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Abstract—This letter presents a multi-agent deep reinforce-
ment learning-based framework for joint beam hopping and
resource allocation in the secondary LEO system within a
cognitive GEO-LEO satellite network. Beam hopping is adopted
to flexibly steer limited resources toward areas with high and
dynamic traffic demand, improving spectral efficiency and load
balancing. A centralized critic multi-agent deep deterministic
policy gradient approach is proposed to optimize beam hopping
patterns, bandwidth and power allocation, aiming to enhance
system throughput and reduce service delay imbalance across
LEO cells. Simulation results show that the proposed method
outperforms benchmark approaches, achieving approximately
45% higher throughput and around 37% lower service delay
under varying traffic and power conditions.

Index Terms—Cognitive GEO-LEO satellite networks, beam
hopping, resource allocation, multi-agent DRL, MADDPG.

I. INTRODUCTION

Satellite communication has become a key enabler for
global connectivity in the era of 5G and the upcoming 6G
networks, particularly in extending coverage to remote and
underserved regions. Low Earth orbit (LEO) constellations
have gained significant momentum due to their low latency,
high capacity, and global coverage capabilities. However,
the rapid growth of LEO deployments introduces new chal-
lenges in managing limited spectrum resources efficiently.
A promising solution to addressing spectrum scarcity is the
cognitive GEO-LEO satellite architecture, in which LEO sys-
tems opportunistically utilize underused spectrum allocated
to geostationary (GEO) satellites [1]. This spectrum-sharing
strategy offers practical benefits but also introduces challenges
due to the dynamic nature of spectrum availability and the
non-uniform, time-varying traffic demands across LEO cells.
In this context, beam hopping (BH) emerges as a compelling
technique, allowing LEO satellites to dynamically allocate
resources by steering beams toward high-demand areas. This
not only maximizes spectral efficiency but also ensures more
effective service delivery under the constraints of limited and
opportunistic GEO spectrum access.

Recent advances in machine learning, particularly in deep
reinforcement learning (DRL), have shown significant poten-
tial in addressing complex resource management challenges
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in satellite networks. For GEO satellite systems, a multi-
agent DRL framework based on double deep Q-learning
(DDQL) is proposed for BH pattern design and bandwidth
allocation [2], while a DRL-powered genetic algorithm is
developed to optimize BH patterns [3]. In the context of LEO
satellite systems, a multi-agent value decomposition network
with dueling DDQL framework is proposed enabling real-
time BH decision through centralized training and distributed
deployment of DRL agents [4]. Additionally, a multi-agent
proximal policy optimization algorithm is introduced for joint
beamforming and dynamic BH to support hybrid wide-spot
beam coverage in LEO networks [5]. Regardless, these studies
primarily focused on single-tier satellite systems and do not
fully address the spectrum scarcity and interference challenges
inherent in multi-tier architectures such as cognitive GEO-
LEO networks. For BH in GEO-LEO satellite system, [6]
proposed a distance-based BH strategy to minimize inter-
beam interference between LEO cells. However, this approach
lacks comprehensive resource management in both spatial and
spectral domains, limiting its adaptability to the traffic demand
of LEO networks.

In this letter, we propose a multi-agent deep deterministic
policy gradient (MADDPG)-based framework for joint BH
pattern design and resource allocation, including bandwidth
and power, for the secondary LEO system in cognitive GEO-
LEO satellite networks. In the proposed framework, clusters
of LEO cells are modeled as agents that learn to make
BH and resource allocation decisions in a distributed yet
coordinated manner. Leveraging centralized training with de-
centralized execution, the approach efficiently handles both
continuous and discrete actions, enabling dynamic adaptation
to fluctuating traffic demands and power budgets. Simulation
results demonstrate that our method outperforms benchmark
approaches, achieving approximately 45% higher throughput
and reducing service delay by around 37%.

