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ABSTRACT

behavior influenced by diverse cultural, economic, historical, and political factors.

Additionally, measurements from these systems tend to be incomplete and noisy
due to platform constraints and unpredictable human actions. Despite these challenges,
online social systems are governed by foundational mechanisms that can be modeled
to gain insights into collective behaviors. This thesis explores models of the spread of
ideas in online social systems with three primary objectives: learn the latent mechanisms
that can explain the observed noisy data, predict future online diffusions, and evaluate
the impact of external interventions. The first contribution is the Opinion Market Model
(OMM), a two-tier system of the online opinion ecosystem that jointly captures inter-opinion
interactions and the impact of positive interventions in a finite attention environment. The
OMM outperforms state-of-the-art models in understanding opinion dynamics and can
be leveraged as a testbed to evaluate media as an intervention to redirect attention from
extremist to moderate opinions. The second contribution is the Bayesian Mixture Hawkes
(BMH) model, a hierarchical mixture model of separable Hawkes process that can jointly
capture the influence of source, content, and cascade-level factors on the spread dynamics
of online items. The BMH model excels in predicting content popularity in the cold-start
setup and can differentiate the impact of different headline styles across publishers. The
third contribution is the development of the Partially Censored Multivariate Hawkes Process
(PCMHP), which addresses the challenge of fitting the self- and cross-exciting multivariate
Hawkes process in the partially interval-censored setting. The PCMHP can model cross-
platform data with limited availability, such as mixed event-timestamp data and daily-
aggregated counts, and outperforms existing models in predicting YouTube popularity. This
thesis advances our understanding of the spread of ideas in online social systems, providing
robust models for explaining, predicting and influencing online behavior.

O nline social systems are challenging to model due to the heterogeneity of human
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CHAPTER

INTRODUCTION

nline social systems are challenging to model due to the heterogeneity of humans,

who have diverse preferences, behaviors, and goals, and whose actions are contex-

tual and influenced by cultural, economic, historical, and political factors. Com-
pounding this challenge is the fact that measurements gathered from these systems tend
to be incomplete, due to platform or data privacy constraints, and noisy [56] due to un-
predictable human behaviors, potential manipulation [125], and biases [77]. Despite these
challenges, online social systems are still governed by foundational mechanisms, which
when incorporated into our models allows us to gain insight on how these online social sys-
tems work, and ultimately be able to account for the real unobserved human processes that
generate the collective behavior in online social system measurements [26]. For instance,
the spread of ideas online demonstrates self-exciting (rich-gets-richer) behavior, allowing
us to leverage a class of temporal point processes called the Hawkes process [47]. Similarly,
limited human attention due to cognitive limits (as exemplified by Dunbar’s number [31],
which suggests that humans can only maintain 150 relationships at once) leads to certain

online content becoming popular while others fading into obscurity.

This thesis explores models of the spread of ideas in online social systems to solve
three objectives: (1) learn the foundational mechanisms that generate the incomplete and
noisy observed data, (2) predict the future of online diffusions, and (3) evaluate external
interventions that aim to control these online diffusions. The novelty of this thesis lies
in the inclusion of contextual and domain-specific expert opinion to impose structural

assumptions into the Hawkes process.



CHAPTER 1. INTRODUCTION

Our approach is grounded in the finite nature of online attention [126], which leads to
some ideas (or opinions, in the context of Chapter 2) dying out while only a few persist.
We aim to uncover the mechanism of how online opinions interact with one another by
exploring an analogy between an opinion ecosystem of limited attention and an economic
market of limited resources. In the same manner that goods can complement each other
(bread and butter) or compete for market share (Pepsi and Coke), can opinions reinforce
or inhibit one another? Furthermore, we are interested in understanding the effectiveness
of positive interventions [46, 50, 113], external signals which redistribute attention from
extremist and toward moderate opinions. We require an approach that jointly models inter-
opinion interactions and the influence of positive interventions. Our first research question
is: Can we model the online opinion ecosystem as a finite attention environment where
opinions cooperate or compete for market share and test the sensitivity of the online

opinion ecosystem to positive interventions?

We also observe that the online spread of ideas is influenced by factors at multiple levels.
At the lowest level, the spread dynamics of an online item (e.g. an online news article) hinges
on the popularity of the user sharing the content [4] (e.g. user tweeting a link to the article).
On the other hand, the nature and category of the content itself are influential, as various
topics resonate with different target groups [103, 118]. At the highest level, the source of the
online item (e.g. the publisher of the article) also affects the spread dynamics [87], e.g. users
would be more willing to share news from reputable sources and be reluctant to share news
from lesser-known blogs. Our second research question is: Can we model the online spread
of ideas accounting for the intertwining influence of source, content, and cascade-level

factors?

As previously noted, online data is often imperfect. While some social media platforms
provide the timing of events (e.g. Twitter/X retweets), others only offer interval-censored
counts (e.g. Facebook likes, Youtube views) due to privacy concerns. This data incongruency,
which we call the partially interval-censored setting, poses challenges for modeling cross-
platform interaction dynamics with the multivariate Hawkes process, as it requires event
timing data for inference. Our last research question is: Can we devise a method to fit the

multivariate Hawkes process in the partially interval-censored setting?

Thesis Overview. This thesis explores the three research questions in detail, as outlined

below.

In Chapter 2, we solve the first research question by introducing the Opinion Market
Model (OMM), a two-tier online opinion ecosystem that jointly models inter-opinion in-

teractions and the role of positive interventions. In the first tier of the OMM, the size of the

2



opinion attention market is modeled using a multivariate discrete-time Hawkes process. In
the second tier, opinions are allowed to cooperate and compete for limited attention using
the market share attraction model. We fit the OMM to a synthetic dataset and show that
our proposed estimation algorithm attains convergence. Next, we apply the OMM to two
datasets: the first comprising Facebook and Twitter discussions on moderate and far-right
opinions about bushfires and climate change, the second capturing popular VEVO artists’
Youtube and Twitter attention volumes. On both datasets we show the OMM outperforms
the state-of-the-art models and is able to capture latent opinion interactions. We then apply
the OMM in a counterfactual analysis to show the effectiveness of media coverage as a
positive intervention to mitigate far-right opinion spread.

In Chapter 3, we tackle the second research question by developing the Bayesian Mixture
Hawkes (BMH) model, a hierarchical mixture model of Hawkes process that allows us
to jointly learn the influence of source-, content- and spread-level feature sets on how
widely and rapidly online items spread. We train the BMH model on two real-world retweet
cascade datasets referencing articles from controversial and traditional media publishers
and evaluate on two learning tasks (cold start popularity prediction and temporal profile
generalization performance). We show that the BMH model outperforms the state-of-the-art
models and predictive baselines on both tasks. Lastly, we run a counterfactual analysis on
the trained BMH models to show how the effectiveness of headline writing styles (neutral,
clickbait, inflammatory) varies across publishers.

In Chapter 4, we address the third research question by proposing the Partially Censored
Multivariate Hawkes Process (PCMHP), a novel multivariate temporal point process that
has a parameter equivalence with the multivariate Hawkes process but unlike the latter can
be fit in the partially interval-censored setting. We test the PCMHP on three case studies.
First, using a synthetic dataset we demonstrate that the PCMHP can approximate MHP
parameters and recover the spectral radius of the process. Second, we show that the PCMHP
outperforms the fully interval-censored popularity estimation algorithm Hawkes Intensity
Process (HIP) in predicting Youtube popularity, highlighting that modeling time-stamped
data using point process dimensions indeed improves prediction performance. Third, we
demonstrate qualitative insights from PCHMP parameter fits from a dataset of daily COVID-
19 case counts and COVID-19-related news articles, revealing hidden interaction patterns
between cases and news reporting.

Lastly, we summarize the thesis and discuss future directions in Chapter 5.
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CHAPTER

OPINION MARKET MODEL: STEMMING FAR-RIGHT OPINION

SPREAD USING POSITIVE INTERVENTIONS

nline extremism has severe societal consequences, e.g. normalizing hate speech,

user radicalization, and increased social divisions. Various mitigation strategies

have been explored to address these consequences. One strategy uses positive
interventions: controlled signals that add attention to the opinion ecosystem to boost certain
opinions. To evaluate the effectiveness of positive interventions, we introduce the Opinion
Market Model (OMM), a two-tier online opinion ecosystem model that considers both inter-
opinion interactions and positive interventions. The size of the opinion attention market is
modeled in the first tier using the multivariate discrete-time Hawkes process; in the second
tier, opinions cooperate and compete for market share, given limited attention using the
market share attraction model. We demonstrate the convergence of our proposed estimation
scheme on a synthetic dataset. Next, we test OMM on two learning tasks, applying to two real-
world datasets to predict attention market shares and uncover latent relationships between
online items. The first dataset comprises Facebook/Twitter discussions containing moderate
and far-right opinions about bushfires and climate change. The second dataset captures
popular VEVO artists’ YouTube/Twitter attention volumes. OMM outperforms the state-of-
the-art predictive models on both datasets and captures latent cooperation-competition
relations. We uncover (1) self- and cross-reinforcement between far-right and moderate
opinions on the bushfires and (2) artist relations that correlate with real-world interactions
such as collaborations and long-lasting feuds. Lastly, we use OMM as a testbed for positive

interventions and show how media coverage modulates the spread of far-right opinions.
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CHAPTER 2. OPINION MARKET MODEL: STEMMING FAR-RIGHT OPINION SPREAD
USING POSITIVE INTERVENTIONS

2.1 Introduction

Online social media platforms are fertile grounds for deliberation and opinion formation
[45]. Opinions thrive in the online opinion ecosystem, interconnected online social platforms
where they interact — cooperating or competing for the finite public attention [126].

We delineate two types of interventions to mitigate the spread of extremist views. Nega-
tive interventions aim to subtract attention from the opinion ecosystem by placing fact-check
warnings on postings [80], shadowbanning [132] or outright banning extremist social media
groups and accounts [52]. While negative interventions are effective [24], they are available
solely to the social media platforms that tend to use them sparingly [93].

Positive interventions [40], such as misinformation debunking [46, 113] and increasing
media coverage [50], mitigate extremist views by adding attention to the online opinion
ecosystem through informing the public, redistributing attention away from extremist,
and toward moderate views. Such interventions are typically in the hands of government
and media agencies [95]. Testing the viability of positive interventions requires capturing
reactions to interventions and inter-opinion interactions.

This work develops a model for the dynamics of the opinion ecosystem and a testbed
for evaluating positive interventions. We focus on two open questions. The first question
explores the analogy between opinions and economic goods. In a competitive economic
market of limited resources, coexisting goods can interact in one of two ways: either they
compete for market share (substitute brands, like Pepsi and Coke) or reinforce each other
(complementary items, like bread and butter). We argue that opinions in the online ecosys-
tem behave similarly, allowing us to leverage market share modeling tools [25]. The first
research question is: Can we model the online opinion ecosystem as an environment
where opinions cooperate or compete for market share? We propose the Opinion Market
Model! (OMM), a two-tier model to address this question. Fig. 2.1 illustrates a simple opinion
ecosystem under a single intervention X(f) (shown in yellow in the top panel of Fig. 2.1),
featuring two opinions (denoted as 0 and 1) on a single social media platform, where the
intervention could represent the level of media coverage relevant to the opinions. Each
opinion has two polarities: far-right supporters (+) and moderate debunkers (-). The exoge-
nous signal S(¢) (shown in gray in the top panel of Fig. 2.1) and intervention X () modulate
the dynamics of the opinions’ sizes. Exogenous signals are naturally occurring events like
bushfires, floods, or political speeches. Interventions, like increased media coverage, are

designed to add attention to the opinion ecosystem, increasing the market share of certain

IThe code and datasets are available at https://github.com/behavioral-ds/opinion-market-model.
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2.1. INTRODUCTION
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Figure 2.1: We illustrate how the positive intervention X (¢) (in Eq. (2.11)) suppresses far-right
opinions on a simulated toy opinion ecosystem with two far-right (0+, 1+) and two moderate
(0-, 1-) opinions. For instance, 0+ and 1+ can represent the opinions “Greens policies caused
the Australian bushfires" and “mainstream media cannot be trusted," respectively; 0- and
1- can be obtained as their negations. Top row: the exogenous signal S(t) (in Eq. (2.5)) and
the intervention X(#). Middle row: total daily opinion market size from our model’s first tier,
splitinto far-right (+) and moderate (-) opinion volumes. Bottom row: market shares and the
interactions between the four opinions from our model’s second tier. Nodes are opinions;
their sizes indicate market share; edges show exciting (red) and inhibiting (blue) relations.
X (1) suppresses far-right opinions for ¢ > 50. Shown are average market shares before (left)
and after (right) ¢ = 50.



CHAPTER 2. OPINION MARKET MODEL: STEMMING FAR-RIGHT OPINION SPREAD
USING POSITIVE INTERVENTIONS

opinions while suppressing others. The first tier of OMM (middle row in Fig. 2.1) uses a
discrete-time Hawkes process to estimate the size of the opinion attention market - that
is, the daily number of postings featuring opinions. The Hawkes process has been widely
used to model online attention [103, 134] due to its ability to account for exogenous factors
and the endogenous “word-of-mouth” through its self- and cross-exciting property. The
second tier of OMM (bottom row in Fig. 2.1) leverages a market share attraction model
to capture opinion interactions — we assume that online opinions compete for the users’
limited online attention [38, 124]. For the example in Fig. 2.1, opinions 0— and 1+ have a
strong reinforcing relation (shown as red arrows), while 1- and 1+ have a weak competing

relation (blue arrows).

We test OMM on two real-world datasets'. The first contains Facebook and Twitter
discussions expressing moderate and far-right opinions on bushfires and climate change
[61]. The second captures the YouTube views and Twitter mentions for the most popular
VEVO artists’ songs in 2017 [126]. We evaluate OMM on two tasks: predicting attention
market share and exposing relationships between online items. For the predictive task, OMM
outperforms the current state of the art in market share modeling (Correlated Cascades [134]
and Competing Products [120]) and predictive baselines on both datasets. For the second
task, we leverage the OMM to expose the relations between opinions on the two platforms.
For the bushfire case study, no significant interactions occurred on Facebook, as postings
were collected from far-right public groups with limited interaction with the opposing
side. On Twitter, we observe self-reinforcement behavior of both far-right and moderate
opinions, probably due to the echo chamber effect [23] — reinforcing one’s beliefs due to
repeated interactions with users sharing similar ideologies on social platforms. Surprisingly,
we notice that opposing views reinforce each other, probably due to the deliberative nature
of Twitter, where far-right sympathizers and opponents oppose each other. For the VEVO
artists case study, we uncover nontrivial pairwise interactions of music artists correlating
with real-world relationships — such as Ariana Grande’s and Calvin Harris’ reinforcement
relationship due to their collaboration “Heatstroke” and Taylor Swift’s and Justin Bieber’s

inhibiting relationship.

Our second research question is: Can we test the sensitivity of the opinion ecosystem
to positive interventions? OMM accounts for positive interventions — controlled external
signals to boost certain opinions. In Fig. 2.1 an intervention is performed for ¢ > 50, which
suppresses the far-right opinions (+), leading to the shrinking of their market share. We use
OmM for two tasks: first, to estimate whether interventions effectively shape the opinion

ecosystem and, second, to construct what-if scenarios as synthetic testbeds for future
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2.2. RELATED WORK

interventions. For the bushfire case study, we test whether news coverage from reputable and
controversial media outlets suppresses or aids the spread of far-right opinions. We fit OMM
twice: with and without media coverage. We find a better fit with the intervention, suggesting
that media coverage actively shapes the opinion ecosystem. We perform synthetic what-if
experiments: we vary the level of media coverage, simulate the system and observe the effect
on opinion market shares. On Facebook, reputable media coverage reduces the prevalence
of far-right opinions. On Twitter, both reputable and controversial media coverage suppress
far-right opinions. However, for some opinions (like “Mainstream media cannot be trusted"),
reputable news backfires increasing far-right opinions share.

The main contributions of the work are as follows:

1. A novel two-tier model of the opinion ecosystem that allows studying opinion inter-
actions through an economics-based cooperation-competition lens. We introduce

simulation and estimation algorithms and study the convergence with synthetic tests.

2. A synthetic testbed to uncover interactions across sympathizers and opponents of

far-right opinions and likely effects of positive interventions via media coverage.

3. A curated dataset of Twitter and Facebook discussions on bushfires/climate change.

2.2 Related Work

We focus the discussion of related work on models for cooperative-competitive interaction in
a set of co-diffusing online items. These models need to be both predictive and interpretable
(usually generative models). We have observed a lack of recent research in this area, with
few works dating after 2017. Closely related to our proposal is the Correlated Cascades (CC)
model [134], a variant of the multivariate Hawkes process to model product adoption across
a set of competing products in a social network. It estimates the interaction parameter 3,
tuning the market cooperation or competition level. A limitation of CC is that all products
share a single f value. This simplifies existing asymmetric relationships and assumes that
all brands either cooperate or compete. OMM addresses this issue by fully modeling these
asymmetric relationships. Another closely related work is the Competing Products (CP)
model [120], a multivariate Hawkes model for product adoption/use where the frequency of
use is affected by the usage of other products. Limitations of the work are the absence of the
assumption of limited attention and the possibility of negative intensities since competitive
interactions are modeled as negative parameters. OMM avoids the weaknesses of CP by

using a multiplicative model, thereby avoiding negative intensities and defining opinion
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CHAPTER 2. OPINION MARKET MODEL: STEMMING FAR-RIGHT OPINION SPREAD
USING POSITIVE INTERVENTIONS

shares as fractions of the total attention volume. The SLANT model [28] and the follow-up
SLANT+ [65] extend the CP model to differentiate between a user’s latent and expressed
opinion and uses a similar Hawkes process to model the intensity. However, SLANT requires
fine-grained network information for training, which is prohibitive considering that online
platforms are becoming more stringent with fine-grained data access [122]. On the other

hand, OMM requires only opinion counts for training.

Ethics of Opinion Moderation and Broader Perspectives. OMM is intended to model
interactions between opinions and be used as a testbed for evaluating positive interventions
for opinion moderation. As any tool, OMM is unaware of the intention of its user and, in
theory, could be used by oppressive regimes to silence or manipulate the liberal opinions of
their opponents [95]. In addition, the fundamental value of freedom of speech for democratic
societies implies that non-widely accepted opinions also have the right to be expressed.
The scientific literature studies this ethical conundrum in the context of Countering Violent
Extremism (CVE) initiatives [8, 95]. When viewing OMM as an Al evaluation tool supporting
CVE initiatives [33], these ethical issues can be mitigated using online CVE frameworks in
liberal democracies [48]. We argue that the implementing body is responsible for OMM’s

ethical usage, and CVE regulations should be leveraged to mitigate malicious intent.

Causal Impact. OMM measures the effect of media coverage on the opinion market
shares using a generative model to disentangle endogenous and exogenous factors from
observational data, similar to [36, 37, 104]. Our model works on aggregate observational
data (i.e., opinion counts), and it does not prove the causal impact of media coverage on
individual opinion formation (i.e., behavior change). We would require a pre-test/post-test
control group design to achieve true causal links. Previous work [1, 43, 57] provides evidence
of the interventional role of media coverage. In Section 2.9, we explore this further in a
what-if experiment to demonstrate how the level of media coverage affects opinion market

shares.

2.3 Preliminaries

We introduce two classes of models that form the foundation of our approach: (1) the
discrete-time Hawkes process [14], a model of event counts that display self-exciting behav-
ior, and (2) the market share attraction model [25], a marketing model that uncovers the

latent competitive structure of brands and interaction with marketing instruments.
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2.3. PRELIMINARIES

2.3.1 Discrete-Time Hawkes Process

The discrete-time Hawkes Process (DTHP) [14] is the discrete-time analogue of the popular
self-exciting Hawkes process [47], where instead of modeling the occurrence of events given
by t € R*, we model the event count N(¢) on [t —1, ) for t € N.

The DTHP is characterized by the conditional intensity function A(#), defined as the
expected number of events that occur at time ¢, conditioned on the history H;_; = {N(s)|s <
t}. For a DTHP, A(t) is given by

2.1 A®) =EIN(D|H; 1] = p+)_ a-f(r—s)-N(s),

s<t

where p is the baseline count of events, @ determines the level of self-excitation and is the
expected number of events produced by a single event and f(¢) is the triggering kernel,
which controls the influence of the past events on the present. We specify f () with the
geometric probability mass function f (1) =0(1-0)""!, r € N, the discrete-time analogue of
the exponential distribution [14]. Given A(f), model specification is completed by specifying

a probability mass function for the count N(¢). Following [14], we set N(t) ~ Poi(A(1)).

2.3.2 Market Share Attraction Model

In marketing literature, market share attraction models (MSAMs) [25] model the competitive
structure of a set of M brands in a product category, predict their market shares, and evaluate
how a set of marketing instruments affects resulting market shares. MSAMs assume that the
market share s; of brand i € {1... M} is proportional to consumers’ attraction «f; towards
brand i:

g

Zj=1=‘2¢j

€[0,1].
<f; is typically modeled as a parametric function of a set of K marketing instruments
{in}lki1 € R, where X;; gives the value of the k" marketing instrument for brand i. We

typically specify «/; as

K M
(2.3) i = exp (ﬁi +) > Ykinkj)’
k=1j=1

where 8; measures the inherent attraction of brand i and yy;; € R measures the effect of the
value of the k*”" marketing instrument for brand j on brand i’s attraction. Whether y; jis
positive (negative) is indicative of the excitatory (inhibiting) relationship from brand j to

brand i through marketing instrument Xy ;.
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MSAMs are interpreted via the model elasticity e(s;, Xk ;), the ratio of the percent change
in the market share s; given a percent change in the value of the k" marketing instrument
for brand j. For example, an elasticity of e(s;, Xi;) = 0.1 means that a 1% increase in Xj;

corresponds to a 0.1% increase in s;. That is,

dsilsi  0s; Xij
Oij/ij_anj si

(2.4) e(si, Xkj) =

The elasticity e(s;, X ;) captures the overall effect of brand j’s marketing instrument X
on brand i’s market share s;: both the direct effect of Xj; on s;, controlled by y;;, and the
indirect effect of Xij on s; through its effect on the attraction of other brands {j # i}.

2.4 The OMM Model

In this section, we develop a two-tier model of the opinion ecosystem. The first tier models
the total size of the opinion attention market on multiple online platforms. The second tier
models the market share of opinions on each platform. Next, we introduce a scheme for
parameter estimation.

OMM consists of two tiers; the first tier, which we call the opinion volume model, tracks
the size of the opinion attention market, while the second tier, the opinion share model,
tracks the market shares of the different opinions. Table 2.1 summarises the notation for

important variables in the OMM. The full table is available in Appendix A.1.

2.4.1 Opinion Volume Model

Suppose our opinion ecosystem consists of P social media platforms. The opinion volume
model tracks the attention volume, i.e. the number of opinionated posts N” (), on each
platform p € {1,... P} and time ¢ € N. We model { N7 ()} p as a P—dimensional DTHP (defined

analogous to the multivariate Hawkes process [47]) with conditional intensity {A” (#)},

(2.5) AP (1) = uP - S(1) + i Y aPl. f(t—s)-N(s).
q=1s<t
In contrast to Eq. (2.1), we use a time-varying exogenous signal S(#), which accounts
for the baseline volume of events of exogenous origin. The signal S(#) accounts for natural
tendencies and events (i.e., epidemics, elections) and typically cannot be controlled. We
introduce a scaling term u” for each platform p such that u” - S(¢) represents the exogenous

opinion count for platform p on time t.
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Notation Interpretation

P number of social media platforms

M number of opinion types

K number of positive interventions

T terminal time

Variables

NG input signal, volume of exogenous events

X (1) input signal, kth positive intervention

sf (1 market share of opin. i on platform p at time ¢

)Lf (1 conditional intensity of opinion i on platform p

AP (t]D) intensity of opin. i on plat. p, assuming independence among opinions

N l.p (1) #posts with opinion 7 on platform p at time ¢

e(sf (1),-) opinion share model elasticity

Data

npf / nf ; #posts on platform p at time ¢ / with opinion i

Si ¢ fraction of opin. i posts on platf. p at time ¢

Parameters

,ui.] exogenous scaling term for opin. j on platf. p

aPq excitation parameter for intra-platform (p = g) and inter-platform (for
p # q) dynamics

0 memory parameter, describing how fast an event is forgotten, 0 € [0, 1]

y%c direct effect of the k’" intervention on share of opinion i on platform p

ﬁl.jq direct effect that opinion j on platform g has on share of opinion i on

platform p.

Table 2.1: Summary of important quantities and notation in Chapter 2.

Since online platforms are not siloed and have significant user overlap, we allow the P
platforms to interact via intra- and inter-platform excitation. The parameter a”9 > 0 sets
the level of intra-platform (for p = g) and inter-platform (for p # g) excitation. Lastly, we set
NP(t) ~Poi(AP(1)).

2.4.2 Opinion Share Model

With the attention volumes for each platform p estimated in the first tier, the second tier
models the market share sf (1), calculated as the fraction of opinionated posts on platform p

conveying opinion i. Given the limited attention market size, opinions compete for attention
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within each platform.

Suppose that there are M different opinion types. We set N l.p (1) to be the number of opin-
ionated posts conveying opinion i on platform p on time ¢, and )Lf (7) to be its conditional
intensity. Using the notion of limited attention [134], we relate Af (1) to AP(¢#) in Eq. (2.5) by
introducing the market share sf (£) € [0,1] as the fraction of opinion i posts on platform p.
That is,

(2.6) AP (@) = AP (0)- 57 (n),

and YM sP(n=1.

i=1%i§
Similar to Eq. (2.2), we model sf (t) with attraction «f ip (1),
] (1)

2.7 sPihy= ————,
DY /A0

Leveraging the MNL form in Eq. (2.3), we define attraction

(2.8) AP (1) =exp T (1),

where Pj“l.p (1) consists of two parts, accounting for interventions and endogenous dynamics,
and is described in detail below.

(Interventions.) First, we introduce a set of K positive interventions { Xy (#)}; that modify
the opinion market shares in the opinion ecosystem. The interventions {Xy(#)}; have a
different role to S(¢) in Eq. (2.5), as the latter modifies the attention market size. To reduce
the influence of noise, we use the smoothed version of Xy (¢) with the kernel f, given by

(2.9) X =) flr—9)- X(9).

s<t

We introduce the parameter yf . € R to measure the direct effect of the k'™ intervention
on the market share of opinion i on platform p. If yf ;. 1s positive (negative), then X ()
reinforces (inhibits) opinion i on platform p.

(Endogenous dynamics.) Second, we model the contribution of endogenous dynamics
on the attraction of opinions. To represent the prevalence of opinion j on platform g, we

make use of the conditional intensity 19(t|j),

P
(2.10) Ap(ﬂj):uf-suu ) Za”“’-f(t—s)-N]‘?(s),

q=1s<t

which models the dynamics of opinion j independent of other opinions. We introduce the

parameter ,ij 7 € R to measure the direct effect that opinion j on platform g has on the
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market share of opinion i on platform p. Similar to y? , we allow ,ijq to be positive (negative),
representing a reinforcing (inhibiting) relationship from opinion j to i on platform g and p,
respectively.

Given these components, we model f/"ip (1) as

2.11) gFw= Zy a Xk(t)+Z Zﬁ’”" A9(t ),
1
ﬁ,—/ 6/ J= S
interventions endogenous

where p” = Z;w:l /J;).

2.4.3 Inference

Over the observation period ¢ € {1,..., T}, assume that we observe the exogenous signal S(t),
the K interventions { X (#)}, and the number nf ; of posts conveying opinion i on platform
p for each i and p. Our goal is to estimate the parameter set ® = {,u alq,0, ylk, ﬁfj"}.

The structure of our two-tier model allows us to cast parameter estimation as a two-tier
optimization problem. Let ®, = {u”, a”9,0}. The key observation here is that the first-tier
parameter set ®; can be estimated using only the opinion volume model in Eq. (2.5), inde-
pendent of the opinion share model in Eq. (2.11). By optimizing the likelihood £, (@, |{n"} pt)
of the platform-level volumes {n§j }p,+» We can obtain an estimate 0, of @;. The likelihood is

given by

T P
(2.12) L1011int} ) o< Y Y [nPlogAP (1) - AP (1)].
t=1p=1
The second-tier parameter set @, = {,up yf o ﬁf ]q} can be obtained by optimizing the like-
lihood % (0,0, {n Sipt) of the opinion volumes {n Sipt conditioned on our estimate

of the first-tier parameters 0,.
T P M

(2.13) 2202101, {n] }ip,1) ZZZ[n'zt(log/lp(t)+logsf(t))—(&p(t)-sf(t))
t=1p=1li=1

Our full estimated parameter set is given by ® = ®; U ©,. The technical details of the
estimation and the derivation of the likelihoods £ (1) and #»(-) and gradients 0g, £ (-) and
0e,Z> () are available in Appendix A.2.

Runtime Complexity. Evaluating £, (0| {nf }p,+) in Eq. (2.12) has time complexity O(T?-
P2). This can be seen by noting that calculating A”(f) in Eq. (2.5) has complexity (T -
P), which is nested in a T - P loop to evaluate Eq. (2.12). On the other hand, evaluating
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£(0,10, {nf’,t}i,p,t) has time complexity @(T?- P- M - [K + P? - M]). First, we observe that
the sum in Eq. (2.13) has complexity G(T - P- M - &), where .# is the complexity of evaluating
sf (1). Note that in the inner loop of Eq. (2.13) the complexity of computing sf (t) dominates
over AP (#). From Egs. (2.10) and (2.11), we see that ¥ = @(T - K + T - P? - M). Plugging this
expression for . in G(T - P- M- %) yields G(T?-P- M- [K + P?- M]).

Simulation. Suppose we are given the opinion volume n‘z o attime ¢ = 0 for each platform
p and opinion i, such that nf =), nf[. A sample of nfyt from OMM can be obtained by
calculating the conditional intensity /1? (#) using Eq. (2.6), and then sampling nf ; from Poi
(Af(t)). We obtain {nzt}i,p,t by repeating these steps over {1, ..., T}.

Numerical Considerations. To improve model fit in our real-world case studies, we
implement three augmentations to the model and estimation method, outlined below and
fully detailed in Appendix A.4. First, we modify the attraction «/ l.p (¢) in Eq. (2.7) to prevent
numerical overflow/underflow. Second, we add a regularization term in the second-tier
optimization problem in Section 2.4.3 to impose structural constraints on {?f .} and improve
estimation. Third, we apply log-scaling on 19(| j) and standardize both 19(¢| j) and X(s) in
Eq. (2.11) to solve scaling issues.

Stability Assumption. We implicitly assume that the opinion attention market is stable
over the timeframe of the analysis, in the sense that the parameters ® governing the behavior
of the process stay constant within the timeframe. In situations where this assumption is
not expected to hold (e.g. extreme events) and parameters change within the timeframe, a

change-point model extension [14] of the OMM is necessitated.

2.5 Learning with Synthetic Data

In this section, we consider the parameter estimation task with synthetic data. First, we
discuss our experimental setup and the synthetic dataset. Next, we show that parameter
recovery error decreases and stabilizes as we increase the training time 7 and the number of
samples nggmpies-

Experimental Setup. We set P = M = K = 2. We set [,u{,u;,u%,u%] = [15,5,5,20], and
0 = 0.5 and draw a”9 ~ Unif(0,0.5), ,ijq ~ Unif(0,0.1) and yfk ~ Unif(0,0.1). The exogenous
signals are S(¢) = 1, X;(¢) = 5sin(0.1x) + 5, and X, (¢) = 10sin(0.05x + 1.25) + 10.

We construct our synthetic dataset using the simulation algorithm in Section 2.4.3 to
P

it
fitting [102]: we partition the 400 samples into 20 groups of 7n4mples = 20 samples each.

get 400 samples of opinion volumes {n } " for te{1,..., T = 300}. We implement joint
i,p,
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Figure 2.2: Parameter recovery results on synthetic data. In (a), we show the convergence
of the RMSE of the &« and f estimates and the negative log-likelihood as we increase the
training time 7. In (b), we show the difference between our estimates for {u, «, §,y} and

the true values. Dashed green lines and orange lines are the mean and median values,
respectively.
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The likelihoods £, (0;) and %> (0,|0,) of each group are maximised to get an estimate 0,
yielding 20 sets of parameter estimates.

Model Evaluation. To study the convergence of our learning algorithm, we compute
P

ik’
to the true 0, following [120]. We report the average RMSE per parameter type, where the

the root mean-squared error (RMSE) of our estimated @ = {ﬂ;j ,&P9,0,7 ,ijq} with respect

average is taken over the components of the matrix or tensor corresponding to the parameter
type.

In Fig. 2.2(a), we see that training on a longer timeframe leads to lower RMSE for a”4
and ij" and better model fit measured by the likelihood %>. Results for ﬂ? ,0 and ?f . and
on varying nsampies are in Appendix A.3.

In Fig. 2.2(b), we plot the difference distribution between our estimates and the true
values. We recover first-tier parameters {,a? ,@P9} well, as evidenced by our mean estimates

ik’
nonconvexity of % and the high dimensionality of the second-tier parameter set.

coinciding with the true values. We observe a slight overestimation of {j/, ,ijq}, given the

2.6 Real-World Datasets

This section introduces two real-world datasets we have curated to evaluate the OMM.

2.6.1 Bushfire Opinions Dataset

We construct the Bushfire Opinions dataset, containing 90 days of Twitter and Facebook
discussions about bushfires and climate change between Nov. 1, 2019 to January 29, 2020.
The Facebook postings are a subset of the SocialSense dataset [61], which was collected
with the approval of the Human Research Ethics Committee of the University of Technology
Sydney (approval number: ETH19-3877); we select posts and comments about bushfires and
climate change (SocialSense also contains discussions around COVID-19). Using CrowdTan-
gle?, we unobtrusively collected public far-right Australian Facebook discussions, identified
via a digital ethnographic study (see [61] and Appendix A.7 for details). We build the Twitter
discussions using the Twitter Academic v2 API; we collect tweets emitted between November
1, 2019 to January 29, 2020 that mention bushfire keywords such as bushfire, arson, aus-
traliaburns (see the full list in Appendix A.7). We use the AWS Location Service? to geocode
users based on their free-text location and description fields and filter only for tweets from

Australian users.

Zhttps:/ /www.crowdtangle.com/
3https://aws.amazon.com/location/
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Our focus on the 2019-2020 Australian bushfires is motivated by the availability of human-
annotated topics, opinions [61] and stance classifiers [96] trained on the same topic and
timeframe. We use these classifiers to filter and label our dataset.

Moderate and Far-Right Opinion Labeling. To filter and label relevant Facebook and
Twitter postings, we use the textual topic and opinion classifiers developed by [61], with a
reported 93% accuracy in classifying Facebook and Twitter posts on bushfires and climate
change. We select the following most prevalent six opinions, covering 95% of Twitter and

81% of Facebook postings:
0. Greens policies are the cause of the Australian bushfires.
1. Mainstream media cannot be trusted.
2. Climate change crisis is not real / is a UN hoax.
3. Australian bushfires and climate change are not related.
4. Australian bushfires were caused by random arsonists.
5. Bushfires are a normal summer occurrence in Australia.

Furthermore, we deploy the far-right stance detector introduced by [96] — which leverages a
textual homophily measurement to quantify the similarity between Twitter users and known
far-right activists. On the Bushfire Opinions Twitter dataset, the stance detector achieves a
5-fold CV AUC ROC score of 0.889. An opinion is labeled as far-right if the posting agrees
with the opinion (denoted as +), or moderate if the posting disagrees with the opinion (-). We
represent our opinion set as {(i—, i+)|i € {0,...,5}}. In summary, we consider P = 2 platforms
with 74,461 tweets and 7,974 Facebook postings labeled with M = 12 stanced opinions. We
aggregate posting volumes by the hour, resulting in T' = 2,160 time points over 90 days from
Nov 1, 2019, to Jan 29, 2020.

Exogenous Signal S and Intervention X. The exogenous signal S(#) (Eq. (2.5)) modulates
the total size of the attention market in the first tier of OMM. We use the 5-day rolling average
of the Google Trends query bushfire+climate change in Australia, normalized to a max value
of 1. Google Trends captures the baseline interest on topics [110] and is a proxy for offline
events (ex. actual bushfires and government measures) [75].

The interventions {X(#)} modulate the market share of far-right and moderate opin-
ions. Our interventions consist of two sources of news coverage: reputable (R) mainstream
Australian publishers (e.g., The Sydney Morning Herald, Canberra Times, Crikey) and con-

troversial (C) international publishers (e.g., Sputnik News, Breitbart, Red State). For each
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opinion i € {0,...,5}, we consider a pair of interventions (R;(?), C;(t)), consisting of reputable
and controversial daily news volumes discussing opinion i. We assemble the intervention
set {Xi (1)} (K =12) so that the first six interventions correspond to {Ry(%),..., R5(t)} while
the last six correspond to {Cy(?),...,Cs5(8)}.

We sourced reputable Australian news publishers from the Reputable News Index (RNIX)
[63]. We query Factiva [53] to obtain the daily news volume of these outlets for each of the six
opinions using a keyword search. We similarly obtain the news volumes from controversial
international publishers from NELA-GT-2019 [42] using a keyword search. We subtract
the Google Trends signal from the news volumes for each intervention. We compute the
max; newsy (t

max, S(7) LS (1). For brevity, in the bushfire

case study, we denote X k(1) as Xy (1) (i.e., always in standardized form). After standardization,

standardized form of X;(#) as Xi(#) = newsy(t) —

Xk () indicates whether reputable or controversial media over- or under-reports relative to

the public’s attention.

2.6.2 VEVO 2017 Top 10 Dataset

We assemble the VEVO 2017 Top 10 dataset by aligning artist-level time series of YouTube
views and Twitter post counts (P = 2) for the top M = 10 VEVO-affiliated artists over T = 100
days from Jan 2, 2017 to Apr 11, 2017.

The YouTube time series are obtained from the VEVO Music Graph dataset [126], contain-
ing daily view counts for music videos posted by verified VEVO artists in six English-speaking
countries (USA, UK, Canada, Australia, New Zealand, and Ireland). We combine the view
counts for all music videos that belong to a given artist to obtain artist-level YouTube view
time series. For Twitter, we leverage the Twitter API to get daily counts of posts with text
containing an input query. We obtain the artist-level Twitter post time series using the artist’s

name as the input query.

Unlike the single exogenous signal S(#) in the Bushfire Opinions dataset, we use a differ-
ent exogenous signal S; (¢) for each artist i — the Google Trends for each artist i. Using the
set {S;(¢)} instead of a single S() requires several small changes to Eq. (2.5), Eq. (2.10), and
the model gradients. We fully detail these changes in Appendix A.4. We do not consider any

interventions {Xy ()} as we seek to uncover endogenous interactions across artists.
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2.7 Predictive Evaluation

This section evaluates the OMM’s predictive capabilities on two real-world datasets. We

introduce our prediction task, evaluation metrics and baselines, then present the results.

2.7.1 Model Setup

We use a temporal holdout strategy similar to prior literature [63, 100, 103]: we fit OMM on
T obs and evaluate performance on 9,,.4. Backtesting is another viable alternate evaluation
approach; however, it is significantly more computationally intensive, and we prefer the
temporal holdout. For the bushfire case study, 9, = {1,...,1800} where time is in hours
(i.e., days 1-75 of our period of interest) and J.q = {1801,...,2160} (i.e., days 76-90). For
the VEVO case study, T,p5 = {1,...,75} and J req = {76,...,100}.

We consider two tasks: (1) opinion volume prediction and (2) opinion share prediction.
For the first task, we predict the total volume of opinionated posts on the P platforms during
the evaluation period. We measure performance using the platform-averaged symmetric
mean absolute percentage error (SMAPE) of predicted volumes {ﬁf |t € Tpreqt on platform
p relative to the actual volumes {n;j |t € Tpreats
(2.14) SMAPE = ~ i 100% ¥ M :

P jo\ 360 501 17y |+
The predicted opinion volumes {r'zf } are obtained using the OMM simulation algorithm. We
(1) condition on {nff 1€ Topst, (2) run the algorithm to sample {n‘z 0N T preq, then (3) sum
over opinion types {i} to get predicted opinion volumes nf =), nf .- We repeat R =5 times,
and average over the samples to obtain {fzf |t € Tpreat-

For opinion share prediction, we predict the opinion market shares {sf .} for each plat-
form p on the evaluation period. To evaluate how well we predict opinion market shares, we
calculate the KL divergence of predicted market shares {§f |t € Tpreqt (obtained similar to
{ﬁf } described above) relative to actual market shares {sf |t € Tpreat,

(2.15) KL (1) = % s? 1og§Lp’t
: = ire

it

2.7.2 Baselines

We compare OMM with the discretized versions of the Correlated Cascades (CC) model [134]

and Competing Products (CP) model [120] - the current state-of-the-art models in product
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share modeling, covered in related works. For the bushfire study, we test the effectiveness of
interventions by fitting OMM without { X ()} (indicated as OMM\X).

We also consider a feature-based predictive baseline — the multivariate linear regression
(MLR), used previously for online popularity prediction [92, 103]. We build MLR with a
one-week sliding window of three types of features: the previous event counts, exogenous
signal S(#) and interventions {Xy(#)}. The predictive targets are the event counts {nf .} for
each point on 9,.4. Analogous to OMM fitted without interventions { X ()}, we additionally
train MLR without { X} (#)} (indicated as MLR\X) for the bushfire case study.

