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Abstract

Variational Quantum Algorithms (VQA) form an important class of quantum machine
learning and optimization algorithms, with potential applications in supervised learning,
combinatorial optimization, chemical simulation, dimensionality reduction, etc. At its
core, it is a class of optimization algorithms where parameterized quantum circuits are
used to estimate functions that are typically extremely expensive for classical computers,
and algorithms such as gradient descent are used to optimize the parameters classically.

Given the limited availability of quantum devices in the near future, it is essential to
minimize their usage within VQAs. Recent research has highlighted two challenges that
could increase quantum device demands: trainability issues akin to vanishing gradients
such as barren plateaus and sample complexity problems, often exacerbated by practical
demands such as circuit design, hyperparameter tuning, etc. This thesis presents new
algorithms and theoretical insights to address these challenges, enhancing the efficiency of
VQAs.

The contributions of this thesis can be broadly categorized into three parts. The first
part introduces a novel training algorithm tailored for shallow alternating layered VQAs,
called Alternating Layered Shadow Optimization (ALSO). By harnessing classical shad-
ows of quantum input data, the algorithm achieves exponential reductions in quantum
resources required for training. The optimization part can be completely carried out on
classical computers efficiently with rigorous performance guarantees. Moreover, ALSO is
easier to implement compared to standard VQA training methods, requiring only single
qubit measurements and classical post-processing. We also experimentally demonstrate
orders of magnitude improvement for ALSO in common quantum machine learning appli-
cations.

Building upon these advancements, the second part addresses similar computational
demands of a different class of VQAs that can involve almost any shallow circuit and
low Frobenius norm observables. This new training algorithm, called Ansatz Independent
Shadow Optimization, extends the applicability of shadow tomography for VQAs to a
diverse range of ansatzes, showcasing exponential savings in quantum resources. Beyond
rigorous performance guarantees, we experimentally demonstrated successful applications
in state preparation and variational quantum circuit synthesis, validating its superiority
over traditional training methods.

The third part delves into the notorious phenomenon of barren plateaus observed in
VQAs tasked with finding weakly entangled state approximations. Through theoretical
analysis and rigorous experimentation, we elucidate how the choice of global versus local
observables impacts gradient scaling, with exponentially low gradients and cost functions
being present and absent in the former and latter scenarios respectively. On top of that, we
also discuss how one could potentially be able to classically simulate the local observable
version, with minimal usage of quantum resources. Moreover, all our results and claims
are experimentally validated across different scenarios.

Collectively, these contributions underscore important advancements in VQAs, partic-
ularly in the context of near-term quantum devices, paving the way for their integration
into diverse quantum machine learning applications.
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Chapter 1

Introduction

1.1 Overview

Quantum computing is a new paradigm of computing that can potentially revolutionize

high-performance computing in the upcoming future [Cer+21a; Cle+97; Bia+16; Ben+19].

The core idea is built upon the fact that quantum mechanics is a model that is inherently

hard to simulate using normal, so-called, classical computers, intuitively implying that

nature can carry out certain computations that we cannot hope to emulate using classi-

cal computers in a reasonable time. Unlike classical computers, quantum computers use

quantum resources such as quantum bits, also known as, qubits, to store quantum infor-

mation described using quantum states. Similarly, quantum gates are used to manipulate

these quantum states, and information is read out (observed) using quantum measure-

ments (quantum observables), which typically output a classical bit string according to

some output distribution.

The early ’90s witnessed the birth of a few quantum algorithms that can solve certain

practically insignificant problems exponentially faster than any known classical algorithm

[DJ92; BV97; Sim97]. That is, quantum algorithms can be used to solve these problems

by consuming quantum resources that are exponentially less than the classical resources

that any classical algorithm will consume.

The poster boy of quantum algorithms, Shor’s algorithm for polynomial-time integer
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factorization was discovered in 1994 [Sho94]. This turned many heads as integer factoriza-

tion was a problem that, even now, does not have a “classical” solution with complexity

polynomial in the number of bits involved [MOV96; Yas+16]. This inherent hardness of

the problem made it convenient for applications in cryptography [MOV96], which is a field

that features extensively in our daily lives.

