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ABSTRACT This paper presents a novel way for Robot-Robot-Human interaction in a shared workspace
for collaborative tasks and uses a multi-modal means of communication that includes hand gestures, voice
commands, end-effector gestures, and marker tracking. The system consists of a human operator working
along with a Task robot (URS5) and a helper robot (OpenManipulatorX) to perform assembly and disassembly
tasks. A Deep Q Network (DQN) reinforcement learning model is used to train the robot to perform the goal
reaching task while avoiding obstacles to ensure safety. The DQN algorithm makes use of the end-effector
position and the relative positions with the goal and obstacles to train a policy that guides the robot arm
safely. Then 4 different training models are created and their ability to avoid obstacles and reach the goal
are compared along with the point-to-point Bezier interpolation path planning method in different scenarios
such as varying height, size, and number of obstacles. The proposed system has been simulated and then
experimentally validated. Experimental results show that DQN trained model performed better than Bezier
interpolation in reaching the final goal position with an accuracy of 74mm while avoiding obstacles at the
same time in a shared environment. It is also observed that of the different trained models, the model with a
larger action space and reduced observation space gave better results compared to others in terms of accuracy
and goal completion rate. Also, from experimental data its observed that Improved Artificial Potential Field
(IAPF) only took 4.7s as the median time to reach the goal whereas Goal Directed Approach (GDA) took
7.62s and Rapidly Exploring Random Tree Star (RRT*) took 6.22s in different scenarios.

INDEX TERMS Cobot, multi-robot, human-robot-interaction, robot-robot-interaction, gesture recognition,
audio commands, DQN, reinforcement learning.

I. INTRODUCTION

Collaboration between humans and robots is emerging as a
field of interest for various industries and researchers. This
paper proposes to create a mode of intuitive and user-friendly
collaboration between human operators and multiple robots
in a shared workspace. We propose to use a multi-modal
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mean of communication between the Human and robots that
includes gesture commands, voice commands, pose tracking,
and marker tracking. Previous works in this field either make
use of only gestures [1], [2] or only voice commands [3],
[4]. Some works include both audio and visual perception,
but the visual perception tracks the human lips motion to
assist in recognition of voice commands [5], rather than using
gestures to specify a task. Other existing work makes use
of sound localization methods, along with visual feedback
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for tracking or navigation [5], [6]. Some works included
audio and visual cues as feedback for the operator rather
than for the control of the robot [7]. Other research used
Hierarchical reinforcement learning to move the robot to goal
by breaking the path into stages [8]. Proximal Policy Opti-
mization(PPO), Deep Deterministic Policy Gradient(DDPG),
Hindsight Experience Replay(HER), Actor-critic and other
Reinforcement learning models are also explored for control
of robot arm [9], [10], [11]. Reward optimization [12], [13]
and shaping approaches [14] are used to assist in reaching the
goal. Potential rewards functions have been explored [15].
Most of these works focus on goal completion rather than
safety. To ensure safety, velocity scaling approaches [16],
potential fields [17], [18] time series prediction of human
motion [19] and creating layers of safety zones with different
safe velocities around robot [20] are made use of. Some works
deal with obstacle avoidance using Deep Q Network(DQN)
[21] but they did not consider involvement of human agent
and multi-robots.

This proposed collaboration between robots is inspired by
the collaborative interaction between Coral Grouper and the
Moray eel in the sea [22], [23]. Coral groupers usually hunt
alone, but sometimes their prey might escape and hide in
cracks of the reef. So, Coral groupers collaborate with Moray
eel. Grouper will point its nose toward the prey and shake its
body side by side, to notify the eel about the prey. Now the eel
will go inside the crack and get the prey. This increases the
chances for both to get the food. Similar problems are faced
when dealing with industrial robots in assembly task [16].
The robots are designed for heavy tasks and are huge in
size. The large end-effector is unable to reach a lot of small
gaps or under the object for various tasks. Also, sometimes
just one arm is not enough to do even the simplest tasks
of pick and place. To help with these problems, a small
helper robot is introduced (OpenManipulatorX) that is able
to reach small gaps and helps the big robots by holding
the job while the big robot disassembles the components
from it. In addition to this, the helper robot also helps
the human operator working in the shared workspace by
fetching its tools through gesture and voice commands. For
the task, the standard assembly/disassembly task board is
used being provided by NIST for IROS Robot Grasping
and Manipulation Competition. The task robot is trained
using the DQN algorithm reinforcement learning in a virtual
environment to reach the goal position while avoiding
obstacles.