OmM, CC and CP are generative models typically designed for explainability and are
known to be suboptimal for prediction [76]. In contrast, feature-driven approaches (e.g.,
MLR) use machine learning to predict using training features. Such approaches are designed
mainly for prediction and have weaker explainability since they do not model the data-
generation process [76]. In this work, we are interested in the dual tasks of predicting and

explaining opinion market shares, hence our focus on generative approaches.

2.7.3 Predicting Opinion Volumes

Fig. 2.3(a) showcases the observed (blue line) and modeled (orange line) opinion volumes
for the bushfire dataset. We visually observe that OMM achieves a tight fit on both the
training and the prediction period (hashed area). The VEVO dataset results are shown in
Appendix A.5. We further compare OMM’s predictive performances against baselines. The top
row of boxplots in Fig. 2.4(a) and Fig. 2.4(b) shows the platform-averaged SMAPE of predicted
volumes for the bushfire and VEVO datasets, respectively. We make two observations. First,
in both case studies, OMM outperforms all baselines on opinion volume prediction. Second,

OMM outperforms OMM\X, indicating the role of media coverage in shaping attention.

2.7.4 Predicting Opinion Market Shares

Fig. 2.3(b) visualizes the observed (left column) and fitted during training and predicted
during testing (right column) opinion market shares for the bushfire dataset. We see that
the opinion distribution on Twitter has significantly more variation than on Facebook,
and that OMM closely captures the trend in opinion shares on both platforms. The VEVO
dataset results are in Appendix A.5. The bottom rows of Fig. 2.4(a) and Fig. 2.4(b) show
the KL-divergence of predicted market shares for the bushfire (Facebook and Twitter) and
VEVO (YouTube and Twitter) datasets, respectively. We make several observations. First, on
the bushfire dataset, performance is better for Twitter than Facebook (KL% () < KLF3 (1))

22



2.7. PREDICTIVE EVALUATION

Data

801

25004
2000
1500 4
1000 4 A

5004

I, YR

Number of Twitter posts Number of Facebook posts
o

o

p
.

Timestep t (hour)

((a))

0 250 500 750 1000 1250 1500 1750 2000

B Greens policies are the cause of the bushfires.
N Climate change crisis is not real / is a UN hoax.

B Australian bushfires were caused by random arsonists.

1.0

=
3

=
o

°
IS

=
o

]
&
5
-
=)
s
g
£
E
2

e
oo

o e e
IS o »

Actual market share on Twitter
o
o

0.0

"0 250 500 750 1000 1250 1500 1750 2000

Timestep t (hour)

[ mMainstream media cannot be trusted.
N Australian bushfires and climate change are not related.
B Bushfires are a normal summer occurrence in Australia.

Predicted market share on Facebook

Predicted market share on Twitter

0o 250 500 750 1000 12501500 1750 2000
Timestep t (hour)

((b))

Figure 2.3: Fitting and predicting with OMM on the Bushfire Opinions dataset. We train OMM
on the first 1800 timesteps and predict on timesteps 1801 to 2160 (shaded area). We show
results for Facebook (top row) and Twitter (bottom row). (a) Actual (dashed blue lines) vs.
fitted/predicted (orange lines) volumes; (b) Actual (left panels) and fitted during training
and predicted during testing (right panels) opinion market shares on Facebook and Twitter.
We aggregate the far-right and moderate opinions.
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Figure 2.4: Predictive evaluation of OMM on (a) Bushfire Opinions and (b) VEVO 2017 Top 10
datasets. Boxplots are sorted left to right by the mean (shown with green triangle). Shaded
boxplots correspond to versions of OMM. The top panels show the platform-averaged SMAPE
of volumes on J,,.4. Bottom panels plot the KL divergence of predicted and actual market

shares.
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due to Facebook having lower opinion counts than Twitter. Similarly, on the VEVO dataset
KLY T (1) < KLY (1). Second, OMM consistently outperforms all baselines on both datasets,
except for Twitter on bushfires, where CP and OMM are comparable. CC performs poorly
since it does not model asymmetric opinion interactions and assumes all opinions reinforce
or inhibit one another. CP performs poorly on Facebook (Twitter) for the bushfire (VEVO)
dataset due to CP not having the notion of limited total attention. Due to higher bushfire
postings on Twitter, CP pays more attention to Twitter. Lastly, OMM with { X ()} outperforms
OmM without {X(#)} on the bushfire dataset, suggesting that mainstream and controversial

media effectively shape the opinion ecosystem.

2.8 Interpreting OMM Elasticities

In this section, we leverage the fitted OMM to uncover interactions across opinions and
platforms in the bushfire dataset and artists in the VEVO dataset.

2.8.1 Uncovering Opinions Interactions

To study opinion interactions in the bushfire dataset, we calculate the opinion share model
elasticities (see Eq. (2.4)) accounting for the endogenous volume A”(¢|j) and the intervention
Xi(s) (see Eq. (2.11)). The endogenous elasticities e(sf (1), A9(t]j)) quantify the competition-
cooperation interactions across opinions. The intervention elasticity e(sf (1), Xi (1) quanti-
fies the sensitivity of opinion market shares to intervention Xy (z). We derive the elasticities
and show results for e(sf (1), Xi(1) in Appendix A.6. Fig. 2.5(a) reports the time averages of
e(sy (1), A9(t] ).

First, we study intra-platform reinforcement (top-left & bottom-right in Fig. 2.5(a)). We
see different behaviors for Facebook and Twitter. For Twitter, we have two observations.
First, there is strong self-reinforcement for opinions (i.e., main diagonal), indicative of the
echo chamber effect [23]. Second, there is significant cross-reinforcement among far-right
sympathizers and opponents (i.e., diagonals on the upper-right & lower-left submatrices),
implying exchanges or arguments between opposing camps. For Facebook, OMM detects
little interaction among opinions, aside from the generally inhibitory effect of the opinions
“Australian bushfires and climate change are unrelated" (3+) and “Bushfires are a normal
summer occurrence” (5+) on other opinions. This is because Facebook far-right groups have

limited interaction with the opposing side.
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Figure 2.5: Interpretability of OMM. (a) Endogenous elasticities e(sf (£),A9(t|j)) across opin-
ion pairs (i, j) on respective platforms (p, g) in the bushfire dataset. Elasticities have direc-
tion and should be read from column (source) to row (target) for the platform and within
each matrix. For example, the bottom-right matrix corresponds to influences from Twitter
to Twitter; the cell {4—,4+} ({row, column}) is the influence of opinion 4+ on 4—, positive
and large meaning that 4+ has a strong reinforcing effect on 4—. (b) YouTube elasticities
e(s! T(1),AYT(t])) across artist pairs (i, j) in the VEVO 2017 Top 10 dataset.
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2.8.2 How to Effectively Suppress Far-Right Opinions

The above implies that confrontation is not the most effective method to suppress far-right
opinions, as it has the potential to backfire by bringing even more attention to them. A more
effective method is boosting related counter-arguments; for instance, to suppress “Australian
bushfires were caused by random arsonists" (4+) on Twitter, OMM indicates to promote
“Climate change is real" (2-) and “Greens are not the cause of the bushfires" (0-). Boosting
the opposite argument, i.e., “Australian bushfires were not caused by random arsonists"
(4-), would backfire. The opinion “Bushfires are a normal summer occurrence in Australia"
(5+) shows a different behavior: it reinforces most moderate opinions and inhibits far-right
opinions. In particular, the “Bushfires are normal" opinion (5+) appears to trigger “Climate
change is real" (2-), probably due to the diametric opposition nature of these opinions. The
effect of 5+ on 2- holds across every pair of platforms. Additionally, on Facebook, “Australian
bushfires and climate change are not related" (3+) has a similar effect on other opinions as

the “Bushfires are normal" opinion (5+), probably due to the similarity of their topic content.
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2.8.3 Cross-Platform Reinforcement

Cross-platform reinforcement is generally weak due to the Facebook far-right groups acting
as a filter bubble. Apart from the effect of “Bushfires are normal" (5+) (see above), there
is little cross-reinforcement among opinions from Twitter to Facebook. In the bottom-left
matrix of Fig. 2.5(a), we see that “Australian bushfires and climate change are not related"
(3+) affects other opinions in a similar way to “Bushfires are normal" (5+); furthermore,

“Climate change is real" (2-) triggers “Australian bushfires were caused by arsonists" (4+).

2.8.4 Interactions Across VEVO Artists

Lastly, in Fig. 2.5(b), we shift our attention to the VEVO dataset and look at the YouTube-
to-YouTube elasticities e(s} (1), A¥ T (] j)) across our set of artists. The Twitter and cross-
platform elasticities are available in Appendix A.6.

We highlight three key observations. First, there is strong self-reinforcement for most
artists (i.e., the main diagonal), an intuitive result reflecting these popular artists’ strong
fanbase. Second, OMM picks up non-trivial artist interactions that correspond with real-
world events — the animosity and friendship relations show up in their popularity dynamics.
For instance, we see that Calvin Harris inhibits both Taylor Swift (the two broke up in 2016%)
and Katy Perry (the two had a long-lasting feud®, due to Harris pulling out of Perry’s 2011 tour
last minute). Similarly, Taylor Swift and Justin Bieber have a mutually inhibiting relationship.
The two have a well-known uneasy relationship® since Justin Bieber and Selena Gomez
used to date and the latter is one of Taylor Swift’s close friends. Meanwhile, Calvin Harris
and Ariana Grande have a reinforcing relationship, correlating with their collaboration
“Heatstroke” released in March 2017. OMM picks up these relationships because we fit on
online popularity driven by audience response. Fans of a given artist can choose to support or
not support another artist based on real-world interactions, as indicated by the results above.
Our third observation relates to the complexity of fanbase support for artists occupying the
same genre: similar artists do not all just cooperate or compete for market share but can
have unique pairwise relationships. For instance, Katy Perry, Taylor Swift and Ariana Grande
occupy a similar niche (mainstream pop). However, our model uncovers that Taylor Swift
and Katy Perry reinforce each other, while these two inhibit (and are inhibited by) Ariana

Grande.

4 people.com/celebrity/taylor-swift-calvin-harris-breakup-timeline/
5nme.com/news/music/ katy-perry-ends-six-year-beef-calvin-harris-2128100
6people.com/ music/justin-bieber-selena-gomez-relationship-look-back/
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2.9 OmMM as a Testbed for Interventions

The interventions {X ()} can lead to delayed effects in the opinion ecosystem due to the
opinion dependency structure. For example, if an intervention is designed to boost a target
opinion, it will indirectly boost all other opinions with a cooperative relationship with the
target opinion. Furthermore, it will inhibit opinions with a competitive relationship with
the target. Since elasticities only inform us of the instantaneous effect on opinion market
shares, we perform a what-if exercise to study the role of interventions in the bushfire case
study. We vary the size of the intervention and synthetically sample outcomes to observe

the long-term effects of media coverage on the opinion ecosystem.

2.9.1 “What-if” Can Inform A/B Test Design

We train OMM on observational data; therefore, the inferred effects of interventions {X;.(£)}
are not causal impact estimates but rather evidence of causal effects. However, the previ-
ous section demonstrates that OMM can uncover complex relationships across opinions,
providing compelling evidence that OMM is also able to uncover relationships between
opinions and interventions. Therefore, the what-if exercise in this section showcases OMM
as a testbed for interventions, usable for designing A/B testing that determines true causal
effects. The OMM informs us of the effectiveness of interventions, allowing us to prioritize

which specific interventions to test.

2.9.2 “What-if” Setup

We test the effect of interventions by synthetically increasing or decreasing their volumes
past a given time point (see top panel of Fig. 2.1) and measuring the percentage change
in far-right opinions. Let k* € {1,...,K} be the index of the modulated intervention. We
modulate X+ (f) as X ,(C? (1) = X+ () + 1+ ux,. “I(s>1800), Where I is the indicator function and
Kx,. is the mean volume of Xj«(f) on J,ps. The parameter r controls the percent increase
(r > 0) or decrease (r < 0) in media coverage beyond the change point ¢ = 1800; r =0 is the
original Xj+ (#). We run OMM with X,(cr,) (1) for various r, and keep Xy (¢) fixed for k # k*. We
quantify the effects of intervention Xj- () as the average percent change (relative to r = 0) in
the opinion market shares after the change point, i.e., ,.q4. We perform this procedure for
all k* e {1,...,K}.
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Figure 2.6: We modulate the volume of reputable (R) and controversial (C) news for each
opinion (in {0, 1,2,3,4,5}) from —100% to 100% of the mean volume and simulate OMM to
see the percent change in the far-right (+) opinion market shares on Facebook (left) and
Twitter (right).

2.9.3 How News Influences Far-Right Opinions

Fig. 2.6 shows the average percent changes in the market share of far-right opinions when
modulating the interventions {R;(#), C;(#)} one at a time for various r over 50 simulations.
On Facebook, far-right opinions are suppressed by reputable news and reinforced by the
majority of controversial news, except for news concerning “Greens policies are the cause
of the Australian bushfires" (Ry) and “Australian bushfires were caused by arsonists" (Ry).
On Twitter, both reputable and controversial news suppress far-right opinions, except for
reputable news concerning “Australian bushfires/climate change are unrelated" (R3), “Aus-
tralian bushfires were caused by arsonists" (R4) and to a lesser extent “Mainstream media
cannot be trusted" (R;).

We have two key insights. First, we see that the effect of the news on Facebook is modest
compared to Twitter since the far-right public groups on Facebook behave as almost perfect
filter bubbles in which news has little penetration. Second, indiscriminately increasing
reputable news is not an effective strategy for suppressing far-right opinions on Twitter (see

Rs and R,4). Doing so can backfire since it brings even more attention to far-right users and
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their narratives [89].

2.9.4 How to Effectively Use the Testbed

Assuming that A/B testing is performed by an entity in control of reputable news coverage
(R; here above), the results above indicate that the test should mainly concentrate on the
effects of increasing R; (on Facebook), increasing Ry and decreasing R; and R4 (on Twitter).
We leave as future work the design and execution of such an experiment. Our analysis in this
chapter focuses on mitigating far-right opinions with media coverage. However, OMM can
be leveraged as an intervention evaluation tool for information operations in other domains

and fighting mis- & disinformation and online propaganda.

2.10 Summary and Discussion

This work introduces the Opinion Market Model (OMM), a novel two-tier model of the
dynamics of the online opinion ecosystem. The first tier models the size of the attention
market, and the second tier models opinions competing or cooperating for limited public
attention under the influence of positive interventions. We develop algorithms to simulate
and estimate OMM, showing the convergence using synthetic data. We demonstrate real-
world applicability on a dataset of Facebook and Twitter discussions containing moderate
and far-right opinions on bushfires and climate change [61] and a dataset of YouTube
and Twitter attention volumes for popular artists on VEVO [126]. We show OMM predicts
opinion market shares better than state-of-the-art baselines [120, 134] and uncovers latent
competitive and cooperative interactions across opinions: self-reinforcement attributable
to the echo chamber effect and interactions between far-right sympathizers and opponents.
Lastly, we quantify the effect of reputable and controversial media coverage on Facebook
and Twitter.

Scope of Study. This work focuses on the manifestation of far-right opinions in the
context of the 2019-2020 Australian bushfires. Note that far-right ideology manifests in other
political issues (e.g., gun control, LGBT rights, xenophobia), which we do not tackle here.
Moreover, we do not focus on the general political science of far-right ideology since we are

projecting onto a specific context.
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CHAPTER

WHAT DRIVES ONLINE POPULARITY: AUTHOR, CONTENT OR
SHARERS? ESTIMATING SPREAD DYNAMICS WITH BAYESIAN

MIXTURE HAWKES

he spread of content on social media is shaped by intertwining factors on three levels:
T the source, the content itself, and the pathways of content spread. At the lowest

level, the popularity of the sharing user determines its eventual reach. However,
higher-level factors such as the nature of the online item and the credibility of its source
also play crucial roles in determining how widely and rapidly the online item spreads. In
this work, we propose the Bayesian Mixture Hawkes (BMH) model to jointly learn the
influence of source, content and spread. We formulate the BMH model as a hierarchical
mixture model of separable Hawkes processes, accommodating different classes of Hawkes
dynamics and the influence of feature sets on these classes. We test the BMH model on
two learning tasks, cold-start popularity prediction and temporal profile generalization
performance, applying to two real-world retweet cascade datasets referencing articles from
controversial and traditional media publishers. The BMH model outperforms the state-of-
the-art models and predictive baselines on both datasets and utilizes cascade- and item-level
information better than the alternatives. Second, we perform a counter-factual analysis
where we apply the trained publisher-level BMH models to a set of article headlines and show
that effectiveness of headline writing style (neutral, clickbait, inflammatory) varies across
publishers. The BMH model unveils differences in style effectiveness between controversial

and reputable publishers, where we find clickbait to be notably more effective for reputable
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publishers as opposed to controversial ones, which links to the latter’s overuse of clickbait.
Lastly, we introduce a two-step ‘generate-then-evaluate’ approach to optimise headlines
before posting time, where we use text-generating Al to produce rewrites for a target headline,
and then use the fitted BMH model to rank the rewrites based on predicted effectiveness.
We run an experiment on Mechanical Turk and demonstrate that online respondents have
a significant preference for the model-optimised headlines over their pre-optimised and

previously published versions.
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3.1 Introduction

Social media platforms have played an increasingly important role as distribution hubs for
content. In 2023, it was reported that 69% of the U.S. adult population use social media as a
news source [16], implying a significant shift in how information is consumed. Understand-
ing how content propagates on these platforms — both the size and speed of dissemination —
is vital since the impact is intrinsically tied to the level of online engagement the content
receives. To command attention in today’s digital age, it is not sufficient to craft high-quality

content alone, but rather high-quality content that resonates with social media.

The spread of content online is influenced by factors at varying levels. At the lowest level,
the breadth of a diffusion cascade, referring to the sequence of content shares triggered
by a user, often hinges on the user’s popularity as reflected by their follower count [4]. If a
highly followed user shares an online item, it reaches a broader audience, increasing the
likelihood that it will be shared. However, the cascade’s growth is not solely dependent on
user popularity. The nature and category of the shared content play crucial roles, as various
topics may engage audiences in different ways [103, 118]. For news dissemination, the way
an article headline is written, particularly the use of clickbait tactics to create an information
gap to exploit the audience’s curiosity [135], significantly impacts the total attention (i.e.
popularity) the news article receives. Beyond cascade- and item-level factors, the reputation
of the online item’s source also affects how widely and quickly information spreads [87].
An article from a reputable source like The New York Times may spread more quickly and
be taken more seriously than an article from a controversial, lesser-known blog due to the
former’s established credibility. Accurately modeling diffusion cascades of online content

requires an approach that jointly considers these factors at different levels.

In this work, we address three open questions related to jointly modeling the influence

of the source, item- and cascade-level factors on online content spread.

The first research question examines how these three levels influence the spread of online
content. While prior studies have explored the effects of cascade features [115] and item-
level variations [63], a comprehensive framework that jointly considers the three levels has
yet to be developed. Our first question is: Can we build a model for the spread dynamics of
online content that accounts for the intertwining influence of its source, the content itself,
and cascade-level factors? To tackle this, we propose the Bayesian Mixture Hawkes (BMH)
model, a novel source-level hierarchical mixture model of separable Hawkes processes
that models diffusion cascades’ size and temporal profile as a function of cascade- and

item-level features. The left half of Fig. 3.1 showcases how the source-level BMH model
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Figure 3.1: An intuitive plate diagram for the BMH model. Left: The BMH model is trained
using a historical dataset: a collection of M publishers {p1, ..., p}, items for each publisher
(i.e. articles), and a set of diffusion cascades for each item. Each diffusion cascade consists
of a timeline of events, here represented by a set of lollipops. Upper Right: The BMH is a
publisher-level model that maps cascade features (shown in blue color) and article features
(in red color) to a mixture of Hawkes processes. Lower Right: The trained BMH model (with
the historical follower count distribution) can be used to infer spread dynamics of future
articles based on their headlines.

learns across both the cascade and item levels from a hierarchically structured dataset
(i.e., a set of items, cascade groups for each item, and feature sets attached to each). The
BMH model is capable of learning different classes of Hawkes process dynamics, taking
into account the ability of online content to trigger varied responses, from highly popular
to largely unnoticed cascades, as well as those that fade quickly or diminish over time.
The BMH learns the influence of feature sets on these classes in two ways: the location
of each class in the Hawkes parameter space and the membership probability of each
cascade belonging to each class. The trained BMH model can then be used to predict
future items’ popularity and spread dynamics from the same source (see the right half of
Fig. 3.1). We test the BMH model on two hierarchical retweet cascade datasets that reference
articles from controversial and reputable media publishers [63] and on two tasks: cold-start
popularity prediction and temporal profile generalization performance. We show that the
BMH outperforms the state-of-the-art in item popularity prediction (Dual Mixture Model
[63]), Empirical Bayes approach [115] and predictive baselines for both tasks and datasets,
and that the BMH model jointly leverages cascade- (i.e., the follower count of the seed

user) and article-level (i.e., the article headline embedding vector) information better than
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the benchmarks. Furthermore, our model ablation highlights the role of the initiating user
in shaping the cascade dynamics related to controversial media, a factor less critical for
cascades linked to reputable media. This distinction mirrors the diverse pathways of online
information dissemination: controversial media often circulate within topical social groups
[10, 54], with the initial endorser serving to validate the content, while for reputable media
the publisher’s reputation is the most important factor.

Our second open question relates to learning differences in the spread dynamics across
news publishers: Can we uncover across-publisher differences in how headline writing
style (neutral, clickbait, inflammatory) affects published content’s popularity and tempo-
ral profile? We run a counter-factual analysis using the trained publisher-level BMH models
and a labeled set of article headlines [66] to show the variation of headline style effectiveness
across publishers. We find that the BMH model is able to capture nuanced publisher behav-
ior, such as the effectiveness of inflammatory headlines for tabloids. The BMH model also
unveils differences in the success of clickbait between controversial and reputable outlets,
linking to existing research on clickbait fatigue and the diminishing relationship between
clickbait effectiveness and volume [70, 135].

Our third open question relates to a real-world problem faced by journalists: Can we
use the BMH model to optimise the effectiveness of news headlines before posting time?
In Section 3.7 we introduce a two-step ‘generate-then-evaluate‘ approach, where in the
first step we leverage text-generating Al (e.g., GPT [84]) to produce rewrites for a given
target headline, and in the second step we use the trained BMH model to rank the rewrites
based on predicted cold-start popularity and half-life. We demonstrate the effectiveness
of this procedure empirically through a Mechanical Turk [85] experiment, showing that
model-optimised headlines have a significant higher selection rate than pre-optimised and
previously published headlines.

The main contributions of the work are as follows:

1. The Bayesian Mixture Hawkes (BMH) model', a novel hierarchical mixture model of
the joint influence of cascade- and item-level features on online item spread dynam-
ics. On two news datasets, we show that the BMH outperforms the state-of-the-art
and baselines in cold-start popularity prediction and temporal profile generalization

performance.

2. A counter-factual analysis showing how headline writing style affects published con-

tent’s spread dynamics. Using the BMH model we learn the differences in the effec-

IThe Stan/CmdStanPy implementation of the BMH model is available at https://github.com/
behavioral-ds/bayesian-mixture-hawkes/.
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tiveness of headlines across publishers and show general trends across controversial

and reputable media outlets.

3. A two-step procedure to optimise headlines before posting time, where we use text-
generating Al to produce rewrites for a target headline, and then use the fitted BMH
model to rank the rewrites based on predicted effectiveness. We demonstrate the

effectiveness of this procedure through a Mechanical Turk experiment.
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3.2 Related Work

In recent years, generative models, and specifically the Hawkes process [47], have been
employed to model online information diffusion given their dual predictive and interpretable
capabilities [5, 41, 71, 136]. However, the Hawkes process cannot incorporate feature sets in
its base form since it relies only on observed temporal sequences to fit the model parameters.
Numerous modifications to incorporate feature sets have been proposed to enhance model
fit and predictive capabilities. A hybrid approach introduced in [76] integrates the Hawkes
process with a scaling factor trained on cascade-level features to improve retweet cascade
size prediction. The Empirical Bayes (EB) method [115] utilizes historical retweet sequences
to link cascade features and the prior distribution of Hawkes process parameters, leading to
better forecasting. The parametric Hawkes process [67] models the branching factor, i.e. the
expected number of offsprings from a parent event, as a linear combination of event-level
features. Lastly, the Tweedie-Hawkes process [68] improves on this by combining the Hawkes
process with the Tweedie distribution to more realistically model the effect of event-level
features on the branching factor. The proposed BMH model is a hierarchical model and can
incorporate two levels of feature sets: the cascade- and the item (i.e., cascade-group)-level,
which previous work does not cover.

Another relevant area is mixtures of point processes, employed when the data is sus-
pected to be generated from multiple dynamical classes (i.e., parameter sets). In [129], the
Hawkes process was combined with the Dirichlet distribution to model clusters of cascades.
An online learning framework was introduced in [39] to fit mixtures of multivariate Hawkes
processes to learn the interaction network across a set of actors. [108] introduces a genera-
tive model for mixtures of more complex point processes by using recurrent neural networks.
Closest to our work is the Dual Mixture Model (DMM) [63], a generative model for cascade
groups. Each cascade is sampled from a mixture of separable Hawkes processes learned
jointly with their mixture probabilities. To the best of our knowledge, including feature sets
into mixture models of point processes has not been explored: the BMH model solves this

by learning the influence of features on the mixture components.

3.3 Preliminaries

We discuss two point process models that form the foundation of the BMH model. Sec-
tion 3.3.1 presents the Hawkes Process (HP) [47], a temporal point process model that
displays self-exciting behavior. Section 3.3.2 introduces the Dual Mixture Model (DMM) [63],
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an approach to jointly model groups of cascades. An introduction to Bayesian hierarchical
modeling, which we employ to model hierarchical data, is included in Section 3.3.3.

3.3.1 Hawkes Process

The Hawkes process (HP) [47] is a temporal point process widely used to model phenomena
that display self-excitation, i.e., the likelihood of an event increases as more events occur.
The HP is specified using the conditional intensity function A(z|.#), the event rate at any
time 7 conditioned on the history /£ = {f;|t; < t} of past events up to that point, i.e. A(¢|#4) =
U+ Zﬁ.\f: L@~ g(t—t;]0©). For brevity, we drop the condition on the event history and write
A(t|A€) as A(t). Under this parametrization, a Hawkes process A2 (u, a, 0| g) is identified
with the parameters y, a and g(-|@) : R* — R*. The parameter u = 0 is the arrival rate of
events triggered by external sources, the branching factor a = 0 is the expected number of
offsprings generated by a single parent event which controls the level of self-excitation from
previous events, and the memory kernel g(-|®) models the temporal decay of influence of
previous events on future events controlled by the parameter set 0. In this work, we utilize
the power law kernel parametrized by ©® = {0, d}, given by g(¢10,d) =0 - d? - (t+d)y~1+0),
Other common choices for the memory kernel are the exponential kernel g(£|0) =8 -e~9!
and the Reyleigh kernel g(¢|0) = =29 We focus on the power law as it has been shown in
[76] to outperform these alternatives in popularity prediction. HP estimation and prediction
is discussed in detail in Appendix B.1.1.

Given a collection of complete cascades H = {#;} where each ./; is completely observed
(i.e. terminal time T; — 00), and assuming no exogenous events (i.e. u = 0), the HP log-
likelihood Z(a, ®|H) splits into two log-likelihoods [63],

(3.1 Z(a,0|H) = L(a|H) + Z(O|H),

ZL@H) =Y logla™ e, @M= Y log) gtj-t.10),
JE;eH HieH tieH;,j=1 1.<ij
where we set N; = |#;|. Under this case, Hawkes process estimation splits into two inde-
pendent problems, hence the term separable Hawkes process. The first problem (popularity
estimation) utilizes the cascade sizes {IV;} to estimate the branching factor @« by maximiz-
ing Z(a|H). It was shown in [63] that maximizing Z(«|H) is equivalent to maximizing
> 7,enlogB(N;|a), where B(-|@) is the Borel distribution [11]. The second problem (kernel
estimation) uses the interevent-time distribution I~ = {t; — t;},,<; e, 76k to estimate @

by maximizing £ (O|H).
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3.3.2 Dual Mixture Model

Maximizing Eq. (3.1) yields the best-fitting Hawkes parameter set {a, ®}. However, this
approach assumes that all cascades stem from a singular parameter set, an assumption
which may not hold if there are multiple dynamical classes of cascade behavior. The Dual
Mixture Model (DMM) [63] was proposed to model a cascade group H with a mixture of K
separable Hawkes processes of different parameter sets to account for different dynamical
classes. Under separability, the DMM splits into two submodels: the Borel mixture model
(BMM) for popularity estimation and the kernel mixture model (KMM) for kernel estimation.
The BMM assumes that there exist K popularity classes accounting for the cascade sizes {INV;},
where the i*" class is represented by the branching factor a; with probability plB, ie MB=
{(a], pf )}{i 1~ Similarly, the KMM assumes that there are K kernel classes accounting for the
interevent-time distribution 9, where the j'”* class is represented by the kernel parameter
set G);f with probability pf.' ,i.e. M& = {(@}f, pj?' )}f: .- The DMM is the Cartesian product of
M?B and M8, i.e. M = {(a},07, pE. pf)l(az;?, pB) e M5, @7, p]‘g.’) € M8}. DMM estimation and
prediction is discussed in detail in Appendix B.1.2.

3.3.3 Bayesian Hierarchical Modeling

Let 0 be a parameter set of a generative process & and 2 be a sample from Z2. Bayesian
inference involves (1) quantifing our prior belief on 6 through a prior distribution P(6),
which could be uninformative or based on expert opinion, and then (2) updating P(0) using
the data 9, with the likelihood function £ (210) serving as our weight on 0. Our result is the
posterior distribution P(0|2), which combines our beliefs on 8 based on our prior and the
data:

(3.2) PO19) x £(2]0)-P0).

One advantage of Bayesian inference is its ability to accommodate the hierarchical
structure of our dataset. For example, suppose that we have N data points {x;} which are
sampled from some generative model 22(0). Additionally, we are given information that
each data point belong to one of m related groups. We can handle this information in three
ways.

First, we ignore it and assume that all groups are drawn from the same generative model,
i.e. x; ~ 22(0). This approach ignores variability across groups.

Second, we assume that the groups are independent from one another and fit a separate

0 for each group, i.e. x; ~ 22(0;). This approach ignores the fact that the groups are related.
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The third approach, Bayesian hierarchical modeling, offers a compromise between these
two by allowing variation across groups. Here, we assume that each group j has its own 6
parameter, and x;(;) ~ £?(6), where j[i] is read as ‘the group data point i belongs to’. We
assume that {6} are not independent but are samples from a group-level distribution 2
parametrized by a group-level parameter 0¢;yp, i.€. 0j ~ 2(0¢roup). Under this hierarchical
framework, 2(6g,up) acts a prior for each parameter 6 ;. Specifying a prior distribution for
Ogroup completes the Bayesian hierarchical model. Our posterior is a joint distribution over

each group’s parameter 6; and the group-level parameter Og; .
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3.4 Bayesian Mixture Hawkes (BMH) Model

In this section, we develop the Bayesian Mixture Hawkes (BMH) model, a hierarchical
mixture model of separable Hawkes processes to learn the effect of cascade-level and item-
level features on cascade spread dynamics. We first describe the dataset structure that the
BMH model is tailored to handle, then discuss the BMH model’s objectives and the approach
we adopt to address each. We then present the two components of the BMH: the popularity

submodel in Section 3.4.1 and the kernel submodel in Section 3.4.2.

Assume that we are given the following dataset. First, we have a collection of items,
denoted as «f, from a shared source p, where each item a € < is characterized by the
feature vector 3% € R™r. If p is a news publisher, then «/ can represent a collection of
news articles and y“ the embedding vector for article a’s headline. Second, we have a set of
complete cascades H” for each item a € </, where cascade # % € H? has size N“¢, interevent
distribution 9 %¢, and is described by the feature vector X € RN~ In our news example, H*
can represent discussions on Twitter related to article a, which we obtain by collecting all
retweet cascades initiated with a tweet linking article a’s URL. The feature vector X“¢ can be

taken as the follower count of the cascade’s initiator.

We model the generative process of #“¢ using a separable power-law HP with parameter
set (a%¢,0%), i.e. A€ ~ AP (a,0%|g). We construct the BMH as a model for (a?¢,0%°)
with three goals: (1) jointly learn across the item set <7, (2) learn the relationship between y¢
and (a%“,0%), and (3) learn the link between X“¢ and the same parameters. We handle goal
(1) by using a two-level Bayesian hierarchical model to jointly fit across each item a € «/
and to tie together cascade- and item-level information. For goals (2) and (3), we consider
a mixture of separable HPs with K, classes for a“¢ and Kg classes for @%‘. We learn the
influence of ¥ and X“¢ on {a%‘, ®“‘} through the centers and membership probabilities of

the K, popularity classes and Kg kernel classes.

Due to the separability of the underlying HP, the BMH divides into two independent
models: (1) BMH-P, the popularity submodel for a%¢, and (2) BMH-K, the kernel submodel
for ®@“¢. Table 3.1 lists the notation for important variables in the BMH and the mapping to
real-world quantities in the datasets in Section 3.5. The full table of notation is presented in
Table B.1.
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Table 3.1: Summary of important quantities and notation in Chapter 3.

Parameter

alsd

Interpretation Real-World Mapping

item/s produced by source p news article/s from publisher p

AP IH*  cascade/s related to item a retweet cascade/s for article a
74 item-level features of a headline embedding for article a
N4 item popularity of a overall tweet count for article a
xac cascade-level features of A% # followers of A#°%¢ seed user

Nea¢ cascade size of A%
g ac intereevent-time distribution of A#%¢

(a%,0%) HP parameter set generating /“¢

rf/cz diffusion half-life of A%

K, /K¢ # of BMH-P/-K classes

z% /zg)ck class k membership probability
5 ,k/ 0pr baseline logit(a), log(0) for class k
024110z, Dbaseline class k mem. probability
Ya.k!Yox  effect of 7% on class k center
YVzai!Vze  effectof y¢ on class k mem. prob.
,Ba ol ﬁe ¢ effect of ¥%¢ on class k center
ﬁza N ﬁZ@ . effect of X% on class k mem. prob.

3.4.1 BMH-P, the Popularity Submodel

The branching factor a“¢

(3.3)

with membership probability z7%.

(3.4)

is modeled as the mixture random variable

logit(aac) = 62,]6 +Yak- j’;”;

(k:]-)---)Ka)r

Ra =ac | = =a
+ﬁza‘k.x +’)/Za,k.y )

Z eXp(éZ k! +’Bga,k’ ')-Eac—i_)_;za,k! j}a)

exp(67,

ac _
Za,k -

The intercept & Z , in Eq. (3.3) sets the centering of logit(a“‘) for popularity class k. In

Eg. (3.4), we designate k = 1 as the reference class (i.e. 67 | = BZM =Yz, = 0); parameters for
k > 1 control deviation from class k = 1. The intercept 67 _controls the baseline proportion
of class k. The influence of item features on logit(a“‘) and class k membership are estimated
by Yo,k and ¥, ,, respectively, while the influence of cascade features on class k membership
is estimated by Bga, .- Note that ¥4k, 7z, . are shared across </ while Bga, . is estimated per a.

For brevity, we collect the parameter vector specific to item a as

a a Ra T
[6(11’ 6(ZK ’6Za2’ ZaK ’BzaZ’ ﬁza,Ka] ’
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Figure 3.2: Plate diagram of the BMH-P model. Shaded nodes are observables while empty
nodes are latent variables. Paired colored edges indicate source nodes appearing as a product
in the target node. For instance, the green edges indicate that ¥, y and y“ appear as ¥4 - y¢
in the expression for a“‘ in Eq. (3.3). The same concept holds for the blue and red edges.
Edges marked with * indicate dependence of the target node on the source node indexed
with k and the entire set {1,---, K,}. For instance, in Eq. (3.4) ZZ,C]C depends on Bga'k (see the

///
®

(mixture components)

(tem leve a € A | — K.
e

numerator) and Bga y for k' €{1,---,K,} (see the denominator).

with dimensionality
(3.5) P4l = Ko + (Kg — 1) - (1 + Ny).

We link item a with </ by assuming that p¢ is drawn from a source-level multivariate normal

(MVN) distribution with mean p, and covariance matrix X,
(3.6) P4 ~MVN (Pa,Za), Za=Da-Qq Do, Do =diaglos,),

where (), is a correlation matrix and o 5, is a vector of standard deviations corresponding to
ﬁa-

The plate diagram for the BMH-P model is shown in Fig. 3.2. Variable pairs that appear
as a product term are colored green, red and blue in Egs. (3.3) and (3.4), visualized in Fig. 3.2
as source nodes with green, red and blue edges.

Inference and Prediction. Let &2, be the parameter set for the BMH-P model. From
Egs. (3.5) and (3.6) we see that |2, | = |pg|- (/| +2+|pg]) + 2Ky —1)- Ny, where the first term
|P4| - |<#| accounts for the individual parameters for each item in <7, the second term |p§| - 2
12

accounts for p, and o Bar the third term |p%|° accounts for 4, and the last term accounts

for {Yq k)Y z,,}- In Table 3.2, we compare the number of parameters of the BMH-P model
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Table 3.2: Model complexity comparison. We compare the number of parameters in the
BMH model against the baseline models: the publisher-level joint HP (see Appendix B.1.1)
and the DMM [63]. Note that the other baselines, namely the EB [115] and CR models, are
regression-based, and their parameter count depends on the specific regression model used.

Popularity Submodel Kernel Submodel

Joint HP [47] 1 2

DMM [63] 2Ky || 4-Kg- ||

BMH |Pgl-@+1el1+1pg) +2Ka— 2-Ke-(4+|) +1Pg,]- 2+
1)-N, |/ | +1Pg,1) + 2Ke —1) - N,

with the baseline models in Section 3.5, namely the publisher-level joint Hawkes process
(see Appendix B.1.1) and the DMM [63]. The added complexity of the BMH-P model stems
from the additional parameters that model the source-level distribution and the influence

of item- and cascade-level features.

From the set of cascade sizes {N,¢} zaccna qer, We estimate the posterior distribution
P(Zal{Nac}ac) eXp(z(e@al{Nac}ac))'lp(@a)y where P(22,) is the prior for 22, and Z(Zo{Nac}ac)
is the log-likelihood of 22, given the cascade sizes (derived in Appendix B.2.2),

(3.7)

Ko
L(PaliNactac) = logp({Nac}acL@a) = Z 108 Z ZZ,Ck'[EB(Nac|inV-lOgit(53,k+77a,k'ya));
SCCEHY, aeof k=1
cascades

where B(:|a) is the Borel distribution. Setting n = |[{Ngc}acena, qer| as the total
number of cascades in our dataset, the runtime complexity of evaluating £ (24 {Nuc}ac) is
O (ncascades . g [N, + Ny]), where N and N), are the dimensionalities of our cascade and

item feature vectors, respectively.

Informative priors have to be set on {64k, 6., .} to identify the K, classes in the a pa-
rameter space. 6o x and §,, , identify the center and baseline proportion of the k™" class,
respectively. Weakly informative priors are set for the other parameters in 22,. To sample the
posterior distribution P(2, {Nac} ac), we implement! the BMH-P model in Stan [15], which
uses the No-U-Turn Sampler (NUTS), a Hamiltonial Monte Carlo technique well-suited for
sampling from high-dimensional target distributions. The cost of obtaining an independent
sample from a |%?,|-dimensional distribution is roughly & (|2, | %) [49]. We use CmdStanPy
[116] to run Stan code through Python.

Using the average cascade count for items in &, denoted as C’p, and the empirical
distribution of the cascade feature vector X%¢, denoted as fp (x), the fitted BMH-P model can

be used to estimate the cold-start popularity N of an out-of-sample item a* with feature
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Figure 3.3: Plate diagram of the BMH-K model. Shaded nodes are observables while empty
nodes are latent variables. Paired colored edges indicate source nodes appearing as a product
in the target node. For instance, the green edges indicate that ¥y ; and y“ appear as the
product yg i - y* in the expression for 04 in Eq. (3.9). The same concept holds for the blue
and red edges. Edges marked with * indicate dependence of the target node on the source
node indexed with k and the entire set {1, - -, Kg}. For instance, in Eq. (3.10) zgfk depends

on BZ& . (see the numerator) and Bg&k, for k'€ {l1,---,Keg} (see the denominator).

—>a*
vector y~ :

(3.8) N =C i %z“*’c-[l+ex (6“* +y ."“*)].f(x)
: ~Lp Py ak POgk TYak )V o(X),

where we assume that ¥%° = x € N (see Appendix B.2.2).

3.4.2 BMH-K, the Kernel Submodel

Under the power-law, the kernel parameter set generating A% is @%¢ = [0, d*‘]T. We

model @ as a pair of mixture random variables taking the value
(3.9) 10g(0") =64 ;. +Vo,x- 7, log(d™) =65,
with probability zg,ck (k=1,...,Kg), where

exp(8%, , + By, X" + V20,7

~ Ko a 24 —ac .~ o
e eXp(6Z@,k’ + 'Bze,k’ X+ Y zg 0 V)

(3.10) 285
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In Eq. (3.10) we designate k =1 as the reference class (i.e. 6%, = ,529 = Vze, =0).

