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This article develops a new penalty-based aggregation operator known as the penalty-based induced ordered weighted averaging
(P-IOWA) operator which is an extension of penalty-based ordered weighted averaging (P-OWA) operator. Our goal is to figure
out how the induced variable realigns penalties when gathering information. We extend the P-OWA and P-IOWA operators with
the different means such as generalized mean and quasi-arithmetic mean. This article also includes different families of P-OWA
and P-IOWA operators. The value of these new operators is demonstrated through a case study centered on investment matters.
This study evaluates the economic and governance performance of seven South Asian nations utilizing nine indicators from 2021
data. The research examines 5 economic indicators including GDP growth, exports and imports (% of GDP), inflation, and labor
force metrics, alongside 4 governance indicators focusing on corruption control, government effectiveness, and political stability.
We use min-max normalization to standardize the varied values, which originally ranged from 0.5% to 77.7% across various
metrics. Following this, the normalized inverse penalty method is used to derive optimal weights for these indicators, tackling the
task of combining multidimensional data. Subsequently, we implement and evaluate various penalty-based aggregation
methodologies on the normalized data, each offering a distinct approach to penalizing outliers and balancing indicator weights.
The study compares the results obtained from these operators to assess their impact on country rankings and overall performance
evaluation. This approach allows for a comprehensive comparison of countries’ performances, integrating both economic and
governance dimensions into a single, quantifiable framework.

Keywords: economic governance relationship; min-max normalization; multicriteria decision making (MCDM); penalty-based
aggregation; penalty-based IOWA; penalty-based OWA

1. Introduction real-world situations for decision making [3, 4]. Moreover,

in the last few years, the integration of fuzzy set theory with

The procedure of bringing together many numerical values
into a one value is referred to as aggregation. The numerical
function that can perform this process is referred to as the
aggregation function [1]. The primary objective of this
function is to merge arguments that are usually seen as
degrees of preference in fuzzy sets.

In 1965, Zadeh suggested the idea of fuzzy logic [2]
which is a suitable technique for dealing with the impre-
cision and fuzziness of the information available in many

aggregation operator theory has appeared as a powerful tool
which is handling decision-making issues with vague or
incomplete data [5, 6]. In aggregation operator theory, there
are four main aggregation operators such as averaging,
conjunctive, disjunctive, and mixed. Among them, the av-
eraging aggregation operator is widely used in the domain of
decision making [7]. Several scholars have employed diverse
aggregation operators incorporating various concepts in the
realm of decision making [8-10].
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One of the operators that fall under the category of
averaging is referred to as the ordered weighted average
(OWA). Yager came up with an idea of an OWA operator
[11] for the first time. This OWA operator has widespread
application across a variety of domains, including decision
making, information fusion, image processing, artificial
intelligence, and many others [3, 12, 13]. Several authors
attempted to create diverse expansions of OWA operators in
various directions, which involve ordered weighted geo-
metric (OWG) averaging operator [14], generalized ordered
weighted averaging (GOWA) operator [15], and quasi-
arithmetic OWA [16]. Also, it is significant to point out
that there is another essential expansion of the OWA op-
erator, which is the induced OWA (IOWA) [17]. IOWA uses
inducing variable to weight arguments instead of reordering
step which is used in OWA operator. An important ad-
vantage of using this approach is that it can make the ar-
rangement of arguments more efficient by taking into
account an additional interrelated factor, which is com-
monly referred to as the order inducing variable. This is in
contrast to the traditional method of sorting the arguments
according to the values they have been assigned. Inspired by
the research conducted on the IOWA operator, numerous
scholars have undertaken the task of broadening its con-
ceptual framework across multiple domains [18-20].

In 1993, Yager introduced a remarkable theory of ag-
gregation that is founded on the principle of penalty
function [21]. This theory provides a comprehensive ap-
proach to investigating the complex issue of aggregating
relevant knowledge. A penalty can be interpreted as the
disagreement between output and each input. Further, he
extended the work and defined different forms of penalty
function for different fusion methods [22]. Motivated by this
work, many authors extended the theory of penalty-based
aggregation in their literature [23-25].

The OWA and IOWA operators give the aggregated
value, but in this aggregated value, we are not able to find the
connectivity between arguments and its relevant output.
Penalty-based ordered weighted averaging (P-OWA) op-
erators explain how each argument is relevant to the re-
quired output with the help of OWA-based penalties. In
order to provide a more general approach to the P-OWA
operator, let us develop a framework by using induced
aggregation operators. For doing so, we introduce the
penalty-based induced ordered weighted averaging (P-
IOWA) operator. It is a penalty aggregation operator with
similar characteristics as the P-OWA operator. The main
advantage of the P-IOWA operator is that it helps to find
inter-relationship between each criterion by using the
penalties in the set of arguments considering the complex
attitudinal character of the decision maker. For instance,
probabilistic OWA combines probability and the OWA
operator, assigning varying levels of importance to indi-
vidual concepts based on their relevance to the specific
problem at hand. In contrast, P-IOWA integrates a penalty
function with the IOWA operator, ensuring equal signifi-
cance is placed on all concepts. Additionally, the study also
introduces more general approaches by using geometric and
generalized means. By doing so, the penalty operators
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become more robust being able to consider a wide range of
particular cases. The article analyzes many of these specific
cases and also considers different families of weighting
vectors to generate the P-IOWA operator.

In this article, we explain penalty operators and their
generalizations with the help of case study. We consider
a scenario in which a multinational company (MNC) wants
to invest in a South Asian country. However, the situation
becomes more convoluted because the criteria for each
country are varied. So, we are considering essential in-
vestment criteria such as government effectiveness, political
stability, GDP growth, and other common criteria of each
country. Then aggregating them by penalty-based operators
and using ranking method, we choose the required country
for investment. The objectives of this research are as follows:

1. Theoretical advancement:

e Introduced P-IOWA operator

e Explored novel extensions and generalizations of
penalty-based operators

o Created new families of operators that can handle
specific types of data or decision scenarios

e To analyze the different properties of new P-IOWA
operator

2. Develop a comprehensive framework for country se-
lection in investment decisions using P-OWA operators

3. Methodology comparison: to compare different ag-
gregation methods (arithmetic, geometric, harmonic,
quadratic, and cubic P-OWA) and assess their ef-
fectiveness in this context

4. Comparative analysis of South Asian countries: to
evaluate and compare the performance of seven South
Asian countries (Bangladesh, India, Maldives, Nepal,
Pakistan, Sri Lanka, and Bhutan) across multiple
economic and governance criteria

5. Identification of key factors: to identify and analyze
factors that impact the chosen economic and gover-
nance criteria in these countries

6. Methodological contribution: to potentially contrib-
ute to the field of multicriteria decision analysis by
applying and comparing various techniques in the
context of South Asian countries’ economic and
governance performance

The composition of this manuscript is arranged in the
ensuing manner. The works and foundational aspects per-
taining to P-OWA are elucidated in Section 2. A thorough
review of penalty function, both OWA and IOWA operators
and OWA-based penalties, has been carried out in Section 3.
In Section 4, we discuss advantages of penalty-based ag-
gregation operators. In Section 5, we introduce the P-IOWA
operator and show the applicability of it in mutual fund
selection problem. Also, we analyze its characteristics, as well
as generate families of P-IOWA operators. In Section 6, we
extend P-IOWA and generate it with generalized mean and
quasi-arithmetic mean. Also, we examine the particular
cases of these operators. Section 7 constructs theoretical
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framework for the case study based on decision-making
investment problem. In Section 8, we considered the case
study using a real-life scenario and discussed in detail. Also,
we provide a brief review of the paper’s key findings, and
lastly concluding remarks of this paper are provided in
Section 9.