II. SYSTEM MODEL

Consider a cognitive GEO-LEO satellite network, as illus-
trated in Fig. 1. In this system, the GEO satellite system
operates as the primary network, while the LEO satellite
system functions as the secondary network. The GEO satellite
serves its users through multiple narrow spot beams and
employs an ι-frequency reuse scheme, where ι is the frequency
reuse factor and ι ∈ N|ι ≥ 1. Let BG denote the total spectrum
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of GEO satellite. Under the ι-frequency reuse scheme, the
spectrum is divided into ι sub-bands {β1, β2, · · · , βι} .

The LEO satellite is equipped with multi-beam steerable
phased array antennas and maintains a radio environment map
(REM) that records the activity status of GEO beams within
its footprint [7]. The REM provides real-time information on
GEO beam activity, enabling the LEO satellite to identify
available spectrum in each time slot [7]. Leveraging this infor-
mation, the LEO satellite utilizes BH techniques to efficiently
serve its users.

Both GEO and LEO users are equipped with single anten-
nas. The coverage area of a GEO spot beam, referred to as
a GEO cell, is assumed to be circular with a radius of RG.
In contrast, the coverage area of a LEO spot beam, referred
to as a LEO cell, is hexagonal with a radius of RL, where
RL < RG. The overall footprint of a LEO satellite is circular,
with a radius of FL. The number of LEO cells within this
footprint is given by: N = 2πF 2

L/3
√
3R2

L. Let K represent
the maximum number of LEO beams serving the footprint
area, where K < N . At a given time slot t, the LEO satellite
receives user requests through a signaling beam. The service
beam can then hop between LEO cells based on traffic demand
and dynamically allocate beam resources.

Fig. 1. An illustration of cognitive GEO-LEO beam hopping satellite networks
with GEO satellite using 4-color frequency reuse scheme.

1) Interference Model: There are two types of interference
considered in this system: interference from LEO beams to
GEO users and LEO co-channel inter-beam interference.

The interference power caused by the service beam of LEO
cell i to a GEO user UG is given by:

Ii,UG
= ϵiPL,iGL,iGUG

L−1
LUG

, (1)

where ϵi ∈ {0, 1} is a binary variable indicating whether LEO
cell i is inside an overlapping GEO beam region, with ϵi = 1
denoting the LEO cell i is in the region where GEO beams
overlap. PL,i is the LEO beam i transmitting power. GL,i

and GUG
are the LEO satellite beam i transmitting antenna

radiation pattern and GEO user receiving antenna radiation
pattern, respectively. Both GL and GUG

are modeled as

G(ϕ) = η
4πA

(c/fc)2

(
J1(µ)

2µ
+

36J3(µ)

µ3

)2

, (2)

where ϕ is the off-boresight angle, η is the antenna efficiency,
A is the antenna area, c is the speed of light, fc is the carrier
frequency, J1(·) and J3(·) are the first and third order Bessel
functions, and µ = 2.07123 sin(ϕ)/ sin(ϕ3dB) with ϕ3dB is
the off-boresight angle corresponding to the 3 dB beamwidth.
LLUG

is the free space propagation loss between LEO satellite
and UG, which is modeled as

LLUG
=

8πRE

c/fc
arcsin


√√√√sin2

(
laUG
− laL
2

)
+ cos(laL) cos(l

a
UG

) sin2

(
loUG
− loL
2

) ,

(3)
where RE is the Earth radius,

{
laL, l

o
L

}
and {laUG

, loUG
} are the

latitude and longitude of LEO satellite and UG, respectively.
The LEO co-channel inter-beam interference experienced by

a LEO user UL within cell i, namely Ii,L, originates from all
the other LEO beams serving LEO cells within the same GEO
cell as cell i. These interfering LEO beams are illuminated in
the same time slot and utilize the same sub-band as beam i.
This interference power can be expressed as follows:

Ii,L =

M∑
j,j ̸=i

εijPL,jGL,jGUL
L−1
LUL

, (4)

where M = 2πR2
G/3
√
3R2

L is the number of LEO cells inside
one GEO cell. εij ∈ {0, 1} is a binary variable indicating
the overlap band between beam i and beam j, with εij = 1
denoting they use the same sub-band. PL,j is the LEO beam
j transmitting power. GL,j and GUL

are LEO satellite beam j
transmitting antenna radiation pattern and LEO user receiving
antenna radiation pattern, respectively. Both GL,j and GUL

are modeled as in (2). LLUL
denotes the path loss between

LEO satellite and UL, and is modeled similarly to (3).