Collect the parameter vectors for BMH-K as

>a _ rsda a 1T
Pk =109 041"
:

>a _ a a Ra Ra

Pzo = 62@,2#’"’5Ze,K@’ﬁZ®,2""’ﬁZ®,K@ ’
with dimensionalities
(3.11) Iﬁg),k|:2
(3.12) Iﬁ;‘@| = (Kqg—1)-(1+ Ny),

The power law kernel having two parameters (i.e. 0%, d“‘) makes it challenging to esti-
mate a joint source-level MVN distribution as we did for BMH-P. To simplify, we assume
independence of (6 g, 00 fl, ;) across classes. For each kernel class k, we assume Pe,k is drawn
from a source-level MVN distribution with mean pg x = [6¢,k,04,x]" and covariance ma-
trix Zg k. Lastly, we assume p7, is drawn from an MVN distribution with mean p,, and

covariance matrix X, .

(3.13) Po~MVN(Pe,r.Zek), Zer=Dexr Qer -Der Dei=diagop,,)
(3.].4) ﬁg@ NMVN(ﬁZ@)’ZZ@)? Z'Z@ :DZ@.QZ@.DZQ’ DZ@ :diag(o-ze),

where 05,0 prg AT€ standard deviation vectors and Qg i, (2,4 are correlation matrices.

The plate diagram for the BMH-K model is shown in Fig. 3.3. Variable pairs that appear as
a product term are colored green, red and blue in Egs. (3.9) and (3.10), visualized in Fig. 3.3
as source nodes with green, red and blue edges.

Inference and Prediction. Let 2 be the parameter set for the BMH-K model. From
Egs. (3.11) to (3.14) we see that |ZPPg| = Kg - Iﬁg,kl (|l +2+ Iﬁ@,kl) +1Pg |- (L1 +2+1pg 1) +
(2Kg — 1) - N, following similar reasoning for |2?,|. In Table 3.2 we compare the model
complexity of the BMH-K model with the baseline models in Section 3.5.

From the interevent-time distributions {7 %‘} ., we estimate the posterior distribution
P(Pe|T ““) x exp(ZL(Pel{T ““}4c)-P(Pg). The log-likelihood of Pg given {T ““} ;. (derived
in Appendix B.2.3) is given by

Ke a > .=a a
(3.15) LPNT “a)= Y log) 28, f( A% ox TorT" Pury,
HeH? aesf k=1
where f(A10,d) = H,jejfztij g(tj — t,10,d). Setting pcascades — {Ngc} spacena qeor | and
nevents — Jfacnul_ﬂe}ix g{N“C as the total number of cascades and the size of the longest cas-
€ ,ae

cade, respectively, the worst-case runtime complexity of evaluating £(Pgl{T ““},.) is
@(ncascades ‘Ko - [Ny + (nel/ents)z . Ny])
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Informative priors have to be set on {6g,k, 04,k 02¢,} to identify the Kg classes in the
(0, d) parameter space. (0g,k,04,x) and 8, , identify the center and baseline proportion of
the k*" class, respectively. Weakly informative priors are set for the other parameters in Pg.
Similar to the BMH-P model, we implement! the BMH-K model in Stan and CmdStanPy to
sample from the posterior distribution P(P]’@Iff acy.

The BMH-K model predicts the half-life 7 Tl 1, of an out-of-sample item a”* as (see Ap-
pendix B.2.3),

oo Ke¢

(3.16) ‘[’1/2 Z Z Z@k e 26XP(50k+Y9ky fp(x)
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Table 3.3: Statistics of the predictive evaluation datasets.

CNIX-Fit CNIX —Test RNIX -Fit RNIX —Test

#publishers 41 41 28 28
#articles 72,009 40,506 2,682 18,116
#cascades 4,620,509 1,874,729 244,596 460,504
#tweets 42,546,067 18,235,185 1,573,909 5,139,967

3.5 Predictive Evaluation

In this section, we introduce two evaluation datasets (Section 3.5.1) and assess the BMH
model’s performance on two tasks: cold-start popularity prediction (Section 3.5.2) and
temporal profile generalization performance (Section 3.5.3), i.e. evaluating the likelihood of

the interevent distribution of future cascades.

3.5.1 Datasets

We use two datasets from [63] for predictive evaluation, consisting of collections of Twit-
ter retweet cascades that link articles from online news sources. The Controversial News
Index (CNIX) dataset consists of retweet cascades mentioning articles from 41 online
news publishers known for controversial content, such as https://www.breitbart.com/.
Conversely, the Reputable News Index (RNIX) follows the same structure as the CNI1X
dataset but gathers cascades linked to articles from 28 reputable publishers, such as https:
//www.news . com.au/. The tweets for both datasets were collected by the QUT Digital Media
Research Centre by retrospectively querying the Twitter search endpoint for URL mentions
of the articles between June 30, 2017 and Dec 31, 2019. In Table 3.1 we link quantities in
these datasets with variables in the BMH model.

Both CNIX and RNIX are temporally split into Fit (i.e. training) and 7Test (i.e. evaluation)
datasets. The first contains tweets published from Jun 30, 2017 to Jan 1, 2019, while the
second contains tweets from Feb 1, 2019 to Dec 31, 2019. A one-month gap between Fit and
Test ensures that cascades in the training data are finished before the test period. Table 3.3

shows summary statistics.

We use the standardized 32-dimensional embedding of a’s headline (i.e. PCA-reduced,
all-MiniLM-L6-v2 [99]) as our article feature vector y“, and the standardized log-follower

count of the cascade’s seed user as the cascade feature vector X%°.
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3.5. PREDICTIVE EVALUATION

3.5.2 Cold-Start Popularity Prediction

Our first task is evaluating the ability of the BMH-P model to predict cold-start popularity
of unpublished content. With publisher p’s trained BMH-P model, we predict the future
popularity N of an out-of-sample article a* with Eq. (3.8). To guide the selection of the
number of mixture components K, we fit the BMM to each publisher in RNI1X. We observe
that the BMM-fitted {a{} distribution is bimodal, corresponding to clusters of popular and
unpopular cascades. See Appendix B.3.1 for full details. Using this result, we fit a BMH-P
model for each publisher in CNIX and RNIX in Stan with the hyperparameter K, = 2. The
full set of priors for the BMH-P model is listed in Appendix B.3.2. Note that we use a Laplace
prior on ¥4 1,Ya,2, ¥ z,, to impose regularization given the high dimensionality of the article
feature vector (|y*| = 32) we consider.

To evaluate the predictive power of X4¢ and y¢, apart from the full model as developed
in Section 3.4.1 (which we call a(7%) + z(X%¢, %)) we fit three simpler variants of BMH-P: (1)
a(¥* +z(y*), where we set X4 = 0in Eq. (3.4); (2) a(2) + z(y*), where set X*° = 0 in Eq. (3.4)
and y“° =0in Eq. (3.3); and (3) () + z(9), where we set X*° = 0 in Eq. (3.4) and y*“ =01in
Egs. (3.3) and (3.4).

We compare the performance of the BMH-P model to three approaches: (1) the DMM
[63], (2) the empirical Bayes (EB) approach [115], and (3) feature-based cascade-size (CR)
regression models (i.e. a neural network with one hidden layer of 100 nodes) built using
scikit-learn [88]. For EB and CR, we fit two variants: one using only article features (i.e. EB(y)
and CR(y)) and another using both cascade and article features (i.e. EB(x,y) and CR(x,y)). We
report the Average Relative Error (ARE) over the set of articles in the Test datasets. Let N¢
IN “]\7;\7 i .
Results. In the top half of Table 3.4, we summarize cold-start popularity prediction

and N“ be the actual and predicted popularity of article a, then ARE(a) =

performance of the model variants for CNIX and RNIX. In both datasets the variants
with only article-level features y* and without the cascade-level features ¥“¢ show minimal
performance gain (RNIX) or even worse performance (CNIX) over the no-feature a(9) +
z() model. The full model a(y%) + z(X%¢, y*) significantly outperforms each simpler variant,
highlighting the importance of the seed user’s popularity as a predictor of final popularity
[4].

We compare the performance of the best-performing BMH-P model with the bench-
marks in the top row of Fig. 3.4(a) and Fig. 3.4(b). We can see that the BMH-P model
outperforms each benchmark based on median performance. We note that in each task, the
benchmarks that only have article features (CR(y) and EB(y)) outperform the correspond-

ing benchmarks that also include cascade features (CR(x, y) and EB(x, y)). However, our
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Table 3.4: Cold-start popularity prediction and model generalization results. We show the
median (25", 75" quantiles) for BMH variants with different feature components removed.
The best score across variants is in bold. Lower is better.

Popularity (ARE) CNIX RNIX

a (D) + z(D) 0.707 (0.334, 1.513) 0.644 (0.335, 0.921)
a(@) +z(y 0.708 (0.336, 1.497) 0.666 (0.339, 1.033)
a(yh +z(y%) 0.738 (0.370, 1.316) 0.643 (0.325, 0.953)
oc(j/'“) + z(xX4¢, j/'“) 0.646 (0.313, 0.935) 0.635 (0.342, 0.932)
Generalization (NLL) CNIX RNIX

0(2) + z(2) -3.841 (-5.293, -2.717) -2.564 (-3.231, -2.031)
0(2) + z(y9 -3.782 (-4.873, -2.683) -2.550 (-3.226, -1.988)
6()_/'“) + Z(j/'“) -3.649 (-4.816, -2.617) -2.689 (-3.492, -2.117)
0% + z(X¢, y4 -4.013 (-5.766, -2.714) -2.645 (-3.450, -2.063)

ablation results show that the best-performing BMH-P model includes both the cascade and
article features. This implies that the added structure of the BMH-P model jointly leverages
the article- and cascade-level information better than the benchmarks.

3.5.3 Temporal Profile Generalization Performance

Our second task is evaluating the performance of the BMH-K model in capturing the inter-
arrival distribution of future cascades of unpublished articles. Given publisher p’s trained
BMH-K model, we calculate the log-likelihood £ (Zg|{T” a’c1) of the inter-arrival distribu-
tion {7 ? ¢} of an unpublished article a*.

To guide the selection of the number of mixture components Kg, we fit the KMM to each
publisher in RNI1X. We observe that the KMM-fitted {6?, d?} distribution is trimodal, corre-
sponding to clusters of usual, slow- and fast-diffusing cascades cascades. See Appendix B.3.1
for the full details. Using this result, we fit a BMH-K model for each publisher in CNIX
and RNIX in Stan with the hyperparameter Kg = 3. The full set of priors for the BMH-K
model is listed in Appendix B.3.3. Note that we use a Laplace prior on Ye2,7e,3, Y ze,: ¥ 23 [0
impose regularization given the high dimensionality of the article feature vector (|7%| = 32)
we consider.

In addition to the full BMH-K model developed in Section 3.4.2 (which we call 8(7%) +
z(X?¢, y%) we fit three progressively simpler variants analogous to the ablation for the BMH-
P model: (7% + z(y%), 8(2) + 2(y%), and 0(2) + z(2). To evaluate performance, we calculate

the loglikelihood Z (P |{T *‘}) of inter-arrival times {J ““} ¢y over articles in the Test
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Figure 3.4: Predictive performance for (a) CNIX and (b) RNIX. The dots indicate the median
and the error bars give the 25/"/75'" quantiles. We compare the BMH with the DMM [63],
EB [115], cascade-size (CR) models, and the joint HP.

datasets. Since we are evaluating on likelihood, we use generative models as benchmarks:
the DMM, EB(y), EB(x,y), and publisher-level joint HP (see Appendix B.1.1).

Results. In the lower half of Table 3.4, we see that for CNIX each additional model
component improves the log-likelihood, and that the full model a(y%) + z(X%¢, y*) has the
best performance. For RNIX we observe that the variant without the seed user follower
count, i.e., (7% + z(y%), has the best performance. This finding suggests that in cascades
related to reputable media articles, the seed user is not as influential in determining how
long a cascade unfolds. In contrast, for controversial media articles, the seed user plays a
significant role. We posit this is because the more fringe messaging in controversial media
spreads through topical social groups (like conspiracy theorists, QAnon sympathizers and far-
right supporters) [10, 54]. As a result, the first endorser is particularly important to legitimize
content within the group. This is in contrast with the publicizing of traditional media articles
on social media, where the most important factor is the publisher’s reputation. In the bottom
row of Fig. 3.4(a) and Fig. 3.4(b), we see that similar to the popularity prediction task, the

BMH-K model outperforms all benchmarks on median performance for both datasets.
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3.6 What-If? Headline Style Profiling

This section performs a counter-factual analysis to show that BMH successfully captures
the relationship between headline writing style (i.e. neutral, clickbait or inflammatory)
and content popularity and half-life. We run a ‘What-If?" experiment, taking headlines of
different writing styles and using the trained BMH models to infer how these headlines

would perform under different publishers.

3.6.1 Dataset and Publisher Models

We utilize HEADLINES, a dataset of 1,227 article headlines collected using the news
aggregation platform The Daily Edit [66]. The headlines come from four topics (Top Stories,
Australia, Finance, and Climate Change) and six media sources (Daily Telegraph, Sky News,
Sunday Morning Herald, The Guardian, news.com.au). Each headline was examined and
sorted into one of three categories based on its informational and emotional content: neutral
(N=727), clickbait (N=438) and inflammatory (N=62). Neutral headlines are detailed and
appropriate, avoiding unnecessary information or emotive language, e.g. Australia’s top
military officer in the UK speaks ahead of Queen’s funeral.” Clickbait lacks informational
and/or emotive quality without being misleading or inflammatory, often designed to attract
attention, e.g. ‘Bizarre sight spotted amid Aussie floods.” Inflammatory headlines contain
unnecessary details, often on serious topics, and may include inappropriate emotional
language or details that reinforce negative stereotypes, e.g. Absolutely disgraceful’: AFL fans
blasted.’

We use the trained publisher-level BMH models in Section 3.5 to predict performance of
article headlines for each publisher in CNIX and RNIX: expected cascade size (Eq. (3.8))
(setting ép = 1) and half-life (Eq. (3.16)). We use the variants that include only item features
(.e. a(¥y?) + z(y*) for BMH-P and 6(y%) + z(y*) for BMH-K) since cascade features are not
available in this counter-factual setting.

3.6.2 Results

We apply the trained the BMH-P/-K models of each publisher p in {CNIX, RNIX} to each
of the 1,227 article headlines in HEADLINES to infer the article’s peformance if it were

published under p. We summarize the predictions with a publisher-level performance

a
1/2)’

and inflammatory headlines by aggregating the predictions of each headline style as contour

heatmap (log N@vs. log? where we differentiate the performance of neutral, clickbait
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Figure 3.5: (a) Distribution of predicted half-life log#{,, vs. cascade size log N“ for each
articlein HEADLINES using the news . com.au BMH model. (b and c) Probability that an
article performs better than the publisher average, for each headline style across CNIX and
RNIX: (b) cascade size N%; (c) half life f{‘/z.

plots. Fig. 3.5(a) exemplifies the performance heatmap for the RNIX publisher news . com.
au. For this news source, we see that inflammatory headlines appear to have much higher
popularity than neutral or clickbait headlines, while there is not much difference in half-life
across headline styles. This is somewhat expected, as this publisher is known for its tabloid
tendencies, focusing on “celebrity gossip, travel, lifestyle, sport, business, technology, money,
and real estate”, according to Media Bias Fact Check (MBFC) [74]. MBFC also rates its factual
reporting as “MOSTLY FACTUAL’ due to the occasional use of poor sources. We observe
differences in the patterns for the headline styles across publishers (see Appendix B.4),
implying that effective headlines for one publisher might not be effective for another, and

that the BMH model learns these differences.

To summarise the differences across the categories CNIX and RNIX, we compute the
probability that each headline performs better — has a larger predicted cascade size or longer
predicted half-life based on the BMH- than the publisher average based on the publisher’s
historical data. In Figs. 3.5(b) and 3.5(c) we show the distribution of these probabilities for

each category and headline style.

We have three observations for the popularity probabilities in Fig. 3.5(b). First, we see
that for CNIX, neutral headlines are effective (i.e. median better-than-average probability
> 50%). In contrast, clickbait headlines are ineffective (i.e. median better-than-average
probability < 50%). We link this result to the known inverse U-shaped relationship between
clickbait volume and audience engagement [135], where too little or too much clickbait
leads to suboptimal attention, suggesting the existence of a sweet spot for clickbait use.

The over-prevalence of clickbait in controversial media outlets results in clickbait fatigue
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among readers [70], leading to diminished effectiveness of clickbait headlines observed in
Fig. 3.5(b).

Second and interestingly, we see that for RNIX clickbait tends to perform better than
neutral headlines. This is explained by Rony et al [105], who show that traditional news-
oriented media consist of only 22% clickbait headlines while unreliable media consists of
39% clickbait based on a large sample of headlines. Since reputable media publishers have
lower clickbait volume than controversial outlets, they are closer to the sweet spot for click-
bait usage, retaining its effectiveness for drawing audience engagement. We do see a larger
variance for clickbait for RNIX compared to CNIX, suggesting that clickbait effectiveness
is inconsistent and may not resonate universally, linking to the fact that clickbait strategies
are only successful with certain audience segments [78].

Third, we observe large variance of performance for inflammatory headlines in both
categories, indicative of the polarizing nature of this headline style. Inflammatory headlines
tend to perform better in controversial outlets.

For the half-life probabilities (Fig. 3.5(c)), we see similar results, except that neutral head-
lines in both categories have higher half-life than clickbait, demonstrating the ephemerality

of clickbait [69] irrespective of where it is published.
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3.7 Headline Optimization with the BMH Model

In this section, we demonstrate the application of the trained BMH model to optimize online
news article headlines for performance prior to publication. We propose a two-step generate-
then-evaluate approach. The first step involves using text-generating Al (i.e. GPT) to produce
rewrites for an input headline. The second step uses the trained BMH model to predict cold-
start popularity and half life, which we use to rank the effectiveness of the rewrites. We
demonstrate the effectiveness of this approach empirically through a Mechanical Turk
(MTurk) [85] experiment where we applied the two-step procedure to previously published

headlines and found that online respondents preferred the model-optimized versions.

Since the BMH-P and BMH-K publisher-level models in Section 3.5 are trained at the
publisher level, it is necessary to specify a particular publisher for which we optimize

performance. In this experiment, we selected news. com. au as the target publisher.

3.7.1 Generate-then-Evaluate Approach

We propose a two-step approach to optimize headlines. For a particular headline we aim
to optimize, we generate a pool of 100 rewrites by prompting GPT3.5 with the following
text: “Imagine you are the editor of a big online news website. Come up with 100 creative
variations of the following headline that you think will pull in an audience. Make sure not
every output variation is in the Title: Subtitle format. Make sure the original headline and
output variations have similar length." We then use the trained BMH-P and BMH-K models
to obtain the predicted popularity and half life of each rewrite and the original headline.
These predictions are converted to relative improvement over the original headline scores
and averaged. Let a° and a represent the original and Al-rewritten headlines, respectively.

The performance score of a is computed as

A A 0 ~a Aa()

1 [N—N% 1T7,—-T

(3.17) 50:5_ = " 1/2%0 vz |
12

where N¢ and 7¢

1/, are given by Eq. (3.8) and Eq. (3.16), respectively.

Finally, we use {s%} as an effectiveness metric to rank {a}, the set of headline rewrites
for the original headline a°. We set the model-optimised version a* as the top-performing

rewrite, i.e. a* = argmax,s“.
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3.7.2 Seed Headline Selection

We apply the generate-then-evaluate approach to each headline a° in the HEADLINES
dataset introduced in Section 3.6.1 to obtain its model-optimised version a* and the average
percentage improvement s% . We choose the 100 headline pairs (a°, a*) that have the highest

average % improvement s* for our experiment.

3.7.3 MTurk Experiment

We conduct an experiment on the crowdsourcing platform Mechanical Turk, asking online
participants to choose between the original and model-optimised versions of the headlines.
We randomly split the 100 headline pairs into a set of 10 unique questionnaires (called
Human Intelligence Tasks (HITs) on MTurk), where each item in the questionnaire is a
choice between the original and model-optimised headlines, the participant prompted with
the task "Select the news headline that grabs and holds your attention." We ran data collection
for 13 iterations, each iteration consisting of 100 filled-in questionnaires (i.e. 10 uniquely
completed responses, called assignments on MTurk, for each of the 10 HITs), except for the
final two which had 200 filled-in questionnaires (i.e. 20 assignments each).

Participant Filtering. The MTurk platform allows selection of participants based on
certain selection criteria, with the goal of weeding out bad workers. For this experiment,
we select participants with approval rating exceeding 98%, with more than 5000 HITs com-
pleted (> 5,000) and located in majority-English-speaking countries, UK, USA, Canada and
Australia.

Response Filtering. As an added safeguard against low quality responses, we implement
three additional heuristic filtering steps on the workers. First, on each HIT we additionally
include 5 attention check items, where instead of running the original headline through
the generate-then-evaluate system we simply reorder the words text into an incoherent
sentence. For instance, for the headline "stars collide in battle for jillaroos no.1 jersey at
the world cup", we jumble the words into "battle collide in stars for cup no.1 jersey at the
jillaroos". For a particular HIT response to be accepted as valid, he must have at least 4 of the
5 attention checks (80%) to be correct, i.e. selecting the original headline. Second, to filter
out workers that quickly blitz through the HIT, we filter out HIT responses in the lower 10th
percentile in terms of the time taken to complete the HIT. Lastly we also filter out responses
that deviate greatly from the average response for each HIT. We compute the inter-worker
agreement for each of the 10 HITs and only consider responses filled out by workers that

have an above-average inter-worker agreement score.
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Figure 3.6: (a) Optimal headline selection rate aggregated across three levels (question,
worker, overall) across the 13 iterations of the MTurk experiment. (b) One-tailed t-test p-
value for the optimal headline selection rate being higher than random. (c) Number of
questions answered across the 13 iterations. (d) Number of assignments and workers across
the 13 iterations.

3.7.4 Results

Our MTurk sample consists of 13 iterations of data collection, with a total of 2010 binary
responses between the original and model-optimised versions, 201 assignments of the 10
HITs, and 127 unique workers. In Fig. 3.6(c) and (d) we show the the overall size, total number
of assignments and unique workers of the MTurk sample across the 13 iterations.

We use two metrics to summarise the results of the experiment. First, to quantify the
preference for the model-optimised versions, we compute the optimised-headline selection

rate, given as
# optimised headline selected

OPT =
# headlines considered

We aggregate the selection rates across three levels: question (/N = 100), worker (N = 127)
and overall (IV = 2010). Note that the sample sizes for the worker and overall levels are at the
final iteration. For instance, the worker-level selection rate is given by
127
worker-level OPT = — Y OPT(worker k).
127 =
Second, to quantify the significance of the model-optimised headline preference, we com-
pute the p-value of the one-tailed t-test for the optimal headline selection rate being greater
than random, i.e. OPT > 50%. We compute this value on four levels: assignment (N = 201),
question (NN = 100), worker (N = 127) and overall (N = 2010).
Fig. 3.6(a) and (b) show a summary of the results. In Fig. 3.6(a), we see that the optimised-
headline selection rate consistently stays above the 50% line (i.e. no preference) across every

iteration, ending up at an overall selection rate of 57.91% in the final iteration. Relative
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Figure 3.7: Fraction of journalists (/V = 4) who prefer the model-optimised headline over
the set of 100 (original, model-optimised) headline pairs in the MTurk experiment. The
majority of the headlines in the dataset are preferred by 1 out of 4 journalists (=25% optimal-
headline selection rate), indicative of journalists preferring the original headlines over the
model-optimised ones.

to random choice, this is a 15.82% improvement, signifiying consistent preference of the
model-optimised headlines over the original headlines. In Fig. 3.6(b) we show the via the
p-value of the one-sided t-test for model-optimised headline preference. Note that the
p-value generally decreases as we accrue a higher sample size; running the experiment for
more iterations shows that the t-test p-values drop and stabilise, and by the last iteration,
all p-values considered are less than 0.05, signifiying significance of the model-optimised

headline preference at the 0.05 level for all aggregations considered.

3.7.5 Do Content Consumers and Producers Have Diverging

Preferences?

In addition to the MTurk experiment, we asked four journalists to provide their preferences
for the 100 headline pairs {(a’, a*)} evaluated in the MTurk experiment. Fig. 3.7 shows a
summary of the response at the question level. We see here a divergence in results from
the MTurk experiment. Most of the headlines in the dataset are preferred by only 1 out of
4 journalists, indicating a 25% model-optimised headline selection rate. Indeed, by aggre-
gating across all responses we see an overall optimal selection rate of 43%, indicative of the
journalists’ preference of the original versions of the headlines.

Our results show an apparent difference in preference between content producers (i.e.
journalists) and consumers (i.e. MTurk workers). Content producers make assumptions on

what effective content is for their intended audience, which might not hold in reality [94].
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We can move from producer-optimised headlines (i.e. {a°}) to consumer-optimised ones
(i.e.{a*}) by optimising directly on consumer feedback through the BMH model, which have

a higher guarantee of content effectiveness on the consumer side.
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3.8 Conclusion

This chapter proposes the Bayesian Mixture Hawkes (BMH) model, a hierarchical mixture
model of Hawkes processes capable of learning the influence of item- and cascade-level
features on spread dynamics. We demonstrate the applicability of the BMH model on two
retweet cascade datasets that reference articles from reputable and controversial online
news sources and show that the BMH model outperforms benchmark models in cold-start
popularity prediction and temporal profile generalization performance. We apply the trained
BMH models to a dataset of article headlines written in different headline styles and show
differences in performance of headline styles across reputable and controversial outlets.
Lastly, we demonstrate the effectiveness of the BMH model in an MTurk experiment, showing
that online respondents have a significant preference for the BMH-optimised headlines over
pre-optimised and previously published headlines.

Limitations and Future Work. We use the Hawkes process as the building block of the
BMH model since it does not require the branching structure of diffusion cascades for
inference. This choice is driven by data limitations on Twitter, where the branching structure
of content shares is not accessible.

We propose two improvements. First, the BMH model assumes that ¢« and ® depend
only on cascade- and content-level features. We can allow a and ® to vary per event by
including event-level features, which can be achieved by using the parametric Hawkes
process [67] or Tweedie-Hawkes [68]. Second, the BMH model assumes a fixed number of
popularity/kernel classes, obtained empirically by pre-fitting with the DMM. We can learn
the manifest number of components directly from the data by assuming an infinite number
of components via nonparametric Bayesian methods, such as using a Dirichlet Process prior
[79].

In Section 3.7 we tested the capability of the BMH model as a cold-start headline opti-
mization tool by combining it with generative Al (e.g. ChatGPT [84]). We aim to develop the
capabilities further and apply it to other social media platforms such as Facebook, which

introduce new data challenges.
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CHAPTER

LINKING ACROSS DATA GRANULARITY: FITTING MULTIVARIATE

HAWKES PROCESSES TO PARTIALLY INTERVAL-CENSORED DATA

he multivariate Hawkes process (MHP) is widely used for analyzing data streams

that interact with each other, where events generate new events within their own

dimension (via self-excitation) or across different dimensions (via cross-excitation).
However, in certain applications, the timestamps of individual events in some dimensions
are unobservable, and only event counts within intervals are known, referred to as partially
interval-censored data. The MHP is unsuitable for handling such data since its estimation
requires event timestamps. In this study, we introduce the Partially Censored Multivariate
Hawkes Process (PCMHP), a novel point process which shares parameter equivalence
with the MHP and can effectively model both timestamped and interval-censored data.
We demonstrate the capabilities of the PCMHP using synthetic and real-world datasets.
Firstly, we illustrate that the PCMHP can approximate MHP parameters and recover the
spectral radius using synthetic event histories. Next, we assess the performance of the
PCMHP in predicting YouTube popularity and find that the PCMHP outperforms the
popularity estimation algorithm Hawkes Intensity Process (HIP) [103]. Comparing with the
fully interval-censored HIP, we show that the PCMHP improves prediction performance
by accounting for point process dimensions, particularly when there exist significant cross-
dimension interactions. Lastly, we leverage the PCMHP to gain qualitative insights from
a dataset comprising daily COVID-19 case counts from multiple countries and COVID-
19-related news articles. By clustering the PCMHP-modeled countries, we unveil hidden

interaction between COVID-19 cases and news reporting.
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CHAPTER 4. LINKING ACROSS DATA GRANULARITY: FITTING MULTIVARIATE HAWKES
PROCESSES TO PARTIALLY INTERVAL-CENSORED DATA
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Figure 4.1: Example of multi-platform interaction between view events on YouTube (red
lollipops) and tweets on Twitter (blue lollipops). The data is partially interval-censored, as
YouTube does not expose individual views, but only the view counts C;’s over the predefined
intervals [0, 0;+1) (shown as red rectangles). The dashed lines show the latent branching
structure between views and tweets. The red lollipops are also dashed and empty, indicating
that YouTube views are not observed.

4.1 Introduction

The Hawkes process, introduced by [47], is a temporal point process that exhibits the self-
exciting property, i.e., the occurrence of one event increases the likelihood of future events.
The Hawkes process is widely applied in both the physical and social sciences. For example,
earthquakes are known to be temporally clustered: the mainshock is often the first in a
sequence of subsequent aftershocks. In online social media, tweets by influential users
typically induce cascades of retweets as the message diffuses over the social network [101].
The multivariate Hawkes process (MHP) [47] extends the univariate process by allowing
events to occur in multiple parallel timelines — dubbed as dimensions. These dimensions
interact via cross-excitation, i.e., events in one dimension can spawn events in the other
dimensions. Fig. 4.1 schematically exemplifies the interaction between two social media
platforms: YouTube and Twitter. An initial tweet (denoted as A on the figure) spawns a
retweet (B) via self-excitation and a view (C) via cross-excitation. The cross-excitation goes

both ways: the view C generates the tweet D.

Given the event timestamps, we can fit the parameters of the Hawkes process using
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maximum likelihood estimation (MLE). However, in many practical applications, the event
times are not observed, and only counts over predefined time partitions are available. We
denote such data as interval-censored. For multivariate data, we denote the case when
all dimensions are interval-censored as completely interval-censored. If only a subset of

dimensions is interval-censored, we have partially interval-censored data.

One reason for interval-censoring is data availability — for epidemic data [14], we usually
observe the aggregated daily counts of reported cases instead of detailed case information.
Another reason is space limitations — for network traffic data [111], storing high-resolution
event logs is impractical; they are stored as summaries over bins instead. A third reason is
data privacy. This is the case for YouTube, as shown in the upper half of Fig. 4.1, where the

individual views are interval-censored, and we only observe aggregated daily counts.

This chapter tackles three open questions about using the MHP with partially interval-
censored data. The first question relates to fitting the process to both event time and interval-
censored data. When the data is presented as event times, the MHP can be fitted using
MLE [27]. However, if the data is partially or completely interval-censored, MLE cannot fit
the MHP process parameters because it lacks the independent increments property [102].
Given interval-censored counts, one could approach fitting the Hawkes process naively by
sampling event times uniformly over the intervals [119]. However, this quickly hits scalability
issues for high interval-censored counts. For instance, the Youtube videos in our real-world
dataset often have millions of views per day. For completely interval-censored univariate
data, [102] proposed the Mean Behavior Poisson (MBP) — an inhomogeneous Poisson
process that approximates the mean behavior of the Hawkes process — to estimate the
parameters of a corresponding Hawkes process. However, a model and fitting scheme
remained elusive for the partially interval-censored data. The question is, can we devise a
method to fit the MHP in the partially interval-censored setting? What are the limits to

MHP parameter recovery in the partially interval-censored setting?

The second question relates to modeling and forecasting online popularity across social
media platform boundaries. Online popularity has been extensively studied within the
realm of a single social media platform — see Twitter [60, 76, 133, 136], YouTube [26, 103],
Reddit [64] — and the self-exciting point processes are the tool of choice for modeling.
However, content is often shared across multiple interacting platforms — such as YouTube
and Twitter — and we need to account for cross-excitation using multivariate processes.
However, YouTube only exposes view data as interval-censored, rendering it impossible to
use the classical MHP. The Hawkes Intensity process (HIP) [103] proposes a workaround

and treats the tweet and share counts as external stimuli for views. Its shortcoming is that it
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cannot model the cross-excitation from views to tweets and shares. The question is, can we
improve performance in the YouTube popularity prediction task by modeling the views,
tweets, and shares through fitting on partially interval-censored data?

The third question concerns analyzing interaction patterns across the online and offline
environments, enabling us, for example, to determine whether online activity preempts
or reacts to events that happen offline. Previous work has demonstrated the complex link
between news and infectious disease outbreaks, notably the 2009 A/HIN1 outbreak in the
Shaanxi province in China [130], the 2010 cholera outbreak in Haiti [22], and the early spread
of COVID in 2020 in various provinces in China [131]. The association between media and
case counts has typically been investigated by examining the cross-correlation of the news
counts and case counts as paired time series and demonstrating that significant correlations
exist when temporal lags are applied. [130, 131] show correlations between news and cases
for both positive and negative lags, suggesting that news both had an impact and had
been impacted by reported disease counts. [22] show that news typically lags behind cases;
they also showcase how news counts can be used as a proxy for estimating crucial disease
measures such as the basic reproduction number Ry. This highlights that the connection
between news and cases is particularly relevant given that news counts can be retrieved in
near real-time; in contrast, official case counts reporting is often lagging. In most previous
work, uncovering time-series cross-correlation is the focus, without building explanatory
models to produce nuanced views of the interactions through interpretable parameters. The
question is, can we apply MHP on partially interval-censored data to uncover country-
level differences in the interplay between recorded daily case counts of COVID-19 and the
publication of COVID-19-related news articles?

We address these three questions by introducing the Partially Censored Multivariate
Hawkes Process (PCMHP)!, a novel multivariate temporal point process that operates on
partially interval-censored data. We answer the first question in Section 4.4.1, where we
detail the PCMHP. The event intensity of PCMHP on the interval-censored dimensions is
determined by the expected Hawkes intensity, considering the stochastic history of those
dimensions conditioned on the event time dimensions. On the event time dimensions, the
intensity of PCMHP corresponds to that of the respective Hawkes process. This construction
allows us to fit the PCMHP to partially interval-censored data and estimate the parameters
of the multivariate Hawkes process through parameter equivalence.

We address the second question in Section 4.7 by using PCMHP to predict the popularity
of YouTube videos on both YouTube and Twitter. We demonstrate that PCMHP consistently

Implementation available at https://github. com/behavioral-ds/pmbp_implementation.

66


https://github.com/behavioral-ds/pmbp_implementation
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outperforms the related HIP method [103], provides quantification of prediction uncertainty
and extends predictions to all dimensions — unlike HIP, which can only predict the views’
dimension.

We address the third question in Section 4.8 by utilizing PCMHP to investigate the
relationship between COVID-19 case incidence and news coverage. We fit a country-specific
PCMHP for each of the 11 countries using a dataset consisting of reported COVID-19 cases
(with interval-censored data) and the publication dates of COVID-19-related news articles
during the early stage of the outbreak. We identify three distinct groupings by clustering
countries using the fitted PCMHP parameters. In the first group (UK, Spain, Germany, and
Brazil), we observe preemptive news coverage, where an increase in news leads to a rise in
cases. The second group (China and France) exhibits reactionary news coverage, with news
lagging behind the cases. No significant interaction between news and cases is found in the
third group (US, Italy, Sweden, India, and the Philippines).

In Section 4.9, we briefly describe an alternative notion of the partially interval-censored
setup which we tackled in another work [62] where I was a coauthor. Here, we extend the
deep-learning-based Transformer Hawkes (TH) [137] to the partially interval-censored setup

by introducing the Interval-Censored Transformer Hawkes (IC-TH) model.

4.2 Related Work

A significant portion of recent literature on the Hawkes process, and on point processes in
general, deals with estimation from partially observed data. This problem is nontrivial as

standard MLE techniques require the complete dataset.

It was shown in [58] that a sequence of (integer-valued autoregressive time series)
INAR(c0)-based family of point processes converges to the Hawkes process. Under this
convergence, they concluded that the INAR(c0) is the discrete-time version of the Hawkes
process. In a follow-up, [59] presented an alternative procedure to MLE, which fits the as-
sociated bin-count sequences to the INAR(p) process. As the bin size goes to zero and the
order p of the process goes to co, the INAR sequence converges to the Hawkes process and
the parameter estimates converge to the Hawkes parameters. However, though fitting is

performed on count data, convergence only actually occurs for small bin size.

A spectral approach to fitting the Hawkes process given interval-censored data for ar-
bitrary bin size is presented in [19], solving the issue in [59]. Their proposed method is

based on minimizing the log-spectral likelihood of the bin-count sequence instead of the

67



CHAPTER 4. LINKING ACROSS DATA GRANULARITY: FITTING MULTIVARIATE HAWKES
PROCESSES TO PARTIALLY INTERVAL-CENSORED DATA

usual log-likelihood of the Hawkes process. They showed that optimization converges to the
Hawkes parameters under certain assumptions on the kernel.

The sample-based Monte Carlo Expectation Maximization (MC-EM) algorithm was in-
troduced in [111] and [112] for the univariate and multivariate cases, respectively, which
uses sampling to obtain proposals for the hidden event times. They showed that their ap-
proach recovers parameters more reliably than the INAR(p) estimates from [59] in synthetic
experiments. Another sample-based approach, the recursive identification with sample
correction (RISC) algorithm, was introduced in [106], where synthetic sample paths are
iteratively generated and corrected to match the observed bin counts. Reliance on sampling
makes these approaches more computationally expensive than the others.

Several modifications have been proposed to estimate the Hawkes process from daily
count data in the context of modeling the spread of COVID [6]. A Hawkes process incorpo-
rating spatio-temporal covariates was estimated using an EM algorithm in [20], while the
least-squares approach was utilized in [107] to model state-level differences in transmission
rates in the U.S.. A discrete-time Hawkes process for country-level COVID transmission was
introduced in [14] and fit using Bayesian inference.

The notion of interval-censored data is also used in other fields, most prominently in
the study of time-to-event (failure time) data [9, 17, 114]. In these works, ‘interval-censored’
refers to situations where the precise time of an event of interest in an observational study
is unknown; instead, we only know that it occurred within a certain window or follow-up
period [30]. This data type is prevalent in health and clinical research [72], where exact event
times may not be directly observable due to the nature of study designs. Contrary to this,
our work adopts the definition of ‘interval-censored’ as outlined in [62, 102], where event
times are inaccessible and we instead observe event counts over predefined time intervals,
as exemplified by Youtube views in Fig. 4.1. Furthermore, in this work, we define partial
censoring of a multivariate process as the censoring of specific dimensions, with the rest

being observed as point processes.
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4.3 Preliminaries

A temporal point process can be specified by its conditional intensity function. In this work,
we consider simple point processes, where no two events can occur simultaneously. Let N(¢)
represent the number of events that occurred up until time ¢ and thj_ be the set of all events
that occur in dimension j up until #, for j € {1,...,d}. We further denote the union of all
history dimensions as ;- := Uj.izl th];. The d-dimensional conditional intensity function
A (t|#;-) is defined as

. 1 . .
M (£ 7,-) = lim —IP{N](I+ h)—N](t):llic”t—},
h—0* h

which gives the instantaneous probability of a dimension j event occurring in the increment
[t,t+ dt), conditioned on all events that happen before ¢. For brevity and whenever it is
clear from context, we drop the explicit conditioning on the history /- and write A(f) :=
A (t1FE-).

4.3.1 Hawkes Process

The univariate Hawkes process is a type of temporal point process that models a sequence of
events on a single dimension exhibiting a self-exciting behavior. Given d types of events, the
corresponding d-dimensional multivariate Hawkes process (MHP) is a point process where
each dimension tracks the dynamics of each event type. In addition to being self-exciting,
the MHP is cross-exciting among event types, i.e., an event occurring in one type of event
increases the probability of any type of event occurring in the near future. The conditional

intensity of the d-dimensional Hawkes process is given by

d , ,
4.1) A):=p)+), Y @ u-t),

i=1.J J
I="tlesel

where p(f) is the (deterministic) background intensity, a d-dimensional non-negative vector
for each t controlling the arrival of external events into the system. The matrix ¢(?) is
called the Hawkes kernel, a d x d matrix of functions that characterizes the self- and cross-
excitation across the event types representing the d dimensions. Let ¢/ (1) represent the j”
column of the Hawkes kernel. The diagonal entries ¢//(¢) and off-diagonal entries ¢/ (£),
i # j, represent the self- and cross-exciting components of the Hawkes kernel, respectively.
Note that the Hawkes intensity A(#) defined in Eq. (4.1) is a stochastic function dependent

on the history of any particular realization .#;-. Given a fixed .#;-, the intensity before or
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equal to ¢ is deterministically calculated using Eq. (4.1). On the other hand, the intensity is
arandom variable for any time greater than ¢ or if the history .77 itself is not observable,
such as in the case of interval censoring.

The Hawkes kernel is often specified in a parametric form to facilitate simple inter-
pretability. Let D denote the index set {1,...,d}. If we assume ¢"/ (t) = a'/ fi (1), a'/ = 0,
fij(t) >0, and f(fofij(t)dt =1for (i, j) € D x D. We call a'l the branching factor from j to i
and the matrix & = (a%/) € (R*)%*4 the branching matrix. The branching factor a’/ gives the
expected number of offspring events in dimension i that are triggered by an event in dimen-
sion j. The function f/(¢) is typically selected to be monotonically decreasing to model the
empirically observed decay in the attention that online content receives over time [26]. This
is explained by viewing human attention as a limited resource that online content competes
for, resulting in content being forgotten over time. In this work we consider the widely used
exponential kernel [76, 102, 109], which takes the form (pif (1) = aligii exp(—Hif f), where 6%/
controls the rate of influence decay from j to i. More prerequisite details on the MHP are

provided in Appendix C.1.

