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ABSTRACT

Measurements acquired from distributed physical systems are often sparse and noisy. Therefore, signal processing and system identification
tools are required to mitigate noise effects and reconstruct unobserved dynamics from limited sensor data. However, this process is particu-
larly challenging because the fundamental equations governing the dynamics are largely unavailable in practice. Reservoir Computing (RC)
techniques have shown promise in efficiently simulating dynamical systems through an unstructured and efficient computation graph com-
prising a set of neurons with random connectivity. However, the potential of RC to operate in noisy regimes and distinguish noise from the
primary smooth or non-smooth deterministic dynamics of the system has not been fully explored. This paper presents a novel RC method
for noise filtering and reconstructing unobserved nonlinear dynamics, offering a novel learning protocol associated with hyperparameter
optimization. The performance of the RC in terms of noise intensity, noise frequency content, and drastic shifts in dynamical parameters
is studied in two illustrative examples involving the nonlinear dynamics of the Lorenz attractor and the adaptive exponential integrate-and-
fire system. It is demonstrated that denoising performance improves by truncating redundant nodes and edges of the reservoir, as well as
by properly optimizing hyperparameters, such as the leakage rate, spectral radius, input connectivity, and ridge regression parameter. Fur-
thermore, the presented framework shows good generalization behavior when tested for reconstructing unseen and qualitatively different
attractors. Compared to the extended Kalman filter, the presented RC framework yields competitive accuracy at low signal-to-noise ratios
and high-frequency ranges.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0273505
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Reconstruction of unobserved dynamical responses from sparse
and noisy observations is a crucial and challenging task when
dealing with unknown nonlinear systems. Filtering techniques
have commonly been employed to handle such problems, but
they often demand a thorough understanding of the underly-
ing processes, such as the governing equations in terms of a
physics-based state-space model. This paper presents a novel
truncated reservoir computing approach to simulate nonlinear

dynamics and implicitly recover the underlying physics from
noisy measurements. It is proposed that reservoir computers
can effectively distinguish noise from dynamics and reconstruct
unmeasured dynamical responses from noisy ones without hav-
ing to involve any supplementary noise reduction techniques.
While the Reservoir Computing acts as a model-free mathemat-
ical modeling technique, it offers competitive accuracy compared
to the conventional filtering techniques at certain noise levels.
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. INTRODUCTION

Measurements of physical quantities from distributed systems
are often noisy and incomplete in covering all response quantities.
This issue has inspired the development of a wide range of denois-
ing and reconstruction methods, which fall under two major
classes, namely, model-free and model-based methods, depending
on whether they demand prior knowledge of underlying physics. A
good example of the former is wavelet-based denoising,’ which does
not require incorporating physical knowledge explicitly, whereas
stochastic filtering techniques, including Kalman-type filters,” often
demand a general understanding of the physics, characterized via
state-space models. However, the foundation of both methods pri-
marily rests upon a key hypothesis, implying that the desired sig-
nal and the noise have distinguishable low- and high-dimensional
features in a specific latent space.

Reservoir computing (RC) is a computational framework
rooted in the broader domain of recurrent neural networks (RNNs)
and dynamical systems theory. It leverages the dynamics of a fixed,
randomly initialized high-dimensional system, known as the “reser-
voir,” to transform sequential input data into a latent space repre-
sentation. In this paradigm, only the output layer is trained through
ridge regression,” which linearly combines the reservoir states to
minimize prediction errors. This significantly reduces the computa-
tional complexity associated with the training, mainly because only a
system of linear equations needs to be solved coupled with a proper
regularization. RC has been particularly effective in time-series
processing,’~ speech recognition,”” and chaotic system modeling*~"’
due to its ability to exploit the reservoir’s rich temporal dynamics
and memory capacity. Heuristics of building the reservoir formu-
lation, e.g., including an output feedback or a delayed input, have
been shown to improve the results.'’ The generalization behavior of
RC has recently been studied, where an RC approach is employed
for making predictions on unexplored attractors.'>"* However, the
optimal size and structure of the reservoir remain an open question
since reservoir networks are mostly initialized considering random
connectivity. Only lately researchers have started investigating the
structure-function relationships to discover network properties that
are beneficial for a given learning task within the RC framework.'*"”

Recent research has explored the impact of noise on the RC’s
performance, revealing its strength and weaknesses for signal recon-
struction across various contexts. Rarely RCs have been employed
specifically for simultaneous denoising and signal reconstruction
tasks. Semenova et al.'® have studied the propagation of noise from
the input nodes toward the reservoir outputs in recurrent and mul-
tilayer networks. Estébanez et al.'” have shown that, while noise
can degrade the performance of RC-based analog computations, its
introduction in the training phase can lead to improved robust-
ness and accuracy. Similarly, Wikner et al.'* have shown that adding
noise to the training data can improve the stability of predictions.
Rohm et al.”” have shown that an RC trained based on a single
noisy trajectory may still be able to reproduce unexplored attrac-
tors. Nathe et al.”’ have investigated the impact of measurement
noise on the performance of RC when used for reconstructing
chaotic systems. Lee et al.”! have employed RC along with a non-
linear forward operator for efficient image denoising. Choi and
Kim?” have separated the signal from noise as the predictable part
modeled by RC and acquired information about the additive or
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multiplicative nature of the noise, as well as noise statistical prop-
erties. Despite these advances in RC-based denoising approaches,
a thorough investigation is still required to explore the potential
of RC for discarding different noise processes and factors affecting
denoising performance.