III. PROBLEM FORMULATION

As the secondary network, LEO satellite must optimize
resource allocation: BH pattern, frequency band selection, and
transmit power, based on GEO network activity from the REM.
The goal is to maximize LEO throughput while minimizing
service delay, ensuring fair and timely access for all traffic-
demanding cells.

The LEO throughput is defined as the sum of the throughput
across all LEO cells:

ΓL =

N∑
i

min {Si, Di} , (5)

where Si and Di represent the traffic supply and demand for
LEO cell i, respectively. The traffic supply for LEO cell i can
be expressed as

Si = κiBi log

(
1 +

PL,iGL,iGUL
|hLUL

|2L−1
LUL

Ii,L + σ2
UL

)
, (6)

where κi ∈ {0, 1} is a binary variable indicating cell i
illumination status, with κi = 1 denoting that cell i is
illuminated. Bi represents the bandwidth for cell i. hLUG

is
the channel coefficient from LEO satellite to UL following
Shadowed Rician distribution, and σ2

UL
denotes the noise

power at the LEO user.
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Service delay refers to the amount of time a cell’s requested
data spends waiting before being served within one BH cycle.
The traffic demand of cell i at slot t can be expressed as
Di,t =

∑TBH

l=1 χl
i,t, where χl

i,t is the number of packets that
have been waiting in queue of cell i for l slots, and TBH is
the total number of slots in one BH cycle. Service delay for
cell i is τi =

∑TBH

l=1 lχl
i,t/Di,t. The service delay imbalance

metric between LEO cells can be expressed as

∆τ = max
i

(τi)−min
i

(τi) . (7)

The optimization problem is formulated as:

max
κi,Bi,PL,i

− α∆τ + (1− α) ΓL, (8a)

s.t.
N∑
i=1

κi ≤ K, (8b)

N∑
i=1

PL,i ≤ PL, (8c)

Bi ⊆ {β1, β2, · · · , βι} \
{
βj |AG,ij = 1

}
,∀i, (8d)

AL,ij +AG,ij ≤ 1,∀i, j, (8e)∑
i∈OG

Ii,UG
≤ Ith, (8f)

where α is the weight balancing objectives, PL is the total
LEO transmit power, and Ith is the GEO user interference
threshold. AG,ij and AL,ij are binary variables indicating
whether GEO cell covering LEO cell i and LEO cell i,
respectively, use sub-band βj (1 if in use). The optimization
jointly designs beam illumination, sub-band selection, and
power allocation to maximize LEO throughput and reduce
service delay imbalance across LEO cells. Constraint (8b)
limits the number of active beams to K, and (8c) keeps total
transmit power within budget. Constraints (8d) and (8e) avoid
sub-band reuse in LEO cells overlapping with GEO cells,
preventing interference. Constraint (8f) keeps LEO interfer-
ence in overlapping GEO beam regions below Ith, where
OG = {i|

⋂
g∈Gi

Cg ̸= ∅, |Gi| ≥ 2} identifies LEO cells in
these regions, Gi is the set of GEO cells covering LEO cell i,
and Cg is the coverage area of GEO cell g.

The optimization problem in (8) is a mixed-integer nonlin-
ear program (MINLP), NP-hard due to binary variables and
non-convex interference coupling. To solve it, a MADDPG-
based approach is used, jointly managing continuous (power)
and discrete (beam/sub-band) decisions, enabling scalable and
distributed control across LEO cells in dynamic conditions.