2. Related Works and Background

The field of penalty-based aggregation functions, which in-
cludes P-OWA operators, has seen significant development
over the past decade. This approach offers a flexible frame-
work for constructing and analyzing aggregation functions,
with applications spanning various domains. Early work in
this area focused on establishing the theoretical foundations
of penalty-based aggregation. Researchers introduced novel
methods for constructing aggregation functions using
penalty-based approaches and explored their mathematical
properties. This laid the groundwork for future developments
and applications. Subsequent research expanded on this
foundation, exploring the theoretical properties and practical
applications of penalty-based aggregation. Notable contri-
butions include the investigation of relationships between
penalty-based functions and consensus measures [23] and the
refinement of penalty function definitions and properties
[26]. A key development has been the enhancement of OWA
operators to improve their robustness, particularly in han-
dling outliers and noisy data. This advancement has broad-
ened the applicability of P-OWA in real-world scenarios
where data quality can be inconsistent. Recent years have seen
the introduction of weighted penalty-based aggregation
methods, further refining the theoretical framework and
opening up new avenues for application. The advancement of
penalty-based aggregation operators is illustrated in Table 1.

Future work could explore novel extensions of P-OWA
operators. This direction builds upon the foundational work
of [25] on penalty-based aggregation functions and extends
it in line with recent advancements in weighted penalty-
based methods [30].

The body of work represented by these papers dem-
onstrates the evolution of penalty-based aggregation func-
tions from their initial conceptualization to their application
in various fields and the ongoing refinement of their the-
oretical foundations. As research continues, we can expect
further developments in both the theory and practice of
penalty-based aggregation, potentially leading to new in-
sights and applications across multiple disciplines.

3. Preliminaries

In order to enhance the efficiency of the aggregation process,
Yager investigated a penalty function-based information
aggregation theory. In this section, we will briefly review the
fundamental concept of penalty function, OWA operators,
and P-OWA operators.

3.1. Penalty Function. Yager suggested the implementation
of penalty function which helps in aggregating data. The
primary motivation behind our work is Yager’s concept of

“penalty cost” related to input disagreement with an output.
This output value can serve as a fused representation, which
can be obtained as the mean, median, or mode of an input
vector, and in some cases, it may also be regarded as an ideal
value. The greater the number of inputs that disagree with
the output, the larger the penalty for the disagreement. We
look for an aggregated value which minimizes the penalty; in
some sense we look for a consensus value which minimizes
the disagreement. In accordance with this definition, the
penalty function is defined as follows.

Definition 1 (see [21]). The function P: R**! — [0, c0) is
a penalty function if it satisfies the following conditions:

1. P(x;, y)=0fori=1,...,m;
2. P(x;, y) =0forallx; = y;

3. For all fixed x, penalty value will be singular element
or a range;

where x = (x;,X,,...,x,) is an input vector while y is
an output value or a fused value.

Note: As per the primary two requirements, negative
values for penalties are not accepted, and if a complete
consensus is achieved, then zero penalty is obtained.

Later on, Calvo, Mesiar, and Yager [31] gave details on
weighted aggregation based on penalty function. Many
authors have discussed penalty function in their literature
[26, 32, 33].

3.2. OWA and IOWA Operators. The OWA operator, de-
veloped by Yager, is a remarkable and simple nonlinear
aggregation method that has demonstrated its importance in
various domains.

Definition 2 (see [34]). An OWA operator defined by
OWA: R* — R is an mn-dimensional mapping with
weighting vector W = [wy,w,,...,w,]" and Yiaw;=1is
defined as follows:

OWA(a,,a,,...,a,) =ijbj, (1)
=1

where b; is the jth largest element in the collection
a;,ay, ..., 0,

Yager modifies the process of reordering and introduces
a variable that is induced in the IOWA operator. This
variable is associated with each argument and corresponds
to the decision maker’s comprehension or the important
characteristics of the problem.

Definition 3 (see [17]). An IOWA operator of dimension # is
a mapping IOWA: R" x R" — R such that it has an as-
sociated weighting vector W, such that

n

IOWA ((uy,a,), (4, 3)» - -» (U @) = ijbjr (2)

j=1
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where bj is the a; (i =1,2,...n) value of the IOWA pair
{u;, a;) having the jth largest u; and u; is the order-inducing
variable connected to the a;.

3.3. P-OWA Operator. In decision-making theory, while
compiling information, it is essential to compile all of the
relevant data. During the aggregation process, we need to
locate all of those irrelevant pieces of information that are
not close to the result so that we can remove them. The
P-OWA operator is used here to aggregate all penalties that
differ between input and output. It provides the problem’s
lowest penalty value, assisting decision makers in de-
termining which decision best fits the outcome.

Definition 4 (see [23]). A P-OWA operator of dimension
(n+1) is a function P-OWA: R"! — [0,00) of
weighting vector W = [w,,w,, ..., w,]", where w; € [0,1]
and Z;-'zle =1 with penalty function p(x,y) having ar-
gument vector x and y as fused value such that

n

P-OWAy (x;y) = Z w;p(xp ) (3)

ij=1

where the weights are allocated to the penalties based on
their respective penalty size using the OWA function.

4. Advantages of Penalty-Based
Aggregation Operators

The penalty-based ordered averaging aggregation operator is
an extension of the traditional OWA aggregation operator. It
introduces a penalty mechanism that provides more nu-
anced and adaptive decision-making capabilities compared
to the standard OWA. The key idea behind the penalty-based
operators is to incorporate a penalty function that dy-
namically adjusts the weights assigned to the ordered input
values during the aggregation process. This penalty function
takes into account the characteristics of the input values,
such as their relative magnitude or position within the
ordered sequence. Penalty-based operators enhance sensi-
tivity to extreme values. In contrast, traditional OWA op-
erators treat all ordered values in a uniform manner.
Consider a scenario in which a supply chain organization
is aiming to enhance the efficacy of its logistics network; it is
imperative to analyze data concerning various metrics
pertinent to transportation, warehousing, and distribution
operations, encompassing factors such as delivery durations,
transportation expenditures, inventory quantities, and
customer satisfaction indices. Using the traditional OWA
approach, it might assign fixed weights to each of these
metrics based on their perceived importance or the com-
pany’s strategic priorities. For example, it might give
a higher weight to delivery times and transportation costs, as
these are critical to maintaining an efficient and cost-
effective supply chain. However, this approach may not
adequately account for the potential impact of extreme or
outlier values within your dataset. For instance, there might
have been a few instances of exceptionally long delivery

times or unusually high transportation costs that could
disproportionately skew the aggregated performance metric,
even if they are not representative of the overall supply
chain’s performance.

In this scenario, the P-OWA can provide a more nu-
anced and adaptive approach. By incorporating a penalty
function, we can dynamically adjust the weights assigned to
each metric based on their relative deviation from the norm
or their potential to introduce undue risk or uncertainty into
the aggregation process. Suppose we notice a few delivery
times that are significantly longer than the rest; the P-OWA
can apply a higher penalty to these outlier values, reducing
their influence on the final aggregated performance metric.
Conversely, if you have consistently high customer satis-
faction scores across the board, the P-OWA can assign them
higher weights, ensuring that this positive aspect of your
supply chain operations is properly reflected in the overall
performance evaluation.

By mitigating the impact of extreme or anomalous
values, the P-OWA can provide a more accurate and rep-
resentative assessment of your supply chain’s overall per-
formance. The ability to adjust weights based on the risk or
variability associated with each metric can help you better
identify and address potential vulnerabilities in your lo-
gistics network. The customizable nature of the penalty
function allows decision makers to tailor the aggregation
process to their specific operational priorities and perfor-
mance targets. The more nuanced and adaptive performance
evaluation enabled by the P-OWA can lead to more in-
formed and effective supply chain optimization decisions.

In summary, the P-OWA extends the traditional OWA
by introducing a penalty function that provides a more
nuanced, adaptive, and risk-sensitive aggregation mecha-
nism. This enhanced approach can lead to improved de-
cision making in various applications, particularly when
dealing with complex or uncertain data.

5. Proposed Work

This section provides the introduction of the P-IOWA
operator and discusses its properties. Moreover, it also
explores the development of the P-OWA and P-IOWA
operator families within the same section.

