only 2/3 of that at a 0%
masking ration. Although TUFA decoder only accounts for
just about 10% of the total computational complexity com-
pared to TUFA encoder (31.572G flops), we can still observe
a notable reduction in memory usage and an acceleration in
training speed brought by the masking training strategy.

The results show TUFA works well within the range of
[50%, 85%]. If themasking ratio exceeds 85%, the number of
remaining landmarks, which serves as anchors during train-
ing, is insufficient to construct a mapping from a 2D plane to
a highly complex face surface. As a result, the performance

of TUFA degrades significantly. After comprehensively con-
sidering both performance and computational complexity,
we set the masking ratio to 0.75 in our model.

Cross attention visualization: we visualize the cross
attention maps of a scratch shape predicted by TUFA in Fig.
9. The attention maps indicate the mean weights from the
structure prompts to image patches in MCA blocks, and the
definition of the scratch is shown in the second row of Fig. 5.
Even though the landmarks of the scratch shape are unseen
during training, they can still guide TUFA to focus on the cor-
responding parts of faces regardless of various poses and con-
ditions. It reveals the reliability of the zero-shot face align-
ment achieved by TUFA. Moreover, if the corresponding
parts on faces are occluded or lack significant features (row
3, landmark 3 and 6), TUFA can also look at nearby facial
components and utilize their relative positions for landmark
locating. That is why TUFA demonstrates much stronger
robustness than other methods in very challenging cases.

4.9 Limitations

TUFA can only generalize to unseen landmarks within the
face area. If TUFA uses a set of structural prompts generated
from points outside the face area on the interpretable plane, it
still localize a set of nearest landmarks to these points inside
the face area. The main reason is that the training datasets
only contain information about facial structure. By using a
dataset for dense human pose estimation (Guler, Neverova,
and Kokkinos, 2018), it becomes possible to locate unseen
landmarks on human bodies in a zero-shot manner.
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5 Conclusion

In this paper, we introduce a novel strategy to mitigate
knowledge discrepancies among multiple datasets and fur-
ther achieve task-agnostic, unified face alignment. Compared
to existing face alignmentmethods, the proposedmethod rep-
resents a significant breakthrough in three critical aspects:
1) TUFA successfully mitigates knowledge discrepancies
among multiple datasets by aligning their landmark seman-
tics on an interpretable plane and further unifying their
learning target to map the plane to target faces. 2) the uni-
fied learning target also enables the learned knowledge to be
easily transferred to a new set of defined landmarks. Con-
sequently, TUFA significantly boosts the performance of
few-shot face alignment. 3) By mitigating the discrepancies,
the learned knowledge is extended from target landmarks to
face structure. As a result, we can employ structure prompts
to further bridge the gap between seen and unseen landmarks,
achieving zero-shot face alignment for the first time.

Although the gap between seen and unseen landmarks
has been successfully addressed, the gap between different
domains, such as varying lighting conditions, has not been
explicitly considered in TUFA. In the future, we will explore
the domain gap among facial landmarks to develop a more
universal face alignment approach.
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