The main contribution of this paper is as follows.

« A nature inspired collaboration framework between two
robots-and one human worker

o Multi-modal (audio, gesture pose tracking and marker
tracking) means of communication for assisting human
workers.

« A DQN reinforcement learning model for a 6-axis robot
arm for goal reaching task and obstacle avoidance for a
safe local dynamic path planning.
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The paper is structured as follows. Section I gives an
introduction to the proposed framework, and Section II
explains the purposed framework and methodology in which
the proposed framework is developed. Section III explains
path planning and DQN reinforcement learning. Section IV
explains the simulation and the experimental results.

Il. PROPOSED METHODOLOGY

The proposed framework shown in Fig.1 consists of decen-
tralized blocks for a ‘Task’ robot and a ‘Helper’ robot
working in a shared workspace along with a human operator
(worker). The input node is the human operator for both. The
user commands them through gesture and voice commands.
A DQN reinforcement learning model will read the robot and
environment states and pass on the actions to the Task robot.
The camera mounted on Task robot’s end effector will track
the human worker hand and the helper robot in his field of
view and provide the observations to the DQN network which
will then plan a safe path to avoid any collisions. The helper
robot will track the marker on the end effector of the Task
robot and assist the task robot in tasks requiring two arms.
The proposed framework consists of the following systems.

A. ROBOT AGENTS: TASK ROBOT (R1), HELPER ROBOT
(R2)

A 6-DoF robot arm (UR5) mounted with an RGB-D camera
(Intel RealSense) is being used as a Task robot. The task is
to disassemble the components from a task board designed
by NIST for IROS RGMC and put all the disassembled
components in a container. A camera is also mounted to the
end effector which uses IR stereo vision to find the depth of all
points in the workspace and then the coordinates of detected
objects are transformed to world frame coordinates using
forward kinematics frame transforms on the robot link. A
4-DoF OpenManipulatorX (500g payload capacity) equipped
with a RGB webcam mounted above the end effector is used
as a helper robot. The objective of this helper robot is to assist
the human operator and the Task robot in their tasks.

B. INDUSTRIAL SPACE FORCE MODELLING

The motion of the human worker is modeled based on the
extended social force model (ESFM) [24]. This allows us
to predict the desired direction the human will move in the
future time step and accordingly plan guidance framework.
The resultant force acting on the human can be formulated as

Fr = of S5 (D8 + S0 (D)) + (P! + of ™) (1)

where «, y and B parameters are the weights of the respective
forces, and F is the resultant force of the group, ggf;al(Dﬁaal)
is the attractive force until the final destination of the group,
fepea and fgops are the repulsive forces from co-workers and
obstacles respect to the group. To estimate the goal D,,, the
Bayesian approach is used to estimate the probability of a
desired goal gi, of the pedestrian i based on a past observation

history, X, - spanning t = 1 to t = Tpps.
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FIGURE 1. Framework for robot-robot-human collaboration in overlapping workspace with multimodal

audio-visual communications.

P(g§ X (’;bs) is the posterior probability of each goal, given an
observation history X,,s. The above-mentioned social force
model is used to estimate the position of the human in a future
time ¢ + k. Let the state of the worker at 1 + k, s¢4+4) =
(X(t+k), Y(t+k)» Ot+k))- Based on the proxemics and preferred
formation, the online goal for the robot can be estimated. This
is the most basic case. Scenarios where there are static or
dynamic obstacles are discussed in the next section.