IV. CENTRALIZED CRITIC MADDPG FOR JOINT BEAM
HOPPING AND RESOURCE ALLOCATION

MADDPG [8] is a DRL framework designed for decen-
tralized multi-agent system, where each agent learns its own
policy while interacting with others. To solve the optimization
problem in (8), we cluster LEO cells based on their geographic
locations within GEO cells, treating each cluster as an agent
that jointly determines sub-band allocation, power distribution,
and illumination status for its LEO cells. The objective is to
maximize overall LEO system throughput while minimizing

service delay imbalance. A key challenge stems from GEO
user interference, which results from the aggregate effect of
multiple LEO beams, making it hard for agents to assess their
individual interference contributions. In standard MADDPG,
agents rely only on local observations and individual rewards,
making coordinated, interference-aware decisions difficult. To
overcome this, we propose the Centralized Critic MADDPG
(CC-MADDPG), which employs a single centralized critic
that evaluates the joint interference impact on GEO users.
This allows the system to penalize LEO cells when their
combined actions exceed interference thresholds, encouraging
more stable and interference-aware learning.

A. Problem Reformulation

The problem in (8) is reformulated as a multi-agent re-
inforcement learning problem, where each cluster of Nb =
2πR2

G/(3
√
3R2

L) LEO beams is managed by a single agent.
Consequently, the total number of agents is Na = N/Nb. The
problem is formulated follow Markov decision process, with
its key components defined as follows:

State space: At the beginning of each time slot, every
agent k obtains its observation (local state) from the en-
vironment, including the demand traffic of cells in cluster
k – Dk(t) = {Di(t)}, i = 1, 2, · · · , Nb and the activity
status – AG,kj(t) = {AG,ij(t)}, j = 1, 2, · · · , ι of the
GEO beam covering cells in cluster k. These observations,
ok(t) = {Dk(t), AG,kj(t)}, form the global state s(t) ∈ S at
time slot t, where S represents the state space. The global state
is defined as s(t) =

{
{Dk(t), AG,kj(t)}

}
, k = 1, 2, · · · , Na.

Action space: Based on its observation, each agent de-
termines its action, which includes whether to illuminate its
beam, the sub-band to utilize, and the transmission power for
its beam. The joint action is a(t) =

{
{{κi}, βj , {PL,i}}

}
,

a(t) ∈ A, where A denotes the action space.
Reward function: Upon taking action, each agent receives

an immediate reward rk(t) defined as

rk(t) = −α∆τ + (1− α) ΓL︸ ︷︷ ︸
base reward

−wI ·max

0,
∑
i∈OG

Ii,UG
− Ith


︸ ︷︷ ︸

penalty term

(9)

where wI is the penalty weight. This imposes a penalty when
the total interference on GEO users exceeds the threshold. The
goal of each agent is to accumulate maximum reward overtime.

B. Proposed Centralized Critic MADDPG

The proposed CC-MADDPG framework, illustrated in
Fig. 2, follows an actor-critic architecture consisting of Na

independent actor networks and a single centralized critic net-
work. Each agent k has an actor network Πθk , which maps its
local observation ok to an action ak. The centralized critic Qϕ

computes a single Q-value for the entire system by evaluating
the joint action a(t) based on the global state s(t) and the
actions of all agents. The training phase follows a centralized
learning approach, where the critic has access to the full
system state, while inference remains fully decentralized, with
each agent selecting its action independently based only on its
local observation.
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Fig. 2. Proposed centralized critic - MADDPG framework.

The environment evolves over time according to the transi-
tion probability:

s(t+ 1)← P
(
s(t+ 1)|s(t), a(t)

)
, (10)

where P(·) denotes the probability distribution governing state
transitions.