4.3.2 Mean Behavior Poisson Process

Consider a univariate Hawkes process with conditional intensity A(f). The Mean Behavior
Poisson (MBP) process introduced by [102] is the inhomogeneous Poisson process with

conditional intensity
(4.2) §(1) :=Ezg- [M(D)].

In contrast to the stochastic Hawkes intensity A(¢|.#;-), the MBP intensity £(¢) is a determin-
istic function obtained by taking the expectation of the Hawkes intensity over all possible

realizations {#;-}. It was shown in [102] that £(¢) follows the self-consistent equation
(4.3) ¢() = p() + (@ = )(1),

where * denotes convolution. Furthermore, the mapping u(t) = ¢(t) in Eq. (4.3) defines a
linear time-invariant (LTI) system [90], meaning that it obeys linearity (u; (f) = ¢;(¢) and
a2 (8) = &2 () imply that apy (1) + bua (1) & a&y (1) + bé» (1) for a, b € R) and time invariance
(u(?) = &(r) implies that p(t— tg) = &(t — ty) for ty > 0.) As an LTI system, the response &(?) to
the input u(#) can be obtained by solving for the response of the system to the Dirac impulse
0(1), derived in [102] to be

(4.4) ) =80+ ) @®"(0) | * ),

n=1
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where ®n corresponds to n-time self-convolution.

Since the MBP process is a Poisson process, its increments are independent, which
allows the likelihood function to be expressed as a sum of the likelihood of disjoint Poisson
distributions. This enables the MBP process to be fitted in interval-censored settings via

MLE. More prerequisite details are provided in Appendix C.1.

4.3.3 Hawkes Intensity Process

The Hawkes intensity process (HIP), introduced in [103], is a temporal point process that
can be fit to interval-censored data. It was used primarily for YouTube popularity prediction,
where YouTube video views are daily-censored, and external shares and tweets that mention
the video act as the exogenous intensity p().

Given a partition 22(0, T) = UZ’ZI [0k—1,0r), Wwhere 0y =0 and 0, = T, and the associated
view counts {C} ,’anl, the HIP model ¢[-; 0] is fitted by finding the parameter set ® that
minimizes the sum of squares error ZZ‘ZI (C P (f [0k; @)])2 of the following recursive formula

for é[og; O],
k-1

Elog; 0] = plog] + Y. p(og — 05;0) - El05; O).
s=0

The use of brackets emphasizes that the quantities are discretized over a partition of time. It
was shown in [102, Theorem 10] that HIP is a discretized approximation of the MBP process,
where an implicit assumption that the observation intervals being unit length is reflected in

the sum of squares error, i.e., f[ok; O] - (0 — 0k—1) is approximated as f[ok; Q].
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Table 4.1: Important notation used in Chapter 4.

Symbol Meaning

a Hawkes branching matrix
p(a) spectral radius of a
fii(t) exponential kernel from dimension j to i
0 exponential kernel decay parameter matrix
p(t)  deterministic background intensity
@(t) Hawkes kernel, where @'/ (£) = a'/ '/ (¢)
A(t)  MHP conditional intensity
1403 MBP conditional intensity
D overall set of dimensions for PCMHP (d, e)
E set of MBP dimensions for PCMHP (d, e)
E° set of Hawkes dimensions for PCMHP (d, e)

th]_ event sequence history on dimension j € D
A union of event sequence histories on Ac D
¢p()  conditional intensity for PCMHP (d, e)
ZEgr(t) compensator for PCMHP (d, e)
0 parameter set for PCMHP (d, e)
T terminal time
Z(0;T) log-likelihood function for PCMHP (d, e)
Zo (©; T) gradient of log-likelihood function for PCMHP (d, e)
AP time axis partition length for numerical convolution

yh convergence threshold for infinite sum truncation

4.4 Partially Censored Multivariate Hawkes Process

For convenience, the list of notation that we use in this work is provided in Table 4.1.
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4.4.1 Formulation

We define the Partially Censored Multivariate Hawkes Process PCMHP(d, e) with intensity
& (1) as follows. A key idea of the PCMHP(d, e) is to fix the history of different dimensions.
As such we denote the history union over a subset of dimensions A c {1...d} as thfi =
Ujea 7L

Definition 4.1. Consider a d-dimensional Hawkes process with conditional intensity A(¢)
as defined in Eq. (4.1). Given a nonnegative integer e < d and the index sets D :={1,...,d},
E:={1,...,e} and E°:= {e+1,...,d}, the Partially Censored Multivariate Hawkes Process
PCMHP(d, e) is the temporal point process whose conditional intensity &g(t) is the expecta-
tion of A(#) conditioned on the set of event histories #Z in the E¢ dimensions and averaged

over the set of event histories Jff_ in the E dimensions. That is,
(4.5) Ep(0) = (117 ) =E 4 (201 ).

The PCMHP(d, e) intensity is a stochastic function due to its dependence on the current
realization of ﬂ”ﬁc ; on the E dimensions we take the expectation over all possible realizations
of Jfﬁ, similar to the MBP intensity in Eq. (4.2).

In practice, E would be chosen to be the set of dimensions where event times are inac-
cessible and only interval-censored event counts can be obtained, while E€ would be the
dimensions with event time information. In Fig. 4.1 for instance E would be YouTube views
and E° the set of tweets.

Is the PCMHP (d, e) Poisson? Due to its dependence on the history of the E¢ dimen-
sions, the PCMHP (d, e) is not a Poisson process. From Eq. (4.5), the PCMHP(d, e) can be
interpreted as a collection of d processes, where E{:(t) follows a Hawkes process for j € E¢
and follows an inhomogeneous Poisson process (conditional on the event history of the E¢
dimensions) for j € E. In fact, the PCMHP(d, e) generalizes both the MHP (by setting e = 0)
and the MBP process (by setting e = d).

Convolutional Formula. Consider the kernel
o0 =] @' ... ' e .. 0 |,
setting ¢/ (¢) to be the j* column of ¢(#). Similarly, let
0= @' ... 90 0 .. 0]

and
er®=[0 .. 0 ¢ .. ') |.
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Similar to MBP, {(t) can be expressed as the response of an LTI system, which allows us

to express ¢ (1) as a convolution with the Dirac impulse 6(%).

Theorem 4.1. The conditional intensity E(t) of the PCMHP (d, e) process is given by

(4.6) =60+ Y @20 |+ |p+ Y Y @lt—1)

n=1 JEE® tljc<t

In general, & g(f) does not admit a closed form solution because of the complexity of the
infinite convolution sum of ¢ ;(#) (an interpretation of which is provided in Appendix C.2).
However, in the special case of PCMHP(2,1) with the exponential kernel, a closed-form
solution for & (1) exists, derived in Appendix C.3.

Regularity Conditions. Imposing regularity conditions on the model parameters ensure
process subcriticality, i.e. the expected number of direct and indirect offspring spawned
by a single parent is finite. For instance, an MHP is subcritical if the spectral radius p (i.e.
magnitude of the largest eigenvalue) of the branching matrix is less than one, i.e. p(a@) <1
[81]. Here we introduce the regularity conditions applicable for the PCMHP(d, e).

Consider the following submatrices of a:

. g g g
a”" = (a') g, peExE a”" = (a")q jeExEe,

g iy e y
a” "= (") pepexE a” " = (@) jerexpe.

The following are three conditions which ensure subcriticality of PCMHP(d, e).

Theorem 4.2. The PCMHP(d, e) with branching matrix e is subcritical if the following

conditions hold.

4.7) p(aff) <1
(4.8) paf <1
4.9) p(@FE(1-afP) 1alfF) < 1.

We note that the regularity conditions for PCMHP(d, e) in Theorem 4.2 cover the MHP
and the MBP as special cases.

Proofs of Theorem 4.1 and Theorem 4.2 and a discussion on the nonlinear extension of
the PCMHP are provided in Appendix C.4.
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4.4.2 Inference

We now consider the problem of estimating the PCMHP parameter set ® given a partially
interval-censored dataset consisting of interval-censored data on a subset of dimensions
and exact event sequences on the other dimensions. Assuming a constant exogenous term
p(t) =v,the PCMHP(d, e) parameter set to be estimated is given by O = {v, «, 8} with size

®|=d+2-d°
Consider a d—dimensional dataset over the time interval [0, T') such that observations in
the first g dimensions are interval-censored, and in the last d — g dimensions, we observe
event times. Formally, let Q:={1,...,q} and Q°:={g +1,...,d}. For j € Q, we associate a set
J J

of observation points 0(], <0;<...<0, such that for 0] where k =1, we observe the volume

C] of dimension j events that occurred during the interval [0’ ];). Meanwhile, for j € Q¢,

Of—1’
we observe event sequences J0)_ = {t{ < tg e < tfl ;- Inpractice, the observation partition
Ujeo U k O k) is not a model hyperparameter but is determined by real-world dataset
avallablhty constraints. For instance, in Fig. 4.1 we consider a daily partitioning for Youtube
views since our dataset consists of aggregated daily view counts.

We use MLE to fit the parameters of a PCMHP(d, e) process to the above-defined data

using the log-likelihood function derived below. The proof is available in Appendix C.5.

Theorem 4.3. Given event times JfQC event volumes U]€Q{C }k X and a PCMHP(d, e)

model such that E 2 Q, the negative log-likelihood of parameter set ® can be written as

(4.10) Z2@N=Y . ©n+Y %L, 6T,
jeQ jeQ*

where
nl

(4.11) L1 @)=Y |2h0]_,,0;0) - Cllogl(ol_,,0l;0)],
i=1

(4.12) L @D ==Y logélt];@)+=L(T;0),
tie]ﬁ%,

and Zg(t) represents the compensator, i.e., the intensity & (t) integrated over 0 to t.

Choice of Likelihood. The choice of likelihood on a given dimension j is solely depen-
dent on the type of data on the said dimension. If j € Q (dimension j is interval-censored),
one should use .,2” e ©;T); if j € Q¢ (event-times) then P{P-LL (®; T) should be used.

An event-time dimension (j € Q¢) can be modeled using either the Hawkes dynamics or
the MBP dynamics. However, an interval-censored dimension (j € Q) can only be modeled

using MBP dynamics, as an interval-censored log-likelihood for the Hawkes dynamics does
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not exist. It follows that E 2 Q. In real-world applications, one would choose E = Q because
any other choice E > Q leads to information loss due to the mismatch between the data
generation model (i.e., Hawkes) and the fitting model (MBP). We study the impact of model
mismatch loss in Section 4.6.

Runtime Complexity. Denote n? and n? as the total number of observed event times
in the E° and Q° dimensions, respectively; and nf and n@ as the total number of ob-
servation intervals in the E and Q dimensions, respectively. That is, nf =y jeEe I%%,I,
n? =Y jcqe |J£%_ ,nf =Y ;cpn/,andn?=Y jcon’. Let C denote a constant independent
of the dimension of the PCMHP and the data. Evaluating .Z(@®; T) has a runtime complexity
of G ((C +nE9. m@ + nQC)) (see Appendix C.5 for more details). In the case E = Q = @, the
runtime complexity reduces to @((nf)?), consistent with the MHP. If E = Q = D, runtime

Ey,

complexity reduces to ' (n”), consistent with the MBP (i.e. Poisson) process.

Numerical Considerations. Due to the complexity of Y77 | 7" (¢) and its convolutions,
a general closed-form expression for ¢(?) is not available, requiring us to leverage approxi-
mation techniques, i.e. numerical convolution and infinite series truncation, to compute
Y o2, 3" (1) and &g (1). The approximation error is controlled by two hyperparameters: (1)
AP, the partition length of our time axis for the numerical convolution, and (2) yh, the
max-norm convergence threshold to determine k* € N to truncate the infinite sum, i.e.
Z’,;:l @7 (1) = X5, 7" (1). The smaller AP and y" are set, the tighter the approximation,
albeit with a longer computation time. Full details and heuristics on hyperparameter choice

are discussed in Appendix C.7. We propose an alternative sampling-based technique to

o0

calculate & (#) that bypasses calculation of 377

3" (1) in Appendix C.8. Finally, we demon-
strate the convergence of the numerical and the sampling-based approximation techniques
in Appendix C.9 by showing close agreement between the approximated &x(¢) and the

closed-form & () of the exponential PCMHP (2,1) derived in Appendix C.3.

Gradient-based optimization tools — including IPOPT [123] that we use in our experi-
ments in Section 4.7 and Section 4.8 — usually require the gradient. To approximate .Z(0; T)
and its gradient Z(0; T), we propose a numerical scheme in Appendix C.10 and Ap-
pendix C.11. We show in Appendix C.10 that the runtime complexity of the numerical
scheme is mostly determined by how many dimensions we model as Hawkes and as MBP.
Without any Hawkes dimensions (E€ = @), the scheme scales linearly (similar to the MBP)
with the number of observation intervals nt, i.e. © (nE . [A—TP] -d- e). On the other hand, if
E° # @, the scheme scales quadratically (similar to the MHP) with the number of observed
event times nEC, ie. O(nf + nf + [A—TP]] .nE*. d). In both cases, the number of partition inter-

vals [Alp] only appears linearly. For partially interval-censored datasets with high frequency
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data, the number of observed event times n** is the most important determinant of runtime
complexity given that it appears quadratically, while the number of observation intervals n”
and the number of partition intervals [A—T;,] only appear linearly.

Lastly, for the purpose of sampling from the PCMHP (d, e), we propose a modification
of the thinning algorithm [82] in Appendix C.12.

4.5 Heuristics for Partially Interval-Censored Data

The PCMHP is designed for cases where (1) the dataset is multivariate and partially interval-
censored, and (2) we hypothesize events are self-exciting within and cross-exciting across
dimensions. To handle partially interval-censored data, our strategy is to adapt the model (i.e.
the PCMHP) to the data. However, we can take the reverse approach and apply heuristics to

our dataset to be able to leverage pre-existing models.

1. To use count-based time series models, we transform our partially interval-censored
dataset into a fully interval-censored dataset by censoring event times for each E¢

dimension.

2. To use point process models (e.g. the MHP), we transform our partially interval-
censored dataset into a fully time-stamped dataset by sampling event times to match

the interval-censored counts, for each dimension in E).

There are three arguments against the first heuristic. First, artificially censoring the
dataset leads to loss of timing information by hiding self- and cross-exciting interactions
between events, particularly if the time scale of the interactions is less than the censor
window length. Second, commonly used time series models (such as the Poisson autore-
gressive model [34] or the discrete-time Hawkes process [14]) assume evenly spaced data
[32]. If the censor intervals within or across dimensions do not line up, we would need to
perform further data alteration, such as interpolation [98], to attain evenly spaced data.
The PCMHP does not require evenly spaced intervals. Third, using time series models on
the artificially obtained interval-censored dataset requires additional model choices. For
instance, we would have to set the censor window length for each dimension in E when
transforming to a fully interval-censored dataset, and for autoregressive models decide up
to what lag p to include. The PCMHP requires no adaptation as it was designed for partially
interval-censored data.

The main deterrent against the second heuristic, artificial event sampling, is the signifi-

cant addition to computation time, since evaluating the Hawkes likelihood is @’((nEc)z). This
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is particularly infeasible in applications involving high event volumes, such as Youtube views
on a viral video, which typically have view counts of the order 10 or more. If we use the
PCMHP, these dimensions with high event volumes can be modeled as event counts and
placed in E instead of E¢, significantly reducing computation time. Second, artificially sam-
pling points — when only aggregated counts have been given — has the potential to produce

spurious event interactions across dimensions, particularly for wide censor intervals.

4.6 Synthetic Parameter Recovery

In this section, we test on synthetic data the MHP parameter recovery by PCMHP(d, e).
We use the setting of partial interval-censoring with a constant exogenous term p(f) = v.
We sample realizations from a d-dimensional MHP, interval-censor e dimensions using
increasingly wide observation window lengths, and fit the PCMHP(d, e) model on the
obtained partially interval-censored data. We inspect the recovery of parameters when
varying d and e. We perform convergence analysis on the PCMHP(d, e) parameter estimates
for various hyperparameter configurations in Appendix C.14.

Throughout this section, we refer to {a, 8, v} and {&,9,17} as the true (MHP) and esti-
mated parameter sets, respectively. We first discuss the two types of information loss, then
we introduce the synthetic datasets and the likelihood functions. Lastly, we present the

recovery results for the individual parameters {«, 0, v}.

4.6.1 Sources of Information Loss in Fitting

We identify two sources of information loss when fitting in the partially interval-censored
setup: (1) the mismatch between the data-generation model (i.e., the d-dimensional MHP)
and the fitting model (the PCMHP(d, e)); and (2) the interval-censoring of the timestamped
MHP data. Since the intensity g (f) of the PCMHP (d, e) has to be estimated numerically
(see Section 4.4.2), numerical approximation error also contributes to type (1) information
loss. The numerical approximation error is minimal for sufficiently small A” and y" (see
Appendix C.9) and vanishes if A?,y" — 0.

When we estimate MHP parameters using PCMHP fit on partially interval-censored data,
information losses of both types (1) and (2) occur. We disentangle between the two types
of error by also fitting PCMHP(d, e) on the timestamp dataset (i.e., the actual realizations

sampled from the MHP, see below). Any information loss in this setup is only due to the
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model mismatch, the information loss of type (1). Note that the likelihood function used for
fitting PCMHP depends on the employed version of the dataset (see later in this section).
We can quantify the individual effects of model mismatch and interval-censoring by

comparing the parameter estimates on the two dataset versions.

4.6.2 Dataset

Given (d, e), we construct two synthetic datasets: the timestamp dataset and the partially
interval-censored dataset. The former consists of samples from a d-dimensional MHP. The
latter is identical to the former, except that it has the E dimensions interval-censored.

We start by estimating the parameter recovery of a 2-dimensional MHP process using
PCMHP(2,1). We consider an MHP with p(a) = 0.75 and parameters a'! =0.32, a'? = 0.5,
a? =03, a®* = 0.4, 01! = 0.5, 012 = 1.0, 62! = 0.5, 6*> = 1.25 and v! = v? = 0.1 We set
p(a) € {0.5,0.75,0.9}. We also test another parameter combination with p(a) = 0.5 (i.e.
subcritical) and p(@) = 0.9 (i.e. approaching the critical regime) in Appendix C.14.

For a given parameter set, we sample 2500 event sequences ]51100 u ‘;’/01200 over the time
interval [0,100) using the MHP thinning algorithm [82]. Following a procedure similar to
prior literature [102], we partition the 2500 event sequences into 50 groups, and each group
of Nsequences = 50 events is used for joint fitting, yielding a single parameter set estimate. In
total, we obtain 50 sets of parameter estimates from the sample.

We construct the partially interval-censored dataset by interval-censoring Jflloo, the first
dimension of each realization in the timestamp dataset. Given a partition of [0, 100), we
count the number of events on dimension 1 that fall on each subinterval. We experiment
with five observation window lengths to quantify the information loss of type (2) —intuitively,
longer intervals lead to more significant information loss. We consider interval lengths of 1,
2,5, 10 and 20. For instance, with interval length of 2 we tally event counts in the partition
{[0,2),[2,4),...,198,100)}.

4.6.3 PCMHP Log-Likelihood Functions
We fit the parameters of the PCMHP(d, e) model using two different versions of the likeli-
hood function dependent on which dataset we use:
* timestamp dataset: we use the point-process log-likelihood on all dimensions, defined
in Eq. (4.12): X9, £y | ;7).
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Figure 4.2: Comparison of performance metrics in the parameter recovery experiment
across model fits: MHP (i.e. the data-generating process), PCMHP-PP and PCMHP-IC for
varying interval sizes (1, 2, 5, 10 and 20). (left to right) RMSE for each parameter type {«, 0, v}
and spectral radius estimation error Ap . Samples are drawn from a 2-dimensional MHP
with spectral radius p(a) = 0.75. Hyperparameters are T = 100 and Nyeguences = 50. The
mean and median estimates are indicated by the dashed green lines and solid orange lines,
respectively.

e partially interval-censored dataset: we use the interval-censored log-likelihood on

the E dimensions and the point-process log-likelihood on the E° dimensions (see
Eq. (4.10)): 5. Zic11.(©; T)"'Z] e+1-Zpp11, (@3 7).

In what follows, we specify as PCMHP(d, e)-PP and PCMHP(d, e)-IC the PCMHP(d, e)
model fit on the timestamp dataset and the partially interval-censored dataset, respectively.
For brevity and whenever it is clear from context, we drop the dimensionalities (d, e), and
refer to the model fits as PCMHP-PP and PCMHP-IC. Also, for the PCMHP-IC fits, we also
specify k — the length of the observation window —as PCMHP-IC[k].

Metrics. We evaluate parameter recovery error with four error metrics: the root-mean-
squared error (RMSE) of each PCMHP parameter type {&, @, v} concerning the generating
MHP parameters {«, 0, v} and the signed deviation Ap = p(&) — p (&) of the spectral radius.

4.6.4 Results

Fig. 4.2 shows RMSE(a), RMSE(0), RMSE(v) and Ap across model fits. Within each subplot
we have seven boxplots. The leftmost boxplot is the MHP fit, followed by the PCMHP-PP fit
(i.e., the PCMHP fit on the timestamp dataset). The next five boxplots contain PCMHP-IC
fits of increasingly wider observation windows 1, 2, 5, 10 and 20. Note that the MHP fit
represents the case where we do not have either model mismatch and interval censoring
error.
In each subplot of Fig. 4.2, the gap between the first two boxplots (i.e. MHP vs. PCMHP(2, 1)

fitted on timestamp data) indicates model mismatch error; the gap between the second and

third boxplots (i.e. PCMHP(2,1) fitted on timestamp data vs. partially interval-censored
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Figure 4.3: (Left) Relating the spectral radius estimation error Ap of PCMHP(5, e) and the
number of MBP dimensions e. Note that PCMHP(5,0) is the MHP (i.e. the data-generating
process). (Right) Relating the spectral radius estimation error Ap of PCMHP(d, 1) and the
model dimensionality d. In both plots, samples are drawn from a d-dimensional MHP with
spectral radius p(a) = 0.92. Hyperparameters are T = 100, Nsequences = 20 and intervalsize=1.
We fit two models for each PCMHP column: PCMHP — PP (i.e. PCMHP fit on timestamp
data on all dimensions) and PCMHP —IC (i.e. PCMHP fit on interval-censored data on the
first e dimensions and timestamp data on the last d — e dimensions). The mean and median
estimates are indicated by the dashed green lines and solid orange lines, respectively.

data) indicates interval censoring error. The gaps between succeeding boxplots indicate the

effect of wider observation windows.

Fig. 4.2 shows three conclusions. First, model mismatch and interval censoring errors
contribute to information loss relative to the MHP fit. Second, the approximation quality
degrades as the observation window widens, indicating an increasing information loss of
type (2). Third, for parameters & and v, the model mismatch error appears negligible; it is
only for higher values of the observation window length (= 5) that the performance starts
degrading due to information loss error. Both error types are present for 8. See Appendix C.14

for individual parameter fits.

Though we observe that the generating parameters are not always correctly recovered, we
see in the rightmost subplot of Fig. 4.2 that, interestingly, the spectral radius estimation error
Ap is close to zero regardless of model mismatch and exhibits only slight underestimation
for wide observation windows. This is particularly relevant, as p(a) is a meaningful quantity
relating to information spread virality (for social media diffusions), disease infectiousness
(for epidemiology), or local seismicity (in seismology). The result indicates that even when

individual parameter fits are inaccurate, the MHP regime is correctly identified.

Behavior of Ap in Higher Dimensions. We further study the behavior of Ap for varying
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MBP dimensions e and model dimensionality d. We fix T'= 100 and p(a) = 0.92. Results for
other error metrics are in Appendix C.14.

In the left subplot of Fig. 4.3, we fix d = 5 and observe how the spectral radius error Ap
varies with the number of MBP dimensions e. Note that the leftmost boxplot represents
the MHP fit (i.e., e = 0). Interestingly, we see that all PCMHP(5, e), e < 5 flavors except the
fully MBP case (i.e., e = d = 5) can estimate the spectral radius as well as the MHP. The
gap between the estimated spectral radii and the generating value (blue dashed line) is
attributable to the difficulty of recovering MHP parameters in higher dimensions.

In the right subplot of Fig. 4.3, we fix e = 1 and observe how the spectral radius error
Ap varies with the dimensionality d of the PCMHP(d, 1). The recovery error is generally
low (except for d = 1). However, we see that the magnitude of the error Ap increases with
increasing dimensionality starting from d = 2, which is not surprising since the number of
parameters increases quadratically as we increase the dimensionality of the process. We also
see that fitting with a fully MBP model (d = 1) does not show good recovery performance due
to information loss, implying the necessity of having at least one cross-exciting dimension
(i.e., d—e#0).

4.7 YouTube Popularity Prediction

In this section, we evaluate PCMHP(d, e)’s performance in predicting the popularity of
YouTube videos. For each video, we capture information about three dimensions — views,
external shares and tweets linking to the videos — over the time period [0, T?"%"). We mea-
sure time in days relative to the time of posting on Youtube. The first two dimensions (the
views and shares) are observed as daily counts, i.e., E = {views, shares}. The third dimen-
sion (tweets) is provided as event times, i.e. E€ = {tweets}. Given this data setup, we use
PCMHP(3,2) to predict the daily counts of views and shares and the timestamp of the tweets

posted over the period [T/74", Ttest),

4.7.1 Interval-Censored Forecasting with PCMHP

To each YouTube video corresponds a partially interval-censored Hawkes realization. A
straightforward approach to predict the unfolding of the realization during [T %", T*¢s?) is
to sample timestamps from PCMHP(3,2) on each of the three dimensions, conditioned on
data before T'"%"; we then interval-censor the first two dimensions. In practice, sampling

individual views takes considerable computational effort due to their high background
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rates, sometimes in the order of millions of views per day, and usually at least an order of
magnitude larger than shares and tweets.

Below is an efficient procedure to calculate expected counts that leverages the compen-
sator ¢ and requires sampling only the E° dimensions (i.e., tweets). Let Z2[T!"%" Ttest) =
U? -0, 0i+1), where o) = T""%™ and op = T"**, be a partition of [T*"%/", T*es"),

1. Sample only the E€ dimensions on [T/74", Test),
2. Compute expected counts on Z2[T!7 4" T'eS!) a5 (Ek(0;41) - Zp(07)]i€1---P—1}.

3. Compute the average of {Eg(0;+1) - Eg(0;)|i € 1--- P — 1} across samples.

More details of this scheme and a comparison with the standard method of sampling

both E€ and E dimensions are provided in Appendix C.13.

4.7.2 Dataset, Experimental Setup and Evaluation

We use two subsets of the ACTIVE dataset [103] for model fitting and evaluation. The first sub-
set —dubbed ACTIVE 20% — contains a 20% random sample of the ACTIVE dataset [103], i.e.,
2,834 videos published between 2014-05-29 and 2014-12-26. The second subset — dubbed
DYNAMIC VIDEOS — contains videos with which users engage significantly during the test
period. It is known that users’ attention to YouTube videos decays with time [26, 126]; there-
fore, the daily views of most ACTIVE videos hover around zero more than 90 days after
their upload. We select the 585 dynamic videos with the standard deviations of the views,
tweets, and shares counts on days 21 —90 higher than the median values on each of the three
measures. Technical details of the filtering are in Appendix C.15

For each video, we tune PCMHP hyperparameters and parameters using the first 90
days of daily view counts, share count to external platforms, and the timestamps of tweets
that mention each video (T*"%" = 90). It is known that generative models are suboptimal for
prediction [76] and have to be adapted to the prediction task for better performance. Similar
to HIP, we implement dimension weighting and parameter regularization in the likelihood.
Full technical details of the fitting procedure are provided in Appendix C.15.

The days 91 — 120 are used for evaluation (T'°! = 120). We measure prediction per-
formance using the Absolute Percentile Error (APE) metric [103], which accounts for the
long-tailness of online popularity — e.g., the impact of an error of 10,000 views is very dif-

ferent for a video getting 20,000 views per day compared to a video getting 2 million views
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a day. We first compute the percentile scale of the number of views accumulated between
days 91 and 120. APE is defined as:

APE = |Per(Njz0) — Per(Ny20)|

where Nj, and N are the predicted and observed number of views between days 91 and

120; the function Per(:) returns the percentile of the argument on the popularity scale.

4.7.3 Models and Baseline

We consider two 3-dimensional PCMHP models: PCMHP(3,2) and PCMHP(3,3). The
former treats the tweets as a Hawkes dimension (see Definition 4.1) and is thus susceptible to
computational explosion for high tweet counts given the quadratic complexity of computing
cross- and self-excitation. The latter is an inhomogeneous Poisson process with no self- or
cross-exciting dimension. We, therefore, fit PCMHP (3, 2) solely on videos that have less than
1000 tweets on days 1 —90; we fit PCMHP(3,3) on all videos.

We use as a baseline the Hawkes Intensity Process (HIP) [103], a parametric popularity
prediction model discussed in Section 4.3. HIP, however, is designed for use in a forecasting
setup. That is, HIP requires the actual counts of tweets and shares in the prediction window
[Tirein Ttest) to get forecasts for the view counts on [T %", T*¢s%) To adapt HIP for the
prediction setup (i.e., the tweets and shares are not available at test time), we feed HIP for
each of the days 91-120 the time-weighted average of the daily tweet and share counts on
1-90, i.e. =q— .92, ¢-#tweets(r) and =z— Y72, £-#shares(t), which assigns a higher weight

90 90
2oy Yim
to more recent counts.

4,7.4 Results

Fig. 4.4 illustrates the fits of PCMHP(3,2) and the baseline HIP [103] for a sample video from
ACTIVE. Visibly, we see that PCMHP(3,2) and HIP have comparable fits of the popularity dy-
namics (left column) during the training period (unshaded area), but PCMHP(3,2) outputs
a much tighter fit during the test period (gray shaded area). We also observe two advantages
of PCMHP. First, being a multivariate process that captures endogenous dynamics across
its dimensions, PCMHP(3, 2) provides a prediction for future share and tweet counts (center
and left columns), in addition to the number of views. In contrast, HIP treats views (i.e.
popularity) as exogenously driven by tweets and shares and thus can only predict the views’

dimension. Second, PCMHP can quantify the uncertainty of the popularity prediction by
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Figure 4.4: Comparison of fits and predictions of our proposal PCMHP(3, 2) and the baseline
HIP [103] for views (left), shares (center) and tweets (right) for a sample video from ACTIVE:
a trailer for the 2014 movie Whiplash (id 7d_jQycdQGo). The first 90 days are used to fit
model parameters, while the next 30 days (indicated by the gray shaded area) are unseen
by the model and used for evaluation. HIP does not predict the share and tweet counts,
as it treats these as exogenous inputs. The blue shaded area shows prediction uncertainty
computed for the PCMHP (3, 2) fits.

Table 4.2: Performance comparison of PCMHP(3,3), PCMHP(3,2) and HIP on (a) a random
sample that comprises 20% of the videos in ACTIVE, and (b) the set of dynamic videos from
ACTIVE: mean, median, and standard deviation of the percentile errors for each model.
Best-performing score in bold.

ACTIVE20% (n=2834) DYNAMIC (n=585)
PCMHP PCMHP PCMHP PCMHP
3,3) 3,2) HIP 3,3) 3,2) HIP
Mean 4.82 7.36 8.12 10.86 7.28 9.31
Median 2.55 4.69 4.96 4.82 3.79 4.73
StdDev 7.13 8.34 9.89 14.24 9.58 11.89

sampling multiple unfoldings of a realization and computing the variance of the samples
(shown as the blue shaded area in Fig. 4.4).

In Table 4.2, we tabulate the mean, median and standard deviation of percentile errors
for PCMHP(3,3), PCMHP(3,2), and HIP on ACTIVE 20% and DYNAMIC VIDEOS. We observe
that the PCMHP flavors consistently outperform the baseline HIP on both datasets. Visibly,
on ACTIVE 20%, PCMHP(3,3) outperforms PCMHP(3,2). This is because most videos in
ACTIVE 20% do not exhibit much activity during the test period. Consequently, as a nonho-
mogeneous Poisson process with no self-excitation, PCMHP (3, 3) fits better such flat trends
than the self-exciting PCMHP(3,2) and HIP models. On DYNAMIC VIDEOS we see a reversal
of performance ranking: PCMHP(3,2) performs best, followed by HIP and PCMHP(3, 3).
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This result corroborates our claim in Section 4.5 that applying the heuristic of censoring
event times leads to information loss. We see that PCMHP(3,2) (trained on tweet times) can
better capture the popularity dynamics of the most complex videos (which are also the most

interesting) compared to PCMHP(3, 3) (trained on tweet counts).

4.8 Interaction Between COVID-19 Cases and News

In the previous section we have validated the predictive power of the PCMHP. Here, we
shift our attention to the interpretability of PCMHP-fitted parameters. We showcase how
PCMHP can link online and offline streams of events by learning the interaction between
the COVID-19 daily case counts and publication dates of COVID-19-related news articles for

11 different countries during the early stage of the pandemic.

4.8.1 Dataset

We curate and align two data sources.

The first dataset contains COVID daily case counts from the Johns Hopkins University
[29]. The dataset is a set of date-indexed spreadsheets containing COVID reported case
counts split by country and region. We focus on the following 11 countries: UK, USA, Brazil,
China, France, Germany, India, Italy, Spain, Sweden, and the Philippines. We select the same

countries as [14], to which we add the Philippines.

The second dataset contains timestamps of COVID-19-related news articles provided by
the NLP startup Aylien [3]. This dataset is a dump of COVID-related English news articles
from 440 major sources from November 2019 to July 2020. We filter the Aylien dataset for
news articles that mention the selected 11 countries in the headline. To improve relevancy,
for China, we also use several COVID-related keywords (such as coronavirus, covid and
virus). Lastly, we only select articles from popular news sites with an Alexa rank of less than
150. Such news sources include Google News and Yahoo! News.

For each country, we fit PCMHP(2,1) with E = {cases} and E° = {news}. We consider
as t = 0 the first day on which a minimum of 10 cases were recorded. Except for China,
which had cases as early as January 2020, the initial time for each country in our sample lies
between February and March 2020. We only consider data until # = 120, with time measured

in days.
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Figure 4.5: Performance comparison of PCMHP(1,1), PCMHP(2,2), PCMHP(2, 1)-jitter and
PCMHP(2,1) on the COVID case count prediction task over our sample of 11 countries. The
dashed line and solid line indicate the mean and median estimates, respectively.

4.8.2 Incorporating News Information

To demonstrate the utility of news information in modeling COVID case counts, we com-
pare the predictive performance of PCMHP(2, 1) with three variants that leverage different
granularities of news information. First, we compare with PCMHP(1, 1) which does not use
news information at all. Second, we compare with PCMHP (2, 2) that uses daily aggregated
news counts. Lastly, to test whether exact timing of news is important, we disaggregate daily
news counts by adding a uniform jitter to each time, similar to what is done in [119], and fit
PCMHP(2,1) to this dataset. We call this baseline PCMHP (2, 1)-jitter.

Similar to Section 4.7, we split our timeframe into a training period [0, T %" = 90) and a
testing period [T/"%", T*¢5! = 120). In our training period, we fit the models and perform
hyperparameter tuning; in our testing period, we sample from the fitted models and evaluate
performance. We measure performance using the Symmetric Mean Absolute Percentage
Error (SMAPE), given by SMAPE = %Z?ﬂ Ilfll?llflgtll , where F; and A; are the forecasted and

actual values at time ¢, respectively.

Across our sample of 11 countries, we see in Fig. 4.5 that PCMHP(2, 1) has the best perfor-
mance compared to the three baselines and incorporating more granular news information
leads to better predictive performance. We observe that the news-agnostic PCMHP(1,1)
and the day aggregated PCMHP(2,2) models do not fit the data well and cannot capture
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Figure 4.6: Observed and PCMHP(2, 1)-fitted daily COVID-19 case counts (top row) and
COVID-19-related news articles (bottom row) for India (left column) and Italy (right) during
the early stage of the outbreak.

the complex COVID case count dynamics. This supports our claim in Section 4.5 that appli-
cation of data-altering heuristics leads to loss of information. However, by incorporating
timestamped news information, we see significant performance improvement and we can
match the trend in the case time series. We also see subtle performance improvement by
incorporating exact news times (PCMHP (2, 1)-jitter vse. PCMHP(2,1)).

4.8.3 Results

Fig. 4.6 shows the daily COVID-19 case counts and daily news article volume of the PCMHP(2,1)
fits for India and Italy. We show the plots for the other countries, the table of parameter esti-
mates, and the goodness-of-fit analysis in Appendix C.16. Visible from Fig. 4.6, PCMHP(2,1)
captures well the dynamics of both countries. Based on the sample-based fit score intro-
duced in Appendix C.16, the actual COVID-19 case counts for India and Italy fall within the
model’s prediction interval for 97% and 61% of the time, respectively.

Cluster countries based on model fittings. The parameters capture different aspects of
the interaction between news and cases. Here, we cluster the fitted parameter sets across
countries to identify groups that have similar diffusion profiles. To render the scale of
parameters comparable across countries, we rescale the maximum daily number of cases
for each country over the considered timeframe to be 100, fit the PCMHP(2, 1) on this scaled

data, and perform K-means clustering on the resulting parameter sets.
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Figure 4.7: Labeled tSNE visualization of the clusters obtained from the fitted PCMHP(2,1)
parameters across the 11 countries we consider.

Table 4.3: K-means cluster centroids on the parameters obtained by fitting PCMHP(2,1) on
the case count and news article dataset.

Cluster pll 12 g2l g22 11 gl2 21 g22 1 2

UK, German, Spain 0.76 0.12 1.82 1.84 0.79 3.60 0.02 0.42 0.03 0.28
Brazil 0.13 0.01 1.89 2.46 1.08 5.48 0 0380  1.47
China, France 0.624 1.703.550.68 0.73 0.3 0390 0.05

US, Italy, Sweden 0.67 0.22 1.61 1.51 0.93 0.73 0.006 0.65 0.29 0.59
India, Philippines 0.12 2.28 2.15 1.88 1.35 0.54 0.007 0.58 0.08 0.66

The k = 5 clusters are shown in Table 4.3 and visualized in Fig. 4.7 using t-SNE [121]. The
first cluster (the UK, Germany, Spain) has high a'? and low a!!. The second cluster - made
solely of Brazil — has both a high a'? and a very high a'!. With high a'?, the two clusters
contain countries where news strongly preempts cases. The third cluster (China and France)
has a high a?! indicative of news playing a reactive role to cases. The fourth cluster (US, Italy,
Sweden) and fifth cluster (India, Philippines) both have low a'? and a?!, indicating little
interaction between news and cases. We notice that COVID infectiousness is much higher in
the fifth cluster (India, Philippines), with a!'! greater than one (each case generates more
than one case) and 61! lowest across all clusters (slow decay, therefore long influence from
cases to cases). Our fits indicate that India and the Philippines are countries particularly
affected by COVID-19 in the early days.
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Figure 4.8: Partially interval-censored data handled by IC-TH [62]: observed events are
illustrated with lollipops featuring solid lines, while unobserved retweet events are depicted
with dotted lines. The Twitter API provides only retweet counts (i.e., rtcy, r tcy, ...), while
the exact timestamps for the unobserved events are missing. This graphic was pulled from
[62].

4.9 Interval-Censored Transformer Hawkes

In this section, we briefly introduce an alternative notion of the partially interval-censored
setup and a deep learning-based methodology known as the Interval-Censored Transformer
Hawkes (TH) architecture to handle this setup. This approach, detailed in [62], is presented
here for completeness.

Alternative Notion of Partially Censored Data. The partially interval-censored setup
considered in [62] is motivated by the sampled-down effect from the Twitter API [127] which
returns only 1% of actual tweets in the streaming API. Piecing together the missing event
counts is achievable by leveraging the retfweeted_count field in the tweet metadata returned
by the API, which gives the number of times the tweet has been retweeted. We show a sample
timeline in Fig. 4.8. Here, we have a one-dimensional timeline of events given by {#, 1, f2, 3}
returned by the downsampled Twitter APIL. To determine the number of tweets between
observed events ¢;, we can use the retweeted_count field, yielding {rtcy,rtc;,rtco, rtcs},
where rt¢; is the number of tweets up to (but excluding) event i. We can then comptue the
number of missing events between t;;; and ¢; as ¢;. Hence, our dataset consists of both
tweet timestamps {#;} and missing event counts between tweets {c;}. Note the difference
in setup between Fig. 4.1 and Fig. 4.8. In Fig. 4.1 timestamps and event counts occur in
different dimensions, while in Fig. 4.8 they exist on the same timeline.

Transformer Hawkes. The TH model is a deep learning-based model of event sequences
J€ =1{h, ,...} that uses a self-attention-based mechanism to model long-term dependen-

cies. The conditional intensity of the TH model [137] is given by
(4.13) AT (t|.7€) = fWTh(2)),
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where f is the softmax function, w is a weight matrix to be inferred, and the hidden state
h(t) is computed as

h(z;) =H(j, ),

H(j, :) = ReLU(SW; +b;)W; + by,

S = Concat(head;, head,, ... ,headh)Wo,

XW9xwK)T
)

where W?,Wf € RIm*dk, WY € RAm*dv, WO ¢ Rv*dm W, € R9m*", by € R",W, € RP*dm

and b, € R are learned weights, d,, is the embedding dimension, dy, d, are the hidden

v
i

head; = softmax(

dimensions, and /4 is the number of heads. The input X is obtained via the temporal encoding

o cos(tj/IOOOg_ni) if i is odd,

(4.14) X(j,1) = ;
sin(z;/10004m) if i is even,
which maps each event timestamp ¢; into a d,-dimensional feature vector X;.