C. SAFETY METRICS

Human Safety and Comfort Indices (HSCI) [16], [25], [26]
modified to fit our scenario. An Industrial Interaction Index
(3I) is used to measure the psychological safety of humans.
The 31 value should be less than the psychological threshold

e ()

The 0,y = 0py = 0.5dc value is selected according to the
Hall’s personal space criterion. dc is 0.9 meters. The modified
Direction Index (DI) [24] which measures the industrially
compliant orientation of robot, also includes the following
user.

xp —xf

V2ol"

Yr — ij
V20l”

3] = max ex
i=1:N P

) 2 + cos (¢;) + cos (B;)
Papi 2 >
e ({6 =20+ 07 -3)))
sin (6y,)
\/(xu - xr)2 + (Y — Yr)2

where 6,, is the angle between the worker and the robot.
Robot must occupy the r space as follows [27], [28].

DI =

+ 3
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Intimate distance: Distances between people inside the
interval [0-45 cm]

Personal distance: Distances between people inside the
interval [45 cm-1.22 m]

Social distance: Distances between people inside the
interval [1.22-3 m]

Public distance: Distances between people are 3m away
(>3m)

S = {xeRz\(OUC)|O.75 <d (x,pe) < 3} (4)
0= {xeRz\C|d (x, r0) < 1} (5)
C = {xeR2|d x, pi) < 0.75} (6)

Assume the robot TCP [29] has a radius of r; and can
be represented as a circle of 2r; of diameter, with center on
the robot’s position R = {x € R%|d(x,r) < 0.5}, whose
area is |R| = The area metric for the companion task can be
computed for each human’s position pc and robot’s position
pr, and is formulated as follows
dxe [0, 1]

1
P(pr,pe) = — @)

dx + ——
IR JENR 2RI Janr

IAPF combines multiple obstacle repulsive forces,
allowing adjustable influence distances, distinguishing it
from traditional methods, which reduces local minima
issues [30], [31]. To improve path quality, optimiza-
tion techniques are wused, reducing abrupt changes,
and achieving a smoother, energy-efficient, and reliable
robot navigation path. The human operator (H),
Task Robot (R1), and Helper robot (R2) will
be working together in an intersecting workspace denoted
as Ssharea- The reachable workspace of human worker
is dynamic, since he is having unpredictable behavior,
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movements, and varying physical properties for different
operators. The position of human hand, helper robot end
effector and end goal position are given by WP W Py
and WPgoal respectively. When any of Y Phums WPy and
WPgoal is within the shared space Ssngreqd, the path of the
robot must be checked for any collision and adjusted to avoid
them. These coordinates are used as observation states in the
reinforcement learning environment, where the agent i,. Task
robot moves in the environment and reads these observation
states. A model trained with the DQN algorithm makes use
of this observation to decide the respective actions to allow
the robot to reach the goal while avoiding the obstacles.

1Il. DQN-REINFORCEMENT LEARNING

DQN Reinforcement learning [32] approach is used to train
the robot to reach the desired goal points while avoiding
the obstacles in the shared workspace, that are the helper
robot and the human operator’s hand. Deep Q Network was
used to train this model. A custom OpenAl gym environment
is created that communicates with the gazebo environment
and reads the environment observations and applies actions
to it. The state s, is defined as an array of 12 elements,
where the first 3 elements define the end-effector position
(YP,.), 3 elements define the end-eff position relative to
the goal (" P, - WPgou), 3 elements define the end-eff
position relative to helper robot end-effector ( YpP,.- WPy
and 3 elements define the end-eff position relative to human
operator’s hand ( WP - WPum). This state space is
discretized into small bins in each axis. The state is defined
as

8t = (W Poe(153), 9% Poo153), T Poe143),™™ Poe143))  (8)

The action space is defined as a set of 27 actions. The
actions increment and decrement the Task robot’s end effector
in cartesian coordinates x,y and z. The 27 actions represents
the 27 combinations of x,y,z having values —1,0 and 1,
which represents, decrement by 1 cm, stay still and increment
by 1 cm respectively. The geometric IK solver is used to
get the joint coordinates for these end effector states. The
Q-function estimates the long term rewards for particular
actions, at any state. The optimal policy 7 is decided based
on the Q-values that maximizes the long-term reward. Then
at a given state, the policy decides the appropriate actions
based on the Q-values. The Q-function is updated using the
following equation:

0(s, a)«<—Q(s, a) + a[r + ymax(Q(s', a')) — O(s, a)]
9)

where Q(s, a) is the current estimate of the Q-function for
state s and action a. r is the reward received for transitioning
to state s’. s is the new state reached after taking action a in
state s. o’ is the action taken in the next state s’. max(Q(s’, a’))
is the maximum expected reward for all actions a’ in the
next state s'. y is the discount factor, which determines the
importance of future rewards. A discount factor of 0 will
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make the agent only consider immediate rewards, while a
discount factor of 1 will make the agent consider all future
rewards equally. « is the learning rate, which determines how
much the agent adjusts the Q-function in response to new
information.