This work introduces a novel learning protocol for denoising
and reconstruction of nonlinear dynamics based on a truncated RC
framework. This approach begins with training the reservoir on a
specific dataset using the conventional ridge regression, followed
by a new optimization strategy that calibrates key hyperparameters,
including the ridge regression coefficient, leakage rate, and spectral
radius, aiming to enhance performance. Once the optimized reser-
voir is obtained, we truncate redundant nodes and edges according
to the model accuracy on the validation dataset using a novel prun-
ing strategy. Two numerical examples are provided to demonstrate
the proposed protocol and study the impact of noise intensity and
frequency content on the performance of the RC. The generaliza-
tion behavior of the proposed networks is demonstrated against
drastic changes in the dynamical parameters and Signal-to-Noise
Ratio (SNR). Comparison with the Extended Kalman Filter (EKF),
a near optimal filter,” is provided for the Lorenz attractor exam-
ple, considering different noise levels. Finally, the method is further
demonstrated using the non-smooth deterministic dynamics of the
adaptive exponential integrate-and-fire (AdEx) model.

This study primarily investigates the potential of reservoir
computing for denoising and state reconstruction. In addition, it
applies hyperparameter optimization and explores the pruning of
redundant nodes and edges. The pruning of small reservoir net-
works, specifically the removal of redundant nodes and connections,
has received relatively little attention in previous studies. Notably,
Dutoit et al.”” have shown that the pruning of the readout nodes is
an effective strategy to improve the prediction accuracy and reduce
hardware and software computational demands. Scardapane et al.*
have characterized the significance of reservoir synapses according
to the correlation between the input and output of the neurons and
specified the significance of neurons based on the importance of
their neighboring synapses. Then, based on this criterion, they have
presented a pruning approach for reducing the reservoir dimen-
sionality without calculating the error gradients.” Haluszczynski
et al.” have shown that removing the nodes with negative impact on
the reservoir’s response to the input can enhance the accuracy and
reduce instabilities. Compared to these works, this study provides
a more systematic and generic approach to reducing the reservoir
nodes and edges.

The remainder of this paper is organized as follows: First, the
mathematical foundation of the RC framework will be reviewed,
presenting the conventional ridge regression method. Then, the
reservoir’s hyperparameters will be identified, for which an opti-
mization approach will be presented. Truncation of the RC through
a pruning approach will be discussed, and further comparisons will
be made between the proposed RC framework and conventional
filtering techniques from a theoretical standpoint. The presented
approaches will be demonstrated using two nonlinear systems, aim-
ing to address simultaneous state reconstruction and denoising
tasks. Finally, further discussions and conclusions will be drawn
about the denoising performance of the proposed truncated RC
framework.
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Il. RESERVOIR COMPUTING FRAMEWORK
A. Echo State Network

Several neural network architectures are available for con-
structing reservoir computers, among which Echo State Network
(ESN)** and Liquid State Machines*** are perhaps the most widely
used ones. In this paper, ESN is employed for creating a reservoir
whose formulation is described in terms of the latent dynamical
states,

r(tip) = (1 — )r(t) + o Wt () + Wipu(t) +b), (1)

where f(.) is the activation function, considered tanh(.), r(%;) is
the reservoir state at time #;, o is the leakage rate representing
how much of the preceding state contributes to the present state,
Wi, is the reservoir weight matrix, considered a random weighted
Erdés-Rényi (ER) graph matrix with p internal connectivity proba-
bility, Wi, is the input weight matrix scaled by a factor of ¢, u(t)
is the input vector at time #;, and b is the bias term. Notably, an
important parameter of the reservoir matrix (W) is its spectral
radius, denoted by y and calculated as the greatest eigenvalue of the
reservoir matrix.”

Given the above equation, a recursive formulation is avail-
able for calculating the reservoir states. By collecting all states
into a matrix like R, = [r(t;),...,r(t,)]", simulated responses
of the physical system at different time steps comprised in
Y, =[yt),... ,y(t,,)]T can be described as

Yn = Rnwout~ (2)

In the training phase of the RC framework, it is customarily assumed
that the reservoir is fixed, whereas the readout matrix W, must be
trained. Thus, the optimization will simplify into a linear regression,
which requires minimizing the following loss function:

L= ¥, — RaWoull? + A Woull2, 3)

where Y,, is a vector of actual measurements fed into the RC as input.
This formulation, referred to as linear ridge regression,” can readily
calibrate the readout nodes through an explicit solution, i.e.,

Wou = (RIR, + A1) 'RIY,, (4)

where W, is the optimal readout matrix and A is the ridge coeffi-
cient, often selected to be a small coefficient like 1078, In Eq. (3), it
is evident that the first term, ||Y,1 — R, W,y |3, provides a measure
of fitting accuracy, whereas the second term, A[|[Woy13, involves a
penalty over the non-zero elements of W, implementing a smooth
sparsity. Note that in problems involving different levels of noise, A
must be inferred properly based on the data.

B. Proposed learning protocol

The reservoir is assumed to take noisy and incomplete mea-
sured data U, = [u(ty), ..., u(t,)]" as the input and return filtered
and complete states Y, as the output. Figure 1 provides an overview
of this specific implementation of the reservoir. At first glance, it
might be difficult to train such an RC since both noisy and clean
data are required in the training phase. However, such data can
be obtained via computer simulations wherein the dynamics are
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considered entirely known for specific chaotic orbits. Another possi-
bility is to employ simpler system dynamics for acquiring noisy data
and attempting to clean those measurements through conventional
filtering techniques.' In both cases, the RC trained based on these
datasets is anticipated to generalize across a large neighborhood
such that it can be employed for the denoising and reconstruction
of unexplored nonlinear dynamics while being trained on limited
clean data.