Interval-Censored Transformer Hawkes. The Transformer Hawkes (TH) architecture
only models event timestamps. To accommodate the mix of event counts and timestamps
in Fig. 4.8, we generalize TH to the IC-TH. First, we represent our mixed dataset with the
triple (0;, d;, c;) for the i’ h observation. Here, o; is observation time, d; is the observation
duration, and c; is the number of events (observed or missing) within (0;, 0; + d;). Denoting
dt as an infinitesimal interval, observed events can then be represented as (t; — dt,2dt,1),
while missing event counts are represented as (t;, t;+1 — £, ¢;). A full retweet cascade can
then be represented as # = {(¢;,d;, ¢;)|i =0,...,m,0; +d; < T}.

With this representation, we can express the conditional intensity of the IC-TH as
(4.15) ¢ (11.76) = EzpIMD] = FWTh(D)),

where A" = {(t;,d;, c;)|d; > 2dt, c; > 0} is the subset of # consisting of the missing event
counts and the right-hand side is given by Eq. (4.13). Note that for the IC-TH, the temporal
encoding in Eq. (4.14) is augmented with the duration d; and event count c; as masks to X;
(see [62] for full details). As special cases, note that if #% = & or A% = #, Eq. (4.15) reduces
to A(f) in Eq. (4.1) or ¢(¢) in Eq. (4.2), respectively.

Given ./ (and setting #° = {(t;,d;, ¢;)|d; = 2dt, c; = 1} as the history subset of observed
event times), we can infer the parameters of the IC-TH by maximizing the following log-
likelihood:

4.16)  Lictnain®) = Y cilogE(ti, ti+1;0)+ Y 1ogé(t;0)— Y 1ogE(1;, ti41;0),
e e teH
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where Z(t;, tj+1) = fé"” ¢(2)dz.

4.10 Summary and Future Work

This work introduces the Partially Censored Multivariate Hawkes Process (PCMHP), a gen-
eralization of the MHP where we take the conditional expectation of a subset of dimensions
over the stochastic history of the process. The PCMHP is motivated by the fact that the
MHP cannot directly be fit to partially interval-censored data; the PCMHP can be used to
approximate MHP parameters via a correspondence of parameters.

In this chapter, we derive the conditional intensity function of the PCMHP by consider-
ing the impulse response to the associated LTI system. Additionally, we derive its regularity
conditions which leads to a subcritical process; which we find generalizes regularity condi-
tions of the multivariate Hawkes process and the previously proposed MBP process. The
MLE loss function is also derived for the partially interval-censored setting. To test the
practicality of our proposed approach, we consider three empirical experiments.

First, we test the capability of the PCMHP in recovering multivariate Hawkes process
parameters in the partially interval-censored setting. By using synthetic data, we investigate
the information loss from model mismatch and the interval-censoring of the timestamped
data. Our results show that the fitted PCMHP can approximate the parameters and recover
the spectral radius of the original multivariate Hawkes process used to generate the data.

Second, we demonstrate the predictive capability of the PCMHP model by applying it to
YouTube popularity prediction and showing that it outperforms the popularity estimation
algorithm Hawkes Intensity Process [103].

Third, to demonstrate interpretability of the PCMHP parameters, we fit the process to a
curated dataset of COVID-19 cases and COVID-19-related news articles during the early stage
of the outbreak in a sample of countries. By inspecting the country-level parameters, we
show that there is a demonstrable clustering of countries based on how news predominantly
played its role: whether it was reactionary, preemptive, or neutral to the rising level of cases.

Future Work. There are three areas where future work can be explored. First, theoretical
analysis on the approximation error of the model mismatch (i.e., fitting Hawkes data to the
PCMHP model) should be performed, since we only performed an empirical evaluation in
this work. Second, methods to approximate the conditional intensity should be investigated,
as the current solution relies on the computationally heavy discrete convolution approxima-
tion. Lastly, given that the PCMHP(d, e), by construction, is not self- and cross-exciting in

the E dimensions, an open research question is whether we can construct a process that
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retains the self- and cross-exciting properties in all dimensions whilst also being flexible

enough to be used in the partially interval-censored setting.
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CHAPTER

CONCLUSION

n this chapter, we summarize the main contributions of this thesis and discuss potential

avenues for future research.

5.1 Thesis Summary

This thesis investigates stochastic models of information spread in online social systems to
uncover their latent mechanisms, predict future online diffusions, and evaluate the effects
of external interventions. By integrating contextual and domain-specific expert opinions,
we introduce structural assumptions into the Hawkes process, leading to better model
interpretability and accuracy.

The main contributions of this thesis are:

* A two-tier finite attention model of the online opinion ecosystem that jointly mod-
els inter-opinion dynamics and the effect of positive interventions. In Chapter 2
we introduced a two-tier model of the online opinion ecosystem called the Opinion
Market Model (OMM), where the first tier models the size of the opinion attention
market using a multivariate discrete-time Hawkes process, while the second tier em-
ploys the market share attraction model to capture cooperation and competition
among opinions and the influence of positive interventions. Validated through syn-
thetic and real-world datasets, the OMM outperforms state-of-the-art models and

uncovers latent opinion interactions. Lastly, we demonstrated the OMM'’s capability as
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a testbed for interventions via a counterfactual analysis, where we varied the volume
of reputable and controversial media coverage and observed the resulting effect on

far-right opinion market share on Facebook and Twitter.

* A hierarchical mixture model to jointly learn the influence of source-, content-
and spread-level factors on the spread of content on social media. In Chapter 3
we developed the Bayesian Mixture Hawkes (BMH) model, a hierarchical mixture
model of separable Hawkes processes to jointly learn the influence of source, content,
and cascade-level factors on the spread dynamics of online items. We tested the
BMH on two learning tasks, cold-start popularity prediction and temporal profile
generalization tasks, and on two real-world retweet cascade datasets referencing
articles from controversial and reputable media publishers, demonstrating that the
BMH model outperforming state-of-the-art and baseline models and leverage cascade-
and item-level features better than the alternatives. Through a counterfactual analysis
with the BMH model we show differences in the effectiveness of different headline
writing styles (neutral, clickbait, inflammatory) across reputable and controversial
publishers. Lastly, we introduced a two-step procedure to optimise headlines before
posting time, where text-generating Al is leveraged to produce rewrites for a target
headline and the fitted BMH model’s predictions on cold-start effectiveness are used
to rank the rewrites. The effectiveness of this two-step procedure was demonstrated

through a Mechanical Turk experiment.

¢ An approach to enable fitting of the multivariate Hawkes process in the partially
interval-censored setting. In Chapter 4 we developed the Partially Censored Multivari-
ate Hawkes Process (PCMHP) to address the challenge of fitting the Hawkes process
in the partially interval-censored setting, where we have event timestamps is some
dimensions and aggregated event counts in the others. We demonstrated through
synthetic tests that the PCMHP approximates the MHP parameters well and recovers
the spectral radius of the process. We tested the PCMHP in the YouTube popularity
prediction task and show that the PCMHP outperforms the fully interval-censored
popularity estimation algorithm Hawkes Intensity Process (HIP). Lastly, we trained
the PCMHP on a dataset of daily COVID-19 case counts and COVID-19-related news
articles, revealing hidden interaction patterns between cases and news reporting and

demonstrating the model’s ability to uncover latent structure from real-world data.
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5.2 Future Work

Lastly, we explore potential extensions of the work presented in this thesis and discuss the

current research directions we are pursuing.

 Effect of complex intervention strategies on opinion dynamics. In the counterfac-
tual analysis with the OMM in Section 2.9, we used a step function to represent our
intervention to study the effect of media coverage. It would be interesting to explore
the effects of other functional shapes of intervention, check whether multiple inter-
ventions working together is more effective, and to determine whether an optimal

intervention profile exists to minimize far-right opinion.

* Working with recent data challenges. In February 2023, Twitter API was put behind
a paywall, affecting data collection on the platform. As a consequence, social media
data collection is shifting to other platforms like Facebook (via Crowdtangle), which
introduces new data challenges. While Twitter data consist of timestamp-based data
streams, Facebook data comprises interval-censored aggregated interaction counts.
Our current research focuses on developing an equivalent of the BMH model com-
patible with interval-censored data. Instead of the continuous-time Hawkes process
as the base model, we are exploring the discrete-time Hawkes process [14] and the

mean-behavior Poisson process [102], which are suitable for interval-censored data.

e Further exploration on modeling partially interval-censored data. Future work on
modeling partially interval-censored data can be split into three areas. First, a the-
oretical treatment of the approximation error from PCMHP model mismatch (i.e.
PCMHP approximating the MHP) should be developed, given that we only performed
an empirical evaluation in Chapter 4. Second, alternative methods to estimate the
intensity of the PCMHP should be explored, since the discrete convolution approxi-
mation we presented is computationally challenging. Lastly, given that the PCMHP is
only exciting on a subset of dimensions, it remains an open question whether one can
formulate a stochastic process compatible for the partially interval-censored setting

that maintains the self- and cross-exciting properties in all dimensions.
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APPENDIX A. APPENDIX TO ‘OPINION MARKET MODEL: STEMMING FAR-RIGHT
OPINION SPREAD USING POSITIVE INTERVENTIONS’

A.1 Full Table of Notation

Table A.1 shows the full table of notations for the OMM.
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Notation Interpretation

p number of social media platforms

M number of opinion types

K number of positive interventions

T terminal time

Variable

S(t) input signal accounting for the volume of exogenous events

X (1) input signal corresponding to the k! positive intervention

sf (1) market share of opinion i on platform p at time ¢

AP (1) conditional intensity of attention volume (Opinion Volume
Model)

AP (tl0) conditional intensity of opinion i, assuming independence
of opinions

/lf (3] conditional intensity of opinion i (Opinion Share Model)

NP(1) total attention volume on platform p at time ¢, based on
OMM

Nf (1) number of posts with opinion i on platform p at time t,

e(s” (1), A9(¢j))
e(s; (1), Xk (1)

based on OMM
opinion share model elasticity w.r.t. endogenous dynamics
opinion share model elasticity w.r.t. intervention

Data

nf number of posts on platform p at time ¢

nf : number of posts on platform p with opinion i at time ¢

P . . - . .

Siy fraction of posts on platform p with opinion i at time ¢

Parameter

,u? exogenous scaling term for opinion j on platform p, u;’

ur exogenous scaling term for platform p, given by uf =
ZM /Jp

j=1Fj

aPq excitation parameter for intra-platform (p = ¢q) and inter-
platform (for p # q) dynamics

0 memory parameter, describing how fast an event is forgotten,
0¢€l0,1]

yf i measure of the direct effect of the k" intervention on the
market share of opinion i on platform p

ﬁfj" measure of the direct effect that opinion j on platform g has

on the market share of opinion 7 on platform p.

Table A.1: Full table of notation in Chapter 2.
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A.2 Model Likelihood, Estimation, Simulation and Gradients

In this section we provide technical details for Section 2.4. We first go over the derivation of
the model likelihoods, followed by the estimation and simulation algorithms for the two-tier

OMM model. Lastly, we derive the model gradients.

A.2.1 Likelihood Formulation

Likelihood function £, (@ﬂ{nf }p,t), where @ = {,uP ,aPq,0}. The log-likelihood function
can be derived by

L1041},

:logIF’{LiJ L;J [NP () = }

T P
=Y Y logP{N"(1)=nl}
t=1p=1
T P —M’(t);tp(t)nf
=2 2 log| ————
r=1p=1 ng:
T P
A1) o Y Y [nVlogA? (1) - AP(1)]
t=1p=1

Likelihood function %, (0,0, {nft}i,p,t), where 0, = {u;’,yfk,

the parameters ,u;.g € R, we can estimate the normalized parametes gf € [0,1], where ui.’ =

,ijq}. Instead of estimating

up - ,1]’? . Given that the magnitudes of yf . and ﬁqu are typically less than one, estimating
normalized parameters ,15’ instead of u? avoids scaling problems. Hence, we optimize for

@ = (A, v} B}

102



A.2. MODEL LIKELIHOOD, ESTIMATION, SIMULATION AND GRADIENTS
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A.2.2 Estimation Algorithm
We estimate the parameters of OMM with the following two-step formula:
1. Given {nf}p,t, find ®; = ®; that maximizes

(A.3) L1011{n}, 0 =) [nVlogA” (1) - AP(1)].
p,t

2. Given {”,’?[}i,p,t and 01, find ©, = @, that maximizes

(A4) L0210, {n }ip) = ) (1] (ogAP(1)-sT (1) = AP (1) - s} (1))].
i,p,t

Due to the non-convexity of £ (-) and Z»(-), we avoid local maxima by running the algo-

rithm for multiple starting points and selecting the combination with the largest likelihood.

A.2.3 Sampling Algorithm

We generate samples from OMM by looping the following steps over ¢ € {1,..., T} and each

platform p and opinion i.
1. Compute A7 (1) = AP (1] Ug s< nd}) - s7 (11U, s<t{n S
2. Draw a sample nl. ; Poi(/lf(t)).
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A.2.4 Gradient Computations

Gradient 0g, £ (0| {nf }p,¢). Differentiating Eq. (A.3), we get

p T P A () p
(A.5) 00, £1011{n}, )= Z [ nf = AP (1),
=ip=1 AP(D
where
(A.6) 0ua AP (1) =6 g - S(1)
A7) 0qar AP (1) =8pg-Y_ f(t—9)-N"(s)
s<t

p
(A.8) A (1) =) Y aPl-0gf(t—s)-N(s)

qg=1s<t
(A.9) dpf(H=(1-6)"2[1-01].

Gradient dg, £» (0|01, {nf Sip o) Differentiating Eq. (A.4), we get

00, AP (1) Do, sP (1)
AP (1) sP (1)

T P M
(A10) 06, £2(@2101,{n] }ip) =D D ) -[nft—ﬂptt)-sf(n ,

where upon differentiating Eq. (2.7) and Eq. (2.8) we have

(254 (1)] 06,94 (1) = (1) | £ 00,54 (1)

(A.11) de,s! (1) = > )
[Zi ngP (t)]

and

(A.12) de,47 (1) = 4P (1) -00,T (1).
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Plugging in Eq. (A.12) into Eq. (A.11), we get

|55 ) st (1)-00,77 (1

agzsp(t) =

! 2
(57 0)]
ot} (1) | L5 (1)-00,77 (1)
B 2
[Zjdf(t)]
) AP (1) [Z]-ﬂj”(r) -agzg—l.p(t)]
B 2
p
EC]
555! (1)-06,57 (1))
B 2
[Zj&f;)(t)]
AP (1)
[jeP] T
= Slp(t) ZS"]Q(Z‘) . [aeztoj—lp(t) _0923—]’)(”] ,
j
and so
de, s’ (1)
G‘);p(tt) = Zsf(t) . [aeszl-p(t) _a@zfj}l?(t)
i j
= 00,7/ (1) =} 5} (1)-00,T (1)
J
(A.13) :Z(5ij—5f(f))'0@2%p(t)
J

Plugging in Eq. (A.13) into Eq. (A.10), we have

T P M
(A.14) 6@222(®2|®1r{n§9’t}i,p,t) =22 Z

M
+ ) 65— T (1) 00,7 (1)
j=1

|nl -ar@-sPw),
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where

(A.15) 0,947 (1) = 8pq - S(1)

(A.16) 0,0 AP(1)=0

(A.17) 0grad? (1) =0

(A.18) au};ffi’” () = ﬁqu

(A.19) Oy;zkf/“l.p(t) :5ij5qp-s;tf(t—s)-xk(s)
(A.20) 0gar TP (1) = 616 4p- A" (11K)

jk

A.2.5 Fitting on Multiple Samples

Suppose that we are given 7,4, p1es Samples to fit the OMM.
Let & = {{nft}f.p |s€ {1,...,nmmples}}. One can define the joint likelihood over .# as

the average likelihood over the 754,,p105 Samples. That is,

Nsamples

1
L1019 =——— ) L®ln),)
samples  s=1
1 Nsamples
£0300,,F)=—— ) zZ(GZI@l’{nzP,t}?,p,t)'

Nsamples s=1

where () and %» () are defined in Eq. (A.3) and Eq. (A.4), respectively. Parameter opti-

mization proceeds in the same setup as the two-step procedure detailed in Section 3.
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Figure A.1: Additional results on synthetic data. We show the convergence of the RMSE of
the u, 6, B as we increase the training time 7.
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Figure A.2: Additional results on synthetic data. We show the behavior of the RMSE of our
parameter set and the average negative log likelihood as we vary the number of samples in
the joint fit.

A.3 Additional Results for Synthetic Data

In Fig. A.1 we show the behavior of the RMSE for pu, 8, f as we increase the training time
T. Error stabilises and the model converges as we increase T In Fig. A.2 we show behavior
of the RMSE of our parameters as we vary the number of samples in the joint fit 7254, p/e5-
Increasing the number of samples improves performance on the first-tier parameters u, 0
and e, but does not have a strong improvement on the second-tier parameters f# and y.

Increasing nsampies stabilizes the likelihood of the fit.
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A.4 Additional Model Details

A.4.1 Stability of the Softmax Function

In Eq. (2.8), the tendency F/'l.p (#) is unconstrained, and it can take both really large or really
small numbers, which leads to numerical overflow and underflow in Eq. (2.7). To remedy

this, instead of Eq. (2.8) we use
s () =exp | T (1) - max T(0)],
which does not affect market share calculations since
] (1) ] (1)
S P L )

s (1) =
Gradient and elasticity calculations are unaffected when we use &iip (#) instead of ,gfi’” ().

A.4.2 Regularizing the Bushfire Opinion Share Model

Fitting the opinion share model to data involves estimation of @, = {ﬂ? , yf o ﬁf’ﬁ}, a total of
P x M+ P x M x K + P?> x M? parameters. Given the high dimensionality of this space, for
the bushfire case study we opted to reduce the space of solutions by imposing platform-
dependent structure on y” via regularization.

ik

Let M? be the mask matrices given by

M?‘;CB_{O’ (i=lzlnk=1z)Vv(i>151Ak>15])

1, otherwise

MY~ 0, (i=kv(i=k-15])v(k=i-15])
! 1, otherwise

Instead of Eq. (A.4), we solve

(:)Zzargrrel)in —$2(®2|(:)1,{nzt}i,p,t)+l Z |Yfk'Mipk ,
2

p,i,k

where A is a regularization parameter we set to 0.1.
Intuitively, the regularization encodes the echo chamber effect observed in Facebook
far-right groups: far-right sympathizers interact mostly with news from controversial outlets,

with limited interaction with reputable outlets. Similarly, far-right opponents interact mostly

108



A.4. ADDITIONAL MODEL DETAILS

with reputable news, with limited interaction with controversial outlets. Given the more
dialog-heavy nature of Twitter where exchanges between sympathizers and opponents are
more common, we assume news from reputable and controversial outlets penetrate both
far-right sympathizers and opponents, though we assume that sympathizers and opponents

of a given opinion are only concerned with (and influenced by) news of the same opinion.

A.4.3 Transformations on 17(¢|j) and X;(s) in ﬂ‘l.p (1)

We perform two transformations on A7(¢|j) and Xy (s) in Eq. (2.11) to improve model fit.

First, it was observed that 19(¢|j) has a skewed distribution over time. The skewness
is problematic since we estimate a time-independent linear parameter ﬁqu for the di-
rect effect of 19(-|j) on E/"ip(t). To reduce the skewness of A7(:|j), we transform A9(¢|j)
to log [Aq(tl Jj)+ 1], where we add 1 to avoid taking the logarithm of 0. Second, since PTl.p (1)
is a linear combination of A9(¢|j) and X (#) terms, which could have totally different scales,
we standardize these terms to bring them to a normalized scale. Let

~ log [A7(t]j) +1] - meanslog[n +1]
At )=

)

std;log [nj's + 1]

Xy (1) —mean; [ Xy (s)]
stds [ Xk (9)]
where the mean and standard deviation are computed over the training period.

X () =

Instead of Eq. (2.11), we use the following form of the tendency:

(A.21) Tl = Z Yh - Xi(n) + Z Zﬁ’.’ﬁ-i‘fmj).
q=1j=1

A.4.4 Adjusting for Multiple Exogenous Signals {S; (¢)}

In the VEVO case study, we consider a different exogenous signal per artist i, given by the
Google Trends time series {S;(#)}. This leads to changes in Eq. (2.5) and Eq. (2.10), since
these equations are formulated with a single artist-independent S(t).

Adapting Eq. (2.5) to the case of multiple exogenous signals {S;(#)}, we have

AP(1) = ZM S(t)+ZZa”q ft—s)-N(s).

qg=1s<t

Adapting Eq. (2.10), we have

APt )= s,(t)+ZZan ft=s)-N7(s).

q=1s<t
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These modifications lead to changes in the structure of the two-tier optimization devel-
oped in Section 2.4, since the first-tier parameter set @, (originally {u”, a”9,6}) now has to
include artist-specific parameters {,uf } due to the new form of AP (t) above. Our new first-tier
parameter set ®; becomes {,uf ,aPq, 0}, while the new second-tier parameter set @, becomes
{yf © ,ijq}. We add an L2 regularizer on the first-tier optimization and an L1 regularizer on
the second-tier optimization to prevent overfitting; we set the regularization parameters to
100.

Furthermore, our gradients also change. For the first-tier likelihood gradients, Egs. (A.5)
and (A.7) to (A.9) are still valid, and we replace Eq. (A.6) with

0,017 (1) =8 pq-Si(1),

since we now estimate {,u’;j } instead of {uP} in the first-tier optimization.
For the second-tier likelihood gradients, Egs. (A.14) and (A.16) to (A.20) are still valid, but

we do not anymore use Eq. (A.15) since we do not estimate {,uf } in the second tier.
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Figure A.3: Fitting and predicting with OMM on the VEVO 2017 Top 10 dataset. We train OMM
on the first 75 days and predict on days 76 to 100 (shaded area). We show results for Youtube
and Twitter, respectively. (a) Actual (dashed blue lines) vs. fitted/predicted (orange lines)
volumes; (b) Actual (left panels) and fitted/predicted (right panels) opinion market shares
on Youtube (top panels) and Twitter (bottom panels)

A.5 OwmwM Fits and Predictions on VEVO 2017 Top 10

Fig. A.3 shows the fit and prediction of OMM on the VEVO 2017 Top 10 dataset for the first

tier (attention volumes) and second tier (opinion market shares).
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A.6 Model Elasticities

A.6.1 Intervention Elasticities e(s’ (1), X (1))

Applying Eq. (2.4) on Eq. (2.7) and Eq. (A.21), we obtain the intervention elasticities e(sf (1), Xk (1))
as follows.

e(s? (1), Xi (1)

X (1)
st ()

- P
=0%,(nS; (1)

AP (1) Og. ] (1) | Xt
——akazﬂp(f) Xk(;p ' If( )

p _
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00X,k
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Time-averaged intervention elasticities for the bushfire case study are shown in Fig. A.4.

A.6.2 Endogenous Elasticities e(sﬁ7 (1), A9(¢1)))

Applying Eq. (2.4) on Eq. (2.7) and Eq. (A.21), we obtain the endogenous elasticities e(sf (1), A9(t1}))

as follows. Let
1 1

stdlog|NY(9) +1] A1) +17

¢l =
We have:
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Figure A.4: Time-averaged intervention elasticities e(sf (1), Xi (1)) for the bushfire case study.
Elasticities have direction and should be read from column (source) to row (target). The
matrix on the left (right) corresponds to influences from reputable (R) and controversial
(C) news for each opinion (in {0, 1,2, 3,4, 5}) on the different stanced opinions on Facebook
(Twitter).
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Figure A.5: Time-averaged endogenous elasticities e(sf (1), A9(t]j)) of OMM in the VEVO case
study. (Left) Twitter-to-Twitter elasticities. (Middle) Twitter-to-Youtube elasticities. (Right)
Youtube-to-Twitter elasticities. Elasticities have direction and should be read from column
(source) to row (target), both for the platform and within each color matrix.
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Time-averaged endogenous Twitter-to-Twitter and cross-platform elasticities for the

VEVO case study are shown in Fig. A.5.
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A.7 Bushfire Opinions Dataset Construction

The Bushfire Opinions dataset consists of Twitter posts and Facebook posts & comments
from Australian user accounts and pages expressing problematic opinions on climate change
and the 2019-2020 Australian bushfire season during the 90-day period of November 1, 2019
to January 29, 2020.

The Bushfire Opinions dataset derives from the SocialSense dataset introduced in [61],
which consists of user posts and comments from three major online social media platforms:
Facebook, Twitter and Youtube. Postings included in the SocialSense were on two general
topics - first, the Australian bushfires and climate change, and second, Covid-19 and vaccina-
tion — and expressed problematic opinions. In this work, we focus on Facebook/ Twitter and
the Australian bushfires/ climate change topic. Postings were collected using Crowdtangle
focused on a set of far-right Australian Facebook groups identified with a digital ethno-
graphic study (for Facebook), the Twitter commercial API (for Twitter), and the Youtube
API (for Youtube) using the following keywords as input: bushfire, australian fires, arson,
scottyfrommarketing, liarfromtheshiar, australiaburns, australiaburning, itsthegreensfault,
backburning, back burning, climate change, climate emergency, climate hoax, climate crisis,
climate action now. It is important to point out that the Facebook sample is sourced pre-
demoninantly from far-right groups, whereas the Twitter and Youtube are general scrapes.
Two sets of augmentations were added to the postings: the fopic and the opinion of the post,
obtained using a set of topic and opinion classifiers trained in [61]. The set of opinions were
constructed via a qualitative study.

A limitation of the original SocialSense dataset is that the Twitter dataset for the Aus-
tralian bushfires/ climate change topic was scraped only from December 2019 to February
2020, which did not capture early opinion during the start of the bushfire crisis. To that end,
we decided to rescrape the Twitter dataset from November 1, 2019 to January 29, 2020 using
the Twitter Academic v2 API and the same set of keywords. Since the Twitter Academic API
does not allow querying based on user account location, we utilized AWS’s Amazon Location
Service to geocode users based on their free-text location and description fields and filtered
only for tweets from Australian users. Finally, we applied the same set of topic and opinion
classifiers to augment the Twitter data.

Once we aligned the Facebook dataset from SocialSense and the rescraped Twitter
dataset on the target timeframe, we observed that 10 (out of 34) opinions account for most
of the Twitter (95%) and Facebook (81%) postings. To limit the set of opinions in our analysis,

we focus on six opinions of interest constructed by merging subsets of the 10 opinions, after
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which we then filter the Twitter and Facebook datasets on this set of opinions. We index the

six opinions we consider as {0, 1,2, 3,4, 5} and are shown below:

0. Greens influence and policy are the cause of the 2019-2020 Australian bushfires./ I am

opposed to the policies of Greens political parties.
1. Mainstream media cannot be trusted.

2. Climate change crisis isn’t real/ Climate change is a UN hoax/ Climate change is a

scam to generate profit for the wealthy and powerful.
3. 2019-2020 Australian bushfires and climate change not related.
4. 2019-2020 Australian bushfires were caused by random arsonists.

5. Changes in the earth’s climate are a natural, normal phenomenon/Bush fires are a

normal summer occurrence for Australia.

Lastly, keeping in mind our goal of uncovering the interactions between sympathisers
and opponents of the aforementioned problematic opinions, we furthermore differentiate
whether the expressed opinion shows a far-right or moderate stance, which effectively splits
our set of 6 opinions into 12 stanced opinions. For instance, the anti-Greens opinion (labeled
0) splits as far-right (labeled 0+) and moderate (labeled 0+). We represent our set of opinions
as {(i—,i+)|i €10,...,5}}. We leverage the far-right stance detector introduced by [96] and
apply it on each post of the aligned Facebook and Twitter dataset.

In summary, the Bushfire Opinions dataset consists of posts on P = 2 platforms: 474,461
on Twitter and 27,974 on Facebook, exhibiting M = 12 stanced opinions. For compatibility
with our discrete-time model, we aggregate post volumes on Facebook and Twitter into
hourly counts, yielding T = 2,160 time points over the 90-day period of November 1, 2019 to
January 29, 2020.
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B.1 Background Material

B.1.1 Hawkes Process

B.1.1.1 Inference

Given a cascade . of length N, i.e. an ordered collection of time stamps {ti}f.\i ) observed
until some terminal time T = ¢, we can estimate the parameters of the Hawkes process
(u*,a*,0%) that generated the data by maximizing the log-likelihood function,

N T
(B.1) L, a,0| A = {tj}é.vzl) = Z logA(tj; u, @, ©) —f A(s; 1, a, @) ds.
j=1 0

This approach can be extended to the case of a collection of cascades H = {#;}, where
the best-fitting Hawkes process is obtained by maximizing the sum of the log-likelihood
functions,

(B.2) L a,OH) = ) L a,0|7%).
A EH

B.1.1.2 Prediction

The fitted Hawkes process can be leveraged to predict the cascade size N of a new cascade
S e H:

(B.3) N =E[N|a] = %

B.1.2 Dual Mixture Model

B.1.2.1 Inference

Given the pre-defined number of components K, we obtain the Borel mixture model M? by
maximizing the following log-likelihood function,
(B.4) Leum= Y logi pEB(N;|aj).

SEH k=1
Note that the DMM is not formulated as a Bayesian model in [63] and the Expectation-
Maximization (EM) algorithm [117] is employed to maximize £pprps. Similarly, the kernel
mixture model M$ is obtained by applying the EM algorithm to the kernel log-likelihood

K
(B.5) Lxmm= )Y log)’ P,‘jfg(inI@}Z),
S EH k=1

where f(A10) = [11,e, X1,<t; 8(tj — 1210).
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B.1.2.2 Cold Start Popularity Prediction

Assume that we are given a collection of related cascade groups {H,}4c.s. For instance,
suppose < is a set of news articles from a common online publisher p and H, is the set of
retweet cascades discussing article a. Give a yet-to-be-published article a* ¢ «¢, we wish to
model its popularity N% by learning from historical data {Hg} ge.s.

To do this, we can construct a publisher-level popularity model M, ,lf by fitting an inde-
pendent BMM M2 (with K, classes) to each H, and then collecting these as a mixture Mf

over &, i.e.,

PB’a pB,a
(B.6) MB= || MB= at, 2|, et K\
£ Li “ Ud{( Vet 7

where (af, pf '“y € MB. We can estimate the cold-start popularity of a new article a* as

pzzl i

" x R 1
(B.7) N =C,-E [
MY 1 Pl |

where Cp is an estimate of the cascade count of article a*, which we can take as the average

cascade count of articles in «f.
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B.2 Additional Material for BMH Formulation

B.2.1 Complete Table of Notation

In Table B.1 we show the full set of notation, BMH model parameters, their interpretation

and real-world mapping.

B.2.2 BMH-P Model

B.2.2.1 Assumptions

In Egs. (3.3) and (3.4) we assume that the item-level features y* influence the location
(i.e. mean) and membership probability of each popularity class k, while the cascade-level
features X“¢ influence only the membership probability. As a concrete example, if we have
two popularity classes (popular and unpopular), </ being a set of articles, y* being the
headline embedding vector of article a, and X“° the follower count of the initiator of cascade
¢, our assumptions imply how large a cascade will turn out to be (Eq. (3.3)) is influenced
only by article content y¢, but whether a cascade will be popular or not is influenced by

both article content y* and follower count X%¢.

B.2.2.2 Likelihood Function

The log-likelihood of 22, given the set of cascade sizes {N,.},. can be derived as:

L(PaliNactac) =108P{Nac}aclPa)

=log [[ I PWacl%)
acsd SCeH

=log [[ ] PWacla®)

acdd A4CeH?

(a) — log l_[ l_[ [B(Naclaac)
acdd S4CeH

Kq
@=log [T [1 X 2%% BWNaclinv-logit(6%  + ¥,k 7))
acedd FCeEH k=1
Ka
= ) log) 255 B(Naclinv-logit(dy  + Va7,

FeH? ac o k=1

where in (a) we use the fact that the cascade size of a Hawkes process is Borel-distributed

with parameter a““ and in (b) we note that the BMH-P model specifies a? as a mixture over

the K, classes, weighted by the membership probabilities {z/; }.
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Parameter

Table B.1: Full table of notation in Chapter 3.

Interpretation

Real-World Mapping

Source-Level

o source of items news publisher

o set of items produced by p news articles from publisher p
fp ) follower count distribution

Cp cascade count estimate

Item-Level

acod item produced by p news article

H set of cascades related to item a retweet cascades for article a

74 item-level features headline embedding for article a

N4 item popularity overall tweet count for article a
7, content half-life

Cascade-Level

A e HY cascade related to item a retweet cascade for article a
xac¢ cascade-level features follower count of seed user
nNae cascade size
‘rf/cz cascade half-life
g ac intereevent-time distribution
a’c Hawkes branching factor
@4 Hawkes kernel parameters

BMH-P
Ky # of BMH-P mixture classes
Yok effect of y% on center of class k
Yzax effect of y* on membership probability of class k
o Z, o Oa,k item-/ publisher-level baseline value of logit(a) for class

ﬁg,k/ﬁa,k
ac
a Za,k
5za,k/52a,k

Ega,k /Bza,k

k
effect of ¢ on center of class k
mem. probability for class k

item-/ publisher-level mem. prob. softmax baseline for
class k

effect of X*¢ on membership probability for class k

Pe1pa item-/ pub.-level parameter vector
ZalQq cov./ corr. matrix for g
BMH-K
Ke¢ # of BMH-K mixture classes
Yo,k effect of y% on center of class k
Yok effect of 7% on membership probability of class k
63 k/ 69‘]6 item-/ publisher-level baseline value of log(0) for class k
ﬁg k/Bgyk effect of ¥*¢ on center of class k
Zok mem. probability for class k

52y 020

ng,k /Bzgyk
ﬁg]k/ﬁ@,k
ﬁg@ /ﬁZ@

Z0,k/Q0,k
229/ Qzg

item-/ publisher-level mem. prob. softmax baseline for
class k

effect of X*¢ on membership probability for class k
item-/ pub.-level kernel parameter baseline values for
class k

item-/ pub.-level membership probability parameters
for class k

cov./ corr. matrix for pg .

cov./ corr. matrix for pzg

B.2.2.3 Cold-Start Popularity

First, from our dataset </, compute C’p as the average cascade count for an article in « and

fp (X%°|y%) as the empirical probability density of the cascade feature vector X?¢ given item

feature vector y“.
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Second, from Eq. (3.6) we draw the parameter set p4* for the out-of-sample item a*. Con-
sider an arbitrary cascade c of item a* with feature vector ¥ ¢. The expected cascade size of ¢
is given by the expectation of Eq. (3.3) over the K, popularity classes E aate [E[N@c]|za°c, j/'“* 1.
Since c is arbitrary, we need to average ¥ ¢ out. Hence, our expeéted cascade size is

[EW*C[E ate [EIN®€]]%% ¢, 7% ]. Our estimate N of item a*’s popularity is then given by

*

N(l = é [Ex*a*CIEZZ*kC [[E[Na*c]l)_ea*c! 5}“

A ]_ — * — *
= P'[E)‘étl*c[E a*c [1— x¢ C,ya ]

*
Za,k — a(l Cc

1

Ka
= Gy Y 20
k=1 1—1nv—log1t(6 +Ya k¢ )

Kq * * *
p-[EyCa*cI;ZZJf- [1+exp(5g’k+)7a,k-j/'“ )]
Ke
(b)zép- kZz [1+exp(6 c Yok j/’“*)]-fp()?“*cl yedxee
I:xl * *
9= Gy [ Lzt [1eew (08 Faw 7| fpa-ax

where in (a) we use the fact that the BMH-P model specifies a“‘ as a mixture over the
K, classes, weighted by the membership probabilities {zgfk}, in (b) we marginalize over
the unobserved cascade-level features ¥ ° in a cold-start setup, and in (c) we use the
simplification f,(X%‘|y*) = fp(x) as detailed in Section 3.5.

To simplify this expression, we impose two additional assumptions on the feature vectors.
First, assume our cascade feature vector is one-dimensional, discrete and nonnegative (for
instance, this may be the follower count of the seed user). This simplifies our probability
density fp (X“¢|y%) into a probability mass function over x € Nu {0}, converting the integral
over X“¢ into a sum. Second, in practice we usually will not have enough variance across
y“ to build fp (X4°|y) reliably, and so we assume that X% is independent of y“. These two

assumptions allow us to write fp (X1 yM = fp (x). Our expression simplifies to

2 [ exp (00 + Tk 7)ot

i M5

(B.8) Z

B.2.3 BMH-K Model
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B.2.3.1 Assumptions

In Egs. (3.9) and (3.10), we assume that the item-level features y“ influence the location
of 0%¢ and not d“‘. We found that including influence of item-level features y“ on both
parameters leads to identifiability issues in the BMH-K model. We assume y“ influence
the location (i.e. mean) and membership probability of each popularity class k, while the
cascade-level features X“¢ influence only the membership probability. As a concrete example,
if we have two kernel classes (slow and fast), </ being a set of articles, y“ being the headline
embedding vector of article a, and X“¢ the follower count of the initiator of cascade c, our
assumptions imply the speed at which a cascade will diffuse (Eq. (3.9)) is influenced only by
article content y“, but whether a cascade will be slow or fast is influenced by both article

content y* and follower count X“°.

B.2.3.2 Likelihood Function

The log-likelihood of Zg given the set of interevent-time distributions {7 %}, is

g(gﬂHgac}ac) = IOgP({f]—ac}acL@@)

@=1og ]

ACeEHY acof

IT X su- tzlea“,d“)l

Le AW, j21 <t
(b) — log H f((;caacleac’dac)
AU ae

©@=1og ]

AU aed

K
ZB 285, £ Lo, T0x T a0y ]
k=1
KG) a by 3a a
= Z lOg Zg?k.f(%acw%,kﬂ/e,k-y ’ e5d,lc)
A UCeH? acsd k=1

where in (a) we make use of the likelihood for the interevent-time distribution for separable
Hawkes processes as derived in [63], in (b) we set f(A#10,d) = HrjleZzij g(tj—1,10,d),
and in (c) we use the fact that the BMH-K model specifies ®“¢ as a mixture over the Kg

classes, weighted by the membership probabilities {zg", }.
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B.2.3.3 Half-Life Prediction

Under the BMH-K model, the half-life of an out-of-sample item a* can be expressed as

—»a c =a*
71/2 =EzarcEa C[ 1/2| Y ]

(a)_[E*a C[Eac[dac 9“ _Dlj—eac—»a]
% 6a 5@* = _*a*
R Z zg)yl’cc-e dk . [Zexm o tY0KVT) 1]

a* 5 o sa* N
26XP(59‘k+78,k y ) _ 1] 'fp(x),

o0 0
ZZZ @k Y&
x=0/k=1

where in (a) we use the expression for the half-life of a Hawkes process under the power
law g (1) = 0-d?-(t+d)~1*9 (e. by solving 71/, such that fT“z gtydt = %), in (b) we use the
fact that the BMH-K model specifies @%¢ as a mixture over the Kg classes, weighted by the
membership probabilities {zgfk}, and in (c) we marginalize over the unobserved cascade-

level features ¥% ¢ and use the simplification fp()'éacl 7Y = fp(x) as detailed in Section 3.5.
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Figure B.1: Distribution of DMM-estimated logit(«) across RNIX publishers. We note the
bimodality of the distribution, with the modes corresponding to low and high cascade sizes.
Based on this observation we set K, = 2 for the BMH-P model.

B.3 Additional Material for BMH Evaluation

B.3.1 Selection of K, and Kg

To guide the selection of the number of mixture components for the BMH-P (i.e. K,;) and
BMH-K (i.e. Kg) models in Section 3.5, we fit the DMM [63] to each publisher in RNIX.
Given that the EM algorithm is very sensitive to initial conditions, we use 10 random EM
initializations and select the output that yields the highest log-likelihood.

We collect the distribution of parameter estimates for logit(a) across publishers in
Fig. B.1. We see two modes for a, corresponding to cascade groups with low and high
sizes, prompting us to set K, = 2 in Section 3.5.

We collect the distribution of parameter estimates for (log(c),log(f)) across publishers
in the upper plot of Fig. B.2, where we see three modes for the kernel parameters. From
the lower plot of Fig. B.2, we can interpret these modes as belonging to usual, fast and slow

cascade groups, prompting us to set Kg = 3 in Section 3.5.

B.3.2 Prior Specification for the BMH-P Model

The full set of priors for the BMH-P model implementation is given below. Informative priors

are setfor64,1,042,0,,, based on the observations in Appendix B.3.1. Weakly informative
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Figure B.2: (a) Distribution of DMM-estimated (log(c),log(f0)) across RNIX publishers. We
observe the trimodality of the distribution, with the modes corresponding to usual (labeled
1), slow (labeled 2) and fast (labeled 3) cascades. Based on this observation we set Kg = 3 for
the BMH-K model. (b) In the top plot, we show samples of the power law kernel g for the
three classes. In the bottom plot, we show the distribution of cascades for each class.

priors are set for the other parameters. We use a Laplace prior on ¥4,1,% 4,2, ¥ z,, t0o impose
regularization given the high dimensionality of the article feature vector (|y¢| = 32) we

consider.