The reward r is received for performing action a and
reaching state s’ from state s. The reward function is
formulated as follows:

r= (rgaal + col + Fbound + rstep) (10)

where 7,4 1s the reward received for reaching the goal, ¢, is
the negative reward for collision, 7pounq and g, are negative
rewards for reaching the boundary constraints in joint and
task space and negative reward for taking each number of
steps respectively. rgoq consists of a positive reward for
reaching the goal and potential reward for getting closer to
the goal in each step compared to the previous closest distance
reached. These rewards were described as:

Tgoal = Tg + T (11
_ | Rex(Gy — dgoal) ifdgoal<Gth
Te = [0 otherwise (12)

rg is the goal reaching reward and R; is the reward scale
factor and Gy, is the distance threshold from goal to consider
it as goal reached.

T'¢ = Vdistance + Tadvancement (13)

7y is the potential based reward that directs the agent to
move towards the goal.

! . !
rii _ Ry+(d goal — dgoal ) 1fdg0al<d goal
stance = .
wance 0 otherwise

(14)

’
Yadvancement = (X goal — xgnal)

+ (y/goal — Ygoal) + (Z/goal — Zgoal) (15)

This 7agvancement Will produce a negative reward when the
agent moves far from the target and ensure the motion is
directed towards the goal. dgoq is the distance between robot
end effector and goal point, d’ goal 18 the closest distance
reached so far. The negative reward for collisions is given by:

Teol =TH + TR+ 1T (16)

where rg, rg and rr are negative rewards for hitting the
human operator’s hand, helper robot’s end-effector and base
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table respectively. These negative rewards are given by:

—R, ifdy <Oy,
rg = 3§ —(0y, —dyg) ifOy<dy<O,, a7
0 otherwise
—R, ifdp<Og,
rg =1 —(0y, —dgr) ifOsm<dr<O,, (18)
| 0 otherwise
i —Rp ifZee <zin
rr =1 —@w — Zee)  zth<Zee<zw:dgoar>Gin (19)
| 0 otherwise

where, dy is the distance from human hand, dy, is the distance
from the helper robot end effector, and all dimensions are in
mm. Oy, is the safe distance threshold for obstacles, and O,, is
the warning zone around the obstacles.zy, is the safe distance
threshold above the table, and z,, is the warning zone above
the table. Gy, is the radius for sphere of influence around
the goal point.R, is the penalty score awarded for failure.
Tbound consists of negative rewards for when the joins angles
exceed the allowable range, and a negative reward for when
the end-effector tries to move to the unreachable cylindrical
volume at the center of the Cobot. It is given by:

—R, if\/x2 +y2, <d,
Tbound = | —R,, if {01, 02, 03, 04, 05, O} L Ouliowable
0 otherwise

(20)

where d, is the unreachable inner radius around the robot
base. And rye, = — 11is the negative reward for each step
taken to minimize the number of steps taken to reach the goal.

In DQN, neural networks are used to predict the Q-values
for each observation state. Two separate networks are built,
both having same structure. One of the network called the
‘Policy network’ or ‘Q-Network’ predicts the Q-values for
all action taken at state ‘s’ i.e Q(s;, a). The weights of this
network are updated at every step. Another network called
‘Value Network’ or ’Target Network is used to predict the
target values Q(s, a) for the policy network. The weights of
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this network are updated after every C steps to provide a
static target for the policy network to chase. Fig. 2 shows the
structure for a DQN model. Where

e 5, a; and r, are the state, action and reward at time ¢.

o s;41 is the state reached after taking action a; in state s;.