5.1. P-IOWA Operator. The P-OWA operator has been
further elaborated to establish the P-IOWA operator. Unlike
the P-OWA operator, the P-IOWA operator’s ordering is
dependent on the induced variable’s value, instead of a step
for rearrangement. With the aim of reducing any penalties,
we may assign greater weight to the penalty with the smallest
value and assign lesser weight to the penalty with the
largest value.

Definition 5. A mapping P —IOWA: R" xR" xR — R" is
called a P-IOWA operator such that it has an associated
weighting vector W = [w,,w,,...,w,]”, where w; € [0,1]
and Y ,w; =1 with penalty function p(x, y) having x =
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6
(Xp5eennn. ,X,) as an argument vector and y as fused value
such that
P-IOWA (1,x,y) = }Zl w;p (1% ¥), (4)
i,j=

where the penalties of x are arranged as largest to lowest
according to the inducing variable u.

Example 1. Consider the following induced P-IOWA pairs
{u;, x;) as given by <0.15,2),<0.10,2),<0.20, 3), €0.05,
3,€0.12,5) and penalty function p(x,y) =[x — y| with
weighting vector W = {0.4,0.3,0.1,0.1,0.1}.

Considering y as mean (fused value), then y =3, and
calculating penalties using p(x;, y) =|x; — yl, we get
a penalty vector as follows:

p(x»y) =(1,1,0,0,2), i=1to5. (5)

Reordering penalty vector according to induced variable,
it becomes p(0,1,2,1,0). So, using equation (4), we get

P -IOWA = (0.4)(0) +(0.3)(1) + (0.1)(2) + (0.1) (1)

+(0.1)(0) = 0.6. (©)

A real-world example was taken to demonstrate the
applicability of the IOWA operator in the selection of
mutual funds. In the context of the upcoming Example 2, we
have selected and extracted data from three different mutual
funds, specifically from the financial records of the month of
September in the year 2023 [35]. These data have been
carefully compiled for analysis and presentation in the
subsequent section.

Example 2. In the present context, we will employ the in-
stance of investing in equity mutual funds to elucidate the
P-OWA and P-IOWA operators. Equity mutual funds are
long-term financial instruments for growth in wealth and
come with market risk but tax benefits. These operators are
utilized for the purpose of establishing the aggregation of
disagreement between input and output values. One may
view this disagreement as a value representing a penalty or
risk when investing in mutual funds. It is very crucial to find
which mutual fund is good for an investment because several
parameters are there which are affecting the price of mutual
funds. Also, it becomes more complicated when their price
fluctuation is minor.

We will now examine three investment possibilities, each
with a unique name as indicated in Table 2. In order to
analyze these options, we will be observing their daily prices
over a span of 22 days.

In Table 3, we have calculated the penalties of each
mutual funds by using the penalty function
p(x;, y) = |x; — y|. Experts have assigned a value to the
inducing variable on a scale of seven based on seven distinct
factors. These factors include the risk factor, liquidity factor,
uniformity factor, quality of returns factor, research factor,
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demand and supply factor, and the companies’ earnings and
future projects. These factors collectively contribute to the
fluctuations in mutual fund prices.

Using the P-OWA and P-IOWA operators, we aggre-
gated the penalties using Table 2 values, which are calculated
and listed in Table 4.

It is apparent from Table 4 that the reduction of penalties
through the implementation of the P-IOWA operator is
noteworthy. Thus, after aggregating penalties using P-OWA
and P-IOWA operators, Axis Mid Cap, a mutual fund, is
considered as the most preferable option for an investment
compared to the other two mutual funds as it offers the
lowest penalty value. Additionally, considering penalties as
an investment risk value, we can say that P-IOWA reduces
the investment risk value, which aids investors in decision
making. The utilization of penalty operators enables the
comparison of one or more mutual funds with their in-
vestment risk value, facilitating investors in making well-
informed decisions regarding the most suitable option.

Furthermore, it is possible to establish distinctive op-
erators, such as the ascending and descending P-IOWA
operators. Taking an alternative stance on the rearrangement
process, we can differentiate between ascending (AP-IOWA)
and descending (DP-IOWA) orders. The weights of these
operators are assigned according to the equation
w; = w,_;.;> where w; is the jth weight of the DP-IOWA
operator and wy_;,, is the jth weight of the AP-IOWA
operator.

According to the definition of penalty function, if the
fused value and argument value are the same, then
P —1OWA (Kuy, x1, ¥7, Uy, X9, 105 .o, KUy, X, ) = 0, for
all i and also penalties are never negative so
P —IOWA (uy, x1, ¥7, {Ugy X5 Y05 .5 Uy, X, ) 2 0. The
P-IOWA operator is an averaging aggregation operator.
Therefore, it fulfills various properties such as commuta-
tivity, monotonicity, boundedness, idempotent, non-
negativity, and reflexivity.

Property 1 (monotonicity). Let fbea P - IOWA operator. If
x={x;,%...,x,} and z = {2z}, 2,,...,2,} are the two ar-
guments for P-IOWA operator and it
p(u;, x;, ) = p(u;, 25, ) for all i, then

f{unxn y)s (o X0, )55 (thy X, 1))

(7)
2 f ((u1520y)s (4o 25, ¥)s 5 (s 200 7))

Proof 1. Assume we have penalty function p(x;, y)
=lx;—yl and p(z,y) =lz;-yl if |x;—yl=lz; -yl
according to this induced variable u;, then we get
P-IOWA(, .., 2P -1IOWA, . ,). Hence, we can say that

fupxi ) = f (w2 ) (8)

where y have the same output related to given arguments
which can be any fused value. It is important to acknowledge
that not all penalty functions exhibit the property of being
monotonic  [36]. Therefore, in order to aggregate
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TaBLE 2: Data of three equity mutual funds.

Mutual fund price day-wise (in Rs.)

Days Axis mid cap (M) emerginlg(oet;lll:i ty (M) SBI flexi cap (M;)
01-Sep-2023 89.66 102.98 93.80
04-Sep-2023 89.79 103.56 94.27
05-Sep-2023 90.60 104.57 94.66
06-Sep-2023 90.77 104.81 94.84
07-Sep-2023 91.21 105.13 95.14
08-Sep-2023 91.77 105.71 95.89
11-Sep-2023 92.19 106.46 96.50
12-Sep-2023 90.56 104.10 95.77
13-Sep-2023 90.18 103.84 95.96
14-Sep-2023 90.78 104.35 96.39
15-Sep-2023 90.90 104.22 96.49
18-Sep-2023 90.41 104.08 96.32
20-Sep-2023 90.11 103.72 95.49
21-Sep-2023 89.33 102.86 94.63
22-Sep-2023 89.15 102.74 94.30

y =fused value (4 = average) u =90.494 u=104.209 YU=95.363

Note: Source: [35].

TaBLE 3: Penalties of each mutual fund.

Sr. No. Weights Inducing variable value Mutual fund risk value (penalties)

(Wi) (u,-) (Ml) (Mz) (Ms)
1 0.1 5.5 0.834 1.229 1.563
2 0.02 5.7 0.704 0.649 1.093
3 0.1 2.7 0.106 0.361 0.703
4 0.02 2.7 0.276 0.601 0.523
5 0.02 59 0.716 0.921 0.223
6 0.04 6.4 1.276 1.501 0.527
7 0.02 6.6 1.696 2.251 1.137
8 0.12 2.5 0.066 0.109 0.407
9 0.04 3.0 0.314 0.369 0.597
10 0.05 2.8 0.286 0.141 1.027
11 0.09 2.0 0.406 0.011 1.127
12 0.15 2.2 0.084 0.129 0.957
13 0.09 32 0.384 0.489 0.127
14 0.12 6.6 1.164 1.349 0.733
15 0.02 6.7 1.344 1.469 1.063

TaBLE 4: Aggregated value of penalties.
Aggregation of mutual fund’s penalties
Operators
(M,) (M) (M3)

P-OWA 0.54380115 0.692 0.733
P-IOWA 0.51742 0.654 0.699

Overall reduction 0.02638115 (2.6%)

0.038 (3.8%) 0.034 (3.4%)

information, it becomes important to utilize penalty-based
aggregation functions [25]. O

Property 2 (commutativity). If f is a P —IOWA operator,
then for all P-IOWA pairs, fis commutative if

I (s %05 905 (s X35 ¥ )+ (ths X5 V7))

9)
= (o> 35 %105 (Uas 15 X205 o5 (s 35 %,0) ).