Sa1 ~N(=2,0.5)
82~ N(2,0.5)
824, ~ N (—1.39,0.5)
Beur ~ N (0,0.1)
Ya,1,Y a2 Y zq, ~ Laplace(0,0.01)
Qq ~ LKJCorr(2)
050,)0684206.,, ~-V(0,1)

o ~A4(0,0.1)
2

2Zq,
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B.3.3 Prior Specification for the BMH-K Model

The full set of priors for the BMH-K model implementation is given below. Informative
priors are set for 64,1,04,1,66,2)04,2,00,3:04,3,0 29,0265 Dased on the observations in Ap-
pendix B.3.1. Weakly informative priors are set for the other parameters. We use a Laplace
prior on ¥e2,7e,3, Y ze . ¥ 265 [0 impose regularization given the high dimensionality of the
article feature vector (| y%| = 32) we consider. For Qg 1, Qg 2, Qe 3, we set a LKJCorr(0.5) prior

(i.e. higher weights on the tails of [0,1]) as (0, d) for any given Hawkes fit are correlated.

89,1 ~ N (—0.41,0.5)

841~ N(-1.37,1)

8.2 ~ N (4,0.5)

842 ~ N (4.805,0.5)

893~ N (4,0.5)

843 ~.N(1,0.5)
020200295 ~ N (=2,1)
Bros Brgs ~ N (0,0.1)

Y0,2:70,3: Y20 Y205 ~ Laplace(0,0.01)
Qe,1,Q0,2, 20,3 ~ LKJCorr(0.5)
Q¢ ~ LKJCorr(2)
06,0 08021005 084108420843 829, 0624, ~ N (0, 1)

oz ,0z ~AN(0,0.1
ﬁZ@,z ﬁZ@,g ( )

B.3.4 Implementation Details

We use the Python implementation of Stan [15] to run both the BMH-P and BMH-K models.
We run for 4 chains, adapt delta set to 0.9, 500 warmup iterations and 500 post-warmup
iterations. To speed up convergence we implement non-centered parametrization [86] for

each of the normally distributed priors.
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B.4 Performance Heatmaps for CNIX and RNIX

We show performance heatmaps for a selection of CNIX publishers in Fig. B.3 and RNIX
publishers in Fig. B.4. Note the different patterns of which headline style works for each
publisher, implying that the BMH model picks up subtle differences of what is effective

across publishers.
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Figure B.3: Performance heatmaps for a selection of CNIX publishers.
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Figure B.4: Performance heatmaps for a selection of RNIX publishers.
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C.1 Background Material

C.1.1 Multivariate Hawkes Process

Alternative view of conditional intensity. The conditional intensity can be viewed as the
mean number of events occurring in an infinitesimal interval, conditioned on the past. A

simple multivariate extension of the result in [97] gives

(C.1) A*(pdt =E [dN(2)|.#P].

Compensator. By integrating the conditional intensity, we obtain another important

measure: the compensator A(t) of the process.

Definition C.1. Given a temporal point process with conditional intensity A*(¢), the com-
pensator A(t) is defined as

t
(C.2) A1) = f A*(1)dr.
0
where0<s<t.

Proposition C.1. The compensator A(t) can be interpreted as the expected number of events
over [0, t) given Jflg. This follows by integrating Eq. (C.1) over [0, t),

By integrating A*(f), we obtain an explicit form for the compensator A(¢) of the d-

dimensional Hawkes process:

(C.3) A() = M(1) + i Y ®i(r-1)),
=

where

(C.4) M(7) =f0tu(8)ds,

(C.5) ®(1) = fO ' p(s)ds.

Regularity condition. A univariate Hawkes process is subcritical if the expected number
of direct and indirect offsprings (i.e., the progeny) spawned by a single parent is finite.
In this case, the Hawkes process is expected to die out as t — oo. The intuition for the
multivariate Hawkes process is similar, but in this case we have to consider that any event in

one dimension is capable of producing events in any other dimension by cross-excitation.
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A multivariate Hawkes process is subcritical if the progeny resulting from a single event of

dimension j to dimension i is finite for every pair (i, j) € D x D.

Definition C.2. Let A!,---, 14 be the eigenvalues of the branching matrix a. The spectral

radius p(a@) of & is defined as
(C.6) p(a@) = max{|A],..., 1A

For a one-dimensional Hawkes process, the spectral radius is exactly the branching factor,
the expected number of secondary events triggered by a parent event. If the branching factor
is less than one, the Hawkes process is subcritical. If the branching factor is greater than
one, the process is supercritical, and the progeny of a single parent event is expected to
have an infinite number of offspring events as ¢ — co. In this case the Hawkes process is also
called explosive.

The following proposition is a standard result that characterizes the convergence of a
geometric series of matrices. We use the following to obtain a closed-form expression of the

total progeny produced by events in every dimension for the MHP.
Proposition C.2 ([51]). Ifp(a@) <1, ¥, a” converges and is equal to (I- a) .
The subcriticality condition for a multivariate Hawkes process is given by the following.

Theorem C.1. A Hawkes process with branching matrix « is subcritical if p(a) < 1.

Proof. Let p(a) < 1. Suppose we have one parent event in dimension j € D. Let us consider
the offsprings of this parent event.

The expected number of direct (i.e., first-generation) offsprings in dimension i is &’/. The
expected number of second-generation offsprings in dimension i is ¥¢_, a’*a*/ = (a®)¥/,
which is intuitively the dimension i offsprings of the first-generation offsprings of the
dimension j parent event. By the same argument, the number of m'" generation offsprings
would then be (a™)'/. Thus, it follows that the (i, j) element of Y™, a” tracks the total
number of dimension i offsprings up to the m'" generation produced a single parent event
in dimension j. In the limit m — oo, we can conclude by Proposition C.2 that the Hawkes
process is subcritical. Furthermore, the expected number of dimension i offsprings of a

dimension j parent event is given by the (i, j) element of I—- a)™! -1 [

Parameter estimation. Suppose that we are given a set of observed events ﬁ”]’?_ up until

some maximum time T > 0. Our task is to find the parameter set ® that best fits this given set
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of observations. The standard approach is maximum likelihood estimation (MLE), where we
find © that maximizes the probability of observing the data given the point process model.
Equivalently, we can minimize the negative log-likelihood function . (@; U;l:l Jf%,) of the
parameter set ©.

For the d-dimensional Hawkes process (and in general, for a d-dimensional point pro-

cess with intensity A* (1)), the negative log-likelihood function is given by

Zpr-1L (@;Jf%z) = —loglP{Jfﬁ )@}

d . - .
(C.7) ==Y | Y logM(t;0) - A (T;0)
j=1 tieﬁ%_
We add the subscript PP-LL (Point-Process Log-Likelihood) to emphasize that the likelihood

is evaluated with respect to event timestamps.

Sampling. Given an MHBP, the standard approach to sample event sequences is via the
thinning algorithm discussed in [82]. This techniques converts the task of sampling a Hawkes
process into the significantly simpler task of sampling a homogeneous Poisson process.
The rate of this Poisson process is obtained as an upper bound to the Hawkes conditional
intensity and is recomputed every time a new event is accepted. Proposed events from the
procedure are ‘thinned’ out with rejection sampling using the Hawkes conditional intensity.
Algorithm 1 shows how to sample event sequences from a d-dimensional Hawkes process

given a constant background intensity.

C.1.2 Mean Behavior Poisson Process

Regularity condition. The sufficient condition for the subcriticality of the MBP process
is @ < 1. This condition ensures that the infinite sum Y32 , ¢®” () in the MBP intensity &(¢)

converges to zero as ¢ — oo.

Parameter estimation in interval-censored settings. Since the MBP process is a Pois-
son process, its increments are independent, which allows the likelihood function to be
expressed as a sum of the likelihood of disjoint Poisson distributions. This enables the MBP
process to be fitted in interval-censored settings via maximum likelihood estimation.
Suppose instead of observing the sequence of events .#7-, we observe interval-censored
counts over a given partition of [0, T), which we denote as £2[0, T). Furthermore, assume

that the partition is subdivided into m subintervals, so that 22[0, T') = km: 110k-1,0k), where
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Algorithm 1: Simulating a d-dimensional Hawkes Process on [0, T) with Thinning
(82]
Input: kernel matrix ¢(z), background intensity g, time horizon T > 0
Output: Jf% = {t{c} forj=1:d
initialize ¢ = 0; 4L = ... = 4 = @;
while t < T do
A=yl Amat =Xl |u +Zj'l=1 Zt,{st(pij(t_ tli) ;
u~uniform(0,1);
w = —log %;

t=t+w;
U ~uniform(0,1);
ifUL<Y?% A™(1) then

j=5
while UL <Y/ A" (1) do
ENES"

end

-

B

J _ J .
Hp = S UL
end

end
if t]ij < T then
‘ return Jf% forj=1:d;
else
‘ return Jf%,...,if%\{t]{},...,ifg;
end

0o = 0 and o0,, = T. For each subinterval [0;_;,0;), we are given the count C; of events
that occur. In this setting and given the MBP process, the negative log-likelihood function
Z(0;{Cg}L,) can be obtained with the following result.

Proposition C.3 ([102]). Suppose we are given interval-censored counts {Ci}]" | over the
partition 2(0,T) = kmzl[ok_l,ok), where 0oy = 0 and o, = T. The negative log-likelihood
function of an MBP process with intensity {(t) and compensator Z(t) is given by

m
L@ H{CilL) = —logP{ {E(0k-1,0k) = Cy} |®}
k=1

m
(C.8) o Y [E(0k-1,0k;0) — Cxlog E(0k-1,04; 0],
k=1
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where we add the subscript IC-LL (Interval-Censored Log Likelihood) to make explicit

the fact that we are calculating the likelihood with respect to interval-cen
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C.2 Interpretation of hy

The function hg (1) = Y57, (p%”( t) appearing in Eq. (4.5) can be expressed term-by-term as
(C.9) hp(D) = @p(t) + @5 (D) + @5 (D) + -+

Given a Hawkes kernel of the form ¢(7) = a © (1), where © denotes elementwise multi-

plication, Eqg. (C.9) can be written as
(C.10) hp(f) = apofp(f) + ap? o f52(H) + ay O £ (1) + - --
Consider the i, j entry of the n'”* term of the sum:
(ajofp" () = (ap’ o (" (1)
This expression can be interpreted as follows:

. (ag)ij is the expected number of n/" generation offspring events of type i produced
by a single parent of type j in a d-dimensional branching process where only the E

dimensions can produce offsprings.

o (F5"(1) i is the density of n'" generation type i offspring events at time ¢ produced by

a single parent of type j at time 0.

* The product ()"’ o (f2"(1))"/ can be intepreted as the expected intensity contribution

at time ¢ from n'”" generation type i offspring events produced by a single parent of
type j.
Thus hg (1), given by

hy (1) = (@p o f5(0) + (ap® o £2(1) 1 + (@ o £23 (1) +---,
—_—— RN )

first generation  second generation  third generation
is the expected type-i intensity at time ¢ from a single parent event of type j, over the entire
progeny of offsprings.

Fig. C.1 shows the nonzero entries of hg(¢) fora PCMHP (3, 2) process with parameter
set @ =[1,0.1,0,1,1,0,1,1,0], @ = [0.2,0.2,0,0.2,0.2,0,0.2,0.2,0]. In the plot we show the
contributions of the first to the fifth generation to hg(¢). As we can see, the contributions of
succeeding generations become increasingly smaller as every @’/ < 1. The contributions all
go to zero asymptotically as t — co. In addition, we see that the mode of each generation’s
contribution is shifted to the right as the generation index increases. Intuitively, a delay
exists because offspring events in generation n + 1 are produced by generation n events. The

extent of the delay is controlled by 6.
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Figure C.1: Nonzero entries of hg () for a PCMHP(3,2) process with parameter set 8 =
1,0.1,0,1,1,0,1,1,0], @« = [0.2,0.2,0,0.2,0.2,0,0.2,0.2,0]. Colored lines correspond to the
contribution of the first up to the fifth generation offsprings to hg (). The black line (hg(t))
is the total contribution of the progeny.
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C.3 Closed Form ¢ ;(t) for the PCMHP (2, 1) Process

Given a PCMHP(2,1) process, the conditional intensity function g(t) is given by

Sl =p'+ Y -+ (" *

2
l’k<l'

Sl A=+ Y, (1) + (p* * EN(D).

2
l’k<t

Given a fixed event sequence for dimension 2 {f{ < t7 < ... < t3} prior to time ¢, the
intensity function given by ¢ }( t| thl) can be interpreted as a univariate MBP process.
Assuming an exponential kernel, the intensity function in this case can be expressed in

closed form using the impulse response function.

Suppose that @'/ (x) = a'/0" exp(-6'/ x). The impulse response for 1 (¢ | #7?) is given
by:

(C.11) E1(8) =6(8) + h(p),
where
(C.12) h(t) = a0 exp((a'' - 1)0' 1) - [t = 1].

Setting §(¢) = [u! + Yizes a'?02 exp(-0'%(r - t,zc))],

(C.13) EL(E| A?) = (Ey * 3) (1) = $(O) + (h * §) (D).
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(h*38) (1)
t
:f h(t—1)-S(1)dt
1

t
= f a0l exp((a't - 101 (t-1))-s(r)dr
1

pt+ Y a0 exp(-0" (1 - )

2
%<t

t
:f al'oMexp((alt - 101 (t-1))- dr
1

t
:,ulf a'0Mexp((alt - 1)01 (- 1))dr
1

t
+f al'oMexp((all - 1)01 (t-1))- Zalzﬁlzexp(—elz(r—t,%)) dr
1

2
n<t

t
:,ulallellf exp((a' =10 (r—1))dr
1

dr.

t
+a11011(x12912f1 eXp((a11 —Dot(t-1)- [ Z exp(—le(T— t,%))

2
%<T

We calculate each of the integral terms separately:

t
fexp((all—l)ﬁll(t—r))dr
1

1
= _m exp((a11 —1DeM (r-1))

1
= o [ep(@ 1ot -1].
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And,

t
fexp((a“—l)@“(t—r))- Y exp(-0"%(r-) | dr
1

2
l’k<T

N ot
= Zf exp((an—l)Hll(t—T))-exp(—Olz(T—t,%))dr
k=171

N

t
exp((a' = 10" ) -exp(-(a'' =10 1) - exp(—-0'?1) - exp (02 £2)dr

L

Il
9= T

exp((a! =181 ) exp(@lztk) f exp(—(a'l =18 7) - exp(—0'%1)dr

-
Il
—

exp((a'' = 10" 1) -exp(6'°17) - f exp(—[(a! =18 +0'%)7)d7r

Il
Mz

~
I
—

exp((a'' =16 1) -exp(6'%7)
(a1 —1)91! + 912
[exp(-[(a' = 1O +0"117) —exp(—[(a' =10 +6'%19)]

N exp((a'!l =10 (£ - 12)) — exp(-0'2 (¢ - 12))
- z:zi (all = 1)f11 +p12

I
.MZ

~
Il
—

Together we have,

1,11
T [exp((a — 1)@ 1) - 1]

N a11611a12612

+Y T 1072 lexp((a’! = 16" (- 1)) —exp(-0'2 (¢ — 17))].

k=1
This gives the MBP intensity function for dimension 1 as

1,11
1) =+ Y a0 exp(-0"(- D) + 5 i lexpl@ 10" - 1]

t2<t

11911 12612

[exp((a'! =10 (£ - 1)) —exp(—0"2 (¢t — £7))].

.14
(C ) +t; (a11_1)911+612
k<t

To calculate the MBP intensity function ¢ % for dimension 2, we would need to calculate
t
(@ D0 =167 | exp(-0%(t-mghir | Adr.
1

We expand the integrand above using the expression for ¢ } in Eq. (C.15) and calculate

the integral term-by-term.
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t t
f exp(—021(t—r))u1drzu1f exp(—621(t—r))dr
1
1

= :Zlexp( 6% (1 - T))]

- ﬁ [2-exp(-0%' (1)].

' 21 platl 11 11
fzexp(—e (t=1) g [exp(@” -1 1) ~1]dr

pla'l
= fexp(—HZI(t—r))[exp((au—l)BHT)—l]dr
a'‘—-1h
(2alt
= exp( 921t)f exp(0°'7)) [exp((@' - 1O 1) - 1] d7
'ulall t
:a“ 1exp(—921t) flexp((921+(a11—l)Hll)T)dT—f1 exp(921r))dr
1,11

wa

921 “—10“1?—1 921t—1
_ an_lexp(_gglt) exp((0-" + (a )07 1) exp(0-°1) '

921 1 (g1 — 1)l - 921

For the remaining two terms in the integral, we need to consider two cases: %! = 912 and
621 # 912.
Case 1: 61 =912,

t
f exp(-0*' (t-1)) Y a'?0" exp(-0"*(r - £2))dr
1

t2<t

_alzelzf exp(—0°' (1—1)) Y exp(-0"(x — 1))dr

t2<t

—alzelzzf exp(—021(t— 1)) exp(— le(r—tk))dr

= a'?9'? Z exp(0 15 -0 1) fz exp((0*! -0'?)1)dr
k=1 s

N t
= a'?9'? Y exp (012 t,% -6%'n fz dr
k=1 s

N
a'?0'? Y exp(0rz-0*'0)(t - 1)
k=1
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" 1111 ,12n12
. a0 a0
fl exp(—0-"(t—1)) Z (@l —1)911 + 912

2
[k<‘[

[exp((a'! = 1O (r - 1)) —exp(-0"2(x — 7)) ] dT
05119110512912

r
— 21
(@M -1eM +912f1 67T

Y [exp(@! = 16" (7 - 1) - exp(-0"2(r - )] dv
<t
allpll 1212
:(a11—1)9u+912f Zexp( 0% (t - 1)

[exp((a'! - 1)611(1 — 1)) —exp(-0"2(r - £2)] dr
allgllgl2gl2 N
= i oI+ o7 2 Z exp(— 921t)f exp(°'1)

[exp((a'! - 1)911(1 — 1)) —exp(-0"2(r - £2)] dr
allpllgl2glz N "
:(a11—1)911+9122e"p( _

exp(—(all - 1M t,%)fz exp(@*' 1) exp((a'! - DO T)dT
%

t
— exp(6*? t,%) fz exp(0%17) exp(—0'%7)dr
%

11911 12912 N 21
= @ DeT g1 & PO

exp(—(al! - 1)oM t,i)fz exp((0?! + (a'' - 1)8H1)d7
b

t
— exp(6*? t,%) fz exp((6* —-0%)1)dr
%

allell 12912 N ’1

t t
exp(—(a'l - 16" t,%)fz exp((02! + (@ - 1O 1)d7r — exp (012 t,%) fz d‘L’]
% %

alloql2912 N [exp((a' -1 (r-12) exp(-0°'(t-17))
T (all =101 + 912 = 021y (@l —1)911 2l 4 (qll—1)Qll

—exp(0 1 -0*" Dt -17)] .

Case 2: 02! #0912,
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t
f exp(-0* (t-1)) Y a0 exp(-0"*(r - £2))dT
1

2
%<t

t
= alzelzf exp(—0*' (1 —1)) Y exp(-0"(r — ))dr
1

2
%<t

N ot
=al?'? kz1ft2 exp(—0%! (1 — 1)) exp(—0"* (1 - £2))dT
= k

N t
=a'0" ) exp(01;-0'1) fz exp((0*' —0'%)1)dr
k=1 %

a12912 N

= o g k;exp(e”t,i — 021 1) [exp (6! —0'2)1) — exp((6*! —0'%)£2)]
a12612 N

= o _giZ kX—:1 [exp(—@lz(t— t,%)) —exp(—0%1(t - t,%))] .

144



C.3. CLOSED FORM &g(#) FOR THE PCMHP(2,1) PROCESS

11911 12012
fl exp(=0°'(1-)) ). gy g [eP((@ ~ 10 (= 1) —exp(-0"(r — )] dr

t<‘[

exp(—0°' (t-1)) Y [exp((a@' = 10" (r - £1)) —exp(-0"*(z — 7)) ]| dT

2
tk<T

allpllgl2gl2 i
T @101 +912 fl

a11911a12912 ]vt

= GTCTeT o ), Y exp(-0*' (t—-1) [exp((a' - 1O (r - £2)) —exp(-0"2 (z — 7)) | dT

2
n<t

0!116110512912

t
= @0+ 07 kgl‘/;ll exp(—0%' (t - 1)) [exp((a’' — O (r - 1)) —exp(-0"*(r — )] dt

a''g''a'?9'? 21 ! 21 11 11 2 12 2
(all 1)311+91226Xp( 0 t)fzexp(e 7) [exp((@ —1)0 (T — 1)) —exp(-0 (T—tk))]dr

allell 12912 N 21
“ - 1)911+91228Xp( oD

exp(—(all - l)Glltk)f exp(@*' 1) exp((a'l - 1o n)dr

- exp(@12 t,%) fz exp(921r) exp(—ler)dT

allell 12912 N 21
(@l 1)911+91226Xp( o0

exp(— (a'l - 1)611tk)f exp((921+(a11 no'H71dr

— exp(6*? t,%) fz exp((0*! —0'*)1)dr
%

allell 12912 N

exp(—(a'' —1)0'" 13
T @D+ 012 & ZeXp( 0°')

621 + (all _ 1)911
12 2)

exp(0
—exp(((921+(o¢“—1)49“)t,§)]—W[exp((e21 0'2)1) —exp((0*' —0'%)£2)]

K [exp((0* + (@' = 1)0') 1)

allgl o12912
T (@l -1e+012 &

exp(—6°' (1 - 17)) ]
+

exp((a =10 (r-12)) exp(-0°'(r-1) exp(-0"(t—17))
02l (@l 1P @214 (@ll—1)91 921 _ 12

921 —gl12
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Therefore, if 92! = 012,

N
S| A =P+ Y a®0*%exp(—07* (1 — 1)) + u' @' [2 — exp(-0°1 (1))]
k=1
N
+a'?02a?19?! /;1 exp(0'% 1 - 0% (1 - £2)

exp(((@' —1)0'") 1) —exp(=0%'1) 2—exp(-0%'1)

621 4 (@11 —1)g11 B 921
exp((a't -1 (r- 1)

021 + (a,ll _ 1)911

1,11,21p21
L baa 0
all -1
al1911 912912421921 N
(a11_1)611+612
exp(—0% (£ - 17))
921 4 (g1 —1)oN

—exp(0"2 17 -0°' ) (1 - t,ﬁ)] :

If921 ;é 912,

N
S| A =P+ a®0% exp(—07* (1 — 1)) + u' @' [2 — exp(-0°' (1))]
k=1
al2012¢21921 N
— g L [exp(=0"2 (1 — £2)) — exp(—0*' (1 — £2))]
k=1
platla?6?! [exp(((a'' - 1)0'") 1) —exp(-02't) 2—exp(—-02'1)
+ all—1 021 4 (@11 — 1)l - 921
allpllgl2gizg2lg2l N exp((a“—l)@“(t—t,%))
(a11_1)611+912 621+(a11_1)911
exp(—0%' (t—17))  exp(—-0"*(t—15)) exp(-0*'(r—12))
_921+(a11—1)611 - 921 _g12 + 921 _ g12

Integrating & (¢ | #7) and &1 (t | #7) over the interval [1, T, we obtain the compensator

as (Take note that integrals over the exponentials are from té“ to t)

Bl A =plt+ Y al?2—exp(-0'2 (1 - £2)))

<t
1,11
ula
i (a“—1)911(eXP((a“—1)6“t)—1)—t
€15 +Y all9a12912  [exp((@' -1 (1- D) -1 2-exp(-0"2(¢ - tk))
' 22, (@ -1oM + 912 (@1 -1l oz .
k
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If921 — 912’

N
B3t | A =P+ ) a2 -exp(-0%(t - t5) + p'a?! r—ﬁ(z exp(— 921t))]

k=1
12912421 N
g kzlexp(elz 2 - 021 (12 + ) [exp(0* 1) (0*' 12— 0° £ — 1) + exp(6°' 1)
plala?e?! 1 exp(((@ -1)0") -2 exp(-62'1) -1
L 021 1 (@11 — Y11 (@1 — Dol + 921

t  exp(-0*'n-1
_(ﬁ+ 07172 )]
1191 12912421921 N
(@l - 1911 1612
exp( 021 (t - L‘Z))— 1
(921+(a11—1)911)921 (921)2
[exp(t921tk)(t921 k—621 - )+exp(921t)]].

exp((a't - DO (r-tF)) -2
(QZI + (all — 1)911)(0511 - 1)011

exp(0'2 12 — 0% (£ + 1))

If921 ¢912,
N
E%(tuff):u2t+l;a22(2—exp(—922(t )+ pta® |t 921 —(2—exp(— 9210)]
a!20'20210% N [2-exp(=0"%(t—1})) 2-exp(-0°'(t-1)))
921 _ g12 Pt 912 B 921
s u1a11a21621 [ 1 (exp(((all—l)eu) l.)_
a”—l 921+(a11_1)011 (all—l)ell

exp(-0%21n -1 t exp(-0%'n-1

+ 921 B ﬁJr (621)2

allpll 12912421921 N exp((a”—l)@“(t—t]%))—z
(all —1)911 +012

(QZI + (all _ 1)911)(C¥11 _ 1)911
2—exp(-0%' (1 - 1) 1

2—exp(-012(¢ - t5))
(021 + (@l —1)911)p21 2l _pl12

912
2 —exp(—-0%1(t - téc))
- 921 :
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C.4 Additional Results and Proofs for PCMHP Formulation

C.4.1 Convolutional Formula

Lemma C.1. Consider PCMHP(d, e) with conditional intensity & (t) and N(t) be the count-

ing process of the corresponding d-dimensional Hawkes process. The following holds:

(C.16) Ep(s)ds =y |dN(s)|A2E

Proof. Taking the conditional expectation over #Z of both sides of Eq. (C.1), we get
Eyr [A*0)ds|E | = [E[dNGo)I22) [ 72E ]

Pulling out the infinitesimal ds out of the expectation on the left-hand side, we get
Eyr [A*(5)|HE | ds =B r [E[aN() 2] | 7L ]

Notice that the left-hand side is exactly £ (?), as defined in Eq. (4.4). For the right-hand side,
note that #2 = (#Z) u (#L). Applying the tower property of conditional expectation, we
average out the inner conditioning over #Z and arrive at the desired result:

dN(s)|#E

$p(8)ds=E 48

Proposition C.4. Lemma C.1 extends the result in Eq. (C.1) for the d-dimensional Hawkes
process, to the partial multivariate case considered by the PCMHP(d, e) process. To go from
Egq. (C.1) to Eq. (C.16), we simply replace the total expectation with the conditional expectation
over event histories in the E dimensions.

The following theorem provides an expression for the conditional intensity &g (¢) of a
PCMHP(d, e) process in terms of the Hawkes kernel ¢(¢) and the background intensity p(#).

Theorem C.2. Given the Hawkes process with the kernel @(t) and the background intensity
(1), the conditional intensity of its corresponding PCMHP(d, e) process is given by

(C.17) (O =pO)+@p+EpO+ Y. Y @lt- f/ﬁ)-

e L
JEE t,f€<t
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Proof. Starting from the PCMHP definition Eq. (4.5), we expand A* () as shown below.

C
HE

-
p(o) +f0 @(t—s)-dN(s)

Ep(1)=E

The exogenous term pu(f) is independent of the conditioning and may be taken out. We

then use the decomposition of ¢ as ¢ + @ .. We then have

C
AL

tr -
fo(pE(t—s)-dN(s)+f0 @pc(t—35)-dN(s)

Ep(1) = p(0) +E

Given that the conditioning assumes that events in Jfﬁc are observed, we can write the
integral involving ¢, as a sum of events in the E¢ dimensions. We then have the following

sequence of calculations.

t . .
Ep() = p(0) +E e f Ppp(t—5)-dN(S)+ Y Y @p(t—1)| AL
" 1Jo jEEC
%<t
[ .
@ = w0 +E e f @p(t—5)-dN)| AL |+ Y Y @plt—1])
0 jEECt,{<t
t~ ,
(b):u(t)+f @p(t—5)E & [dN(s) FE |+ Y ppet—1)
0 t fEEct£<t

I .
© :p(t)+f0 Pp(t—9)-Ep()ds+ Y Y @pe(t—1])

JEES <
=p()+(@p*ER) D)+ ) ) Ppelt— tli)'

&
JeE <t

In (a), we take out the event intensity contributed by events in the dimensions in E¢, as
these are observed in %ﬁc. In (b), we reverse the order of the integral over time and the

conditional expectation. In (c), we use Lemma C.1. [

Proof (of Theorem 4.1.) First, note that the input-output map p(t) l;) & (1) does not corre-

spond to an LTI system (see the succeeding proof). However, if we define the effective input

as

(C.18) s =p0+ Y. Y @l
JEES <t

then the map s(#) li» & (1) given by

(C.19) $e(t) =s(0) + (@ * &) (D)
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corresponds to an LTI system.

Let i € D and &g (¢) be the corresponding impulse response under s() r& ¢ (7). Suppose
that E/(¢) is the system’s response to &' (), the unit impulse in dimension i given by the i*"
column of the diagonal matrix 6 (¢).

Applying Eq. (C.19) on the input-output pair (&' (£), E(£)),
(C.20) E (1) =8 () + (@, * E)(0).

Observe that Eq. (C.20) is a recursive equation in E(¢). Substituting E’ () back into itself, we

get
E (1) =8" (1) + @g(t) * [6'(£) + (g * E)) ()]
=8 () +@L(t) + (2« EN (D)
=810+ L0+ [@%2] (1) + (@23« BN (1)
(C.21) =6+ [92"] () + lim (" *E)) (D).
n=1 n—oo

Note that s(#) can be expressed as

d . .
(C.22) s(t) =) (8" *s")(2).

i=1

v
Since s(f) = &g (1) is LTI, we have

a
(C.23) Ep(D) = Z(E’ * s (1).

i=1
Substituting Eq. (C.21) into Eq. (C.23), we then have

d . 00 . . .
(C.24) Ee(=) [6'0+ ). [¢§”]’(t)+,}g§o(¢§”*E’)(t) * s' ().

i=1 n=1
We consider each convolution of the term in the right-hand side parenthesis separately.
The first term is precisely s(¢) in Eq. (C.22).

With some algebra (see succeeding proof), the second term can be written as

d . .
(C.25) Y N [@E"] (0 % st (1) = (hg *8) (D).
i=1

agt

n
By commutativity of convolution, the third term can be written as
d . .
. ®n i i _ 1 n
nll_rgo((pE *E) () *s (t)_nh—r»glo‘pE (1) =

i=1 i=1

d . .
Y (B sl)m} = lim (3" * £p)(1),
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where we made use of Eq. (C.23) to arrive at the last equality.

By combining the three terms, Eq. (C.24) can be written as
Sp(t) =s(1) + (hg xs) (1) + ,111_1,130("’%’1 * §p) (D).

Imposing on the previous equation the assumption lim,, .o, %" (£) — 0, we have

d
(C.26) zE(t):s(t)+(Z ¢p§”*s)(t).
i=1

Lastly, applying the specific form of s(¢) in Eq. (C.18), we obtain the desired formula. B

Proof. (in Proof of Theorem 4.1, that u(t) AN &p(t) is not LTI, but s() li» ép(t)is.) Let ceR.
Define p'(t) = cp(t) and & (1) = c&g(1).
If the system were LTI, then linearity () l;» '3 %(t) must hold. That is, Eq. (C.17) tells us

(C.27) =P O+ &+ Y Y @lt—1t)),

e &
JEE tljc<t

However, if we multiply both sides of Eq. (C.17) by ¢, we see that

cp(t)=cp(t) +clpp*ED+c Y. Y @lt—1))

e &
JEE tljc<t

(C.28) S &=+ EWW+c Yy, Y lt- tz];)

L &
JEE t]]C<t

Unless ¢ =1 (trivial case) or d = e, Eq. (C.27) and Eq. (C.28) cannot hold simultaneously
because of the summation over E°.

Thus, p(1) t; & (1) isnot LTT unless e = d, which is the special case of an MBP process.

Now consider the system s() bi» &g (1) as defined in Eq. (C.18). The proof of this system
being LTT is a straightforward multivariate extension of the proof of Theorem 2 in [102], but
we present it here for completeness.

(Linearity) This follows simply by multiplying both sides of Eq. (C.17) by a constant c.
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. . . N .
(Time invariance) The response of s(f — ty) under s(t) = &g (1) is
t
s(t—tp) +f0 Qp(t—1—3s)-&p(s)ds

t'+1
=s(t— t0)+f0 @p(t' —5)-Ep(s)ds
t'+1

lJ
(“):s(t—t0)+f0 (pE(t'—s)-:fE(s)ds+f @p(t' —5)-Ep(s)ds

t!
=s(t— 1)+ (Pp*&p)(t— 1)

where in (a) we used the fact that ¢ (s) =0if s <0. Thus s(¢) — &g(¢) is LTL [ |

Proof. (in Proof of Theorem 4.1, that ¥4, ¥, [2"] ") % si(D) = (L, @%"(1) x5) (1))

) . . oo d . )
L Zl [@F"]" 0+ 5'(1) = Zl _Zl([q)E”]l % 57) (1)
1=ln= n=li=
N [(pgn]ll ) [(pgn]ld 0
=) w5t +--+ : * s4(1)
n=1 [(pgn]dl 0 [(pgn]dd )
[ st - (@8] 0 xsT0)
= Zl . : :
n=
(92" st - (93] = s
ez @ e s
= Z,l : : : * :
et 0 - e )\ st
=) (@} +8)(1)
n=1
= (Z w%”*s)(t).
n=1

The additional assumption lim,, ., 3" () = 0 introduced in Theorem 4.1 is a necessary

[e.@]

condition for the convergence of Y5, ¢3"(¢). Intuitively, what this entails is that the inten-
sity contribution of late-generation offsprings has to asymptotically go to zero to achieve

convergence of the infinite sum. This is discussed further in Appendix C.2.
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Remark C.1 (Nonlinear Hawkes). Consider the nonlinear Hawkes process [12] with condi-

tional intensity
-
(C.29) ;L*NL(r)::¢UO (p(t—s)‘dN(s)),

where ¢ : R — (R*)“. Following Definition 4.1, the nonlinear PCMHP can be defined as the

process with intensity
(C.30) Enpp(D)=Eyn [A*NL(t)‘Jé’fic].

The convolution formula in Theorem C.2 does not hold exactly for the nonlinear PCMHP.
If ¢ is convex (concave) in all dimensions, we have an upper (lower) bound for &y (1) (see

Appendix C.4). In either case, we can make the approximation

(C31) Enne =Pl (@p*En O+ Y. Y @pt—1t)),
JeE* t,£< t
which becomes exact for linear ¢ (i.e. Theorem C.2).

Due to the nonlinearity introduced by ¢, the linear time-invariant solution concept is
inapplicable, and alternative methods must be used to solve Eq. (C.31) for &y g(1). Eq. (C.31)
can be classified as a nonlinear Volterra functional integral equation (VFIE) of the second
kind [55]. VFIEs have been solved numerically using collocation methods [128] and cubic
B-spline scaling functions [73], which may be applicable to solve Eq. (C.31). Once &y (1) is
obtained, the compensator Zny, (1) can be approximated by numerical integration.

The techniques we introduce to approximate &g (t) (Appendix C.7) and sample PCMHP
(Appendix C.12) are not applicable for the nonlinear PCMHP as they rely on the impulse
response solution for &g (t). Fitting the the nonlinear PCMHP to data can still be done via
maximum likelihood estimation using the likelihood function we introduce in Section 4.4.2.

A more in-depth study of the nonlinear PCMHP process, including an analysis of the tight-
ness of Eq. (C.31), regularity conditions, and efficient numerical schemes to solve Eq. (C.31), is

left for future work.

Proof (in Remark C.1, that Theorem C.2 does not apply for nonlinear PCMHP) Consider
the nonlinear Hawkes process and the nonlinear PCMHP with their intensities defined in
Eq. (C.29) and Eq. (C.30), respectively. Plugging in Eq. (C.29) into Eq. (C.30), we have

-
(C.32) SN (D) =E [‘P(fo ‘P(I—S)'dN(S))‘thb:
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Without loss of generality, assume two cases for ¢. If ¢ is convex in all dimensions, then

|

(C.33) (@ =¢((¢E*€NL,E)U)+ > 2 ¢Ec(f‘fz£))

e L
JEE t]]C<t

Jensen’s inequality applied to each dimension yields

-
fNL,E(t)S(P([EJgtE_fO tp(t—s)-dN(s)‘Jff:

where in (a) we follow the proof of Theorem C.2 to simplify the term inside ¢(:)

Similarly if ¢ is concave in all dimensions,

(C.34) Enp () = ¢((<PE *ENLE D+ ) D) et t]{)).
JeE* t£<t
We see that equality does not hold except when ¢ is both convex and concave (i.e. linear),
allowing us to combine Eq. (C.33) and Eq. (C.34) to obtain

(C.35) Snpe(t) = ‘P((‘PE *ENLE) D+ ) D) et f;{)),
JEE® t,{<t
which would be the corresponding convolution formula for the nonlinear PCMHP analo-
gous to Theorem C.2.
Since Theorem 4.1 relies on expressing &y, ¢(#) as the solution of a linear time-invariant
(LTT) system, the nonlinearity induced by ¢p makes the LTT approach inapplicable.
|

Remark C.2. Under a given effective input s(t), the system s(t) li> &g (t) returns the resulting
intensity of the PCMHP process averaged over the stochastic history of the E dimensions. Given
that the effective input s(t) treats the intensity contribution of events in the E¢ dimensions
as exogenous, only events in the E dimensions are self- and cross-exciting in s(t) bi> $p(D). In
other words, the associated branching process for s(t) ;} & (1) considers the scenario where
only events in the E dimensions produce offsprings.

Under s(t) = 8/ (0), Eq. (C.26) tells us that the response of the LTI system s(t) Ig $p(t)in
the i'™" dimension is

(C.36) &b = h (@),

forT>0.

Integrating both sides of Eq. (C.36) over [0, t), we get
_ ro.
E5(1) :fo hy (T)dt.
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Taking the limit of both sides as t — oo,
=i (00) = fo n ().

We see that if the integral of the right-hand side diverges to oo, then the expected number of

events, in view of Proposition C.1, explodes as t — oco.

In order to have a finite expected number of events in the branching process over the
E dimensions, the integral of hg(t) over [0,00) must be finite. Stated differently, we require
hE € 31(R+)d><d,

Corollary C.1. The PCMHP(d, e) compensator Zg(t) is given by

(C.37) Ep() =[6(0)+hp(0]* M)+ ) > @] c(t_ )

JEE <y

wherehg (1) = Y77, (p?” () andM(t) and ®(t) are the integral of the background intensity u(t)
and the integral of the Hawkes kernel ¢p(t) as defined in Eq. (C.4) and Eq. (C.5), respectively.
@ (1) is defined similar to @ c(t), where we zero out the columns corresponding to the E¢

dimensions.

Proof. Integrating both sides of Eq. (4.4) over [0, f), we get

t
EE(t):fO [6(7) +hg(D)] * [ p(r) + Z Z (pEC(T—t] dr.

JEE® t]

For brevity, set s(¢) as in Eq. (C.18), and set S(f) = fot s(7)dt. Now, we focus on the i‘"
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entry of both sides. Expanding the convolution, we get
s+ Y (b = sH(@) | dr

. t
Eyn:f
0 j=1
ro d t .. .
(“):f s’(r)dT+Zf [(hg*s])(r)]dr
0 j=1J0
) d t ptT .. .
(b):S’(t)+fo [hg(v)-sf(r—v)]dvdr
j=1 0 JO

) d pt pt. .. ]
(C):Sl(t)—f-fo [hg](v)-sf(r—v)]drdv
j=1J0 Jv
. d t .. o
=S+, h;](v)f st — v)drdv
j=1 0 v
—v
(d)—S(t)+Z h”(v)f s'(wydudv

j=1

. d t .. .
=S'W+). | hiw-St-vdv
j=10

=S'(0)+ Y (hy *SH(D),
j=1

where in (a) we applied the linearity of integration, (b) we used the definition of convolution,
(c) reversed the order of integration, and (d) made a change of variable u =7 — v.

Collecting the results for every dimension i, we arrive at the desired formula. |

C.4.2 Regularity Conditions

The following theorem presents the condition on the branching matrix & that ensures £ -
convergence of hg (1) = X5, ¢3"(¢) appearing in the PCMHP intensity in Theorem 4.1. As
discussed in Remark C.2, £!-convergence of hg(#) guarantees that the dynamics under the
branching process on the E dimensions is nonexplosive and that we have a finite expected

number of events.
Theorem C.3. If the branching submatrix a*F satisfies p(aFF) < 1, thenhy € £ (R*)?*4,
To prove Theorem C.3, we need the following result on convergence in £ spaces.

Theorem C.4 ([35]). Let £P(R") is the space of functions f :R* — R that have finite p-norm.

If1 < p < oo, every absolutely convergent series in £P (R") converges.
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The following preliminary result is an upper bound on the 1-norm of each entry of p®"(¢)
expressed in terms of the n’" power of the branching matrix . We use this upper bound in
the proof of Theorem C.3, which identifies the condition on the branching matrix « for a

convergent hg(?).

Lemma C.2. Let & = (a'/) € (R")*¢ and (1) = (' (1)) € (R*)®*¢ be a matrix satisfying
o) =a fl), fU()=0and [;° f(t)dr=1. Then forn=1,

whereb,, = (b;j) € (RM)*¢ and b;j =[1(@®™M .

