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EXECUTIVE SUMMARY

Sydney’s drinking water supply was repeatedly challenged in recent years by multiple extreme weather events.
Two novel models were developed and applied - the raw water quality prediction model, and the process
optimisation prediction model for water treatment. The spatial-temporal model based on weather forecasts can
predict raw water quality five days in advance. The Process Model based on multiple linear regression of online
data of the plant can predict the optimisation of water treatment parameters. The two advanced models
provided sustainable operational solutions for water quality events influenced by climate change and
accelerated the digitalisation of water operations.

INTRODUCTION

Sydney’s water catchments have experienced several extreme weather events since 2019. There was a
significant drought in 2018-19 when most of the water storage went below 50% of its capacity, then a
devastating bushfire in the largest catchment in late 2019, followed by an intense drought-breaking rain in early
2020. Between 2020 and 2024, the water catchments experienced five major rain events when most of the
dams overflowed. These extreme events resulted in significant degradation of source water qualities, and
treatment processes were challenged by dynamic changes in raw water quality. In most instances, it was not
possible to predict the impact on source water quality by extreme events in the catchment, nor the impact on
the treatment process. It was a challenge to optimise the treatment while there was a rapid variability in raw
water quality at the inlet of the plant. Therefore, a raw water quality prediction model and a dynamic
optimisation model were thought to be developed. The objective was to apply advanced data analytics
methods to build predictive models of water catchments. The two Water Filtration Plants (WFP) supply
catchments in NSW, namely Macarthur and Nepean were investigated to build a raw water quality model. The
WEFP process model known as Sydney Water’s Instantaneous Filtration Technology (SWIFT) was developed
using real-time data from the water filtration plant’s Supervisory Control and Data Acquisition (SCADA). While
the SWIFT model has many functions as shown in Figure 3, this paper only focuses on the prediction of
chemical optimisation and plant performance and model-driven automated optimisation by plant operators.

HIGHLIGHTS

e First known data-driven raw water prediction for five days in advance

e Spatial and temporal modelling integrating weather forecast

e Novel Process Model predicting treatment optimisation online in SCADA

e Optimised Sydney’s five WFPs dynamically and automatically using the Process Model

e A sustainable digital solution for water operations facing the extreme events

METHODOLOGY/ PROCESS




Given the water quality sampling locations within each catchment, a breakdown diagram was constructed
which defines how water flows across the sampling locations (Figure 1). It depicts the upstream and
downstream relationships among the sampling locations. The data model assumes that raw water quality at a
target location is attributed to factors in three aspects as shown in Figure 2, namely weather information both
historical and forecasted, upstream water quality, and historical water quality at the target location (Inlet of
WFPs). Thus, a spatial-temporal machine learning approach was used for catchment-independent raw water
quality modelling.

The water filtration process model (SWIFT) was developed using real-time online data from the WFPs SCADA.
Multiple linear regression models were dynamically developed to correlate the optimum chemical dose, raw
water qualities, and filter performance. The SWIFT model structure is shown in Figure 3. Among the many
useful features, the automatic prediction of chemical doses based on raw water turbidity and true colour
enabled the plant operators to optimise the plant dynamically to respond to dynamic changes in raw water
quality.

RESULTS

Models for turbidity prediction in each catchment have been built using historical 1-day water quality, historical
5-day weather, and 1-day ahead weather forecast. To evaluate the model performance quantitatively, two
metrics were considered - median absolute error (MAE) and median absolute percentage error (MAPE). MAE
is a scale-dependent metric while MAPE is scale-independent. Additionally, MAE and MAPE are also
calculated solely on the samples with the top 5% largest actual observed turbidity, which are deemed to
represent extreme conditions and pose a great challenge for water utilities in operation. As presented in Figure
4, for example, the raw water quality prediction error is extremely low when considering all the samples with
MAPE less than 5%. The prediction performance is also very good in extreme conditions, with MAPE around
10% across different catchments. It demonstrates the developed models can predict turbidity accurately in
both normal and extreme conditions.

In the process model SWIFT, the one-minute time interval filter head loss and turbidity data from online
instruments provided the backbone of filter performance analysis and modelling. As an example, Figure 5
shows the instantaneous data from online instruments of 5 filters at Nepean WFP during the 2022 rain event.
Filter turbidity (red line) and head loss (blue line) were automatically analysed and modelled for change in
turbidity and head loss during a filter operation cycle, filter runtime, and other key parameters when new data
were uploaded into the model. Statistical regression equations for chemical doses were developed against
raw water quality and filter performance in the SWIFT model using over 10 years of online SCADA data. These
equations were used to predict chemical doses when raw water turbidity and true colour changed. Figure 6
shows an example of the SWIFT model prediction of optimum chemical doses for given raw water true colour
and turbidity at Nepean WFP. The SWIFT model prediction enabled the operators to set the chemical doses
very quickly and produce safe drinking water during raw water quality events. The SWIFT model also tracks
the raw quality, filter performance, chemical dose, and cost (Table 1, Figure 7). Automated process and
chemical dose optimisation significantly improved filter performance and saved operational costs.

CONCLUSION

The spatial-temporal machine learning approach for dynamic prediction of raw water quality using weather
information helps the utility to select the best water source and can inform treatment optimisation in advance
of an extreme weather event. The results indicate that the model can predict raw water quality at a higher level
of confidence in both normal and extreme conditions. The water filtration Process Model, SWIFT, was applied
and validated during recent extreme rain events at all five water filtration plants operated by Sydney Water.
The SWIFT model optimsiation demonstrated that it is a very useful digital solution to dynamically optimise
chemical dose and improve filter performance when raw water quality changes dynamically. The Process
Model (SWIFT), due to automation in optimisation, significantly improved operational safety by reducing the
number of operators needed for Jar tests and manual optimisation by trial and error during a raw water quality
event. The two advanced models provided a sustainable operational solution for rapid water quality changes
in extreme rain events, saved significant operational costs, and ensured a safe and clean drinking water supply
despite catchment and treatment challenges. The models can be applied to any catchment and water
treatment plants for decision-making in the source selection and dynamic optimisation of water treatment.
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Figure 1: Macarthur and Nepean catchments breakdown
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Figure 2: Catchment independent Raw Water Quality prediction modelling
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Figure 4: Performance on Raw Water Quality (turbidity) prediction at both normal and extreme conditions
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Figure 5: Process Model - one minute time interval data for filter outlet turbidity (red line) and head loss (blue
line), modelled head loss (olive line), modelled change in turbidity (aqua line), filter or plant offline (between
vertical purple lines), filter backwash (between vertical green lines)

Table 1: Chemical savings in the last 5 years by applying process model SWIFT for optimisation

Orchard North
Plant Nepean Hills Cascade | Warragamba Richmond
Ave. Daily production (ML/d) 12.0 65.0 12.0 3.7 20.0
Chemical Saving ($/Yr) 147,648 206,032 49,890 44,062 150,511
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Figure 6: The Process Model (SWIFT) predicted chemical dose, for Nepean WFP as an example, for
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Figure 7: Water treatment tracking for performance and cost savings using Process Model (SWIFT), Nepean
WFP as an example