Proof 2. Assume we have penalty function
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p(x:y) :|xi —y|, foralli=1,2,...,n
:l}’_xiL

P-IOWA(u,x,y) = Y w;p(ux;,y)
ij=1

= Z wjlxl- - (10)

ij=1
=D wily-x

ij=1
=P-IOWA(u, y,x).

Hence, commutativity is proved. O

Property 3 (boundedness). If fis a P — IOW A operator with
the argument vector x = {x, x,,...,x,}, for all i, then it is
bounded if

min p{x;, y} < f (1> X1, ), (U2, X0 )5 -5 (s X, 7))
<max p{x;, y}.
(11)

Proof 3. Consider p(x;, ¥) = |x; — y| for which upper bound
is max{|x; — y|} = ¢ and lower bound is min{|x; - y|} = d;
according to the corresponding induced variable u;, we can
write

n

P-IOWA(u,x,y) = Z w;p (i x; ¥)

ij=1
Z w;p (U X y) 2 Z w;d and Z w;p (4 X )
ij=1 ij=1 ij=1
< Z w;c
ij=1
(12)
O

Now, we known that % ,w; =1, then .  jw;
p(upx;,y)>dand ¥ wip(u;,x;, y) <c.

n
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n

d< Z ij(u,-,x,-,y)3cz min{|xi —yl}

ij=1
3

and hence, min p{x;, y} < f (Kuy, xy, ¥,
oo s (U, X, yY) <max pix;, ).
Hence, it is proved.

(13)

n

< Y wip(upx,y) Smaxﬂxi -
ij=1

<u2: xz, y>)

Property 4 (idempotent). If fisa P — IOWA operator having
p(x;, y) = b,foralli, then f is idempotent if

x5 9), oy %2, ¥)s s (s X0 ¥)) = b. (14)

Proof 4. Suppose we get same penalty value for each i for
a given penalty function.

Thatis, p(x;, y) = bfor eachi = 1 to n; then our operator
can be defined as

P-IOWA (u,x, y) = Z wjp(u,-,xi,y) = Z wb=b. (15)

ij=1

Hence, it is proved. O

Property 5 (nonnegativity). If f is a P —IOWA operator,
then according to the definition of penalty function, f is
nonnegative if

F(Quix1 ), (U X0 y)s oo (U X, ¥)) 20, (16)

Proof 5. Now, for a penalty function p(x;, ¥) = |x; — y|, we
have two possibilities,

|xi—J’|=Xi—)’aifxi—J’20

= ~(x;— y)ifx; - y<O0. (7

O

In both the cases, |x; — y| is a nonnegative function. So,
we can write

P—IOWA (u,x,y) = Y w;p(u;x;y)

ij=1

= 5 w5l 20,forx, - y20and - y<0

ij=1

(18)

(0 y)s (s %30 35 (s %0 7)) 20,

Hence, it is proved.

Property 6 (reflexivity). If fis a P — IOWA operator and if
x; = y,foralli, then fis reflexive if
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F (Qurs x1 )5 (g X0 ) (U X0 ¥)) = 0. (19)

Proof 6. Suppose for a penalty function p(x;, y) = |x; — yI
we obtain identical fused values for each respective argu-
ment. In this instance, we receive a unanimous vote.

n n

P-IOWA (u,x,y) = Z wjp(u,-,xi,y) = Z wjlx,-—)/l = Z wj|)/_)’| =0

ij=1

ij=1 ij=1 (20)

(0 y)s (s %55 y)5 5 (U % 7)) = 0.

Hence, it is proved that f is reflexive. O

Note: In certain exceptional situations, the P-IOWA
operator may not always satisfy the triangle inequality. Here,
we can prove this by taking an example.

Example 3. Assume x = (x,Xx,,x3) = (4,2,6) with
w = (0.2,0.3,0.5) and inducing variable u = (4,3,7). Con-
sider the penalty function p(x, y) = |x; — y|. Here y is the
mean (fused value).

The penalties are calculated as follows.
Pl y)=14-41=0,p(xyy) =124 =2,p(x3,y) =
|6 — 4| = 2, where y =4 is a fused value.

P - IOWA (u;,x,,y) =P -IOWA(4,4,4) =0.3x0 = 0,
P - IOWA (u,,x,,y) =P —-IOWA(3,2,4) =0.5x2 =1, (21)
P - IOWA (u3, x5, y) =P —IOWA(7,6,4) =0.2x 2 = 0.4.

Here, we can see the following.
P - IOWA (u,,x;,y) + P — IOWA (u3, x5, y) <P - IOWA
(uy,X%,,y) as 0+ 0.4 <1 and in another situation, it will be

P —1OWA (uy,x,y) + P — IOWA (uy, x,, )

(22)
>P — IOWA (u3, x5, 7).

As a result of the imposed inducing variable, it can be
argued that the P-IOWA operator fails to satisfy the triangle
inequality.

5.2. P-OWA and P-IOWA Operators With Geometric Mean.
When it comes to handling data that are more prone to
volatility, the geometric mean is frequently favored over the
arithmetic mean. The reason for this is that the arithmetic
mean can be greatly impacted by extreme values or outliers
within the data, thus diminishing its reliability for datasets
that exhibit high volatility. The application of the geometric
mean proves to be beneficial in the computation of ratios or
rates of growth, such as compound annual growth rates or
population growth rates. It has been noted in the past that
researchers have increased the use of the OWA and IOWA
operators by including the geometric mean in their literary
works [14, 37, 38]. We may create the penalty-based ordered
weighted geometric (P-OWG) averaging operator and
penalty-based induced ordered weighted geometric (P-
IOWG) averaging operator by extending the P-OWA and
P-IOWA operators with the geometric mean.

Definition 6. A P-OWG averaging operator
P - OWG: R"! — [0, 0) is a mapping that has a corre-
sponding weighting vector W with penalty function p (x, y)
having argument vector x and y as fused value such that

p- OWGW(x(i)>J’) = H p(x )", (23)
ij=1

where the penalties of x are arranged in a decreasing order.

Definition 7. A P-IOWG averaging operator P-
IOWG: R" x R" x R — R* is a mapping that has a corre-
sponding weighting vector W with penalty function p (x;, y)
having argument vector x; and y as fused value such that

P-10WGy, (1, x5 y) = [ | p (i % )", (24)
i,j=1

where the penalties of x are arranged as largest to lowest
according to the inducing variable u; for all i.

It is feasible to formulate the P-IOWA operator and
P-OWA operator in a comparable manner by initially
rearranging the arguments and subsequently computing the
penalties. Assume g to be a measure defined as follows:

g x1, ), (U %0, ¥)s o5 (U Xy ¥)) = Z WiCh>
k=1

(25)
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where ¢, is the p (x;, y) value of the triplet {u;, x;, ¥) and x;
is the k™ argument variable of the set x = (x},x,,...,%,)
and y is the fused value having the k™ largest 1 and u is the
order-inducing variable. This measure is same as P-IOWA if
reordering of both the operators is same.

Suppose f is the P-IOWA operator and g is the measure
explained in equation (25). If k =i, then

(s x5 ¥)s (s X0, ¥)s s (thys X0 ¥))

(26)
= f (U0 ) (U2 X0 ) (U X ))-

In the literature on ordered weighted averaging
[11, 39, 40] operator, various measures have been employed
for describing the weight vector. Addressing the behavior of
the P-IOWA operator is of utmost importance. Imple-
menting the approach of the OWA operator will enable us to
define the measure for the penalty-based functions as given
below:

a(W) = iwj*(”‘f), (27)

j=1 n-—1

where a(W) is the degree of orness defined by Yager.
Furthermore, there are alternative measures that could
be explored such as entropy of dispersion, divergence of W,
and the balance operator [41, 42], which are defined as
follows.
The entropy of dispersion is

HW)=- FZ; w; ln(wj). (28)
For balance operator, it is defined as
BAL(W) = Y ”“_2]) 2
( Z ( n-1 )7 (29)

j=1

For divergence of W, it is written as

n . 2
DIVW) = Y w(“=L-a(w)) (30)
i1 n—1
where w;* is the w; weight of the P-JOWA aggregation
ordered according to the values of the arguments p(x;, ).
A further factor that requires attention pertains to the
challenge of inducing identical variables for two distinct
arguments. This scenario presents a challenge in terms of
ordering the arguments. Therefore, to address the issue of
tied arguments, we suggest implementing the Yager and
Filev policy [17] as a practical solution to obtain the average
of such arguments.