Lov Grover demonstrated that quantum algorithms could search in an unstructured

database with a quadratic speedup over classical methods [Gro96]. This foundational

work has since been extended to various applications, including maxima finding [DH99;

Dür+06] and quantum analogs of random walks and their associated uses [MB18; Chi+03;

Kem03; Chi09].

While these algorithms offer advantages over their classical counterparts, practical

large-scale implementation may still be years away, as current devices possess only a

limited number of qubits, which are also highly prone to errors. Hence along with ad-

vancements in research in quantum hardware, the 2000s and 2010s witnessed significant

effort in demonstrating quantum supremacy [LBR17]. That is, to physically implement

a quantum algorithm on currently available small noisy quantum computers, also called

Noisy Intermediate Scale Quantum (NISQ) devices [Pre18], and produce results in reason-

able time that would take an extremely large amount of time and resources on a classical

computer. This was recently accomplished in works such as [Aru+19; Zho+20a; Mad+22],

where the supremacy of quantum computers over classical computers was demonstrated

for certain specific sampling problems.

Now, there is considerable effort being put into research aiming to demonstrate simi-

lar advantages for practically useful problems. Although this is yet to be demonstrated,

several areas are being investigated, such as physical and chemical simulation [Kas+08;

Per+14; Bau+20; Til+22b], optimization [FGG14; Cha+20; BS17], machine learning [Hav+19;

Hua+22; Ker+19; MP15], etc. The latter use cases are particularly significant due to the

ubiquitous nature of their applications.

Machine learning (ML), a subset of artificial intelligence (AI), involves algorithms
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that enable computers to learn from and make decisions based on data. Its impact on

our daily lives is huge as its applications include personalized recommendations [Zha+19;

KBV09; Bob+13], fraud detections [Nga+11; Kou+04; Phu+10], spam filters [Sak+03;

GC09; Li+19], AI assistants [Hoy18; MCG16; Bér+24], disease diagnosis [Top19; Jia+17;

Est+17], etc. However, in the upcoming era of bigger data, machine learning will face

significant challenges despite the abundance of available information. Handling enormous

datasets requires substantial computational power and memory, which can strain existing

infrastructure and slow down processing times.

This is the reason why several research groups are looking at ML as an area where

one could achieve practical and useful quantum supremacy. Several Quantum Machine

Learning (QML) protocols and algorithm designs have already been put forward includ-

ing quantum SVM [Bia+16], quantum Boltzmann machines [Bia+16], quantum clus-

tering [ABG07], quantum neural networks [Bia+16; Ben+19], quantum persistent ho-

mology [LGZ14], quantum transformers [LF24; LZW23], quantum reinforcement learn-

ing [Jer+21], quantum natural language processing [Mei+20; Coe+20], quantum kNN

[ABG20; WKS15; Rua+17; CGZ15], quantum algorithms for knowledge graphs [MWT20],

etc.

Within ML, due to many reasons such as the complexity of the models, the vast-

ness of potential data inputs, and the intricate nature of real-world problems, advantages

over other algorithms are often demonstrated empirically on benchmark datasets [Vap00;

Dom12; Mit97]. However, such empirical evaluation of QML models is infeasible as most

of the aforementioned QML algorithms require quantum devices with thousands of qubits

and noiseless functioning, placing them firmly out of the reach of current NISQ devices.

The most hopeful class of algorithms is Variational Quantum Algorithms (VQAs)

[Cer+21c; Ben+19]. At their core, VQAs are general-purpose optimization algorithms

where, we use quantum computers to estimate objective functions involving qubits and

parameterized quantum circuits (also called ansatzes, typically designed in a layerwise fash-

ion akin to how neural networks are designed), and update the parameters of these func-
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tions classically towards their optimum using algorithms such as gradient descent [Rud17],

ADAM [KB17], etc. Many such functions are notoriously hard to evaluate on classical de-

vices [Hav+19], thus opening the door towards potential practical quantum supremacy.

Popular examples include variational quantum eigensolver [Per+14], quantum approxi-

mate optimization algorithm (QAOA) [FGG14], quantum support vector machines [Hav+19],

quantum autoencoder [ROA17], quantum neural networks [Ben+19], with latter three be-

ing examples of applications in machine learning.