C. Hyperparameter optimization

The RC framework presented in Sec. IT A is straightforward to
follow and implement because it only requires performing a lin-
ear regression for the training of the readout unit. However, the
performance of the reservoir computer often benefits from the fine-
tuning of the reservoir and optimizing its underlying parameters.
Such parameters include the number of neurons, leakage rate, spec-
tral radius, input scaling, and node connectivity, whose optimization
can be performed through a greedy algorithm that minimizes the
loss function of Eq. (3) for the underlying parameters while consid-
ering a held-out dataset. To formalize such an optimization, let the
hyperparameters of the RC be denoted by ¢, specifically comprising
the number of reservoir nodes (N), the leakage rate («), the spec-
tral radius (y), the input scaling ratio (¢), and the reservoir internal
connectivity rate (p). The optimal values of these hyperparameters
should be determined from

¢ = argmin (L), 5)

where the loss function is given by Eq. (3). It should be
noted that this minimization might encounter computational dif-
ficulties if gradient-descent-based optimization approaches’ are
employed. In effect, calculating the gradients requires implement-
ing backpropagation™ through the hidden states of the reservoir,
which is often deemed challenging if not impossible, especially when
the number of time steps in the training data is large.”” Therefore,
grid-based™ or random search algorithms™ are often preferred in
the literature. In this study, surrogate-assisted optimization tech-
niques are employed along with cross-validation algorithms, which
avoid computing the gradients™ using the Python-based package
scikit-optimize.”

D. Tuning the ridge coefficient

The ridge regression coefficient (1) becomes important when
dealing with noisy data. This coefficient is inversely proportional
to the level of noise contained in the data, and in the machine
learning literature, it is often calibrated through cross-validation
techniques.”® It should be noted that this coefficient can also be
treated as a hyperparameter and calibrated via Eq. (5). However, due
to the unknown nature of noise level and the wide range of poten-
tial values for this parameter, the inclusion of this parameter in the
optimization algorithm might not be feasible. Therefore, an empiri-
cal optimization algorithm is preferred, wherein the optimal value of
this parameter is selected from a relatively coarse one-dimensional
grid. For this purpose, a set of exponents of ten is introduced to the
cross-validation algorithm, i.e., {10715,107',...,10%}, and then,
the best choice is specified through computing the cross-validation
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FIG.1. Overview of the proposed RC pro-
tocol for denoising and reconstruction of
nonlinear dynamics. Blue, red, and orange
circles show reservoir nodes, input nodes,
and readout nodes, respectively. The blue
arrows show the edges of the reservoir cho-
sen randomly. The solid black arrows show
the input connection to specific nodes of
the reservoir, and the black dashed arrows
show the readout connections. (a) Incom-
plete and noisy dynamics of the Lorenz
system considered as the input to the RC.
(b) Reproduced Lorenz dynamics obtained
through the RC framework. (c) Comparison
of the input and output of the reservoir in
the phase space, representing how three-
dimensional dynamics (blue curve) are
reconstructed from two-dimensional noisy
signals (orange curve).
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score. Although this approach might not be precise in terms of
simultaneously optimizing all hyperparameters, it offers signifi-
cant computational merits as it retains the closed-form solution of
Eq. (3).

E. Pruning and evolution mechanisms

The above optimization approach can be used to specify an
optimal number of nodes for the RC while edges, representing the
internal connectivity in the reservoir, are selected at random. Due
to this arbitrary initialization, such an RC might not be in its mini-
mal form, and there could be redundant nodes and edges, degrading
the prediction performance. In this sense, it is reasonable to explore
ways to reduce redundancies through truncating unnecessary nodes
and edges.'""” Attaining minimality in the size and structure of the
reservoir is also important for hardware development when a digi-
tal circuit is going to be designed for implementation via a physical
RC.” Therefore, to remove ineffective nodes and edges, one can
first train the reservoir and its hyperparameters, considering a spe-
cific number of nodes and random edges, and then perform an
exhaustive search for discarding a predefined percentage of nodes
and connections, subject to satisfying a performance metric. The
second stage can be implemented considering another optimization
scheme, where the mean-squared error (MSE) calculated for the val-
idation dataset should be minimized while the pruning of nodes and
edges takes place. However, this pruning strategy requires establish-
ing a ranking mechanism across the nodes and edges so that the
elimination can start from the least influential nodes. Five measures
are considered for weighing the nodes’ importance:

« Absolute mean state: The absolute average of the latent states is a
metric to assess a node’s activity over the entire training period.
Higher average values indicate greater node activity.

« State variance: A higher variance in nodal states may indicate
higher node activity.

o Number of edges: Nodes with more connections may have a

greater influence on the RC’s performance.

Clustering: Nodes with a larger clustering coefficient can be more

important as they better connect neighboring nodes.

Page-rank: This web-inspired scoring approach integrates the

influence of inbound and outbound edges, as well as the quality

of edges as measured in terms of their relative weight, frequency
of interaction, and contextual relevance within the network.*’

The above measures can be normalized to show a score in each
category between zero and one. Then, the summation of these fac-
tors can be used for selecting the nodes nominated for elimination.
Based on a preselected truncation percentage, redundant nodes will
be eliminated, and the RC hyperparameters will be recalibrated. This
process continues until a target performance is either achieved or
the maximum number of trials is attained. Here, we hypothesize the
usefulness of such metrics based on our intuition, but choosing other
metrics for pruning nodes and edges is also possible. However, the
decision whether to remove or retain the nominated nodes or edges
must be made based on the performance.