« y is the discount factor that determines the importance
of future rewards.

e € is the probability of selecting a random action
(exploration).

. Q(s, a;6;_1) is the action-value function estimate of the
target network, which has weights 6;_.

o D is the replay memory, which stores a fixed-size buffer
of transitions (s;, a;, i, Si+1)-

e M is the size of the mini-batch, which is a randomly
sampled subset of the transitions in the replay memory.

o ; is the target value for the i/ transition in the mini-
batch.

o L(6;) is the loss function, which measures the difference
between the target values and the predicted values of the
Q-function.

« C is the number of steps between updates to the target
network.

First, we define the action-value function Q(s, a;6), where

s is the current state, a is the current action, and 0 are the
weights of the value network. The goal of the DQN algorithm
is to learn the optimal action-value function Q*(s, a) that
maximizes the expected cumulative reward. At each time step
t, the DQN algorithm updates the weights 8; of the policy
network based on the loss function L(6#;), which measures
the difference between the predicted action-value Q(s;, a;;6;)
and the target value y;. The target value is calculated using the
Bellman equation.

yi =1 +y max Q(si+1, a';6i—1) 2D
a

where 6;_1 are the weights of the target network, which are
periodically updated to be equal to the weights of the policy
network. The loss function for the policy network is defined
as the mean squared error (MSE) between the predicted
action-value and the target value.

L) =Eyq, |01 = 01, 607 22)

The Adam optimizer is used to update the weights 6,
based on the gradient of the loss function with respect to the
weights:

dL(6;)

26,
where o is the learning rate. After getting the Q-functions
through the neural network, an e-greedy action selection
strategy is utilized to decide between ‘Exploration’ and
‘Exploitation’. This is done to explore the environment, since
the immediate best action might not provide the best result in
the long run. A decay function is applied to the € so that the
weightage of exploration depletes as the network learns better
strategies, and starts focusing on exploitation of the strategies
already found to provide better results.

b1 =0 + (23)
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FIGURE 3. (a-d) Comparison of training result in 4 Environments, (e) Simulation result of 4 environment for distance to goal (f) simulation

result for goal completion rate of 4 environment.

IV. SIMULATIONS AND EXPERIMENTS

A. EXPERIMENTAL SETUP

The experimental validations were performed using the
UR 5 Robot. It runs on Snapdragon 410 and Snapdragon
820 mobile processors, Windows IoT Core, and Android 8.
Jetson Nano was used for parallel processing. Intel RealSense
camera D435i is mounted on the 3 axis end-effector. We have
used Intel® RealSense™ D435 with a frame rate of 30 fps
and a resolution of 1280 x 720. Three far-field microphones
using Qualcomm@® FluenceTM PRO is used for sound
localization and recording. Python and MATLAB were used
to simulate and validate the individual components of the
system. Four different training environments are created
to train the robot to reach the goal points while avoiding
obstacles, and a comparison is made between the results
of each environment. The reward functions and training
hyper-parameters remains the same for each of the models.
Since the states observed in the environments are continuous
space rather than discrete, the observed states are divided
into discretized bins. The end effector position w.r.t. world is
discretized in 160 evenly distributed values ranging between
—800mm to +800mm. On the other hand, the positions w.r.t.
goal and obstacles are discretized in 160 unevenly distributed
bins ranging from —800mm to +800mm, where the size of
each bin starts with 20mm at each end and reduces to Smm
as it approaches the 0 position. The first environment *E-1"
uses a large observation space and a large action space. The
observation space of first environment is defined in (24) and
consists of 27 parameters.