5.3. Families of P-OWA and P-IOWA Operators. By con-
sidering a distinct weighted vector manifestation, various
forms of P-OWA and P-IOWA operators [40, 41, 43] can be
derived, such as the max-penalty, min-penalty, step P-OWA
and step P-IOWA, olympic P-OWA and olympic P-IOWA,
and many more.

International Journal of Intelligent Systems

Remark 1. By putting weights w; =1 and w; =0, forall i # 1,
in the operator P-OWA, we achieved the maximum or
highest penalty value, and taking w, =1 and w; =0, for all
i#n weights, we get the min P-OWA or lowest penalty.
Similarly, for P-IOWA, the maximum penalty is attained by
replacing the weights w,=1 and w; =0, for all i# p, and
u, = max{a;}, and the minimum penalty is obtained by

substituting w,=1 and w;=0, for all i#p, and

u, = min {a;}. The step P-OWA is formed when wj =1 and
w; =0, for all k#i, and similar methodology is applied on
step P-IOWA with inducing variable u; = a;. The olympic
P-OWA operator is obtained when w,=w,=0 and
w; = 1/(n-2), j#1orn, and the olympic P-IOWA is ob-
tained when w; =w, =0 and for all w; = 1/(n-2) with

inducing variable u;, j# 1 orn.

Remark 2. Similarly, we can find window P-OWA when
w; =1/mfork<j<k+mandw;=0for j>k+mand j<k
and window P-IOWA when w; = 1/m for k< j <k +m and
w;=0 for j>k+m and j<k, with inducing variable u;.
Here k and m must be positive integers such that k + m <n.

6. P-OWA Operators With Generalized and
Quasi-Arithmetic Mean

In this particular section, our objective is to enhance the
P-OWA and P-IOWA operator by integrating the gener-
alized and quasi-arithmetic mean. This combination helps to
resolve complex situations effectively. Moreover, this section
analyzes the particular instances of these operators.

6.1. GOWA Operator. Yager has introduced the operator
known as GOWA and incorporated generalized means
within the OWA operator, resulting in a more compre-
hensive approach.

Definition 8 (see [15]). A GOWA operator is an n-
dimensional function GOWA: R" — R that has a weight-
ing vector W such that } ;w; =1 and w; € [0,1] and a pa-
rameter A € (—00, 00), according to the following formula:

(1
n
GOWA (a,,a,,...,a,) :<ijbf> , (31)
i

where b; is the jth largest in a; for all i = 1...n.

The induced generalized OWA (IGOWA) operator is
derived by using classification approaches to the IOWA
operator. It is defined as follows.

Definition 9 (see [44]). An IGOWA operator of dimension
2n is a mapping IGOWA: R" x R" — R such that it has
a weighting vector W = [w,, w,,...w,]", where w; € [0,1]
and Y w; =1, a set of ordered 1nduced varlables u;, and
a parameter A € (—00, 00), the resulting formula is

B5USD| SUOUILLOD BAITERID) 3(ded! (dde L Ag pauLeAcb e S3o1Le YO 38N JO S3IN 104 ARG 1T BUIIUO A1/ UO (SUORIPUCD-PLIE-SWLISIWI0D" 43| 1M AReIq 1 [BUUO//SANY) SUOIIPUOD PUE SLLLB L 34} 39S *[SZ02/60/T] U0 Akiqi78uiju AB|IM ‘|10UNnoD Loeasay [e2IPSIN PUY YlfeaH BUOIeN AQ 8STE909/1U/SSTT OT/10p/wod" A 1M Akeiq1jpul uo//Sany Woiy papeojumoq ‘T ‘G20z ‘s!t



International Journal of Intelligent Systems

; an
IGOWA ({uy,ay), (U, a3)s ..., (U, a,)) = (Z wjbjA> ,
i1

(32)

where b; is the a; value of the IOWA pair u;, a;) having the
jth largest value of the u;.

6.2. P-OWA With Generalized Mean

Definition 10. A penalty-based GOWA is a mapping P —
GOWA: R" x R — R" having n + 1 dimension such that it
has weighting vector W, a set of order-inducing variables u;,
and a parameter A € (—00,00), the resulting formula is

. am
A
P—GOWA(xi,y):<ijp(xi,y) > , X YER,
i1
(33)

where the weights are assigned to the penalties according to
their respective penalty size by using the OWA function and
also the penalties of x are arranged in a decreasing order.

Definition 11. A penalty-based IGOWA of dimension (2n +
1) is a function P - IGOWA: R" x R"* x R — R*, with
corresponding weighting vector W, where w; € [0,1] and
Yw;j=1, for all j=1ton, and has a parameter

A € (—00,00); then accordingly, the formula is written as

P —IGOWA (u;, x;, y)

1

n (1/1) (34)
= ( Z ij(”i’xby)A) » Xp Y ER,

ij=1

where the penalties of x are arranged in decreasing order
according to the value of induced variable to u;, for all i.

Taking different parameter values in equation (33) we get
the families of P-GOWA operator such as P-OWG averaging
operator for A — 0, penalty-based ordered weighted
quadratic averaging (P-OWQA) operator for A = 2, penalty-
based ordered weighted cubic averaging (P-OWCA) oper-
ator for A = 3, and many more. Similarly, by employing the
identical approach to the P-IGOWA operator, we can
produce various categories of P-OWA operators.

The P-IGOWA also functions as an aggregation oper-
ator. As a result, it satisfies the commutativity, monotonicity,
boundedness, and idempotent properties.

6.3. P-OWA With Quasi-Arithmetic Means. A more com-
prehensive extension of the OWA operator based on pen-
alties can be achieved through the application of quasi-
arithmetic means, in lieu of the arithmetic means. In the
past, several authors have used quasi-arithmetic approaches
to expand OWA and IOWA operators [16, 44]. In a way that

11

reflects the earlier method, a similar concept like the quasi-
penalty-based ordered weighted averaging (QP-OWA)
operator, as well as the quasi-penalty-based induced ordered
weighted averaging (QP-IOWA) operator, can be formu-
lated. The advantage of these operators is valuable since they
enable a broader application and provide a wide variety of
specific scenarios. These operators are defined as follows.

Definition 12. A mapping QP — OWA: R*! — R referred
to as a QP-OWA operator of dimension n+1 can be
characterized by a weighting vector W such that the sum-
mation of the weights equals to 1 and w; € [0,1],Vj = 1ton,
and by a strictly monotonic continuous function g
(p(x;, »)), as follows:

QP - OWA(x, y) :g_1< Z wjg(p(xi,y))>, (35)

ij=1

where the weights are assigned to the penalties according to
their respective penalty size by using the OWA function and
also the penalties of x are arranged in a decreasing order.

Definition 13. A QP-IOWA operator of dimension 2n + 1 is
a mapping QP - IOWA: R" x R" x R — R* that has an n-
dimensional weight vector W and has a strictly monotonic
continuous function g(p (u X ¥)), which is defined as follows:

QP — TOWA ((uy, X1, ¥)s (thas X5 ¥)s -+ 5 (U X, ¥))

<57 ( 5 wolotor ),

ij=1
(36)

where the penalties of x are ordered as largest to lowest in
accordance with the value of the induced variable to u;, for
all 4.