In contrast to the pruning approach, we might encounter cases
in which the number of nodes appears insufficient to describe the
dynamics properly, and the performance can still be improved by
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adding extra nodes and connections. Although increasing the num-
ber of nodes can be an option always available at the expense of
extra computational costs, the performance increase may be limited
since nodes and edges are initially selected at random in the classi-
cal RC framework. Additionally, the presented pruning approach is
essentially a backward truncation approach, which might not cause
a significant change in the performance indices. In such cases, it is
reasonable to start with a simple RC with minimum dimensional-
ity and consider an evolutionary approach for the growth of the RC
toward a more complex network architecture.”” This evolution can
be implemented by following the same greedy approach as above,
but with one difference, that is, the addition of nodes and edges shall
undergo a similar post-processing optimization.

11l. DISCRETE-TIME EXTENDED KALMAN FILTER

To provide a competitive baseline, we consider a qualitatively
different filtering technique based on explicit modeling of the system
dynamics. A method widely applied to nonlinear systems is EKF, a
well-known tool for the denoising and reconstruction of dynamic
responses from incomplete noisy measurements.” EKF operates on
state-space models of distributed systems and requires a clear math-
ematical model of the system to discard noise. In Appendix A, a
mathematical exposition of the EKF is provided for reference.

It should be noted that the most significant demerit of these
methods lies in the fact that they require a thorough understand-
ing of the dynamics in terms of a multi-dimensional state-space
model. In contrast, the RC framework presented earlier is a model-
free approach, which does not require any explicit dynamical model
and provides a general mathematical framework to implicitly learn
the dynamics directly from the data. In Sec. I'V, we benchmark the
results of the proposed RC framework against the EKF, showing how
these methods compare in terms of validation accuracy.

IV. RESULTS
A. Lorenz chaotic dynamics

The Lorenz system is attractive to study in this work as it quali-
tatively exhibits different dynamics along the period-doubling route
to chaos (see Appendix B for its governing equations and details).
For generating training data, 0 = 10, p = 28, and 8 = 8/3 are con-
sidered. By employing a time interval of At = 0.005s and a record-
ing duration of T = 50s, discrete-time dynamical datasets were
generated considering initial conditions xyp = yo = zy = 1 and pol-
luted with specific levels of additive Gaussian White Noise (GWN).
Across these datasets, the intensity of noise is considered variable
as the noise standard deviation ranges from 0.25% (52 dB) to 100%
(0dB) of the root-mean-square (RMS) of the original signal’s com-
ponents. The noise-contaminated recordings of x(f) and y(f) are
considered observables of a hypothetical measurement system and
used as the input to the reservoir computer, whereas the clean ver-
sion of all states is regarded as its output during training (Fig. 1).
Hence, the RC must learn both denoising the inputs and recon-
structing a third state. Given this specification, the generated data
of t € [0,255] act as the training data, and that corresponding to
t € [255,505] serve as the validation set. The reservoir hyperpa-
rameters are optimized through searching within specific intervals,
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including the leakage rate from o € (0.01,1), the spectral radius
from y € (0.01,1), the input scaling from ¢ € (0.1,2), and the
internal connectivity of reservoir nodes from p € (0.1,0.9).

Figures 1(a) and 1(b) represent the inputs and outputs of the
RC for reconstructing Lorenz chaotic dynamics. The results pre-
sented correspond to a reservoir computer whose hyperparameters
and readout nodes are first trained, with its internal network being
then truncated through the method explained above. The output of
the reservoir is considerably smoother than the original noisy sig-
nals (Fig. 1). The comparison of the noisy and reproduced dynamics
in phase space [Fig. 1(c)] shows the capability of RC in separating
the dynamics of noise and responses.

1. Optimization of nodes and edges

This section examines how the hyperparameter optimization
and node removal approach can enhance the reservoir performance,
particularly compared to a classical RC, in which the edges are ran-
dom and only readout nodes are subject to calibration. The MSE is
considered a measure of accuracy when the same validation set is
used to compare different training schemes. However, due to the
difference in the order of magnitude of the responses, a normal-
ization over the mean-squared of the signal is included, yielding a
dimensionless measure as follows:

”?n - Rnwout”%

NMSE = =
Y13

(6)

Given the above measure, Fig. 2 shows improvement in the loga-
rithm of NMSE for three training strategies considering different
SNRs in the validation dataset. Note that SNR is defined here as
the RMS of the signal over the RMS of noise. The vanilla reser-
voir, whose readout nodes are only trained, provides the largest
NMSE, whereas further optimization of the reservoir can improve
the accuracy up to several orders of magnitude in some cases. More
specifically, the hyperparameter tuning presented above can consid-
erably reduce the prediction errors, and truncating nodes and edges
can further improve the accuracy. However, this superior prediction
performance comes at the expense of extra computational costs.

The performance of these methods is also compared with that
of the EKF. As can be seen in Fig. 2, the presented truncated RC
can outperform EKF at SNRs of 1 and 4 although no explicit knowl-
edge of the dynamics is introduced to the RC, which is contrary to
the EKF that relies on the accuracy of the state-space model. Based
on this result, it can be concluded that, specifically at low SNRs, the
RC can offer competitive accuracy when compared with the EKF.
However, it should be noted that this comparison is made while the
EKEF is in an advantageous position. In effect, the EKF uses physics-
driven state-space models to discard noise, whereas the RC explicitly
separates the desired dynamics from noise through the proposed
learning protocol.