The centralized critic learns the action-value function for
the joint policy Π = (Π1,Π2, · · · ,ΠN ):

QΠ
ϕ

(
s(t), a(t)

)
= E

[
r(t) + γEa′(t+1)∼ΠQ

Π
ϕ′

(
s(t+ 1), a′(t+ 1)

)]
,

(11)
where Qϕ is the critic network parameterized by ϕ, r(t) =∑Na

k=1 rk(t) is the global reward, γ is the discount factor,
a′(t + 1) ∼ Π are the next actions sampled from the policy,
and ϕ′ represents the parameters of the target critic network,
which is periodically updated using a soft update strategy from
ϕ. The critic network is trained by minimizing loss function:

L(ϕ) = E
[(

QΠ
ϕ

(
s(t), a(t)

)
− y(t)

)2]
, (12a)

y(t) = r(t) + γQΠ
ϕ′

(
s(t+ 1), a′(t+ 1)

)
. (12b)

The critic network parameters are updated using stochastic
gradient descent:

ϕ← ϕ− λQ∇ϕL(ϕ), (13)

where λQ is the learning rate and ∇ϕL(ϕ) represents the
gradient of the loss function with respect to ϕ.

Each agent k updates its actor policy Πk using deterministic
policy gradient theorem, maximizing the expected Q-value:

∇θkJ(Πk) = E
[
∇θkΠk

(
ak|sk

)
∇ak

Qϕ

(
s(t), a(t)

)]
, (14)

where J(Πk) = E[Qϕ

(
s(t), a(t)

)
] is the objective function

and Πk

(
ak|sk

)
represents local policy network of agent k.

CC-MADDPG operates under a centralized training and
decentralized inference paradigm. During training, performed
offline on the ground, the centralized critic Qϕ learns the joint
action-value function using the global state and the actions of
all agents, as outlined in Algorithm 1.

C. Computational Complexity

The computational complexity of MADDPG [8] with Na

agents is O(NaNepTB(|S|×|A|+2(|S|N1+
∑LA

l=1 NlNl+1)+

Algorithm 1: CC-MADDPG: centralized training

1 Initialization: actor networks Πθk , critic network Qϕ,
target networks Π′

θk
and Q′

ϕ as copies of the actors
and critic, experience replay buffer;

2 for each episode do
3 Initialize state s(0) = {o1, · · · , oNa}
4 for each time step t do
5 Each agent k selects action ak(t) using

exploration, executes action ak(t), observes
next state ok(t+ 1), receives reward rk(t)

6 Store joint < s(t), a(t), r(t), s(t+ 1) > in
replay buffer

7 Sample mini-batch from replay buffer
8 Update centralized critic Q using (12), (13)
9 Update actors Πk using (14)

10 Update target networks using soft update
11 Check stopping criteria (reward convergence)
12 If converged, stop training
13 end
14 end

2(|A|N1 +
∑LC

l=1 NlNl+1))) [9], where Nep is the number
of training episodes, T is the time steps per episode, B is
the mini-batch size, LA and LC are the number of hidden
layers in the actor and critic networks, and Nl is the number
of neurons in the l-th hidden layer. In contrast, the proposed
CC-MADDPG employs only a single critic network, reduc-
ing the complexity to O(NaNepTB(|S| × |A| + 2(|S|N1 +∑LA

l=1 NlNl+1)) + 2NepTB(|A|N1 +
∑LC

l=1 NlNl+1)).

V. NUMERICAL RESULTS

A. Simulation Setup

The environment simulator models the GEO satellite as
Inmarsat-4F2 and the LEO satellite as Iridium-NEXT 914. The
region of interest is the LEO footprint, a circular area with a
radius of 2,350 km, centered at (35°S, 150°E). Within this
footprint, there are 17 GEO cells, each with a radius of 555
km, overlapping by 5% at the edges. The GEO satellite em-
ploys a 4-color frequency reuse scheme with the active beam
pattern being randomly selected follow Poisson distribution
with a mean of 5 beams per BH cycle. One BH cycle lasts
100 ms. LEO cells have a radius of 150 km, with a total of
261 cells within the footprint. These cells are grouped into
17 clusters, each managed by a separate agent. Each cluster
contains either 15 or 16 LEO cells. Traffic demand in each
LEO cell ranges from 50 to 200 kbps and follows a Poisson
process with an arrival rate of 0.727. Data packets are queued
for transmission and are dropped if not transmitted within
100 ms. Key simulation parameters and hyper-parameters of
the proposed CC-MADDPG are listed in Table I. All actor
networks share a common architecture comprising two hidden
layers with 64 and 32 neurons, respectively. The critic network
consists of two hidden layers with 512 and 256 neurons. All
networks use Tanh activation function and are updated using
the Adam optimizer every 100 time steps. At each time step,
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throughput, delay imbalance, and interference are normalized
by their running averages before forming the reward.