6.4. Particular Cases. In equations (35) and (36), by using
different type of functions we are able to generate other
operators, such as P-OWG operator, P-IOWG operator, the
penalty-based induced ordered weighted harmonic aver-
aging operator (P-IOWH) [15, 44], P-IOWA, penalty-based
induced ordered weighted quadratic averaging operator (P-
IOWQA), penalty-based induced ordered weighted cubic
averaging operator (P-IOWCA) and many other operators.
All the particular cases are depicted in Table 5.

In Table 5, we are taking g (p) in place of g (p (x;, ¥)) and
g(p(u;, x; ) according to equations (35) and (36).

7. P-OWA Framework for Multinational
Investment in South Asia

The main objective of this work is to apply the penalty-based
operators as a novel aggregation operator for assisting
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TaBLE 5: Particular cases of the QP-OWA and QP-IOWA operators.
Particular cases
Functions QP-OWA QP-IOWA
Name Formula Name Formula

g(p)=1 P-OWG [TLip(x;y) ™ P-IOWG [To P xi, y)
gp)=p P-OWA Yiwip(x,y) P-IOWA Yiaw;p (U, X, y)
g9(p) = p! P-OWH St wilp (s y) P-IOWH ST w,/p (1 % y)
g(p) =p’ P-OWQA Z?:lep(xi’y)z P-IOWQA Z?:lep(ui’xi’y)z
g(p)=p° P-OWCA Yirwip(x,y)’ P-IOWCA Yrw;p(u, X, y)

various MNCs in selecting the most suitable investment
options. The steps to use these new operators are as follows:

Step 1. Decide which part of the world MNCs wish to
invest in or grow their business. Decision makers may
take this into account when deciding which country’s
market to enter.

Step 2. The company needs an in-depth analysis of the
economic, social, and political or governance (ESG)
issues in each country. By considering ESG factors in
investment decisions, it is possible to reduce risk and
increase value for both investors and corporations, as
ESG investment has the potential to influence the
enduring sustainability and operational efficacy of
a business enterprise. Pick out all the indicators you
need for any company’s investment.

Step 3. Construct the decision matrix having different
countries as an alternatives and investment indicators
as a criterion. Let C = {C,,C,,...,C,} be the set of
finite criteria and A = {A},A,,...,A,,} be the set of
finite alternatives for the decision matrix. Then the
decision matrix is defined as follows:

c, C, C
y
1 rll rlZ A rln

2 er rZZ e rZu (37)
Am rml rmZ e rmn

Here {r,-j}mx ,i=1,2,...mand j = 1,2,...n represent
the value of each criterion C ; for the respective
country A,.

Step 4. Find the fused value or ideal value for calcu-
lations of penalties. In the case of using present-year
data and selecting ideal values from the subsequent
year, decision makers should use slightly future-
oriented ideal values for current data. It is a valid
and forward-looking approach to decision making. It
acknowledges that progress and improvement are
ongoing processes and sets targets that encourage
growth beyond current performance levels. The future
year’s ideal values likely represent the most recent

aspirations and benchmarks available, incorporating
the latest economic trends, policy, changes, and global
developments.

Step 5. Determine the penalties for each criterion with
suitable penalty function and then give weight to
penalty according to their value. Here let
W = {w;,w,,...,w,} be a weighting vector such that

Z;’lej = landw; € [0, 1].

Step 6. Calculate the order-inducing vector u to be used
in the decision matrix for each alternative A; and
criteria C;.

Step 7. Collect the required data for constructing de-
cision matrix and then we aggregate data by different
P-OWA operators. After getting aggregated criterion
value of each country, we are ordering or ranking each
country by aggregation operator’s value. These rank-
ings help in selection of optimal solution for given
investment problem.

8. Case Study

In order to understand the new theoretical approaches
presented in the previous sections, let us develop a case
study. For doing so, we analyze an investment problem by
employing penalty operators to demonstrate its applicabil-
ity. First, we describe and analyze the case study. In con-
tinuation, we discuss the results providing useful
information about the investment.

8.1. Overview of an Investment Problem. In this section, we
will consider a case study to illustrate how to apply the
P-OWA and P-IOWA operators to a problem involving the
selection of a country for investment by MNCs.

Step 1. Let us consider any MNC that wants to do
investment in South Asian countries for its business
expansion. We take into consideration seven nations
denoted as A; as listed below:

1. A;: Bangladesh
2. A,: India
3. A;: Maldives
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4. A;: Nepal
5. As;: Pakistan
6. Ag: Sri Lanka
7. A;: Bhutan

Step 2. The key indicators for an investment are en-
vironmental, social, and political or governance (ESG).
In continuation, it can be categorized into nine major
factors. The major factors which affect the foreign
direct investment in any country according to literature
review [45-47] are as follows:

. C,: GDP growth (annual %)

C,: Exports of goods and services (% of GDP)

C;: Imports of goods and services (% of GDP)

C,: Inflation, consumer prices (annual %)

. C5: Labor force participation rate, total (% of total

population ages 15+)

6. Cs: Wage and salaried workers, total (% of total
employment)

7. C,: Control of corruption—percentile rank, upper
bound of 90% confidence interval

8. Cg:  Government effectiveness—percentile rank,
upper bound of 90% confidence interval

9. Cy: Political stability and absence of violence/ter-

rorism—percentile rank, upper bound of 90%

confidence interval

OIS S

Step 3. Here in Table 6, we are using World Bank and
Asian Development Bank data [48, 49] for each in-
dicator of the countries. In this case, we took the
roundoff value of each criterion. We have taken one
year (2021) data of each country for prediction on
investment. It should be noted that all the values of each
criterion are in terms of percentage. The decision
matrix of investment criteria is given in Table 6.

Using all these kinds of information, we construct the
investment matrix which is defined in Table 6
according to Section 7 (Step 3). In this table, all cri-
terion values are in terms of percentage. To understand
this table, one can take the first row of decision in-
vestment matrix which is described as

e r,; denotes the value of GDP growth of country A,

e r,, denote the value of exports of goods and services
(% of GDP) of country A,

e r,; denote the value of imports of goods and services
(% of GDP) of country A,

e r,, denote the value of inflation, consumer prices
(annual %) of country A,

e r,5 denote the value of labor force participation rate,
total (% of total population ages 15+) of country A,

e r,c denote the value of wage and salaried workers,
total (% of total employment) of country A,

e r,, denote the value of control of corruption: per-
centile rank, upper bound of 90% confidence Interval
of country A,

e r,3 denote the value of government effectiveness:
Percentile rank, upper bound of 90% confidence
interval of country A,
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e 1, denote the value of political stability and absence
of violence/terrorism: percentile rank, upper bound
of 90% confidence interval of country A,

Step 4. In our investment table, it is evident that all
criterion values fluctuate within a 0-100 scale, which
makes it quite challenging for the decision maker to
determine penalties in each criterion. So, first we
normalize Table 6 using the min-max normalization
method. Also, we use the inverted formula of the
min-max normalization method for the criteria such as
imports of goods and services (% of GDP) and inflation,
consumer prices (annual %) as they are considered
better with lower values among all the criteria. The
normalized table of investment criteria is given in
Table 7.

Step 5. After normalizing all criterion values, we find
the desired values or ideal values which help in finding
penalties. Here we are considering desired values from
the year 2022 to calculate the penalties. The 2022 de-
sired values are more reflective of the current market
conditions and investment priorities, making the
analysis more relevant and actionable. Basing the
penalties on the 2022 desired values shifts the focus to
future performance, rather than just looking at past
data. This aligns better with the decision-making needs
of MNCs evaluating investment opportunities. The
table of ideal values for each criterion is given in
Table 8.

In Table 8, all criterion values are normalized using the
min-max and inverse min-max method.

Step 6. Using these ideal values, we can find penalties in
each criterion wusing the penalty function as
p(x,y) = |x; — y|, where x; is the criterion value C;,
and considering y as an ideal solution (fused value)
[3, 50, 51]. So, we can calculate the penalties of each
criterion which is mentioned in Table 9.