2. Characterization of denoising gain

In this section, we investigate when the reservoir is trained on
a dataset with a specific SNR and how its accuracy generalizes when
tested on validation datasets with smaller or larger SNRs. For this
purpose, RCs and their hyperparameters are trained using datasets
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FIG. 2. Performance evaluation of different training methods considering varying
SNRs. Trained RC: Only the readout nodes of the RC are updated through ridge
regression using 500 reservoir nodes with random edges. Tuned RC: The reser-
voir hyperparameters, e.g., leakage rate, spectral radius, and node connectivity
ratios, were subjected to optimization while training the readout nodes as well
(the number of reservoir nodes was fixed at 500). Truncated RC: The tuned RC is
further optimized by reducing nodes and edges through a separate optimization.

contaminated with varying levels of noise. Then, the calibrated RCs
are used for denoising and reconstruction of held-out datasets with
different levels of noise. To compare the denoising capability in
these cases, a gain ratio is introduced as follows:

SNRReconstructed

, 7
SNRTest ( )

Denoising Gain =

where SNRReconstructed T€presents the amount of noise present in the
predictions made by the RC, and SNRr. represents the amount of
noise in the test dataset. When this index is greater than 1.0, it can be
concluded that the RC can discard the noise, whereas values equal to
or smaller than 1.0 represent cases where the RC adversely increases
the amount of noise in the reconstructed data. The color-map matrix
in Fig. 3 visualizes the denoising gain, where the green and red
colors show positive and negative denoising performance, respec-
tively. Values on the minor diagonal of the matrix show cases where
the training and testing datasets have had the same level of noise
intensity. The best denoising gain is achieved when the training and
testing datasets correspond to the same level of noise. Additionally,
the denoising gain is better for large SNRs. For SNRy,i, = 100 and
400 that indicates the level noise in the training set, the RC is rather
unsuccessful in denoising the signals, although it still has merits in
terms of reconstructing the unobserved dynamics. Additionally, the
color map is completely non-symmetrical, which implies that, for a
specific level of noise contained in the test dataset, those RCs trained
on smaller noise perform relatively better.
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FIG. 3. Denoising gain matrix obtained for training and testing datasets with dif-
ferent levels of noise. Note that 10 separate reservoirs are trained and tested,
and the average gain values are presented to reduce the bias due to random
initialization of the RC.

3. Generalization of denoising performance

As demonstrated, the accuracy of the RC depends on the inten-
sity of noise contained in the data. Similarly, it can be concluded that
the accuracy might also be related to the Lorenz qualitative dynam-
ics. To analyze such effects, the denoising gain is presented in Fig. 4
for validation datasets generated with the Prandtl parameter varying
within o € [0 — 20], specifically when the RC and its hyperparam-
eters were trained on SNR = 4 and o = 10. As can be seen, the best
gain is achieved in the vicinity of the selected Prandtl parameter
(0 = 10) used for training, considering the same noise level as the
training data. Within a relatively wide neighborhood of ¢ = 10, the
gain is still significantly larger than one, although the denoising gain
decreases as we deviate from the center. However, there is a pattern
change for values of o < 4.0, where the denoising gain increases.
This observation is attributed to the gradual change in the nonlinear
dynamics in the vicinity of o = 4.0, as demonstrated in the bifur-
cation diagram of Fig. 4(c). This figure highlights that the denoising
gain also depends on the nonlinear dynamics considered for training
the RC, and it will not necessarily show monotonous behavior as we
deviate from the neighborhood of the parameter used for training
the RC.

It is also worth investigating how the denoising gain varies
across the domain of the Prandtl parameter, considering two addi-
tional datasets for the training of the RC and its hyperparameters.
One dataset is generated using o = 8 with SNR = 1, and the other
is generated using the same parameters as before, i.e., 0 = 10 but
using SNR = 1. Note that all other factors are considered the same
as the original dataset. Figure 5 presents the denoising gain for the
validation datasets when the above settings are used for generating
the training data. It is clear that the denoising gain considerably
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FIG. 4. Generalization of denoising gain in terms of variation in Prandtl param-
eter. (a) Denoising gain is presented when different levels of SNR and Prandtl
parameters are examined for a given RC trained on a dataset with o = 10 and
SNR =4. (b) Phase space representation of a Lorenz attractor for specific choices
of o. (c) Bifurcation diagram showing variation in the maximum x(t). Results in
sub-figure (a) are averaged over 10 randomly configured RCs to reduce the impact
of randomly initialized RCs.

improves around o = 8 and particularly for SNR = 1, exhibiting a
better generalization performance across the parameter domain as
well. As can be seen, by including extra training data, it is possible
to enhance the denoising gain and obtain more accurate computing
reservoirs. This result promotes the potential of using a reservoir
network trained on a few simple chaotic orbits when applied for
reconstructing unseen nonlinear dynamics and highlights how the
denoising gain improves as additional data are included.

B. AdEx model

This section examines the performance of the proposed RC
framework when having stiff and non-smooth dynamics. For this
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6 purpose, the AdEx model is selected due to its bursting and adap-
--- SNR=1 --- SNR=10 —— SNR=100 tation behavior, which finds significant interest in studying insect
=== SNR=4 —— SNR=20 —— SNR=400 locomotion and sensory threshold.”! Appendix C presents the non-
57 A linear differential equations of this model, explaining the sensory

- 1 ~-"\ . . . L .
“7N g “=7IN behavior of the neurons in terms of the variation in the membrane