SE—1 = (" Peoe(143): %% Poo(153):T Pee(153):™™ Pee(153))
(24)
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whereas the action space *‘A_ (E-1) ’ consists of 27 actions.
In the second environment ‘E-2' uses a larger observation
space but small action space. The observation space of second
environment, 'S_ (E—2)’ issameas ’'S_ (E-1) ’. But the
action space ‘A_ (E-2)’ is constrained to only 7 actions,
i.e., forward and backward translation in only one axis at
a time and one action of staying still. Thus, reducing the
possible choices and making the decision easier. The third
environment ‘E-3’ consists of larger action space, but reduced
observation space. The goal is to get the maximum useful
information using minimum data. Since the end effector can
only collide with one obstacle at an instant of time, it was
not necessary to always keep track of all the obstacles. Thus,
only the distance from the obstacle closest to the end-effector
at time step ‘t’ was considered in the observation space. The
new observation space is defined as

SE—3 = (Y Poe(153), C%U Pog(153),c105510bs16cle p.30) (25)

The fourth environment ‘E-4’ uses the smaller obser-
vation space as well as smaller action space, thus making
the computation and decision making easier. The observation
space *S_(E-4)’ is same as ‘S_ (E-3) ' and the action
space ‘A_(E—4)’ issameas ‘A_(E-2)’

B. TRAINING PARAMETERS
The following parameters were used for the training model:

1) Policy network and Value networks with input size of
[1,12] for larger observation space and [1,9] for smaller
observation space

2) One fully connected Dense layer with 128 nodes and
ReLU activation,
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3) One fully connected Dense layers with 64 nodes and
ReLU activation
4) An output layer of size 27 with linear activation for
larger action space and size 9 for smaller action space
5) Epochs = 12000
6) epsilon=1.2 with a decay rate of 0.99885 in each epoch
and and increment factor of 1.004 at each step in an
epoch
7) Batch_size = 256 for sampling from ‘Replay Buffer’
8) ‘Replay Buffer’ with 40000 entries
9) Network_learning_rate = 0.0003
10) Gamma = 0.96 (Discount factor)
11) Weights update rate for value network = 25 steps
12) Reward parameters: Gy, = 10, Ry = 50, R, = 1000, d,
=150, Oy, = 80, O, =200.G;, =5, zy = 80, Gj, = 100.
All the 4 environments were trained for 12000 episodes.

C. EXPERIMENTAL RESULTS

Fig. 3(a-d) shows the comparison of training results and
Fig. 3(e-f) shows the comparison of simulation results of
the 4 E1- E4 training environments for rewards attained, train-
ing losses in the policy network, the final distance reached
from the goal point, and the percent of goal completion
respectively while learning from 0 to 12000 episodes. It is
observed that the environment E3 with smaller observation
and large action space have better goal completion rate
of 0.878 compared to others (E1 having 0.768, E2 having
0.794 and E4 having 0.854). The trained models were tested
for 500 episodes each and compared together along with
the results of path planning with Bezier interpolation [33],
[34] without safety planning using reinforcement learning.
Since the goal of these models was to ensure safety by
avoiding collisions, Fig. 3(e) shows the closest distance
with the obstacles in the four environments, while a green
line represents a safe distance of 80mm from the obstacles.
Fig. 3(f) shows the comparison of 4 environments along
with Bezier curve interpolation path planning for the final
distance reached from the goal and the completion rate. The
E3 environment produced the best results with an average
final distance of 74mm from the goal while the others El
having 143mm, E2 having 125mm and E4 having 99mm
of distance from the goal. A comparative study explores
three algorithms: Gradient Descen t [30], Improved Artificial
Potential Field (IAPF) [18], [35], and Rapidly Exploring
Random Tree Star (RRT*) [31]. The points, gsq+(10, 70, 15),
Gg0al(70,30,5), and a complex environment with four
obstacles: 01(30, 55, 20), 0»(25, 30, 20), 03(52, 50, 20),
04(55, 20, 20). Diverse simulations performed offer compre-
hensive algorithmic insight.

1) VARYING NUMBER OF OBSTACLES

In Case 1 (Table 4) as shown in Fig. 4(a-d) with varying num-
ber of obstacles from 1 to 4, IAPF (K, = 0.03, K,y =0.1),
performs better than Goal Directed Approach (GDA) and
RRT*, reaching the goal in 4.7s. IAPF outperformed GDA
by 37% and RRT* by 9% in obstacle-rich environments.
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TABLE 1. Varying number of obstacles.