One major issue hindering the success of VQAs is barren plateaus [Lar+24; Qi+23].

This is a property that the objective function exhibits where all partial derivatives for

almost all inputs are exponentially small. Barren plateaus were first theoretically demon-

strated for VQAs that use deep (number of layers scaling at least linearly in the number

of qubits involved) parameterized circuits in [McC+18] and then for shallow ones (number

of layers scaling at most logarithmically in the number of qubits), induced by the choice

of the observables, by [Cer+21b]. However, several heuristic methods that address bar-

ren plateaus have been proposed, including [Pat+21; Mel+22; RSL22; Sko+21; Gri+23a;

Gri+23b; FM22; Ver+19; Gra+19a; KS22; Zha+22a].

Another issue that has received comparatively lesser attention is the sample com-

plexity of VQAs [Cer+23; Fon+22; BK22]. In quantum information, the no-cloning the-

orem states that a quantum device that acts as a universal copier of quantum states

cannot exist [WWZ82]. Also, unlike classical computing, a reliable quantum memory de-

vice [GLM08] is yet to be developed. These factors imply that each use of a quantum

state necessitates preparing it from scratch. In the context of VQAs, we refer to the

term sample complexity to denote the total number of executions of the quantum device

required (equivalently, the total number of copies of quantum states consumed). In the

standard VQA model, this scales linearly with the total number of function evaluations

needed throughout the optimization. When additional factors such as hyperparameter

tuning, model, and ansatz selection are introduced, the scale of this number becomes no-

tably significant. Moreover, in the near term, only very few capable quantum computers
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will be available, making the implementation of VQAs with reduced sample complexity

crucial.

One method that has gained recent attention is to use the quantum device to gather

just the right amount of information from the input quantum states, using a number of

samples that is at most logarithmic in the total number of function evaluations required, so

as to be able to then classically simulate the whole optimization procedure efficiently (us-

ing classical resources polynomial in the number of qubits involved). Although it is clear

that this need not be possible for all kinds of VQA tasks, there have been some notable

works that achieved this when some specific classes of ansatzes and/or measurements are

involved [Cer+23; BK22; Oka+22; Fon+22; Bas+23; Bas+24a]. We use the phrase classi-

cal simulation of VQAs to mean these kinds of protocols, where few quantum resources are

used to develop models that can be used to completely simulate the optimization procedure

classically efficiently, thus exponentially improving the sample complexity of VQAs. Other

approaches aimed at reducing sample complexity of VQAs include classically simulating

the optimized (learned) VQA models [SEM22], developing optimization algorithms spe-

cific to VQAs, that require fewer iterations and function evaluations compared to standard

classical methods [KB22; Sto+20], etc.

This thesis aims to study the trainability and classical simulability of different VQA

ansatzes when used in combination with different types of observables. More specifically,

the contributions of this thesis are as follows:

1. We introduce a training protocol whose sample complexity is exponentially lesser

than the standard method for VQA objective functions that use the Alternating

Layered Ansatz (ALA) [Cer+20] (cf. Figure 3.5 (a)) and local observables (observ-

ables which restricts measurements to only a small number of qubits).

2. We introduce a training protocol whose sample complexity is exponentially lesser

than the standard method for VQA objective functions that use almost any shallow

ansatz and observables of low Frobenius norm (observables which typically involve

measuring nearly all qubits and consider only a few outcomes).
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[Sto+20] [BK22] [Oka+22] [Fon+22; KB22] ALSO/AISO

Agnostic to choice of optimizer No No Yes Yes Yes
Independent of input state Yes Yes No Yes Yes

Rigorous complexity guarantees No Yes Yes No Yes

Table 1.1: Comparison with previous works on classical simulation and improving the
sample complexity of VQAs.

3. We theoretically study the trainability of learning weakly entangled approximations

of states variationally using the Matrix Product State (MPS) ansatz (cf. Figure 3.7).

Specifically, we rigorously prove that the usage of global observables will induce

barren plateaus, while the usage of local observables will avoid them. We also provide

strong evidence that suggests the existence of a protocol that can greatly improve

the sample complexity when using local observables.