7
d

S Al S potential V(f) when driven by the current input I(f). The membrane

1
1 “~-
1 4 RN potential also depends on an independent variable, named adap-
[ . . . - . )
(e tation parameter w(f), simulating non-trivial firing and adaptation
! neuronal behavior.
AN Three different noise processes are considered, varying in terms
y S~ of the frequency content, comprising GWN, violet, and pink noise
_o=A ’ Sen processes. The first 200 ms is treated as the training data, whereas
! the next 200 ms is considered as validation data. Reservoir nodes are
not considered fixed and are released to vary between 50 and 100
to represent cases in which the number of reservoir nodes is vari-
able. Other hyperparameters are allowed to vary within the intervals
— : : specified earlier for the Lorenz attractor. According to Appendix C,
00 25 50 75 100 125 150 175 200 simulated data are generated at 100 kHz sampling rate for a period
g of 400 ms and polluted with 10% RMS measurement noise (20 dB).
) i ) o ) The simulated current is considered a step function starting at 10 ms
FIG. 5. Improvement in denoising gain when additional datasets with o = 8 and for a fixed interval of 390 ms, with a magnitude of 65 pA. Firing pat-
SNR =4 are included in the training data. Results are averaged over 10 randomly . . . . .
initialized RCs. terns are simulated through Dirac delta functions, implemented in
the adaptation parameter equation. Figure 6 shows the ground truth

Denoising Gain
w

0 b) ---- Noisy ---- Ground Truth ---- Denoised

c) ---- Noisy ---- Ground Truth ---- Denoised

0.00 0.05 0.10 0.15 O<2? 0.25 0.30 0.35 0.40
t(s

FIG. 6. Reproducing noisy measurements of the AdEx model through the proposed RC framework (SNR = 20 dB). The ground truth data appear in dashed blue lines,
representing a neuronal behavior subjected to an initial firing pattern, followed by subsequent adaptation. The noisy and denoised curves are shown in green and red colors.
(@) Membrane potential is shown subject to fixed current input and firing patterns triggered through Dirac delta functions. (b) Adaptation variable is specified in the same
substance as the input current with initial firing patterns and periodic spiking behavior.
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FIG. 7. Denoising performance comparison between different additive noise processes: (a)—-(c) GWN S(f) = Sp; (d)-(f) violet noise S(f) o f; (g)—(i) pink noise S(f) o
1/f. The left side subplots show the denoised membrane potential and adaptation variable in the phase space compared to the noisy ones. The middle column subplots
compare residual noise with the originally added noise in the phase space. The right side subplots show the averaged PSD of the residual and original noise processes.

membrane potential and adaptation variable along with dynamics
contaminated with GWN. The results of the pruned RC are also
shown in Fig. 6, presenting accurate results across both training and
testing datasets when compared with the ground truth. A substantial
amount of noise is discarded, and the dynamic patterns are made
more evident through the presented RC framework. However, the
most significant mismatch between the denoised and the ground
truth membrane potential prevails at the bursting intervals, where
sharp peaks are not well captured. This issue can originate from the
mathematical expression of ESN, which seemingly simulates smooth
dynamics better.

The GWN process contains the same level of noise across the
entire frequency band, but this assumption can be relaxed by consid-
ering colored noise. Thus, we investigate the denoising performance

under violet and pink noise, where the high- and low-frequency
components are dominant, respectively. The power spectral density
(PSD) of violet noise varies linearly with the frequency, i.e., S(f) o f,
whereas the PSD of pink noise is inversely proportional to the fre-
quency, i.e., S(f) o 1/f. Figure 7 compares the denoised dynamics
with the noisy ones in the phase space for the three noise processes.
The denoising residual errors are also indicated in the phase space
and the frequency domain for comparison purposes. These errors
are denoted by ey(t) = V(t) — V() and ¢,,(1) = w(f) — W(t), where
V(#) and w(p) represent the ground truth membrane potential and
adaptation parameter, respectively.

Specifically for GWN, the noise has been reduced considerably,
as shown in Fig. 7(a). The subtraction of the denoised signal and the
ground truth one is shown in Fig. 7(b), highlighting the capability of
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RC to discard GWN to a large extent. As can be seen, the errors
are more pronounced along the horizontal axis. This observation
can be justified based on the time-domain comparison shown in
Fig. 6, where the voltage errors ey(f) are large around the sharp
peaks, whereas the adaptation parameter errors &,(f) are small.
Appendix D provides further comparison between the PSD curves
of the noisy and denoised signals in comparison to the ground truth
PSD.

The PSD of the membrane potential error, S, (f), is shown
in Fig. 7(c). Based on this figure, the reduction in the noise mag-
nitude varies between 5 and 25dB, depending on the frequency
range. In effect, the residual noise is stronger in the low-frequency
range of [0-5 kHz], but it reaches a weaker and stable regime around
—50 dB/Hz at frequencies above 5kHz, as shown in Fig. 7(c). Sim-
ilar comparisons are made for violet noise in Figs. 7(d)-7(f). The
denoising performance is good. Notably, the residual noise appears
similar to a GWN process with an almost fixed PSD equal to
—55dB/Hz. The original additive noise has a smaller magnitude
at frequencies below 10kHz, meaning that the RC produces extra
noise in this particular frequency range. However, above 10 kHz,
the denoising performance becomes significant, improving up to
30 dB/Hz.

The pink noise primarily appears as some shift in the phase
space, as shown in Fig. 7(g). The RC mitigates noise at frequencies
below 350 Hz, but above this range, it produces extra noise. Overall,
the results display limited merits for RC in discarding pink noise.