Obstacle | Obstacle Time to|Time to|Time to

Count Positions | Goal- Goal- Goal-
IAPF GDA RRT*

1 [o} 4.7s 7.56s 5.12s

2 O1_2 4.7s 7.57s 5.81s

3 O1_3 4.7s 7.51s 5.72s

4 O1_4 4.7s 7.62s 6.2s

TABLE 2. Varying size of multiple obstacles.

Size of Obsta- | Time to Goal- | Time to Goal- | Time to Goal-

cles IAPF GDA RRT*
2cm 4.68s 7.65s 5.88s
2.5cm 4.69s 7.61s 6.08s
3.0cm 4.7s 7.70s 6.20s
3.5cm 4.72s 7.74s 6.15s

TABLE 3. Multivariate scenario.

Obstacle Size | Time to Goal- | Time to Goal- | Time to Goal-

IAPF GDA RRT*
2,2.5,3,3.5cm | 4.69s 7.54s 6.14s
2.5,2,3,3.5cm | 4.68s 7.58s 6.29s
3,3.5,2,2.5cm | 4.72s 7.57 5.77s
3.5,3,2.52cm | 4.70s 7.74s 5.93s

TABLE 4. Varying height.

Obstacle Size | Time to Goal- | Time to Goal- | Time to Goal-

IAPF GDA RRT*
25,20,18,15cm | 4.7s 7.61 5.57s
20,25,18,15cm | 4.7s 7.61 5.34s
18,15,20,25cm | 4.7s 7.61 6.58s
15,18,25,20cm | 4.7s 7.61 7.32s

2) VARYING SIZE OF MULTIPLE OBSTACLES

In Case 2 (Table 2) as shown in Fig. 4(e-h), we assessed how
varying obstacle radii (2-3.5cm) affected algorithmic per-
formance with four obstacles. IAPF consistently completed

tasks in 4.68-4.72s,showcasing its real-world versatility with
a 35% and 10% lead over GDA and RRT*, respectively.

3) MULTIVARIATE SCENARIO

In Case 3 (Table 3) as shown in 4(i-m), IAPF excelled,
achieving times between 4.68s and 4.72s (Kyy =0.03, K, =
0.1). GDA required 7.54-7.74s with specific parameters
(Krep =900, Ky = 1/150, dy = 4), while RRT* performed
competitively, ranging from 6.14s to 6.29s. On average, IAPF
outperformed GDA by 39% and RRT* by 4%.

4) VARYING HEIGHTS

In Case 4 (Table 4), IAPF consistently reached the goal in
4.7s, unaffected by varying obstacle heights. GDA took 7.61s,
and RRT* ranged from 5.34s to 7.32s. On average, IAPF
outperformed GDA by 37% and RRT* by approximately
21%, showcasing its adaptability to differing obstacle heights
in complex settings.

5) VARYING K (ATTRACTIVE) & VARYING K (REPULSIVE)

In Case 5 (Table 5 & Table 6), comparing IAPF and GDA
with varying K, and K., constants at given locations as
shown in Fig. 4(n-p), IAPF consistently reached the goal
faster, highlighting its responsive dynamics. GDA had longer
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FIGURE 5. Goal completion rate comparison of DQN and Bezier models.

TABLE 5. Varying K(attractive).

Kan Krep Time to | Kgr Krep Time to
IAPF IAPF Goal- GDA GDA Goal-
IAPF GDA
0.03 0.1 4.7s 1/300 600 7.48s
0.04 0.1 3.51s 1/320 600 7.52s
0.05 0.1 2.79s 1/340 600 7.56s

times of 7.48s to 7.55s, underlining its sensitivity to discrete
updates.

The 4 trained models are tested in a real-world scenario see
Fig. 7 with the URS as task robot (R1), human worker (H)
and OpenManipulatorX as helper robot (R2) as the obstacles
for 50 episodes each. Random goal position is created in
every episode and real-time dynamic obstacles are tracked
by the camera. Fig. 6 (a-d) gives the comparison between
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TABLE 6. Varying K(repulsive).