The classical simulation methods introduced in this thesis have many advantages over

other state-of-the-art methods providing sample complexity advantages for VQAs, as illus-

trated in Table 1.1. These advantages are provided in detail in the related works sections of

the corresponding chapters (cf. Sections 4.7 and 6.7). Broadly, our methods demonstrate

greater compatibility with classical optimizers than those in [BK22; Sto+20], support a

wider class of input states compared to works such as [Oka+22], and provide more rigorous

sample complexity guarantees than [Fon+22; KB22; Sto+20]. [Cer+23] is a comprehen-

sive work on classical simulation that was released after ALSO and AISO which shares a

lot of similarities with them.

1.2 Publications Related to This Thesis

• [Bas+23] Afrad Basheer, Yuan Feng, Christopher Ferrie, and Sanjiang Li. Alternat-

ing Layered Variational Quantum Circuits Can Be Classically Optimized Efficiently

Using Classical Shadows. Proceedings of the AAAI Conference on Artificial Intelli-

gence, 2023, 37(6):6770–6778.

• [Bas+24a] Afrad Basheer, Yuan Feng, Christopher Ferrie, and Sanjiang Li. Ansatz-
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Agnostic Exponential Resource Saving in Variational Quantum Algorithms Using

Shallow Shadow. Proceedings of the Thirty-Third International Joint Conference on

Artificial Intelligence Main Track, 2024, Pages 3706-3714.

• [Bas+24b] Afrad Basheer, Yuan Feng, Christopher Ferrie, Sanjiang Li, and Hakop

Pashayan. On the Trainability and Classical Simulability of Learning Matrix Prod-

uct States Variationally, arXiv: 2409.10055 (Accepted for publication in proceedings

of the AAAI Conference on Artificial Intelligence, 2025 ).

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 - Preliminaries: In this chapter, we introduce the notations used in this

thesis and explain the required background concepts in detail. This includes quantum

computing and quantum information, MPS, unitary t-designs, and classical shadow to-

mography.

Chapter 3 - Variational Quantum Algorithms: In this chapter, we introduce and ex-

plain VQAs in detail. This includes an overview, examples ansatzes, various applications,

and trainability issues.

Chapter 4 - Alternating Layered Shadow Optimization: In this chapter, we intro-

duce Alternating Layered Shadow Optimization (ALSO) — an efficient method to train

alternating layered VQAs (ones that use the ALA) that is exponentially better than the

standard way of training VQAs in terms of sample complexity, when used in combina-

tion with local observables. The saving of state copies is especially useful when multiple

rounds of the same optimization algorithm are required for various choices of hyperparam-

eters, or when one has to experiment with different VQAs altogether. Moreover, ALSO

is implementable using fewer and simpler quantum operations; in fact, only single-qubit

measurements according to Pauli bases are required in ALSO. Our algorithm uses clas-

sical shadows (cf. Section 4.2) of quantum input data, and can hence run on a classical

computer with rigorous performance guarantees. Another interesting benefit is that the
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produced classical shadows can be reused in different (independent) tasks. For example,

the same set of classical shadows can be used in both finding the state preparation circuits

and building quantum autoencoders. We demonstrate 2–3 orders of magnitude improve-

ment in the training cost using our algorithm for the example problems of finding state

preparation circuits (cf. Section 3.4.1) and the quantum autoencoder (cf. Section 3.4.3).

Chapter 5 - Ansatz Independent Shadow Optimization: In this chapter, we pro-

posed Ansatz Independent Shadow Optimization (AISO) — a training algorithm that

leverages shallow shadows (cf. Section 5.2) to achieve an exponential reduction in quan-

tum resources required to train VQA objective functions. AISO is a very general approach

that works with almost all of the popular shallow quantum circuit structures in the lit-

erature when used in combination with observables of low Frobenius norm. It allows one

to do more iterations of the classical optimizer, more hyperparameter tuning, and ex-

periment with various ansatzes and optimizers with very few executions of the quantum

device. We demonstrated this advantage in two important use cases of interest in quantum

information: state preparation and Variational Quantum Circuit Synthesis (VQCS) (cf.

Section 3.4).