The results presented above correspond to one specific con-
figuration of reservoir nodes and edges. Figure 8 shows the dis-
tribution of denoising gain [see Eq. (7)] when RCs are initialized
with random nodal and connectivity configurations and allowed to
have an optimal number of nodes between 50 and 100. The results
remain qualitatively consistent across different reservoir configura-
tions. Additionally, it can be confirmed that the best denoising gain
(mean: 12.68; SD: 1.13) is achieved for violet noise, wherein high-
frequency components are greatly dominant. For GWN, an average
denoising gain of 5.50 is acquired with a small standard deviation of
0.36. Finally, for pink noise, the average denoising gain is 1.32 with
0.07 standard deviation, which is still above 1.0, although the merits
of denoising in this case are minimal.

V. DISCUSSION

The examples above primarily demonstrate the RC system’s
ability to discard additive noise. Denoising performance is evalu-
ated using both the smooth dynamics of the Lorenz attractor and
the spiking patterns of the AdEx model. While RC performs well in
both scenarios, it achieves higher accuracy with smooth dynamics.
This is attributed to the mathematical formulation of RCs, where
the state is expressed as a linear combination of the previous state
and input using a smooth activation function.

To better handle discontinuities, alternative activation func-
tions may be needed, ones that can approximate abrupt changes
more efficiently. In this context, architectures based on spiking
neuro-physical models, such as liquid state machines, could offer
greater flexibility for simulating bursting nonlinear dynamics.”® The
mathematical structure of RC appears to be problem-specific and
should be tailored accordingly.
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FIG. 8. Distribution of denoising gain for different types of noise, showing sensi-
tivity of the results to the initial configuration of the reservoir.

The denoising performance also varies with the SNR. For lower
SNRs, the RC significantly reduces noise, yielding a denoising gain
well above unity. However, at very high SNRs, the RC struggles to
distinguish low-amplitude noise from dominant nonlinear dynam-
ics, sometimes resulting in adverse denoising effects (see Fig. 3).
Therefore, adequate care should be given to avoid misusing the RC.

The frequency characteristics of noise play a significant role in
the denoising performance of reservoir computing. The RC demon-
strates strong results when dealing with GWN and violet noise,
effectively suppressing high-frequency components. However, its
performance deteriorates with pink noise, where low-frequency
components dominate. This limitation is expected, as low-frequency
noise tends to overlap with the underlying nonlinear dynamics,
making it difficult for the RC to distinguish signal from noise.
This observation suggests that the denoising capabilities of RC are
most effective in scenarios involving high-frequency noise at low
SNR levels. Consequently, the primary hypothesis of this study
requires slight refinement to reflect that RC’s denoising strengths
are frequency-dependent.

These findings open up new avenues toward combining the
RC with wavelet scattering’” and less-studied nonlinear phase space-
based filtering methods like the GHKSS approach.”” While these
hybrid strategies were not exercised herein, they represent com-
pelling directions for enhancing RC’s performance in more complex
noise environments.

Another important feature of the RC is its generalization capa-
bility when the dynamical parameters change. The RC maintains
its denoising gain above one across a relatively wide neighborhood
of the training parameters. Including extra training datasets with
varying dynamical parameters allows for acquiring higher accuracy
when dealing with potential parameter changes. This adaptability is
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crucial for real-world applications where system dynamics may not
remain constant.

While expanding the training dataset improves generalization,
it also increases computational costs. Specifically, when a hyperpa-
rameter optimization is required, the cost scales cubically with the
dataset size due to matrix inversion in Eq. (4). Therefore, careful
selection of training parameters is essential to balance accuracy and
computational efficiency.

The computational cost of the ridge regression is proportional
to O(N®) due to matrix multiplication for calculating the reser-
voir states, where N is the number of reservoir nodes. The ridge
regression requires a matrix multiplication and inversion of the
same dimension as the reservoir matrix, having a computational cost
proportional to O(N?) if the Gauss-Jordan approach is employed
for the matrix inversion.” Pruning reservoir nodes can reduce the
dimensionality, and if the number of pruned nodes is M, the com-
putational complexity can be characterized as O[(N — M)?]. This
reduction can be considerably large depending on the number of
pruned nodes. However, this assessment of the computational cost
requires accounting for the computational efforts related to prun-
ing the reservoir. In fact, at the training stage, the cost of pruning
nodes and edges is considerable as it scales up with the number of
iterations required to search for M ineffective reservoir nodes.

The pruning method used to reduce the number of reservoir
nodes is effective only when the node count is relatively small.
The current greedy approach identifies redundant nodes based on
a performance criterion like MSE, but its scalability is limited. This
limitation could be improved by adopting graph-based optimization
techniques, which allow for global reduction of reservoir nodes and
edges without exhaustive point-by-point evaluation.”

VI. CONCLUSION

A new RC framework was proposed for the reconstruction and
denoising of nonlinear dynamics from noisy measured data. The
performance of the computing reservoir was investigated in terms
of the noise intensity, the sensitivity to dynamical parameters, and
the noise frequency content. The optimization of the hyperparame-
ters, the reservoir nodes, the input connectivity, the readout nodes,
and the ridge regression coefficient was proven to be necessary
and effective to attain a well-trained reservoir computer. Reduc-
ing the reservoir dimensionality and removing ineffective edges
through a pruning technique significantly improved denoising accu-
racy, surpassing the performance of the classical reservoir with a
fixed number of nodes and random connectivity. At high noise lev-
els, the proposed RC outperformed an EKF implementation. This
superior performance was achieved despite the fact that the EKF
had an advantage as it used precise physical knowledge through
the state-space model, while the RC implicitly learned the dynam-
ics solely from the training data. Since the EKF is a near-optimal
filter, having observed superior performance for the RC is of great
importance from an optimality standpoint.