Kan Krep Time to | Ku Krep Time to
IAPF IAPF Goal- GDA GDA Goal-
IAPF GDA
0.04 0.1 3.51s 1/300 600 7.48s
0.04 0.2 3.51s 1/300 650 7.51s
0.04 0.3 3.52s 1/300 700 7.55s

the simulation and the experimental results. In simulation,
all different environments give similar performance for
distance to goal and goal completion rates Fig. 6(a-b), but in
experimental results, the environment with more observation
performed less than the environment with more observation
irrespective of their action space Fig. 6(c-d). The limitation
of the field of view of the camera and the presence of
dynamically moving obstacles in the workspace created a
deviation in results in simulation and real-world experiments.
It was evident that the environments with smaller observation
space performed much better.The E3 environment with the
small observation space and a large action space produced the
best results Fig. 5 by reaching an average distance of 73mm
from the goal with a goal completion rate of 0.866 where
as E4 reached the goal at 128mm with a completion rate
of 0.77, E1 has reached the goal at a distance of 204mm
with a goal completion rate of 0.623 and E2 has reached
the goal at 293mm with a completion rate of 0.467. As the
aim was to provide a collision-free path, Fig. 6(a-f) show
the closest distance reached from the obstacles in different
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FIGURE 6. (a-b) Experimental results for distance and goal completion rate, (c-f) Experimental results for different cases.
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FIGURE 7. Comparison of path planned by DQN algorithm under dynamic
obstacles in real-world experiment scenario.

observation space. It was observed that the trained models
successfully avoided collisions in real-world experiments.
The model with small observation and large action space
produced the best results and is implemented in the final
experimental setup with all the modalities working together.
The camera simultaneously reads the environment states and
RL model plans a safe action after each step for the URS
to reach the goal without any collision and joint trajectory
planning helps to smoothen the motion between each action.
But since the trained model in simulation could reach till a
distance on 74mm on average from the goal point, thus to
attain better accuracy along with the safety, a goal proximity
zone is created around the goal position. The proximity zone
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is a spherical volume of radius 80mm, encircling the goal
point. The URS uses the safe path planned by DQN model
to reach the proximity zone while avoiding collision. Upon
reaching the goal proximity zone, the robot uses the point-to-
point joint trajectory control to cover the last 80mm and reach
the robot.

V. CONCLUSION

A new method has been developed for the collaboration of
multi-robot and human operator in a shared workspace, which
is bio inspired by the collaborative behavior of moray eels
and coral groupers. Gestures and voice based commands are
used for the communication between the 3 agents. A logistic
regression model is used to train the two gesture classifier
models, one for each robot, and SSD_ResNet model is
used to train the object classifier model. A DQN model is
trained to identify keywords from voice commands of the
human operator. For obstacle avoidance, a Deep Q Network
reinforcement learning approach is used to train the model
on 4 different virtual environments and the results are then
compared. It is observed that the environment with reduced
observation space but larger action space produced the best
results with the average final distance of 74.0mm from the
goal position. The trained model is able to avoid obstacles
and reach the goal in real world test scenarios as shown in
Fig. 7. Also on comparing with 3 different Algorithm (IAPF,
GDA, RRT#) its observed that IAPF outperformed in time
taken to reach goal in all the 4 environments Fig. 4(q). Also,
while comparing in terms of goal completion time IAPF
performed with a median time of 4.7s while GDA performed
with a median time of 7.62s and RRT* with 6.22s in different
scenarios. The proposed approach is then compared with
the trajectory path planning with Bezier curve interpolation
approach without reinforcement learning. Although joint
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trajectory path planning provided a significantly better result
in achieving the goal, it caused multiple collisions with
obstacles. Thus, since the primary objective of our approach
was to ensure safety by avoiding collision, the proposed
approach successfully avoided any collision in the path
and also ensured an intuitive collaboration between human
operator and two robots in a shared workspace.

Future work includes a comprehensive comparative analy-
sis of different reinforcement learning models, beyond DQN,
will be conducted to identify optimal architectures for this
specific task. Furthermore, a quantitative evaluation of the
smoothness of the path will be incorporated, potentially using
metrics such as curvature and jerk, to ensure more natural
and efficient robot movements. A detailed analysis of the
computational complexity of the proposed approach will be
performed, considering factors such as training time and
real-time execution speed, to assess its scalability for larger
and more complex environments.
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