TABLE I
KEY PARAMETERS USED IN SIMULATION

System Parameter Value
Carrier frequency (Ka-band) 19 GHz
LEO satellite altitude 780 km
LEO antenna diameter 0.2 m
LEO antenna gain 38.5 dBi
LEO half power beamwidth 2.98°
GEO total bandwidth 800 kHz
GEO/LEO user antenna diameter 0.3 m
GEO/LEO user antenna gain 42.1 / 39.7 dBi
Noise power -120 dBm/Hz
Shadowing ({m, b,Ω}) {10.1, 0.126, 0.835}
GEO user interference threshold -115 dBW/MHz
DRL Hyper-parameter Value
Training episodes 2100
Replay buffer size 100000
Mini batch size 64
Learning rate 0.001
Decaying rate 0.0001

B. Simulation Results

The convergence behavior of CC-MADDPG is illustrated
in Fig. 3, which shows the critic loss under different learning
rates and decay rates. The algorithm demonstrates improved
convergence performance with a learning rate of 0.001 and
a decay rate of 0.0001. Fig. 4 shows the traffic demand and
supply in LEO cells after a BH cycle. LEO cells with zero
traffic supply are located within active GEO cells, where
spectrum access is restricted. Since GEO cells have priority
in spectrum usage, these overlapping LEO cells are unable to
transmit.

Fig. 3. Critic loss curve under
different learning/decaying rates.
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Figs. 5 and 6 show the performance comparison of the
proposed CC-MADDPG against the following benchmarks:

• Greedy: choosing M beams that have largest traffic de-
mand in each time slot for illumination [10].

• Beam hopping based on cell distance threshold [6].
Fig. 5 shows that the proposed CC-MADDPG algorithm

consistently achieves the highest LEO system throughput
under different transmit power budgets. With α = 0.5,
throughput is 61.76% higher than the Greedy algorithm [10],
45% higher than the other benchmark [6], 7.8% higher than
using α = 0.7, and 2.2% lower than using α = 0.3. Fig. 6
shows that setting α = 0.7, which places greater emphasis
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Fig. 5. LEO system throughput under
varying transmit power budgets.

50 100 150 200

Traffic demand (Mbps)

5

10

15

20

25

30

35

40

45

A
ve

ra
ge

 s
er

vi
ce

 d
el

ay
 p

er
 B

H
 c

yc
le

 (
m

s)

Proposed CC-MADDPG,  = 0.3
Proposed CC-MADDPG,  = 0.5
Proposed CC-MADDPG,  = 0.7
Beam distance threshold
Greedy with M = 50

Fig. 6. Average service delay per BH
cycle.

on balancing service delay, achieves the lowest average delay;
the α = 0.5 and 0.3 variants have 25% and 29.2% higher
delay, while the benchmarks see delays 37% and 54.5%
higher, respectively. Overall, simulation results demonstrate
that the proposed method outperforms benchmark approaches
on average, achieving approximately 45% higher throughput
and reducing service delay by around 37%.

VI. CONCLUSION

This letter proposed a DRL-based joint BH and resource
allocation framework for the secondary LEO system in a
cognitive GEO-LEO satellite network. A centralized critic
MADDPG approach was developed to optimize sub-band se-
lection, BH pattern, and power allocation, aiming to maximize
throughput and minimize service delay imbalance. By unifying
beam activation and power control in a multi-agent DRL
model, the framework enables coordinated optimization across
clustered LEO cells. Simulation results show that the proposed
method outperforms existing benchmarks in both throughput
and delay under varying traffic and power conditions.
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