The denoising performance of RC was observed to be sensitive
to the dynamical parameters, but the RC maintained its accuracy in
the vicinity of the parameters used for generating the training data.
As the validation dataset deviates from the trained neighborhood
of the parameters, the denoising gain drops considerably. When

pubs.aip.org/aip/cha

additional data were incorporated into the training set by using the
same nonlinear dynamics but with an altered physical parameter,
the denoising gain improved, showing a bi-modal pattern with two
peaks positioned in the vicinity of the parameters used for training.
This improvement can become the basis of training RC on dedicated
training data to acquire generalization across a wider interval in the
domain of physical parameters.

The pruning technique used for reducing the dimension of
the RC and eliminating redundant edges proved to be an effective
approach to further reduce computational costs while enhancing
accuracy. However, since the optimization was implemented based
on searching for the most ineffective nodes and edges, it involves
high computational costs, which scale up with the reservoir dimen-
sion. Our future works will address this problem by transitioning
into a graph-based optimization algorithm, which can potentially
overcome the drawbacks of searching across all nodes and edges.
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APPENDIX A: EXTENDED KALMAN FILTER

It is assumed that the dynamical system under consideration
can be described in discrete-time through a nonlinear state-space
relationship given as

X = g(Xk—1, W—1) + Vi, (A1)

where x; is the dynamical state at discrete time #, = kAt, k takes on
values from {1,2,..., N}, representing individual time steps, uy is
the dynamical input applied at time f;, and vy is the process noise
considered to be zero-mean GWN with Q covariance matrix.

Likewise, a non-linear observation model can be established
by relating the state and input vectors to the observed data. This
essentially leads to

Yi = h(xp, wp) + wi. (A2)

In this equation, yi is the measured vector, h(.) is the nonlin-
ear observation model, and vy is the observation noise considered
zero-mean GWN with R covariance matrix.

Through a linearization around the existing system state, it is
possible to estimate the system states using the EKF. By doing so,
the following sequential algorithm can be obtained:’

Xijk—1 = (Xk—1k—1, Wk)s (A3)

Py = Fo P B +Q, (A4)
Ki = Py HY (HiPyy_ HY + R)_l, (A5)
Xk = Xik—1 + Kie(ze — h(xg-1, wi)), (A6)
Pije = Pre—1 — KeHiPp—1. (A7)

Here, xx_; is the predicted state, xy is the estimated state,
Pyjk—1 is the prediction error covariance matrix, Py is the updated
error covariance matrix, Ky is the Kalman gain matrix, F_; is the
derivative of g(.) with respect to x evaluated at X;_jx_1, and H is the
derivative of the observation model h(.) with respect to x; evaluated
at Xpk—1.

Given the noise covariance matrices, the above sequential for-
mulations provide an efficient estimate of the system states.

APPENDIX B: NONLINEAR EQUATIONS OF THE
LORENZ SYSTEM

The Lorenz system consists of three major system state vari-
ables, which govern the atmospheric convection through the follow-
ing set of equations:*®

d
7}; =o(y—x), (B1)
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dy .
G x(p—2) —y, (B2)

dz
% xy— Bz B
p xy — Bz, (B3)

where o is the Prandtl number, p is the Rayleigh number, and g
is the dissipation rate. Note that selecting different parameters can
entirely change the dynamic regimes. The dynamics of the Lorenz
system are nonlinear, chaotic, and smooth deterministic, which
depend heavily on the initial conditions.

APPENDIX C: MATHEMATICAL FORMULATION OF THE
AdEx MODEL

The nonlinear differential equations describing the adap-
tive exponential integrate-and-fire model are provided in the
following:"’

dv V—Vr
rmCE =—(V—-V,)+ Arexp —Rw+RI, (C1)
T
D (V= V) —wbr 38—ty (C2)
Tw—, =4a — V)W w — tf),
dt - f

where V is the voltage, I is the input current, w is the adapta-
tion parameter, V, is the leak reversal potential, # is the firing
times at which the voltage exceeds Vr threshold, and §(.) is the
Dirac delta function. Other parameters are constant coefficients:
T,, = 5ms is membrane time scale, 7, = 100 ms is adaptation time

constant, R = 500 MQ is membrane resistance, V, = —55mV is
rest potential, V7 = —51 mV is voltage threshold, Ay = —2mV is
sharpness threshold, a = —0.5ns is adaptation voltage coupling,

and b = 7 pA is spike-triggered adaptation increment. At spike time
t = t;, there will be a sharp rise in the adaptation parameter equal
to b, as described via the Dirac delta function. The dynamics of the
AdEx model are nonlinear and can be chaotic, showing non-smooth
deterministic behavior, owing to the threshold-reset mechanism.

APPENDIX D: COMPARISON OF PSD CURVES IN AdEx
EXAMPLE

The results presented in Fig. 7 compare the PSD of the mem-
brane potential prediction errors, i.e., S, (f). Figure 9 supplements
those results, showing the PSD of the ground truth membrane
potential, Sy(f), compared to those of the noisy and denoised sig-
nals. Note that the difference of the noisy and denoised signals from
the ground truth signal is indicated in the PSD curves of Fig. 7 and
labeled as “original” and “residual.” These results further confirm
the above conclusions, showing the performance of RC in han-
dling different types of noise and emphasizing that the RC is more
successful in discarding high-frequency noise.
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FIG. 9. PSD curves of the membrane potential when considering additive
(@) GWN, (b) violet noise, and (c) pink noise. “Ground Truth” corresponds to
the noise-free original signal; “Noisy” represents the noisy signal fed into the RC
framework; and “Denoised” represents the reconstructed signal.
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