Proof. We proceed by induction. Let &« and ¢(¢) be as stated. Let (i, j) € E x E.

Suppose n=1.

l" 1 )
by = l@®H7 I
=llo"l
@ =Nl
o i
P=alllfn

(0 — a:ij,

where (a) and (c) follow from the definitions of (pij and f ij and (b) follows from a/ being a

constant. Thus, b,, < a” holds for n = 1.

Suppose that the relation holds for 7 = k € N. That is, b; < a*. This means that for every
(p, q) € E x E, the following holds:

(C.38) 1(p®5)P4||, < (a®)P9.
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Now, we show that the relation holds for n = k + 1. We observe that
b = l@®* i),
= (=« @)y
Z((p@:k)il *(plj
l 1
(b) < Z ((p®k)il *(pleI
1
© < Z ((p®k)il “(plj H
; 1 1

-l Jer],

(@) _

gl ],

okyil|| o li

= ((p .

(d) Sz(ak)ilalj
]

In (a), the definition of the matrix product was used. In (b) and (c), the Minkowski inequality
and Young’s convolution inequality were used, respectively. In (d), our induction hypothesis
Eq. (C.38) was used.

By induction, b, < a” holds for n € N. [ ]

We are now ready to prove Theorem C.3.

Proof. (of Theorem C.3). Let p(afF) <1.
If we are able to show that the serieshp = Y5 | 7" is absolutely convergent in £ 1
then Theorem C.4 tells us that hg € L1 (R*)4*4,

Our task is then to prove absolute convergence of every entry in hg. If we denote hllg to

R+)d><d,

be the k" partial sum of the series hg, i.e.

k
k=Y @20,
n=1

then what we need to show is
lim [|(Rf) |, < oo,
k—o0

for (i,j)e Dx D.
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Define pfF € L1 ([R*)?*¢ and @F F € L (R*)@-9%€ g5 the submatrices of ¢ given by

allfll alefle
o=
afl fel L acefee
ae+1,1fe+1,1 ae+1,efe+1,e
¢" " = : : :
adlfdl adefde

@ may be written in block matrix form as

Convolving ¢ with itself, we see that (pziz can be written as

EE\®2
&2 (@p=7) 0

P =

E°E EE

@ x| 0

Convolving n times, we arrive at

(C.39) P2 =

For (i, j) € E x E, Eq. (C.39) states that
(C.40) (@EMY = (p"H*MY
Taking the 1-norm of both sides, we see that
(C.41) g™l = 1@ H*M V1 < (@)Y,

where the last inequality is due to Lemma C.2.
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Similarly, for (i, j) € E° x E,

1@ |11 = (@ F « (pFE)er-yi=ei,

(a) - ”((pECE % ((pEE)®n—l)i’j”1

b) _

! 1

(©) < Z ((pEcE)ifz . (((pEE)®n—1)le1
l

(d) < Z ((pECE)i'l
l

(e) < Z ((pECE)i'l
l

l

A (i

(C.43) — (aECE(aEE)n—l)i—e,j

In (a), we reindex i’ = i — e to start our index at 1. Lines (b), (c), (d) are applications of the

definition of matrix product, Minkowski’s inequality, and Young’s convolution inequality,

respectively. In (e), we apply Lemma C.2, and in (f), we apply the definition of (pECE .
Putting in Eq. (C.41) and Eq. (C.43) into Eq. (C.39), we see that

oneii (@fByr 1o
(C.44) (g™ =<
aECE(aEE)}’l—l 0
Taking }_>° , of both sides, we get
22021(aEE)n 0

2 () < | ——
n=1 h aE EZ(;ZOZI(“EE)n_l 0

I-afB)y"1-1 |0

(C.45) =

aECE(I _ aEE)—l 0

where the previous equation follows from p(a*f) < 1 and Proposition C.2.

Inspecting every block of Eq. (C.45), it is clear that that for all (i, j) € D x D,
(C.46) > g7 ih < oo.
n=1
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Given that
k .. k .. 8} ..
(C47) IthR = Y- g™ Ih —— 3 @™ Il <oo,
n=1 k—oo 521
we have proven that every entry in h is absolutely convergent in Z!(R™). [

Proof (of Theorem 4.2.) Consider a PCMHP(d, e) process with conditional intensity & g()
given by Eq. (4.5). If p(afF) < 1, Y02, 3" is a convergent function by Theorem C.3, so §g(1)
is well-defined.

We proceed by noting that the intensity & ¢(¢#) splits as the sum of three distinct terms:

1. an inhomogeneous Poisson process rate:

p() + ) (@ (@),

n=1

2. amultivariate Hawkes intensity:

Y Y @lie-1),

jEEC .J
JEE 1l <t
3. aconvolution term involving the Hawkes intensity:

Y wEte Y Y @lt-1.
n=1

e £
JEE n<t

We inspect each of these intensities separately.
For the process with intensity £ (f) to be subcritical, the processes corresponding to

each of these three intensities necessarily have to be subcritical.

Intensity (A). A Poisson process is independent of the arrival of new events, so the process

is subcritical as long as p(#) is a bounded function and Y37 , 93" is £ _convergent.

Intensity (B). The multivariate Hawkes process corresponding to intensity (B) may be

viewed as a process with branching matrix

0 aEEC
aEC - 0 aECEC .
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By Theorem C.1, this process is subcritical if p(agc) < 1. The eigenvalues of @ are the
solutions A of

(C.48) det(agc — AI) =0.
Expanding the left-hand side of Eq. (C.48),

0-AI| afff “Al|  afE

det(apc — AI) =

0 |afE -1 0 |afE -1

= det(-AD det(afE = AD = (=D)'FAE det(aEE - AD),

we see that the eigenvalues of agc are precisely 0 and the eigenvalues of af£°. Thus,
plag) = plaft)

By Theorem C.1 and given p(af£°) < 1, the multivariate Hawkes process with intensity
(B) is subcritical.

Intensity (C). Let (i, j) € Dx D. We can see that intensity (C) is intensity (B) (with branching

matrix @gc) convolved with the infinite sum 77 | (pg".

First, consider the matrix

I-afBy-1-1 |0

(C.49) Q=
aECE(I _ aEE)—l 0
In Eq. (C.45), we showed that
(C.50) > U@gm ) = .
n=1

Now, consider the (i, j) branching factor of the process with intensity (C), which can be
expressed as

o'e) ik
®n kj
‘PE) * "

n=1

(C.51)

X

1
Applying (a) Young’s convolution inequality, (b) Minkowski’s inequality, and (c) the matrix
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upper bound in Eq. (C.50), we see that Eq. (C.51) is upper bounded by:

5]
n=1

1 k

This tells us that the (i, j) branching factor of the process with intensity (C) is upper-
bounded by the (i, j) branching factor of a multivariate Hawkes process with branching
matrix Qagc. Thus, if we are able to show that the multivariate Hawkes process with branch-
ing matrix Qagc is subcritical, i.e., p(Qagc) < 1, the process defined by intensity (C) is
necessarily subcritical as well.

Qarc in block form may be written as:

I-afE)y1-1 |0 || 0| afE* 0| [0-afE) 1 -1)afE

QaEc =

aECE(I _ aEE)—l

c e c _ c e
0 OaEE OaEE(I—aEE) laEE

The eigenvalues of Qa - are the solutions A of
(C.52) det(Qapc — AI) =0.

Expanding the left-hand side of Eq. (C.52), we see that

0-Al| [0-afE) ! -1afE
det(Qagec — AI) = det

0 |afEa-afH) e E A
= det(-AD det(a? F - aPF)1aFF - A1)

= (-D)'EAE det (P E(d - afE) LaEE —AN).

Thus we see that the eigenvalues of Qa g are precisely 0 and the eigenvalues of aZ (I -

aPF)~LaFF° This implies that
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By Theorem C.1, if p(a? F(I— aFF)"1aFE) < 1, the process with intensity (C) is subcriti-
cal.
As the three sub-intensities that consist &z(f) all correspond to subcritical processes

given the assumed conditions, &x(¢) is then subcritical. [ ]

Corollary C.2. The regularity conditions for PCMHP(d, e) in Theorem 4.1 cover the Hawkes

process and the MBP process as special cases.

Proof. If e = 0 (Hawkes), we have aff = afE = aF°E = 0 and afE = a. Thus, only the
second condition is non-trivially satisfied, yielding p(a) < 1. If e = d (MBP), we have aF £ =
aPF* = aP°F = 0 and @ = a. Thus, only the first condition is non-trivially satisfied, yielding
pla) <1.1f0 < e < d (PCMHP), all branching submatrices are possibly nonzero and all three

conditions are potentially non-trivially satisfied. |
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C.5 Additional Results and Proofs for PCMHP Inference

Proof (of Theorem 4.3). Since E2 Q, {1,...,e} splitsas {1,...,qt U{g +1,..., e}. Given this
Jyni

. Q°
i1 and event times S,

observation, the joint probability of the event volumes U jEQ{C

P{Cl....Chivr, €Y, Cly 20

n4’ T- ’°°

can be written as

(C.54) PICh. e O CO e, 65 708

na’ T- 1

Conditioning on the E¢ event times {Jf;il, ... ,ij‘il,}, Eq. (C.54) splits as

nlre: T— 2%

(€.55) P{C...,Chyyors €, Cly ] 57655 60 gt e |

Ina PCMHP(d, e) model, events in dimension j € E are independent of events in dimen-

sion k # j, k € E, which implies that Eq. (C.55) splits as a product over dimensions,

Jfo}- 11 [F"{Jé’%_

q . .

J J

(C.56) [] P{Cl,...,cnj .
j=1 j=q+1

Jé’ff}-ﬂm{,]f;fl,...,]fj‘?_}.

Taking —log(:) of both sides of Eq. (C.56) and converting the product to a sum over
logarithms, we get

q . . c e . .
$(®;T):—ZlogP{C{,...,C]j Jfﬁ;@}— > logP{%ﬁ%_ Jff_;@}
j=1 " j=q+1
S j
(C.57) - ) logP{JfT_;@}
j=e+1

Using Proposition C.3 on the first term and and Eq. (C.7) on the second and third terms,

we arrive at the desired formula. [ |

Remark C.3. Joint fitting. To jointly fit multiple (R > 1) PCMHP(d, e) realizations, one needs
to maximize the sum of log-likelihoods correponding to each realization. That is,

R
(C.58) L\ =) £ 1),
r=1

where £" (©; T) is the negative log-likelihood corresponding to the r* h realization.
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Additional details on runtime complexity. Evaluating .Z’(®; T) has a runtime complexity
of

(C.59) @((C+nEc) - (nQ+nQC));

which comes from combining the time complexity of calculating the -Zj¢.1 loss G(m°(C+
nf%)) and the Zpp-11 loss © M (C +nf%)). C denotes a constant independent of the dimen-
sion of the PCMHP and the data. Having closed-form expressions for convolutions on
hg(t) simplifies the convolutions in 6{5(-) (see Eq. (4.5)) and E é(-) (see Eq. (C.37)) to function
evaluations in &' (1). We sketch the proof below.

To calculate Zjc.11 (®; T), we iterate over each dimension j € Q and every observation

. j j . Q . . —J j .
interval [0, _,,0;), requiring n** loops. For each iteration, we calculate Zy(0,._,, 0;), which

has time complexity @(nEC), since we need to calculate the influence of each observed event
in E°. Thus, the total time complexity is onQ-(C+ nEC)), where C accounts for a constant
number of calculations independent of the data (ex. calculating the baseline intensity and
hg(1)).

Calculations for Zpp.1 1. (®; T) are similar. Instead of iterating over j € Q and Cj , we iterate
over j € Q¢ and t,]; € Jf%_, requiring n? loops. Within each loop, we calculate & é(t,{), which
has time complexity & (n?"). We note that this dominates the time complexity @(|Q| - n**) of
calculating = é(T; 0®) in each loop. Thus, the total time complexity is @(nQC -(C+ nEC)).

In the case E = Q = @, the runtime complexity reduces to @ ((nf*)2), which is consistent
with the multivariate Hawkes process. If E = Q = D, runtime complexity reduces to @ (nf),

which is consistent with the MBP (i.e. Poisson) process.

Remark C.4. In general, the negative log-likelihood £ (®; T) is nonconvex in © due to the
presence of nonlinear parameters, e.g. 0%/ for the exponential kernel (see Appendix C.6 for
a special case of PCMHP (2,1) where we have a convex likelihood). Due to this, gradient-
based algorithms have no guarantee of attaining the global optimum. Convexity analysis for
the general form of £ (0©; T) is difficult due to the complexity of evaluating hg(t) in a high-
dimensional setting. In Appendix C.6, we prove convexity for a special case of PCMHP(2,1).
For nonconvex cases, global optimization (such as the Lipschitz Global Optimizer LGO [91])
can be leveraged to find the global optimum, for instance using a branch-and-bound or

randomized search strategy over the parameter space or iterated local optimization.
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C.6 Convexity Analysis of the PCMHP (2, 1) Likelihood

Consider a PCMHP(2, 1) process. Suppose the associated kernel can be expressed as ¢’/ (f) =
aiffij(t; 0'/), where fij (t;0')isa probability density over [0,00) parametrized by 0'/. Given

a multiple impulse exogenous input function,

i0(t—c
ﬂ(t)=2(a ( c)),

7 \bi-6(t—d,)

we show that for a fixed set of {§?/} parameters and given observed point data ! = {s,lc}
and V2 = {si} over [0, T) for dimensions 1 and 2, the negative point-process log-likelihood
(PP-PP NLL) of the PCMHP(2, 1) is convex in the {a’/} parameters.

We first consider a single impulse as the exogenous input. Suppose

(1) = a-o6(t-c)
U=y se-a)

where a, b, ¢, d = 0. Given this general impulse exogenous input, we aim to show that the
PP-PP NLL is convex in the {a!/} parameters. Given observed data points pl = {s,lc} and
p2 = {si} over [0, T) in the two dimensions, the PP-PP NLL is given by

(C.60) L (a;T) =-log) (£1(s; @) —logy_ (&3(s; @) + E}(T; @) + E5(T; a),
1 2

N N

k k

where

(C6Y) &(ba)=ad(t—co)+ah' t-o[t>c]+ Y @ —t)+h' (@O * Y *(t—17)

e<t o<t
(C62) &Ba)=bs(t—d)+bhi'(t-d[t>d]+ Y 95— )+h W) * Y 9 (t— 1)
<t 2<t
(C63) Ejs@=aft>c]+aH' (t-0)+ ) OFU—t)+h (D) * Y ©F(t—1t2)
<t <t
(C64) Ei@)=b[t>d]+bH (t—-d)+ Y OF(t—t2)+hi' () Y DF(t— 1),
<t Z<t
and
o (a1 (1;6") 0 on
C.65) hy () =
( 1 ;1(a21f21(t;621) 0
L. r .. t ..
(C.66) H(t-u) :f h (r—w[r > u]dr :f h (r - wdr
0 u
(C.67) @,/ (1) = a”f f, @0 hdr = a'VF) (540}
0
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Our goal is to show that Eq. (C.60) is convex in the {a’/} parameters for fixed {§"/}. Our
strategy is to show that each of the four tems in Eq. (C.60) is a convex function of {a'/}.

First, note that the map / : x — —)_logx is convex and non-decreasing. As such, for
—logzs}C (&1 (sp faDh = Lo & (5 1a'/}) to be convex in {a’/} (where &} (- {a'/}) is interpreted
as a map from a parameters to the conditional intensity, i.e., (0,1)* — R"), it is sufficient to
show that 5% (-; {a'J}) is a convex function. Similarly, for — logzsi (f%(si; {@'/MH}) to be convex,
£2(;;{a'7}) has to be convex. For the last two terms of Eq. (C.60) to be convex, Z1(T;{a'/})

and Z2(T;{a'/}) have to be convex.

I. Convexity offi (;{a’}). Letus split Eq. (C.61) as follows:

L4 LB Le
(C.68) SW=adt—c)+ah'(t—-c0)+ Y @2 (t—t)+hi' (D * Y @*(t—17)
<t <t

To show convexity of ¢!, we need to show convexity of each of the indicated terms.
For the I.A term, we compute the Hessian matrix with respect to {a’/} as

02 h%l 02 hil
0%(I.A) ] @aZ  Ga2?

62 hil 02 hil
(0&21)2 (6(122)2

(C.69) Hess; 4 = Gail)?

Let us compute each of these terms. First, observe that from Eq. (C.65) we can write

Z%OZl(all)n(fll)®n 0

(C.70) hy (1) = .
a21 21010:1(“11)71—1](‘21 * (fll)@(n—l) 0

Immediately, we see that

21,11
1 o _ 11\n-2, r11\®n _ 1 o _ 11\n  rlly®n
(C.71) (aan)z_n;”(” D@2 _(a“)z,;z”(” D(a)"(fH®" =20

Ozhil 62h}1 Gzhil
Ba12)? = 0a?1)2 = 0a?2)? =

Since IIfij =1, X%, n(n- 1)(a11)”(f11)®” is upper bounded by Y%7, n(n - D(atHn,
which can be shown to be convergent by the Integral Test.
It follows that the set of eigenvalues of Hess; 4 is {0, itz Xo2, n(n— 1) (atHn(fFihHer (¢ -

a)}. Since all of the eigenvalues of Hess; 4 are non-negative, Hess; 4 is positive-semidefinite

and the term I.A is convex.
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For the LB term, since ¢’/ = '/ f1J(;;0'/) is linear in a'/, it follows that the Hessian
matrix of (p22 (t— ) is identically zero, and thus [.B is trivially convex.

For the 1.C term, since h!'! and (plz are differentiable functions of a'/, it follows that

0° 0°
Oaii)2 1@ Y - = (0 ) 0y (1= 1)+

l] 2
2<t t12€<t(0 )
2

(0aii)?

hi' )+ 3 @3 (t—17)

2
tk<t

Since the Hessian for (p;Z(t - tz) is trivially 0, the first term of I.C is trivially zero. For the
2 11

. 0
second term, since Gal ,)2 =0unless i = j = 1, we only need to consider the i = j =1 case.

Using Eq. (C.71), we have

62
(6a11)2h11m x ) pyP(t— 1) = @ 11)2 Z nn-D@H"(FHe 0« Y e -1?)

t2<t t2<t

“ @ 11)2 T 3 nte- D@ G0« - )

t2<t” 2

alZ

= @l = > ntn=1@" (0 * 20 1),

rZ<tn=2
which is upper-bounded by % | A2 2%, n(n—1)(a')", which is convergent and positive.

Thus, I.C is convex.

Since I.A, 1.B, I.C are all convex, {% is convex in {a’/}

I1. Convexity of 5%(- ;{a}). Letus split Eq. (C.62) as follows:

I£LA IfLB IiC
(C.72) EW=bs(t-d)+bh (t—d)+ Y 93P (t— )+ R () * Y @t —12)
<t <t

I1.B and II.C are trivially convex, similar to I.B and I.C.

For II.A, observe that

62 h%l 62 th
Bal2 T

0%(I1.A)
(C.73) HessH_A: —_— | =

(0aii)?
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From Eq. (C.70), we see that

62]’121 0o
(aa ) n=3
a21 00

aZh%I _ aZh%I ~ 62h%1

0a22 ~ @a?)2 _ (0a?2)? =

Since || f'/|| = 1, it can be shown that C 111)3 < (n=Dn-2)(@M)"f2« (12D < oo

by the Integral Test.
The set of eigenvalues of Hessy; 4 is {0, b2 a11)3 Y2 . (n=1)(n=2)(a™)" 21« (f1)en-D (-

d)}. Since all of the eigenvalues of Hess; 4 are non-negative, Hess;; 4 is positive-semidefinite

and the term II.A is convex.

It follows that &7 is convex.

I11. Convexity of Z} (T; {a'/}).

I11.A I111.B I111.C
El=alt>c]+aH t—)+ Y. F(—1)+h' () Y DF(t—19)
rZ<t 2<t

Similar to I and II, ITI.B and III.C have zero Hessians as CD;j is linear in a'/.

For I11.A, see that
aZHll aZHll
FPUILA)] _ | GaF  GaPp
—(0aij)2 - 62H11 02H11
(60,21)2 (0(122)2

(C.74) HESS[H_A =

Integrating Eq. (C.70), we see that

Y (@M LI (z - c)dr 0
(C.75) H1(t—c):( e L tc21 SN .
D D (e Ll Y S ) (t—cdr 0
We then have
02H” o
1 11\n— 2[ 11\®n d
Gl n;zn(n )a) (f " @-odr

1
(11)2Zn(n D(a'" f(f”)m(r c)dr =0

92 H1H 62H111 GZHH
(aa12)2 - (6a21)2 (6a22)2
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Note that iry; 11)2 Yo, n(n-1@"h" [L(£f11)®"(r - ¢)dt is upper-bounded (term-by-term)
by (an)z YoL,nn-1) (a'?,
Since the eigenvalues of Hessj;; 4, {0, (all)z Yo, n(n— D(ath” f (f11)®n(T )dt}, are

which can be shown to be convergent by the Integral Test.
nonnegative, I1I.A is convex, and consequently = _1 is convex.

IV. Convexity of Z2(T;{a'/}).

I\iA I\J/;B I‘J/;C
B2 =b[t>d]+bH (t—d)+ Y @F(t— ) +hi' (D) * Y @ (¢ —1D)
Z<t Z<t

Similar to I1I, IV.B and IV.C have zero Hessians as a'/ is linear in (Déj .
For IVA, see that

62 H%l 02 H%l
GZ(IV.A)] _ a2 a2

(aaij)z aZHfl 02Hf1
(60521)2 (6(122)2

(C.76) HeSS[V.A =

From Eq. (C.75), we get

62H21
(a 11)2

t
a?! Z(” D(n-2)(a'y" 3[ £l (F1Y2-D (7 _ g)dr

21 00

(11)32(” D(n-2)(a'H" fle*(f“)w D —d)dr =0

92 lel 02 lel 02 H21
Bal2)2 (0a21)2 (aazz)z

Note that 7 11)3 Yo (n-1Dn-2)(aM)" [ f2 « (F1H®"D (7 — d)dr is upper-bounded
by & (a11)3 Y ,(n—1)(n-2)(a')”, which is convergent by the Integral Test.

From this we see that the eigenvalues of Hessy 4 are {0, b( 11)3 Yo s(n=1)(n— -2)(a'Hn f f21
(fHer=1(zr-d)dr}. As these are nonnegatlve we have that Hess v 4 is positive-semidefinite,
and so IV.A is convex. Consequently, = _1 is convex.

As &l f%, :}, :% are all convex in {a'/}, it follows that the PP-PP NLL for the given exoge-
nous function () is convex in {a'/}.

Now, suppose that we have a multi-impulse exogenous input, given by

um=;(

a;-6(t—c;)
b;-8(t—dp)|

171



APPENDIX C. APPENDIX TO ‘LINKING ACROSS DATA GRANULARITY: FITTING MHP TO
PARTIALLY INTERVAL-CENSORED DATA’

Since the multi-impulse exogenous input is a sum of single exogenous input functions,
the effect of each impulse is simply additive on the conditional intensity ¢ 1,6% and the
compensators Ei, Ef. Since a nonnegative-weighted sum of convex functions is still convex,
it follows that the PP-PP NLL for the multi-impulse exogenous input is also convex in {a'/}
for fixed {6%/}.
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C.7 Approximating the Conditional Intensity & (1)

As discussed in Section 4.4.1, in general, a closed-form solution for the conditional in-
tensity &g (t) in Eq. (4.5) is not guaranteed to exist since the infinite sum of convolutions
hg (1) = X572, @3 (t) cannot be expressed in closed form. In order to calculate &g (f) given
a sequence of observations and sample the PCMHP(d, e) process, we require the devel-
opment of numerical techniques to approximate &z(#). In this section, we describe two
approximations that enable calculation of 5 (1).

Given the set of observed histories ﬁ?ﬁc on [0, 1), suppose that we are interested in
approximating the intensity £ (#). Eq. (4.5) can be used for this task, however, there are two
issues that we first need to address. First, the formula involves taking the convolution of
functions. If the functions involved are not too complex, the convolution can be calculated
in closed form. In general, however, this is not the case and we need to approximate it
numerically. Second, Eq. (4.5) contains the infinite sum of convolutions hg(#), which in most
cases cannot be written in closed form and has to be approximated as well.

To address these two issues, we introduce two approximations:

e Approximating continuous convolution with numerical convolution;

* And, approximating the infinite series hg(¢) with the sum of the first k terms hg(t).

C.7.1 Numerical Convolution

Let f and g be matrix functions defined over [0, ] such that the number of columns of f(s)
and the number of rows g(s) are equal, i.e., the matrix product f(s) - g(s) can be calculated.
Assume that we are given a partition £210, f] of [0, ] with constant increment AZ, such that
P10, ={tp=0<t, =A7 <1, =2AT <...< (P-1)A? = tp_; < t = tp}, where P = [t/A?].
Let f[0 : f] be the numerical array obtained by sampling the function f(#) on each point of
2(0,t], i.e., [£(0),£(1),...,f(2)]. The array g[0: ] is defined similarly.

We introduce the conv operator, a discrete approximation to continuous function con-
volution, where the convolution f * g on [0, f] is approximated as a sum of convolution terms
over the partition 220, t]. Within each subinterval, we fix g at the left endpoint and perform
the integration on f. The univariate version of this convolution approximation scheme was
considered by [102].
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Proposition C.5. Given a partition 2|0, t] of [0, t] and functionsf and g, (f « g)(t) is approxi-
mated by

(C.77) conv(f,g,22[0,1)= ) [F(t;) —F(t —min(t;1, )] -g(t),

t;€2200,1]

where - is matrix multiplication and

¢
F(t):f f(r)dr.
0

Proof.

min(#;41,1)
f f(t—1)-g(r)dr

I;

min(#1,1)
[f f(t—7)dr | -g(t)
t;€2[0,t] LY

Y [F(t;) —F(r—min(tj41, 0)] - 8().
t;€22(0,t]

t
f f(t—1)-g(r)dr
0 1,€22(0,t]

U

To obtain an approximation for ¢%" (1) over 22(0, t] for n = 2, Proposition C.5 can be
applied n times to ¢ (f). Summing the resulting expressions and applying the infinite series
truncation in Appendix C.7.2 allow us to obtain the approximation hg[0: ].

Given hg[0: t], we see in Eq. (4.5) that calculating &[0 : ¢] involves a second set of con-
volutions, where we pair hg[0: ¢] with the background intensity p[0: t] and the influence
contributions of the events in the E¢ dimensions. Applying Proposition C.5 to these con-
volutions requires the integrated hg(#), denoted as Hg(¢). Proposition C.6 writes this as a
function of the integrated Hawkes kernel ®(t) and hg().

Proposition C.6.

(C.78) Hg(1) = ®p(1) + hg (1) * Pg(1)
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Proof.

t
Hg (1) :f hg(s)ds
0

r oo
= Y @3 (s)ds
0 n=1

(e t

Y. | @F'(s)ds

n=1J0
t 00 t

:f pps)ds+ > | @ (s)ds
0 n=2J0

(e ] t
=00+ Y. | (ppx@d" H(9)ds

n=2

t oo
:<I>E(t)+f0 > (pF" @) (s)ds

n=2

t o0
=®p()+ | > (@7 = pp)(s)ds
n=1

t
= ®g(1) +f0 (hg * @g)(s)ds
=®g(1) +Hp (1) * Pp(2),

where the last line follows from the Fubini-Tonelli Theorem and that hg and ¢ are £*-
integrable. [

C.7.2 Infinite Series Truncation

The infinite series hg () = Y97, (pzi"(t) is approximated by truncating the series up to the
k*t" term, where k* is selected based on a convergence threshold we discuss below, and
replacing the continuous convolution * with the numerical convolution operator conv. If
we set

conv” (g, 210, t]){wE[O:t] n=t

conv(conv"‘1(¢E,@[0, ), @ 2200,t]) n>1,
then our approximation to hg(#) is given by
o

(C.79) he() = ) conv’ (g, P[0, 1]).

n=1

The accuracy of this approximation can be specified by a threshold on the max norm.
Definition C.3. Given a real matrix M = (m*/), we define its max norm ||M||ax as

(C.80) M|l pax = nl,le}x|m"f .
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Our approximation of the function hg over 2|0, t] is the set of points hllg* [0: £], where k*

is chosen to be the smallest k = 1 such that

(C.81) max Hconvk((pE, 20, s]) Hmax < Yh,

s€22(0,t]

where y" > 0 is a predetermined convergence threshold.

C.7.3 Algorithm to Approximate &;(¢)

Algorithm 2 combines the approximation techniques in Appendices C.7.1 and C.7.2 to
compute &x[0: T] for a pretermined maximum time 7 > 0 and observed data ﬂ”]’?f . This
algorithm involves three steps: (1) calculating the infinite sum approximation hllg* [0:T]; (2)
iterating over the events in E€ and getting the running total intensity contributed by these

events; and (3) calculating ;[0 : T'] using Eq. (4.5).

Algorithm 2: Approximation of {z(#) by Discrete Convolution and Infinite Series
Truncation

Input: kernel ¢ (1), kernel integral ®(#) exogenous input function (1), partition

?,Z[O‘, T1=10:T] With increment AZ > 0, observed E€ data points in [0, T)
{Jf; = {tljc} | j€ES, t,]C < T}, threshold yh >0

Output: {;[0: T

initialize P = 5; &5[0: T1 =al0: T) = 0P+ D hp[0: T) = A[0: T] = @[0: T1;

do

A[0:T] =conv(A,@g,[0:T]);
hpg(0: T1=hg[0: T]+A[0: TJ;

while max,—o:p (| Altp]] ) 2 V"

Hg[0: T]=®[0: T]+conv(hg, ®@,[0: T]);

for j € E°do
for t,]C € th] do
for,€[0:T] do

if t,]C < t, then . .
altp] = alty] + @ty — 1);
end

end
end
end
Epl0: TI=pl0: T1+al0: T]+conv(hg, u+a,[0: T]);
return é¢[0: T

The two hyperparameters A? and y” control the approximation error involved in cal-

culating &;(f). The higher A? and the lower y”, the better the approximation. This, of
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course, comes with the tradeoff of a longer computation time. Note that A” depends on
the timescale of the process considered. A simple heuristic for A? is setting it with consid-
eration of the interevent distribution of the point process history Jfﬁc, i.e. {tr — tr_1}. One
can start by setting A? as M =median({ty — tx_1}), then setting it as %M , %M , and so on, and
calculating the relative difference of &;(¢) for progressively smaller A”. One then chooses
A? with a relative error lower than a predefined error threshold.

An alternative way to calculate & (?) is to interpret the PCMHP(d, e) intensity in Defini-
tion 4.1 as an expectation of the multivariate Hawkes intensity, with respect to the events
in the E dimensions conditioned on the events in the E¢ dimensions. To compute this
expectation, we simply sample Hawkes event histories over the E dimensions using the
Hawkes thinning algorithm, calculating the Hawkes intensity given each sample, and then
average the resulting intensities. The method is presented in Appendix C.8.

We have presented three approaches to compute &z (7): (1) a closed-form solution for
the PCMHP(2, 1) process with exponential kernel derived in Appendix C.3; (2) the approach
developed in this section based on numerical convolution and infinite series truncation; and
(3) a sample-based approach developed in Appendix C.8. A comparison of £z (f) obtained
from these three approaches for the PCMHP(2, 1) process is presented in Appendix C.9.
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C.8 ¢&x(t) as a Conditional Expectation over MHP Samples

With our definition of the PCMHP(d, e) conditional intensity () as the expectation of the
conditional intensity of a d-dimensional Hawkes process given observed event sequences

Jfﬁf, a straightforward way to calculate &(t) is as follows:
1. Use Algorithm 3 to obtain 754,105 Samples of Jff_.

2. Given the n'" sample {Jf%n = {t,i n}l J € E}, calculate the Hawkes conditional intensity:

(C.82) A =p+ Y Y @u-th+Y Y @lu-t)

= e
JEE B <t JEEL ¢
n k,n

3. Calculate the average to get the MBP conditional intensity:

Nsamples

1
(C.83) p()=—— ) Au0)

samples n=1
The approximation error of this method depends on the number of samples we take
Nsamples- The higher nggp, 105 we take, the lower the standard error of our average Eq. (C.83).
Algorithm 3 is a modification of Ogata’s thinning algorithm in Algorithm 1, where we
consider the intensity contributed by the event sequences in Jfff as part of the exogenous
intensity, which in the usual case is just the constant p.
Since the exogenous intensity is nonconstant due to this modification, Algorithm 1 has
to be adjusted since it assumes a constant exogenous excitation. Specifically, we need to

adjust the upper bound
- d .
(C.84) A=) A"
i=1

so that its dominance holds until the next event after ¢.

The i’ component of the conditional intensity A(f) given event sequences Jfff can be
written as

. _ . .. j .. j
(C.85) Moy=p'+ ) Y o a-5)+3 > o Vt-1.
JEEC {4 JEE 4 o4
k k

Given that every component in ¢ is non-decreasing, a natural upper bound on ¢/ (- ti)

is ¢'/(0). Thus we can write

Ao <pi+ Y oo Y 1+ Y ¢e—1))

JeE* t]€<t feEti<t

=i+ Y oA+ Y Y oli-t)

jEEC J€E i<y
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The upper bound A(¢) has to hold until the stochastic time of next event. The only non-
stochastic upper bound for Ieift] | until the next event is Iif%l. Setting this upper bound we
get

(C.86) A=Y |p'+ Y 17290+ Y Y 9 —-1) ]|,
i=1

jeEe J€E <

which is now a correct upper bound for this setup.

Algorithm 3: Simulating an e-dimensional Hawkes Process on [0, T') Given Observed
Event Sequences ;e e 75 by Thinning

Input: kernel matrix ¢ (), exogenous excitation g; observed event sequences
Jf% = {ti} for j € E¢; time horizon T >0

Output: Jf% = {tljc} forjeE

initialize ¢ = 0; ;. = ¢ for j € E;

while t < T do

A= iep |1+ Zjeps 1719 @ + Zjep £,y 0" (1= 1))

u~uniform(0,1);

w=—log%;

t=t1t+w,

U~uniform(0,1);

ifUL <Y ;cg A" (¢t) then

j=5
while UL <Y J_ (1) do
j=ith
end
w=no
F], = 761 U{t]};
end

end
if t,{ < T then
‘ return 7 for j € E;
else
‘ return ﬁ”%,...,%%\{ti},...,%f;
end
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C.9 Comparison of ¢ ;(#) Evaluation Methods

As noted in Section 4.4.2, a closed form solution for &¢(#) of a generic PCMHP(d, e) process
cannot be written down except in special cases. One of these special cases as we have
shown in Appendix C.3 is the PCMHP(2,1) process with the exponential kernel. Here we
present a comparison of the two approximation schemes, developed in Appendix C.7 and
Appendix C.8, with the closed form solution for the exponential PCMHP(2, 1) process.

Fig. C.2 shows a comparison of &1 (#) and &7 (¢) computed through the numerical convolu-
tion approximation, as an expectation over Hawkes processes, and the closed form solution
in the Appendix. We see that there is agreement in all cases, showing the viability of our two

approximation methods.

Numerical Convolution (A” =0.1)
0.6 1 i 0.6 - Expectation over Hawkes (Nsamples=5000)
Closed Form

= =
= =
= Ne—
LY Ev
o2{ § \ 1\ 02
0.0+——— — —— ‘ 00 . . - — .
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure C.2: Comparison of the exponential PCMHP(2,1) conditional intensity obtained
three ways: (1) the method based on numerical convolution in Appendix C.7, (2) the
expectation-over-Hawkes method presented in this section, and (3) the closed-form solution
in Appendix C.3. Parameter set: 8 = [1,1,0.2,0.5], @« = [0.5,0.5,0.5,0.5]. Event sequence in
dimension 2: #4, = {2.5,5,15}.
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C.10 Numerical Scheme to Calculate PCMHP Likelihood

For this section, we assume that Q = E (see Section 4.4.2). Algorithm 2 can be used to
calculate the negative log-likelihood of a PCMHP(d, e) process given interval-censored
counts in the E dimensions and event sequences in the E¢ dimensions. However, it only
returns the conditional intensity () on the points on the partition 22[0, T] and does
not return the compensator Zg(f). These two observations are problematic if we want to
compute the negative log-likelihood .Z (@; T) because (1) we need the compensator Zg(t) to
compute .Z (@; T), and (2) we would have to evaluate & () for every timestamp in U jc g th]
and the compensator on the left and right endpoints of the observation intervals. Points
where we need to evaluate these functions may not coincide with the points on 22[0, T1.
Though we can interpolate our points of interest (i.e., the event timestamps and the censor
points) on the partition, it is prone to error. A more accurate approach would be to calculate
the £ (1) and Zg(¢) directly at the points of interest.

In this section, we introduce Algorithm 4, which allows us to compute .Z (®; T) given a
set of event sequences and observed counts.

Let I =Uje EC{T’Z} be the collection of all observed event timestamps in the E¢ dimen-
sions. Let 0 = U e E{o{,} =Ujer @/ be the collection of all censor points in the E dimensions.
Let? ={0=ty<--- < tp = T} be apartition of the time interval [0, T'] with step size % Define

the points-of-interest set ~ as the union of these three sets supplied with labels ;. Let
(C.87) T ={(t; €)} =T UOUZ,

where t; is the i point-of-interest, €; = {(r j»d;)} is a set of ordered pairs containing point
ti's roles {r;} and corresponding dimensions of interest {d;}. Here, r; € {ts, 0, p}, where ts, 0
and p represent event timestamp, observation censor point and partition point, respectively.
In the case that r; = p, d; is unspecified. Otherwise, d; € D.

We iterate over 9 in Algorithm 4, storing the contribution of each point-of-interest to
the interval-censored log-likelihood and point-process log-likelihood defined in Eqgs. (4.11)
and (4.12), respectively. The overall log-likelihood .Z (®; T) is then the sum of these two.

Runtime Complexity. To get an estimate of the runtime complexity, observe that Algo-
rithm 4 can be decomposed into three major steps.

1. pre-compute hg[f: tp] and Hg[ty : tp],

2. iterate over ke I, computing a[#;] and A[#¢], & if ;. is an E°-timestamp (to calculate

the PP-LL contribution), and Eg; if t is an E-censor point, and

181



APPENDIX C. APPENDIX TO ‘LINKING ACROSS DATA GRANULARITY: FITTING MHP TO
PARTIALLY INTERVAL-CENSORED DATA’

Algorithm 4: Computing the Negative Log Likelihood of a Partial MBP Process
Input: kernel matrix ¢(#), kernel integral matrix ®(¢), exogenous input function p(#), exogenous input integral S(1),

points-of-interest set = {(¢;, (rjdiNt=9 v (Ujeg @’f) U2, censored counts {C{C} for j € E, threshold yh >0
Output: NLL, the negative log likelihood of the partial MBP process

initialize hg (fo : tp] = 0P+ ALty : tp) = plto: tplialty : f7] = Alto: f5] =0 T D g lag 45 11 =

0dxdx(T1+D); 1j = 0, 9J = 01071y j € E;PPLL = ICLL = 0;
do
Alty: tp]l = conv(A, g, [t : tp]);
hglty: tpl =hglty: tpl+Alty : tpl;
while max,_¢.p (| Alzp] ||max) =yh
HEglf: tp] = @[ty : tpl + conv(hg, @, [y : tp]);
fork=0:|9 | do
for j € EC do
for t; (—:ﬁf’t]k do

alty] = alty] + @i (i — 1);
Alt] = Alt) + @ (1 — 17);

end
end
for rj,dj€<€k do
if rj=ts then
Ep = p(ty) +altl;
if |E| # 0 and k # 0 then

| &g=¢&gp+convihg, p+a,lt: ));
end

d;

PPLL = PPLL +log¢ '
end
if rj=o then
EE = S([k) +A[tk];
if |E| # 0 and k # 0 then

| Ep=Eg+conv(hg,S+Alfp: 1)

end
. d;
—_= .
w.f[l =g
U=1+1;

end

end

if k=19 | then

ZEp=Eg+convthg, S+A,[f: t]);

for j € E€ do
PPLL=PPLL-Z;
end
end
end
for j € Edo

diff(1:167 )1 = w/[1: 167 1 -0/ [0:167] - 1;
ICLL=1CLL+Y/?] (CJ -logdifflk] - difflk));

k=1
end
NLL = —(PPLL + ICLL);
return NLL

3. iterate over E to calculate the total IC-LL.

To get the runtime complexity of the first step, we first observe that hg[f : tp] is com-
posed of an infinite sum of self-convolutions of ¢ over the partition 22 (see Eq. (C.79)).

Given the partition length A”, there are [A—TP] partition points. For each partition point, we
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perform a matrix multiplication of @'(d - e) entries, since ¢ is a d x d matrix with e nonzero
columns. Thus a single convolution scales as @’([ 71-d-e). Consequently, hg[f: tp] is ob-
tained by recursively applylng the convolution operation and summing up the k* terms (see
Eq. (C.81)), yielding @ (k™ - [ 51-d-e) operatlons

For the second step, we assume that 9~ = {J,0, 2} are pairwise disjoint, so that we can
write IPJLI g |+I6’|+|9”| —nf4+nf+ [ 5 |. For each point #; 1nJ we pre-compute a[#x] and
Altx], which takes @ (nf* - d) operations (since we loop over all Hawkes datapoints in E and
we have to compute a and A values in each dimension. Next, we compute ¢ only for points
tr € I (since we need them for PP-LL calculations). Each point ¢ € 5 (of which there are

C

nE+nEC ) requires 0 (d + [ 51-d-e) operations ( evaluation of exogenous intensity and the

E
convolutlon operation). Similarly, each point ¢ € G (of which there are M?T[l) requires

O(d+ [ ] d - e) operations. Thus, the second step has runtime complexity & (IJ E [n

d+2 Ijnl [ 51-d- e]) The first term, being quadratic in the number of events, dominates

over the second, being linear, hence we can simplify the complexity as @)(Iﬂ~ |-nf . d).