Step 7. Note that there are many methods for calcu-
lating weighting vector [40, 44]. Our main objective is
to minimize penalties while aggregation. For this, we
have to take our weighting vector such as it assigns
higher weights to indicators with higher variability
across the countries. We apply the normalized inverse
penalty method that minimizes the overlap or re-
dundancy between indicators, ensuring that each in-
dicator contributes unique information to the overall
assessment. This can be important when dealing with
a set of correlated economic and governance metrics.
By applying the method to the normalized data, we can
derive a set of weights that reflect the relative impor-
tance of each indicator based on its variability and
uniqueness. The weighting vector with Z?zle =1and
w; € [0,1] is given as follows:

w ={0.1765,0.1277,0.0491, 0.0776, 0.2465, 0.0928,

0.0932,0.0632, 0.0733},
(38)
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TABLE 6: Decision matrix of investment criteria.
. Criteria
Alternatives
G G, G Cy Cs Cs (&7 (o G

A, 6.94 10.66 17.06 5.55 58.80 41.46 26.19 41.43 23.11
A, 9.69 21.40 24.02 5.13 51.15 23.35 50.48 70.95 33.96
A, 37.69 77.62 73.99 0.54 61.71 77.68 58.10 80.48 81.60
A, 4.84 5.12 37.93 4.15 40.00 21.12 46.19 33.33 51.42
As 6.51 9.05 17.98 9.50 52.73 42.23 32.38 50.48 10.38
Ag 4.21 16.92 24.31 7.01 51.11 57.61 50.48 62.86 47.64
A, 442 29.20 48.38 7.35 69.09 28.42 95.71 84.29 93.87

Note: Source: [48, 49].

TaBLE 7: Normalized matrix of investment criteria.

. Criteria
Alternatives
G G G (A Cs Cs (&7 Cs Gy
A 0.08150 0.07645 0.99998 0.44133 0.17230 0.35970 0.00001 0.15892 0.15251
A, 0.16367 0.22454 0.87768 0.48757 0.10221 0.03935 0.34934 0.73827 0.28246
A, 0.99992 1.00003 —0.00005 0.99965 0.19902 0.99995 0.45894 0.92516 0.85308
A, 0.01876 —0.00001 0.63333 0.59713 —0.00005 0.00002 0.28769 0.00007 0.49150
As 0.06881 0.05423 0.98386 0.00042 0.11669 0.37319 0.08905 0.33646 —0.00003
Ag —0.00008 0.16278 0.87268 0.27737 0.10182 0.64513 0.34934 0.57942 0.44630
A, 0.00631 0.33212 0.44979 0.24031 0.26666 0.12914 1.00006 0.99992 0.99998
TaBLE 8: Criterion ideal values.

G (&) (O3 G, G Cs &7 Cs (O
0.6415 0.7382 0.8648 0.8861 0.4000 0.1048 0.3938 0.4832 0.4516

Step 8. When choosing the inducing vector, it is es-
sential to analyze the factors that impact our chosen
criteria. Factors such as exports and remittances, for-
eign direct investment, human capital development,
macroeconomic stability, trade policies, global market,
social development, small market size, geographical
isolation, legal system, limited infrastructure, cost of
doing business, intellectual property protection, in-
frastructure and supply chain risks, trade barriers, and
tariffs differ from one country to another. Considering
these factors, experts in the respective fields determine
the values of the inducing variables out of 10 for each
criterion. The values of the inducing variable for each
criterion are given in Table 10.

Step 9. In this step, we aggregate the data using dif-
ferent P-OWA and P-IOWA operators. Aggregated
results are calculated using the formulas given in
Sections 2, 3, and 4. To aggregate the data, we are using
the values of Tables 9 and 10. The aggregated values of
the different penalty operators are determined in
Tables 11 and 12.

As we obtain the aggregated results for all operators
subjected to penalties, we will considerately arrange the
nations according to the least penalties incurred by each
country for each operator. This is given in Table 13.

8.2. Comparative Analysis of Penalty-Based Operators. A
thorough analysis is provided by systematically com-
paring the performance of various penalty OWA opera-
tors in selecting the top South Asian countries for MNC
investment. This aids in grasping the advantages and
drawbacks of each operator, facilitating the selection of
the most suitable one for your decision making. After
observing aggregated data from Tables 10 and 11, har-
monic, geometric, and min-penalty operators are most
risk-seeking operators. Here in the context of P-OWA
operators, being “most risk-seeking” means that this
operator tends to produce the lowest aggregate penalty
value compared to other operators when applied to the
same dataset. The MIN operator is the most effective in
reducing the penalty. This makes sense as it always selects
the minimum value, which in a penalty context would be
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TABLE 9: Penalty values of each criterion.
G G G G4 Gs Cs % Gs G
A, 0.5600 0.6618 0.1352 0.4447 0.2277 0.2549 0.3938 0.3243 0.2991
A, 0.4778 0.5137 0.0129 0.3985 0.2978 0.0654 0.0444 0.2551 0.1692
A 0.3584 0.2618 0.8648 0.1136 0.2010 0.8952 0.0652 0.4420 0.4015
A, 0.6227 0.7382 0.2315 0.2889 0.4000 0.1048 0.1061 0.4831 0.0399
As 0.5727 0.6840 0.1191 0.8857 0.2833 0.2684 0.3047 0.1467 0.4516
Ag 0.6416 0.5754 0.0079 0.6087 0.2982 0.5403 0.0444 0.0962 0.0053
A, 0.6352 0.4061 0.4150 0.6458 0.1333 0.0243 0.6063 0.5167 0.5484
TasLE 10: Inducing variables for each criterion.
G G, G Gy Cs Cs G Cs Gy
A, 7.00 7.00 6.50 7.00 7.50 7.00 5.00 5.50 6.50
A, 8.50 8.00 8.00 7.50 7.50 7.50 4.50 5.00 5.50
Az 8.00 7.00 6.00 7.50 6.50 6.00 6.50 6.50 7.50
A, 6.00 4.00 6.00 6.00 6.50 6.00 5.00 5.50 6.00
As 5.00 5.00 7.00 7.00 6.50 6.00 4.00 4.50 5.00
Ag 6.00 6.00 7.00 5.00 7.00 7.00 5.50 6.00 6.50
A, 6.00 6.00 5.50 6.00 7.00 6.50 6.00 6.00 7.00
TasLE 11: Aggregated results-1.
P-MIN P-MAX P-OWA P-OWG P-OWH P-OWQA P-OWCA
A, 0.2951 0.4485 0.3965 0.3620 0.3270 0.4289 0.4579
A, 0.1666 0.3346 0.2828 0.1974 0.0905 0.3311 0.3624
A 0.2816 0.5458 0.4646 0.3629 0.2606 0.5495 0.6148
A, 0.2323 0.4520 0.3767 0.2864 0.1882 0.4439 0.4928
As 0.3079 0.5393 0.4513 0.3795 0.3151 0.5192 0.5760
Ag 0.1991 0.4286 0.3486 0.1804 0.0378 0.4264 0.4697
A, 0.3269 0.5194 0.4814 0.3928 0.1956 0.5146 0.5325
TaBLE 12: Aggregated results-2.
P-Iowa P-IOWG P-IOWH P-IOWQA P-IOWCA
0.3313 0.3033 0.2779 0.3607 0.3893
0.2961 0.2160 0.1073 0.3399 0.3672
0.3348 0.2592 0.1979 0.4149 0.4883
0.3193 0.2283 0.1494 0.3901 0.4397
0.4472 0.3641 0.2831 0.5135 0.5630
0.3344 0.1277 0.0246 0.4313 0.4799
0.4237 0.3445 0.2041 0.4647 0.4899

TaBLE 13: Ordering of the countries for investments.