The third step has complexity @ (nF).

Consider two cases.

(a) If E€ = @, then nf" =0, simplifying the second step’s complexity to @’( { 5] -d- e])
The total runtime complexity is then linear in n¥, similar to that of the MBP (Poisson)
process.

(b) If E€ # @, we observe that the first term of the second step’s complexity is quadratic
in n*, similar to the MHP. In practice (particularly for high-frequency data), the number
of observed Hawkes events nf* dominates in magnitude over the other parameters, which
leads to the second step dominating the time complexity. Thus, the runtime complexity of
Algorithm 4 scales as @(In +nf + [ 1) -nf - d).

Thus the runtime complexity of evaluatlng the PCMHP likelihood intuitively lies in
between the complexity of the MBP (Poisson) process and MHP.
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C.11 Gradient % (®; T) Calculations

In this section we calculate the gradient of the negative log-likelihood .Z (®; T). Our starting
point is Eq. (4.6). Taking the gradient with respect to the parameter vector ® of both sides
and using linearity of the gradient operator, we have

(C.88) Lo @ T)=Y 0oL O+ Y 0050, ©;T).
jeE jeE®

Taking the gradient of Eq. (4.10) and Eq. (4.11), we obtain:

, W o
(C.89) 00ZL)  ©;T) = 1;1 [0eZ (0}) — 00 (0;_,)]

j
1-—F
El(0))—Zi(0]_))
~0e&! (1)) X

(C.90) 0L (©;T) = ol
PP-LL ] &i(t])

b de=! (T).

Now we would need to calculate the gradients of the conditional intensity & and the
compensator Eg. Recall that our parameter vector ® consists of the Hawkes kernel parame-
ters contained in ¢ and the exogenous parameters y and v, in view of Eq. (C.93).

Let 0 € {y’,v'}. Taking derivatives of Eq. (4.5) and Eq. (C.37), we see that

0yc&' (1) = 81185 (0) + hif (1)
O k& (1) = 85+ HF (1)
0E (1) = 83+ HIF (1)
O (1) =t-8;5+ hiF(D) * 1.

Let 0 be a parameter of the Hawkes kernel ¢. For example, if we use the exponential
kernel, then 6 € {0/, a'J}. Again, taking derivatives of Eq. (4.5) and Eq. (C.37), we get

00E( =Y Y Gpplc(t—t) +he(®) * Y. Y dpphe(t—1tl)

i€E i<t I€E° ¢i <
(C.91) +0ghp() -y +0ehp(D) * [v+ Y Y dpeple(t—th) |,
1€E® il <y
EMD =Y Y 0g@L(t—t)+hp(®)* Y Y 0p®Lc(t—1])
i€E iy 1€E i<y
(C.92) +0php(t) * |y +v-t+ Y. Y Gp®Lc(t—1t)|.
1€ES ¢l <y
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The derivatives involving ¢ . and ® ¢ are straightforward to calculate given the form of
the Hawkes kernel. The derivative involving dghg(f) can be calculated from ¢(¢) and its

self-convolutions using the following observation:

dphp =0 )_ 3"
n=1
=) Ogpz"
n=1

o0
=g+ ) Opp}"

n=2

=0gpp+ Y 0p(pE™ ' = pp)

n=2

=0g@pp+ Z (‘Pgn_l *0g@pp + Getpg”_l *@Pp)
n=2

n—k-1
E .

00 n-2
=0p@r+ Y (@2 % 0ppp+00prx @2+ Y @2  x Opprx @
n=2 k=1

We can leverage this recursive calculation to compute dphg(#) efficiently. The method is

presented in Algorithm 5.

Algorithm 5: Computing dghp recursively over a partition of [0, T]
Input: partition, convergence threshold y
Output: dghg
B =0p@pg;
S,A=B
do
B=@g*B;
A=B+Ax@g;
S=S+A4;
while || A]| = y;

return S

Lastly, observe that Eq. (C.91) and Eq. (C.92) both contain a term involving convolution
with dghg(f). From Proposition C.5, computing this convolution requires us to have an

expression for 0gHg(1), the integral of dghg (). We can obtain this expression from dghg()
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as follows:

he(0) =) 93" (1)

n=1

=@p()+ ) @ (1)

n=2
=@p(t)+ iupg” * @) (1)
n=
= @g(t) + (hg * @g)(1).
Integrating both sides, we get

HEg(f) = ®g(f) + (hg * @) (1)

Taking the derivative of both sides with respect to 6 and then applying the convolution

product rule, we get

0gHE(1) = 0g®@ (1) + 0g (hg(t) * @ (1))
= 0@ (1) + 0phg(t) * ®p(f) + hg(f) * 0@ p(1).

In every iteration of Algorithm 4, the gradients 0ypé(f) and 0ypZE(t) can be computed
alongside &(#) and Z(t) for every 0 € O. These values are then passed one layer above to
Eq. (C.89) and Eq. (C.90) to get the ICLL and PPLL gradients, respectively. Finally, the return
values are passed to Eq. (C.88) to compute the overall gradient .Zg (®; T). Computing the

gradients does not affect the runtime complexity of Algorithm 4.
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C.12 Sampling from PCMHP

Given Ujege th]; , Algorithm 2 allows us to calculate the PCMHP(d, e) conditional intensity
¢ (1). However, to ‘continue’ the process, we need to be able to sample events that occur
beyond ¢. We can obtain samples from a PCMHP(d, e) process using the thinning algorithm

presented in Algorithm 6. Here, we consider a specific form of the exogenous rate p(f), given

by

(C.93) p()=y-6()+v,

where y,v e (R*)? are learnable parameters.

Intuitively, this corresponds to a spike of magnitude y at ¢ = 0 and a constant rate v over
time. This form of p(f) follows [102, 103].

C.12.1 Thinning Algorithm

Algorithm 6 is a modified version of Ogata’s thinning algorithm [83] for the multivariate
Hawkes process, with two modifications. First, this version of the thinning algorithm uses
the appropriate upper bound ¢ Zf’ for PCMHP(d, e), considering that the PCMHP(d, e) has
a different conditional intensity from Hawkes, and the latter’s upper bound will not be
valid for PCMHP(d, e) except in the special case E = @. We derive this upper bound in
Appendix C.12.2. Second, given that the conditional intensity ;(#) in general cannot be
written in closed form, we would need to apply the approximations detailed in Appendix C.7.
In addition, sampling forward in time requires us to be able to compute &g(f) at every
candidate event time, and due to the convolution term, we have to keep track of the Hawkes
intensity contributed by every previous event accepted by the thinning algorithm. We
introduce a stepsize parameter A’ > 0 that controls the discretization in time when we

approximate the Hawkes intensity.
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Algorithm 6: Simulating a Partial MBP Process on [0, T) with Thinning
Input: kernel matrix ¢(#), kernel integral matrix ®(), exogenous parameters y, v; dimension labels E, E; time horizon T > 0;
partition 22(0, T] = [0 : T] with increment AZ ; threshold yh > 0; stepsize Al>0
Output: Jf% = {t]i} forj=1:d

initialize t:O;Jt’% =gforj=1:d;9y=ay=1];
do

A[0: T] =conv(A, @, [0: T]);

hg[0: T1=hg[0: T]+A[0: T];
while max,-.p (||A[tp] ||max) zyh
Hg[0: T]=®[0: T]+conv(hg, ®,[0: T]);
hgl’:math[O: T], entrywise;
while £ < T do
:gb:v+hgb-(y+TV+Z]~EEc IJf%ld’gc(T))+ZjeEC):tist‘Péc([*fljc)?
P =2l EEh
u~uniform(0,1);
w:—logé;
I = discretize([t, t + w),A");
al0:|g(]=0;
fori=0:19|do

o Jocamii_ .

alil =Y jepe Zse]f% Py (T lil-s);
end
t=t+w,
fj—u :<6/_u uT;
ay[0: |19yl = [ay,al;
{E:v+hE(t)~y+conv(h5,v+au,3“uU{t})+):ngCZt£<t¢P115c(t_tljc)?

U ~uniform(0,1);

. b_yd

1fUé’Z7 szizlé’i’;(t) then

=5

while U¢4P <3 _ ¢ (1) do

j=j+L

end

j

tk . . .
VI Y

JfT—JfTu{tk},

=1,

end
end
if /. < T then
kJ .

‘ return Jf% forj=1:d;
else

‘ return%},...,%%\{tljc},....ff?;
end

Remark C.5. Algorithm 6 has two discretization parameters AZ and A*. The first increment
A? controls the discretization for hg, while the second increment A' controls the discretization
for the Hawkes intensity term Y. jege Y. _ ., j (péc(t — ). In general, we would like to keep both
increments as small as possible, but this comes at a tradeoff of computation time. However,
there is a higher priority to keep A? small as hg, being an infinite sum, could hit convergence

issues if AZ is not small enough.
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C.12.2 Derivation of Thinning Upper Bounds for PCMHP (d, e)

In this section we derive the appropriate upper bounds for the PCMHP(d, e) process used

in the thinning algorithm.

We were able to derive two different upper bounds. The first one can be calculated
in a simple manner, and we use this in our implementation of Algorithm 3 to generate
samples from PCMHP(d, e). However, this upper bound has the potential to be large if for
some (i,j) € Dx D, maxtsTh;j(t) is high, causing the thinning algorithm to propose and
subsequently reject many trial points. We therefore introduce a second upper bound that
bounds the intensity more closely, leading to faster sampling. We use this in our popularity

prediction use case in Section 4.7.

Upper Bound 1. We need to find an upper bound at arbitrary time ¢ > 0 (that holds up

until the next stochastic event) for each of the terms in the conditional intensity below.
(C94) & =p@®+he+w@®+ ) Y wéc(t— l‘,{) +|he@ x| ) > ‘Péc(f— fzi) :
JeE* t£<t JeE® t,{<t
where
p)=y-6()+v(1).

Let hg be the matrix whose (i, Jj) entryis maxtsThg(t).
Let v = maxv<7(f). Then the first term is bounded above by v.

For the second term, we have the following upper bound that holds for all ¢:
(hg * @) (1) =hgp() = (y-6(1) +v(1)

t

=hg(t)-y +f hge(t—3s)-v(s)ds
0
- T -
ShE'}’+f hg-vds
0

=hg-(y+Tv).

For the third term, as in the usual Thinning algorithm for Hawkes, an upper bound that

holds until the next event is }_ jc e thq (péc(t - tljc).
1<
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Lastly, for the fourth term, an upper bound that holds until the next event is given by:

hp* Y Y @lt-th<hp@+ Y Y @l(t—1)

fEECt,£<t jEEct]st
t ) .
:f he(t—9)- Y. ) @p(s—1])ds
0 jeECtist
_ t . ;
:hE.f Y Y @ls—t)ds
0 jeE”tj<t
:ﬁE Zf (pEc(S—t])dS
]eECth

B t— t’

]EEC t]<l’ - k

- t]
Zf @l (wdu

B=<t

=hg- Y. Y @L.(t—1))

P
JEE t,’cst

©@<hp Y Y oL

JEE* tist
E- ), |76] | ®@L(1)
JEE®

@ <hg- Y |7 |0L.(D).
jeE®

JEE°

=

where in (a) we made a change of variable u = s - t,]C., in (b) we used the fact that ¢’/ (1) =0
for £ <0, in (c) we used the fact that since ¢/ (¢) is non-increasing, ®'/ (¢) is non-decreasing
and thus ®'/(¢) = ®%/ (¢ - s) for s = 0, and finally in (d) we bound Q}Ec by its maximum value
on [0, T1].

Thus an upper bound at ¢ until the next event is given by

(C.95) u.b.(t)=v+BE-(y+ Tv+ Y 120D+ Y Y @l.t-t)

jeE* JEE <y

Suppose we are given an exponential kernel '/ () = k70 exp=?"'?, with corresponding

@l (1) =« (1 -~ exp‘gi”). We can simplify the upper bound by using dléc (00) = x/ instead
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of (I)éc (T), since (I)éc (00) = (I)éc (t) for any time ¢. Then we would have

ub.()=v+hg |y +Tv+ Y 12 x |+ Y Y @l.(t— ).

jEE® JEE fi <y
Upper Bound 2. Suppose the exogenous intensity is given by

p)=y-6(0)+v.

An upper bound for the conditional intensity at ¢ until the next stochastic event is

v+ Y Y @lt- t,];)+r£1>atxh5(s)-y

L L
JEE t,’cst

(C.96) +Hg(co)- v+ |upper bound of hg(2) = ) ) (pj(t—tljc.) ,

JeEe 12

which we get by upper bounding each term in Eq. (C.94). The fourth term Hg(oco) - v is
obtained by noting that Hg(¢) is a non-decreasing function and hence upper-bounded by
HE(o0).

The tricky part here is obtaining an expression for the rightmost term. Let ¢’ = . Our

goal is to find a function £(#) that satisifies

. . t’ . .
(C.97) f)=hp(t)x Y Y (p](t—tljc):fo hp(t'—s)- ) ) @/(s—t])ds

JeE® <t JEE° rl<s

We split the rightmost integral as

t . . t . .
(C.98) f he(t'-s5)- Y Y (p](s—tljc)ds+f he(f' =) ) Y @/(s—t)ds
0 j t

. lt &
€E tljc<s JEE t]]C<s

and aim to bound these two terms separately.

To proceed, introduce
maxhi(s) t< argmax hi (s)
hip={ s " s F
h;f (1) otherwise
Let ﬁE(t) = [fzg(z‘)]. Observe that

(C.99) hg () = hg(0)
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forall £ =0.
Let ¢ = s>t = 0. We have h(¢'—s) = hp(¢'—s). Multiplying both sides by Y jeEe thq(pf(s—
k

t,{) and integrating over s € [0, f), we get

t , . t , .
(C.100) f he(t' =9 Y Y @/(s- t,i)dszf hp(f'=5)- ) Y @/(s- t,]c)ds
0 j 0

€EC j JEEC J
Ik<3 l'k<5

Next, note that hg(¢) is non-increasing. That s, given ¢’ > t = s,

(C.101) he(t—s) = hg(t' - )
So we have
t . . t . .
(C.102) f he(t-5)- ) ) (p](s—tljc)dszf he(t' —s)- ), ) @/(s—t])ds
0 JEES e 0 JEE s

Thus we have an upper bound for the first term.

For the second term, observe that since we are working under the assumption of no
events between ¢ and ¢/,

t/ . . tl N . .
f he(f -9 Y Y @/(s- t]]c)ds:f he(tf'—9)- ) Y @l(s—t))ds
t j t

€Ee t]é<s JEE* t,fc'st
t . .
sf he(tf'—9)- ) Y @/ (t—t)ds
t jEEctist
t . .
:f he(f' —9)ds- Y. Y @/ (t—1])
‘ JEES (i<
= [Hp( -0 -Hpz)]- Y. Y @/ (t—1])
JEES <t
=Hg(t'-0- ) ) wj(t—t,];)
JEE® t,{st
<H(T-0-Y Y @ltt—1t)
fEEctlfc'st

This is the upper bound for the second term. Here, Hy(#) is given by
. maxhgj(s) -t t< u:argmaxhg(s)
A 0=4 ° ’ ! |
H;](t) + [max hg(s) -U-— Hé](u)] otherwise
N
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C.13 Prediction of Expected Counts with PCMHP(d, e)

Once a PCMHP(d, e) model is fitted to a set of event sequences Ujege Jf%_ and interval-
censored counts U e E{C{;}Zil, this can be used to predict the expected count of events in
any interval of time past t = T'.

Suppose that we observe events and counts on [0, T*"%") and we wish to predict the ex-
pected count of events in every dimension on every subinterval of the partition 22[ T7 %" Ttest),
where T/¢5! > T'r4" The most straightforward way to do this is to continue the PCMHP(d, e)
process on [T!7%" Tes!) by using Algorithm 6 to draw sample histories. For each sample,
we count the number of events in each dimension on each subinterval of [T/ %", Te5t),
The expected count on a subinterval would then be the average of the counts on the selected
subinterval over the set of sample histories.

The problem with the previous approach is that it is not computationally efficient to
perform the sampling, as we have to sample all dimensions simultaneously in Algorithm 6,
especially problematic if some dimensions have a high background intensity.

Let [ Tirain lesty — Ufz_ll [0i,0i+1), where 0, = T'"%" and op = T'**!, be a partition of
[Tir@in Ttesty A computationally efficient scheme to predict expected counts can be done

with the following three-step approach.
1. Sample only the E° dimensions on [T/ %", Test),

2. For each sample, compute expected counts on Z2[ T4 TSty as (Zp(0;41) - E(0;)]i €
1---P—-1}.

3. Compute the average of {Eg(0;4+1) - Eg(0;)|i € 1--- P —1} across samples.

This approach relies on two properties of the PCMHP(d, e) process. First, {;(f) and
Eg(t) only depends on the E¢ dimensions, and so we only need to actually sample these
dimensions to calculate the intensity and compensator as these are independent of events
that occurs in the E dimensions. Second, similar to what is stated in Proposition C.1 for
the Hawkes process, the compensator Zg () of a PCMHP(d, e) process can be interpreted
as the expected count of events on [0, 7) given event sequences U jege thj_. Given a sample
event sequence U jege Jf&ﬂ, the difference Eg(0;+1) - Eg(0;) then represents the expected
count of events in [0;,0;+1) . By averaging over samples, we are averaging over histories
Ujere Jfgi_ﬂ), and so we get expected counts on G2[T!"4" Ttest),

Note that there is a subtle difference between the two approaches. The first approach

returns event sequences in each dimension, which we then count and average over to get
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expected values. On the other hand, the second approach directly estimates the expected
counts as it uses the compensator of the process.

Fig. C.3 shows a comparison of the two methods over 1000 samples. We assume here
that we observe data up until 7/"#" = 10 and we wish to get expected counts on 22[10,20) =
[10,11),---,[19,20). The solid lines show the estimate of the expected count. It is evident
that there is very good agreement between the two approaches. The uncertainty clouds
around the lines mean different things. Since the second approach directly estimates the
expected counts, the cloud around the blue line represents the variance of the expected

counts, whereas the red cloud represents the variance of the counts across different histories.
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Figure C.3: Comparing the two ways of predicting expected counts with PCMHP(d, e) The
first method samples all dimensions, while the second method samples only the Hawkes
dimensions and uses the compensator of the process to estimate expected counts. In the
figure, we observe data until 7?"%"* = 10 and compute event counts over [10,11),---,[19,20).
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Figure C.4: The MHP model parameters can be reliably estimated with the PCMHP model.
Parameter recovery results for p(a) = 0.5. In each subplot we show the parameter estimates
obtained from the PCMHP(2, 1) model fitted on samples from a 2-dimensional MHP model
using PCMHP-PP and PCMHP-IC. We consider three variants of interval censoring (ob-
servation window lengths 1, 5, and 10). The mean and median estimates are indicated by
the and , respectively. The dashed blue lines show the
original parameters of the MHP model.

C.14 Additional Results for Synthetic Parameter Recovery

C.14.1 Individual Parameter Estimates

Here we present individual parameter fits of the PCMHP(2,1) model on 2-dimensional
MHP data. Table C.1 lists the parameters for three considered values of the spectral radius:
p(a) € {0.5,0.75,0.9}. The p(a@) = 0.5 indicates a clearly subcritical MHP; the p(a) = 0.9
corresponds to a MHP approaching the critical regime; and p(a) = 0.75 corresponds to an
intermediate case between these two.

Fig. C.4, Fig. C.5 and Fig. C.6 show the PCMHP(2, 1)-estimated {0, «, v} for the parameter
sets corresponding to p(a) = 0.5, p(a) =0.75 and p(a) = 0.9 in Table C.1.

Parameter recovery. Below we discuss results for the case p(a) = 0.75 (Fig. C.5). Results for
p(a) =0.5and p(a) = 0.9 are similar. The horizontal dashed blue lines show the values used
for generating the data. For each parameter, we plot four boxplots. The leftmost boxplot is the
PCMHP-PP fit (i.e., the fit on the timestamp dataset). The next three are the PCMHP-IC[1],
PCMHP-ICI5], and PCMHP-ICI10] fits.
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Figure C.5: The MHP model parameters can be reliably estimated with the PCMHP model.
Parameter recovery results for p(a) = 0.75. In each subplot we show the parameter estimates
obtained from the PCMHP(2, 1) model fitted on samples from a 2-dimensional MHP model
using PCMHP-PP and PCMHP-IC. We consider three variants of interval censoring (ob-
servation window lengths 1, 5, and 10). The mean and median estimates are indicated by
the and , respectively. The dashed blue lines show the
original parameters of the MHP model.

Table C.1: Hawkes spectral radii and model parameters used in the parameter recovery
synthetic experiment. We fix the initial impulse parameters Y = y! = 0 in our simulations.

p(a) 911 912 921 922 all a,lZ aZl a22 Vl v2

0.5 1.0 05 125 075 025 03 0.12 035 0.1 0.1
075 10 05 125 075 032 05 03 04 0.1 0.1
0.9 1.0 05 125 075 04 05 03 06 0.1 0.1

We see that the PCMHP-PP estimates are tight around the generating MHP parameters
for all parameters. This indicates that the model mismatch information loss (i.e., of type (1))
appears to have a small impact on fitting quality. Arguably, we observe a slight overestima-
tion for ' and 0?2, and a clear overestimation of a'! and underestimation of a??. The v’
parameters appear tightly recovered by PCMHP on the timestamp dataset.

On the partially interval-censored dataset, we continue to observe good fits. This in-
dicates that PCMHP can successfully recover the generating MHP parameters even after
interval-censoring. However, we see that the 8%/ parameters become increasingly over-
estimated as the observation window widens, particularly for 0'2 and 6%2. Similarly, al?

is overestimated, and a'! is underestimated. The approximation quality degrades as the
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Figure C.6: The MHP model parameters can be reliably estimated with the PCMHP model.
Parameter recovery results for p(a) = 0.9. In each subplot we show the parameter estimates
obtained from the PCMHP(2, 1) model fitted on samples from a 2-dimensional MHP model
using PCMHP-PP and PCMHP-IC. We consider three variants of interval censoring (ob-
servation window lengths 1, 5, and 10). The mean and median estimates are indicated by
the and , respectively. The dashed blue lines show the
original parameters of the MHP model.

observation window widens, indicating an increasing information loss of type (2).

Recovery of the spectral radius. We see in Fig. C.7 that the estimated spectral radius
p(a) is close to the actual value regardless of the model mismatch and interval-censoring.
The recovered spectral radius is estimated close to the original MHP spectral radius for all

considered cases.

C.14.2 Convergence Analysis

We study the error convergence of the PCMHP(2,1)-estimated parameters {0, &, v} and
spectral radius p(&) under different settings of (1) the time window T over which we fit the
model and (2) the number of sequences used for joint fitting (see Remark C.3). Next, we fix
T and investigate spectral radius recovery of the underlying MHP by fitting PCMHP(2,1)

over datasets of increasing spectral radii.

Varying T and Nyeqyences- The first column of Fig. C.8 shows RMSE(a), RMSE(0), RMSE(v)

and Ap as a function of the fitting window length T, respectively. Meanwhile, the second
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Figure C.7: The spectral radius estimated by the PCMHP model approximates well the spectral
radius of the generating MHP In each column we show the spectral radius estimated from the
PCMHP(2,1) model fitted on samples from a 2-dimensional MHP model (see parameters in
Table C.1). Dashed lines show the spectral radii of the MHP model.

column of Fig. C.8 shows RMSE(a), RMSE(0), RMSE(v) and Ap as a function of the number
of sequences in the joint fit, respectively. Both sets of plots correspond to the case p(a) = 0.75
parameter set in Table C.1. We see in Figs. C.8(a) and C.8(g) that RMSE (&) and Ap both
converge to stable values as we increase the length of the fitting time window and the

number of sequences in the joint fit.

Varying the spectral radius. In Fig. C.9(a) we evaluate how well our different models re-
cover the MHP spectral radius. We fix T' = 100, Nyeguences = 50 and we plot the spectral radius
deviation Ap as a function of the generating MHP spectral radius p(a). We generate samples
from 2D MHPs with increasing p(a) € {0.1,0.15,...,0.9,0.95} and we fit MHP, PCMHP-PP,
and PCMHP-IC[k] for k € {1,2,5,10,20}. We see that when the spectral radius is not too
small, it is recovered well. This is intuitive since for small spectral radius, the MHP generates
only a few events to fit on. We also notice that fitting with partially interval-censored data
(i.e. the PCMHP-IC fits) tends to underestimate the spectral radius. In Fig. C.9(b) we plot
the standard deviation of the estimated Ap when fitted to MHP samples of different spectral

radii for different model configurations.

Varying the number of MBP dimensions e. Here, we consider the PCMHP(5, e) and vary
e€{0,1,2,3,4,5}. We fix T = 100 and p(a) = 0.92. We plot the parameter recovery error for
a (Fig. C.10(a)), @ (Fig. C.10(b)) and v (Fig. C.10(c)). We see in Figs. C.10(a) and C.10(c)
that RMSE(a&) and RMSE(v) increase with e, while in Fig. C.10(b) that RMSE(0) plateaus for
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Figure C.8: The error of & (first row), ] (second row), ¥ (third row) and recovered spectral
radius (fourth row) are plotted vs. varying T (left column) and Niequences (right column).
Samples are drawn from a 2D MHP with p(&) = 0.75 and parameters in Table C.1. Default
hyperparameters are T = 100, Nsequences = 50 and interval size = 5. In each plot we compare
performance for three model fits: MHP, PCMHP-PP and PCMHP-IC as three boxplots. The
mean and median estimates are indicated by the dashed green lines and ,
respectively.
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Figure C.9: (a) The deviation of recovering the spectral radius by our various approaches, as
a function of the spectral radius itself. The x-axis shows a wide array of spectral radius values
and the y-axis presents the different models used for fitting. The color shows the mean
deviation Ap/p(a) over multiple fittings. (b) Standard deviation of Ap vs. the spectral radius
of the generating MHP. Rows correspond to the spectral radius p(e) of the MHP samples
used for data generation, while the columns represent the different models used for fitting.

intermediate e. The behavior for &« and v is not surprising since a higher e implies more

MHP dimensions are replaced with MBP, increasing the model mismatch information loss.

On the consistency of the PCMHP estimator. The convergence of RMSE(e) and Ap of the
PCMHP-PP (Figs. C.8(a) and C.8(g)) for high T"and number of sequences provide evidence
of the consistency of the PCMHP MLE estimator for the MHP. Similar to [102], we perform
numerical experiments in lieu of an analytical treatment to study limiting behavior since — as
far as we are aware — there is no previous literature on the asymptotic theory (consistency and
asymptotic normality) of the MLE for multivariate nonstationary MHPs (which the PCMHP
falls under). Previous work has focused on the consistency of the univariate stationary [81],

multivariate stationary [21, 44] and univariate nonstationary [18] cases. The asymptotic
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Figure C.10: Recovery error increases with the number of MHP dimensions we replace with
MBP Error of &, 0 and v are plotted as functions of the number of MBP dimensions e.
Samples are drawn from a 5-dimensional MHP with spectral radius p(a) = 0.92. Hyperpa-
rameters are T = 100, Nsequences = 20 and interval size = 1. We compare the PCMHP-PP,
and PCMHP-IC model fits in each column. The mean and median estimates are indicated
by the and , Tespectively.

theory of MLE for multivariate nonstationary MHPs and the partially interval-censored case

are both open topics and fruitful directions for future work.
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C.15 Additional Details for Popularity Prediction

Experiment

In this section, we provide additional details on the fitting procedure for the PCMHP(3, 3)
and PCMHP(3,2) models on the online video popularity task and the filtering procedure we

performed on ACTIVE to identify dynamic videos for performance evaluation.

C.15.1 Technical Details for Fitting

We present here details on fitting PCMHP(3,3) and PCMHP(3,2) models on the ACTIVE

dataset of views/shares/tweets. Specifically, we discuss four points:

1. assigning weights to each dimension’s contribution to .Z (0; T),
2. regularizing the exogenous parameter v,
3. hyperparameter tuning, and

4. the optimization algorithm.

Assigning weights to each dimension’s contribution to . (0; T). For the first point,
recall that the negative log-likelihood for a PCMHP process given a mix of event sequences
and interval-censored data is defined as the sum of the likelihood contribution in each
dimension. Recall for the PCMHP that

L@ =Y Lo, O+ Y Loy O:7).
j€E jEE®

A problem that we encountered with this formulation is that it treats the dimensions
equally, but the scale of each dimension’s values could differ largely from one another. For
instance, in the online video popularity case study, view counts are orders of magnitudes
higher than share counts and tweet counts, which would then cause the likelihood contribu-
tion of views to dominate the total likelihood, prioritizing fit on the views over the tweets
and shares. This is problematic, in particular, for the PCMHP(3,2) model as we want to fit
the tweets dimension well, as it drives the self- and cross-excitating behavior of the process.
To solve this, we assign a dimension weight hyperparameter w’ to each dimension j € D
which we multiply to the log-likelihood contribution of dimension j. Instead of .Z (®; T),
we use a dimension-weighted version .Z (@®; T,w), given by

(C.103) Z(©;T,w) = ZE wl L (@ T)+ ZE wl L, ;7).
Jje JEE*
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The corresponding gradients for this dimension-weighted version can be obtained by a
trivial adjustment of Appendix C.11.

Regularizing the exogenous parameter v. For the PCMHP models we fit in the online
popularity case study in Section 4.7 and COVID-19 case study in Section 4.8, we optimize
the parameter set ® = {0, «, v}. To reduce the size of the parameter space, the initial impulse
parameters y are fixed as hyperparameters. Similar to [7], we found that adding a term that
regularizes the exogenous parameter v on the dimension-weighted likelihood .Z (@; T,w) in
Eq. (C.103) further improves performance. We introduce another hyperparameter w" that
controls the level of regularization on the & I norm ||v|;. Intuitively, using a higher w" is
equivalent to biasing the model optimization to avoid taking on high values for the baseline

intensities v, thereby resulting to larger values in . The regularized version of Eq. (C.103),

where w = {w!,---, w?, w"}, is then given by
(C.104) Z2@Tw=Y w2z  ©n+Y wZLl @1 +w|vl.
jeE jEES

This is the version of the log-likelihood that we use to fit the models in Section 4.7 and
Section 4.8. The parameter set that we optimize for is ® = {0, «, v}.

Hyperparameter tuning. The hyperparameters that we tune in our model are shown in
Table C.2. There are three different types of hyperparameters we consider. The first two types
are the dimension weights {w/} and the v regularization weight w" we discussed above. The
third hyperparameter is how we fix the y parameter. We consider two different modes: (1)
max, where we fix y for a particular video to be fitted to the maximum value of the daily view,
share, and tweet count on days 1-10, and (2) start, where we fix y to the video’s initial daily
view, share, and tweet count. The candidate hyperparameters we sweep over are also shown
in Table C.2. Note that we have different candidate hyperparameters for PCMHP(3,2) and
PCMHP(3,3), which we selected based on heuristics.

We use days 1-90 to perform hyperparameter tuning and fitting. Specifically, we use days
1-75 as the training set for hyperparameter selection, and use days 76-90 as the validation
set. Once we determine the best-performing hyperparameter set for a video, we refit the
model on days 1-90. Lastly, the performance of the tuned model is evaluated on the test set,
days 91-120.

Optimization algorithm. To optimize .Z (®; T,w) over O, we use IPOPT, a nonlinear
optimization solver for large-scale problems [123]. The solver requires the gradient of the
objective and the Hessian of the Lagrangian. We wrap the procedure in Appendix C.11 as a
function to compute the gradient iterately. For the Hessian of the Lagrangian, we use the

limited-memory quasi-Newton approximated provided by IPOPT.
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Table C.2: Hyperparameters of the PCMHP(d, e) models considered in the YouTube popu-
larity prediction experiment

Hyperparameter Description (d, e): Values
1 .d . . . . . (3,3) : {[1000,1, 1]}
w e w dimension weights in .Z (0; T,w) (3.2):1[1,1,11, [1, 1,1000]}
. . (3,3):{10,1000}
v .
w weight of the || v||; term in .Z (©; T,w) (3.2) 11000}
init

value of exogenous impulse at £ =0 {max, start}

C.15.2 Filtering for Dynamic Videos

In our performance evaluation and baseline comparison in Section 4.7, we filtered the
ACTIVE dataset for YouTube videos that have rich dynamics on days 21 —90. We showed that
PCMHP(3,2) performs best on these dynamic videos.

We present here the filtering procedure we implemented to arrive at the evaluation

dataset in Fig. 4.4.

1. Filter ACTIVE for videos that have a mean daily tweet count on days 20-90 of at least 1.

This ensures that the videos we consider have minimal activity on days 20-90.

2. Filter for videos that have less than 1000 tweets on days 1-90, as we only fit PCMHP (3, 2)

on this set to avoid computational explosion, as discussed in Section 4.7.

3. Compute the standard deviation of the daily view count, daily share count and daily
tweet count on days 20-90. Filter for videos that have higher than median standard

deviation for each measure.

C.15.3 Performance Comparison of PCMHP and HIP

Fig. C.11 shows a comparison of the performance of PCMHP(3,3), PCMHP(3,2), and HIP
on ACTIVE 20% (Appendix C.15.3) and DYNAMIC VIDEOS (Appendix C.15.3).
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Figure C.11: Performance comparison of PCMHP(3,3), PCMHP(3,2) and HIP on (a) a

random sample that comprises 20% of the videos in ACTIVE, and (b) the set of dynamic

videos from ACTIVE. The dashed line and solid line indicate the mean and median estimates,

respectively.
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Table C.3: Goodness-of-fit measures on the PCMHP(2, 1) models fitted on the COVID-19
daily case count and news article timestamp dataset.

Country News KS p-value Cases SK p-value Cases Fit Score
UK 0.47 0.09 0.60
USA 0.04 0.33 0.48
Brazil 0.18 0.22 0.79
China 0.17 0 0.60
France 0.33 0 0.51
Germany 0.99 0 0.36
India 0 0.09 0.97
Italy 0.09 0.24 0.61
Spain 0.15 0.04 0.28
Sweden 0.24 0 0.72
Philippines 0.96 0 0.73

C.16 Additional Results for COVID-19 Experiment

In this section, we (1) elaborate on the goodness-of-fit tests we perform on the model fit of
PCMHP(2,1) on the COVID-19 daily case count and news article dataset and (2) present an

interpretation of PCMHP-fitted parameters for each country in our global sample.

C.16.1 Goodness-of-Fit Tests

To check model fit of PCMHP(2,1) on the cases-news data in Section 4.8, we perform
separate goodness-of-fit tests for the news dimension and the case dimension. We found
that the PCMHP(2, 1) fits are statistically significant for 9 out of 11 countries on the news
dimension and 5 out of 11 countries on the cases’ dimension. For UK, Italy, and Brazil, the
model fits are significant on both dimensions.

Observations in the news dimension are in the form of event timestamps £, t;212’

where 7n? is the number of news articles. The time-rescaling theorem [13] says that
(C.105) 22(15,,) - E2(1H) ~ Exp(D),

where j € 1---n?—1. Applying the previous formula on the observed data gives us n> samples
from Exp(1). Fig. C.12 shows the Q — Q plots for {EZ(IJZ.H) -
to the theoretical distribution for Exp(1). We can also use the Kolmogorov-Smirnov (KS) test
to check the significance of Eq. (C.105), which we show in Table C.3.

Ez(tjz.)}, comparing the samples
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Observations in the case dimension are in the form of daily case counts C},---, C%ZO, cor-
responding to counts in [0,1),---,[119,120). Under the PCMHP(2,1) process, the dimension

1 subprocess is a Poisson process, and so
(C.106) Ci ~Poi(E' () —E'(j - 1).

To convert the C } observations to samples from a single distribution, we use the Anscombe

transform [2]. Given x ~ Poi(m), the transformation

/ 3
(C.107) A:x—2 x+§

approximately yields standard normal samples: A(x) ~ A (2\ /m+ % , 1) given large m. Com-
bining Eq. (C.106) and Eq. (C.107) then subtracting the Gaussian mean, we see that

(C.108) ( C1+——\/ =l(H-Z= 1(]—1)+—)~JV(0,1).

Fig. C.13 shows the Q — Q plots for {2 (, /C}. +3 - \/El(j) ~Zl(j-1)+ %‘)}, comparing the
samples to the theoretical distribution for .47(0,1). We can then apply the Skew-Kurtosis
(SK) test for normality to check significance of Eq. (C.108), which we show in Table C.3.

We also introduce a sampling-based score to measure quality of fit of PCMHP(2,1) to
the daily case count. For each day j, we sample N; observations from Poi(Z1( J)— =1 j=1).
We then check whether the actual case count C}. is within the [2.5%,97.5%] band of the
distribution of the N; samples. We do this for each day j € 1...120 and average the result. In
summary, we calculate

120
(C.109) 1202[[0 € [2.5%,97.5%] interval of Poi(Z! (j) — Z'(j - 1))],

The metric is simply the percentage of days where the actual count falls within the interval
predicted by the model. The fit scores are tabulated in Table C.3.

C.16.2 Interpreting Individual Country Fits

Table C.4 contains the PCMHP(2, 1) parameter estimates {8, «,y} for each country. Fig. C.14
shows the PCMHP(2,1) fits for UK, USA, Brazil, China, France, Germany, Spain, Sweden,
Philippines.

The PCMHP(2,1) model parameters shown in Table C.4 are interpretable. Here, we
discuss them in the order 8%/, @'/, and finally v’. We treat the parameters as approximations

of the corresponding MHP parameters, similar to Section 4.6.
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Table C.4: Parameters of the PCMHP(2,1) models fitted on daily COVID-19 case counts and
COVID-19 news article timestamps for the 11 countries we consider.

Country 911 912 921 022 all a12 aZl a22 Vl VZ

UK 0.89 0.11 1.84 198 0.89 145.27 0.0004 0.29 1.99 0.36
USA 0.76 0.03 088 044 0.93 4198 0 0.71 0.0054 0.85
Brazil 0.13 0.01 189 246 1.08 2198.7 0 0.38 0.24 1.47
China 093 4 1.39 4 0.59 0.1 0.012 0.39 0.0001 0.02
France 031 4 201 3.1 077 86.89 0.0015 0.38 0.025 0.07
Germany 0.98 0.18 205 19 0.75 247.16 0.0005 0.36 1.75 0.3

India 0.06 2.02 198 182 1.6 8.75 0 0.76 28.52 1.14
Italy 0.79 0.08 195 221 0.88 3855 0.0002 091 0.11 0.62
Spain 0.4 0.08 157 1.62 0.73 316.27 0.0001 0.61 2.69 0.19
Sweden 0.48 053 2 1.89 0.98 2.13 0.0005 0.32 11.11 0.28
Philippines 0.18 2.54 231 194 1.11 14.6 0 0.4 0.04 0.19

The parameter '/ encodes the speed of influence decay from dimension j to i. Small
values of %/ indicate that j influences i over a longer period, whereas large values imply a
short half-life of the influence of j on i. From Table C.4 we see that India has the smallest
0! (self-excitement of case numbers), which indicates the slow, consistent progression
of COVID in India during the early phase. Brazil has the smallest 812 (influence of news
on cases); this indicates that Brazil cases did not immediately spike once Brazil made its
way into the English-speaking news but instead steadily increased over an extended period.
Similar interpretations can be made for 62! and 2.

The parameter a’/ measures the strength of influence from j to i —it captures the expected
number of i events triggered by a single j event. The multivariate Hawkes process, and
consequently the PCMHP process, assumes a'/ > 0 for all i and j; this implies that events
can only self- or cross-excite other events but not inhibit. This is a modeling assumption
that can be relaxed in future work. We can see from Table C.4 that Brazil, India, and the
Philippines all have a!! > 1, implying that COVID was highly contagious in these countries
during the early stage (every infection generated more than one infection in average). We
interpret a'? as how strong news preempts an increase in cases. Given that Brazil has the
largest ' in our sample, the news was particularly preemptive of cases there during the
early stage. Conversely, a®! measures the expected number of news articles published after
a single case. In countries with high a?!, news serves a reactionary role to an increase in
cases. Among the countries considered, China has the highest a®!, probably because it was
the first country in which COVID-19 has spread at a nation level.

The exogenous parameters v! and v? represent the exogenous rates for cases and news,
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respectively. These parameters capture external factors that cannot be accounted by the
self- and cross-excitation of cases and news. v! is a measure of imported cases from other
countries, while v? captures the base level of reporting. India has the highest importation of
cases among the countries considered as it has the highest v!, whereas Brazil, given its high
v2, has the highest base reporting.

We remind our readers that these are English-speaking news (based mostly in English-
speaking countries), indicating that Brazil had privileged coverage by news media. We
hypothesize that it is probably due to its government’s skepticism of the very existence of
COVID-19 in the early days.
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Figure C.12: Q-Q plots for observations in the news dimension in the COVID-19 country
PCMHP(2,1) fits
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Figure C.14: Fit of the PCMHP(2, 1) model on the daily COVID-19 case count and COVID-
19-related news articles, for the other countries in the global sample.
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