Operators Ordering

P-MIN Ay >Ag> Ay > A=A > As > A,
P-MAX Ay >Ag>A A > A - A > Ay
P-OWA Ay > Ag>Ay > A > As > Ay > A,
P-OWG Ag>Ay > A > A > A3 > A > A,
P-OWH Ag>Ay > Ay > A - Ay - A > A
P-OWQA Ay > Ag>A > A > A - A - Ay
P-OWCA Ay > A > Ag > Ay > A - Ag > Ay
P-IOWA Ay > Ay > A > Ag> Ay > Ay > Ag
P-IOWG Ag>Ay > A > A3 > A > A > Ag
P-IOWH Ag>Ay > A > A3 > A - A > As
P-IOWQA Ay > A >A > A3 > Ag > Ay - Ag
P-IOWCA Ay > A >Ay > Ag > Ay > A > Ag

the lowest risk or cost. Among the more balanced oper-
ators, P-IOWH performs the best, followed closely by P-
IOWG. The graph illustrating the comparison of penalty-
based operators in relation to their aggregated values is
presented in Figure 1. Furthermore, their analysis can be
found in Table 14.

8.3. Results and Discussion. Employing various P-OWA
operators within the framework of country selection for
investment enables a more detailed and refined analysis.
Each operator contributes a distinct viewpoint regarding the
aggregation of risk and performance metrics. This diversity
enables a more thorough analysis, covering various aspects
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Comparison of aggregated penalties across different OWA operators
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Figure 1: Comparative analysis.

of countries risk profiles. From Table 10, it is observed that
with the given weights, the P-OWA scores range from 0.283
to 0.481, indicating that this operator provides a middle-
ground approach.

Observations:

- A2 and A6 consistently rank as the top performers
across most operators.

- A3, A5, and A7 tend to be the lower performers across
most operators.

- Al and A4 are generally mid-range performers.

Based on the analysis, we can identify which countries
need improvement and in which areas:

Al: Needs improvement in C2 (exports), C1 (GDP
growth), and C4 (inflation)

A2: Performs well overall, but could improve C2 (ex-
ports) and C1 (GDP growth)

A3: Needs significant improvement in C3 (imports), C6
(wage and salaried workers), and C8 (government
effectiveness)

A4: Should focus on improving C2 (exports), C1 (GDP
growth), and C8 (government effectiveness)

A5: Requires major improvements in C4 (inflation), C2
(exports), and C1 (GDP growth)

A6: Performs well overall, but should address C4
(inflation) and C1 (GDP growth)

A7: Needs to improve C4 (inflation), C7 (control of
corruption), and C9 (political stability)

Countries needing the most improvement are A3, A5, and
A7. These countries consistently rank lower across different
operators and have high penalties in multiple criteria. It has
been observed that country A3 has good high scores in some
criteria (C3, C6, and C8) but likely has very low scores in
others. This uneven performance can lead to a poor overall
ranking, especially if the low-scoring criteria are weighted
heavily in the aggregation process. Different aggregation
penalty methods (P-OWA, P-OWG, P-OWH, P-OWQA, and
P-OWCA) may treat outliers or extreme values differently.

Based on the given data and analysis, we can identify
several strengths and weaknesses of this research. Here, we
have described them in Table 15.

To strengthen the research, we might consider

- Incorporating more years of data for trend analysis

- Including qualitative assessments to complement the
quantitative analysis

- Conducting sensitivity analyses to understand how
results change with different weightings or
methodologies

- Providing more context on the socioeconomic and
political situations in each country

- Exploring causal relationships between different
factors
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These strengths and weaknesses provide a framework for
understanding the value of the project and areas where it
could potentially be improved or expanded.

9. Conclusion

This study has provided an introduction to the P-IOWA
operator as well as some of its primary extensions. It is an
aggregation operator that integrates both the IOWA and the
penalty function into the same formulation. The unique
feature of P-IOWA, as compared to other classical OWA
operators, is its assignment of weights to the penalty value of
each argument rather than the argument itself. Therefore,
decision makers are now offered more flexibility when it
comes to adjusting penalties in order to align them with their
specific needs, which enables them to identify optimal so-
lutions based on their unique requirements.

Our study comprises a comprehensive analysis of the es-
sential characteristics and classes of the topic, encompassing the
maximum penalty, minimum penalty, step P-IOWA, olympic
P-IOWA, and window P-IOWA. The P-IOWA operator is
characterized by its ability to quantify the variability of data
points around their fused values. This operator provides a nu-
merical measure of the degree to which individual data points
differ from the expected outcome. Penalty-based induced ag-
gregation allows for relative comparisons between different
groups, categories, or datasets. It provides insights into which
group or category exhibits greater variability compared to
others. Additionally, we have initiated a discussion concerning
specific cases of P-IGOWA and QP-IOWA with the aim of
decreasing or amplifying the aforementioned features.

In recent years, it has been observed that the living stan-
dards of individuals have been on a steady rise. This has resulted
in an increase in the number of MNC:s establishing themselves
in developing nations. Consequently, in order for a multina-
tional corporation to expand its reach, it must first assess all
essential indicators of the country in question. Our study en-
deavors to tackle this matter by constructing a theoretical model
of the aforementioned issue. This study has provided a com-
prehensive analysis of seven South Asian countries’ economic
and governance performance using multiple criteria and ad-
vanced analytical techniques. By employing various P-OWA
and P-IOWA operators, we were able to aggregate and compare
complex data across diverse indicators such as GDP growth,
trade metrics, labor force participation, and governance ef-
fectiveness. Our analysis demonstrates the utility of multi-
criteria decision-making approaches in evaluating national
performance, while also highlighting the sensitivity of results to
different aggregation methods. The findings underscore the
importance of considering both economic and governance
factors in assessing a country’s overall standing. However, it is
crucial to note that these quantitative measures should be
complemented with qualitative insights for a more holistic
understanding. This research provides valuable benchmarks for
policymakers and researchers, offering a foundation for iden-
tifying areas of strength and opportunities for improvement in
each country. Future studies could benefit from incorporating
longitudinal data and exploring causal relationships between
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the various factors influencing national performance in the
South Asian context.

In conclusion, this research not only contributes to our
understanding of South Asian development but also demon-
strates the utility and limitations of advanced multicriteria
decision-making techniques in comparative country analysis.
The findings can serve as a valuable resource for policymakers,
researchers, and international organizations working toward
regional development and improved governance in South Asia.
However, they should be interpreted with an awareness of the
methodological constraints and the complex realities that
numerical indicators alone cannot fully capture.

The challenge of this proposed work is interpreting
aggregated results that are based on the P-IOWA operator
without taking into account more context or information,
thus sometimes making the problem more complex.
Drawing meaningful conclusions from the aggregated data
can be difficult if one does not comprehend the underlying
factors that contribute to variability. In the literature, many
other approaches could be used such as aggregation oper-
ators [52] including the use of probabilities, moving averages
[53], logarithms [54], and Bonferroni means [55]. But in this
paper, we focus on penalty-based operators.

Our study has taken on a decision-making problem that
has wide-ranging applications and can be of great benefit to
those looking to make sense of complex data scenarios. By
leveraging innovative operators, as explained in this paper, we
have made significant strides toward addressing this problem.
However, note that many other operators can be developed in
the future by using a wide range of techniques including
weighted averages, logarithms, moving averages, and Bon-
ferroni means. Additionally, we plan to expand the scope of
our research by investigating the potential of penalty operators
in fields such as artificial intelligence, finance, the stock market,
and risk management [56]. It is noteworthy that our approach
could be extended to various real-life decision-making prob-
lems, like electronic waste management and renewable energy
source selection [57, 58]. Also, different P-OWA operators
possess remarkable potential in a variety of domains. Within
control systems, they can significantly improve adaptive, ro-
bust, and decentralized control by effectively managing the
trade-offs between competing objectives [59, 60]. In the realm
of fuzzy theory, they can enhance both aggregation and real-
time fuzzy inference through the dynamic weighting of inputs
[61, 62]. In neural networks, these penalty-based operators can
optimize the training process, increase explainability, and serve
as regularization mechanisms for nonlinear challenges [63].
For nonlinear systems, they can facilitate stability analysis,
nonlinear aggregation, and optimization tasks in chaotic or
intricate settings [64]. Future research may delve into their
integration with Al, increased computational efficiency, and
applications across different domains, such as robotics, bio-
informatics, and intelligent systems.

Data Availability Statement

The dataset is publicly available at https://data.worldbank.
org/indicator and https://kidb.adb.org/.
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