Chapter 6 - Trainability and Classical Simulability of Learning MPS Approxi-

mations Using VQAs: In this chapter, we introduce new results regarding cost concen-

tration, trainability, and classical simulability of learning state approximations of quantum

states variationally using the MPS ansatz. This ansatz leverages the MPS data structure,

which stores quantum states with space complexity that scales polynomially with the bond

dimensions (parameters that measure entanglement between neighboring qubits). Conse-

quently, the MPS ansatz is particularly effective for learning weakly entangled approxima-

tions, potentially resulting in fewer gate counts and simpler gate connectivity requirements

compared to other approaches. We prove that the usage of global observables forces the

variance of the objective function and all its partial derivatives to be exponentially small

in the number of qubits, while the usage of local observables avoids this. Moreover, we

demonstrate that using the ansatz with local observables reveals effective subspaces (cf.
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Section 6.4.1) within the Pauli basis, paving the way for a potential classical simulation

of this VQA. Also, all our results are experimentally validated across various scenarios.

Chapter 7 - Conclusion and Future Direction: In this chapter, we conclude this

thesis by summarizing all the contributions made as part of this thesis and discuss the

future directions of research that stem from the ideas developed as part of this work.

Chapter 8 - Appendix: In this chapter, we provide additional theorems, lemmas, defi-

nitions and more discussions on tensors and MPS.
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Chapter 2

Preliminaries

First, we introduce some notations and terminologies used in this thesis.

|¨y (x¨|) Column vectors (Row vectors)

|iy ith computational basis vector

LpV q Set of all operators acting on the vector space V

XpX:q Conjugate (conjugate transpose)

1 (1V ) Identity matrix acting on C2 (acting on V )
p
ś

t“1
At A1A2 . . . Ap

|by
n
Â

i“1
|by, where b P t0, 1u and n is implicitly understood from context

}A}p
c

ř

ij
|Aij |p, where A “

ř

ij
Aij |iy xj|

}A}8 Largest singular value of A.

}A}tr
ř

i
ωi, where tωiu are the eigenvalues of

?
A:A

AB BAB: if A,B P LpCdq

N,R,C The set of all natural, real and complex numbers respectively

Ut,Ht The set of all unitaries, and Hermitians acting on Ct respectively

tApjquj tAp1q, Ap2q, Ap3q, . . . u, where Apjqs are indexed set of entities
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2.1 Matrix Basics

In this section, we recall some basic definitions regarding matrices.

• For any square matrix A P Cnˆn, its trace is defined as the sum of its diagonal

elements. That is, if A “
n´1
ř

i,j“0
Aij |iy xj|, then trpAq “

n´1
ř

i“0
Aii, where trpAq is its

trace.

• A Hermitian matrix is a square matrix A P Cnˆn such that A: “ A. These matrices

admit only real eigenvalues.

• A positive semi-definite (definite) matrix is a Hermitian matrix A P Cnˆn such that

xψ|A |ψy ě 0 @ |ψy P Cn pxψ|A |ψy ą 0 @ |ψy P Cnq. These matrices admit only

non-negative (positive) eigenvalues.

• The matrix square root of a square matrix A P Cnˆn is any matrix B P Cnˆn such

that A “ B2.

• The rank of a matrix A is the dimension of the vector space spanned by its columns

(equivalently, its rows).

2.2 The Kronecker Product

Let A P Cm1ˆn1 and B P Cm2ˆn2 . Then the Kronecker product A b B P Cm1m2ˆn1n2 is

given as

AbB “

»

—

—

—

—

–

a11B . . . a1n1B

...
...

...

am11B . . . am1n1B

fi

ffi

ffi

ffi

ffi

fl

. (2.1)

Throughout this work, for a set of matrices tApiq| for i “ 1, . . . , ku, Ap1qbAp2qb¨ ¨ ¨bApkq

is denoted as

ˆ

k
Â

i“1
Apiq

˙

. Similarly, for any matrix A, Abt “ A b A b ¨ ¨ ¨ b A (t times).

In the case of vectors |ψy , |ϕy, for convenience, we denote |ψy b |ϕy as |ψy |ϕy. Also, we

define A
pnq
t :“ 1bn´tbAb1bt´1. In many cases, we omit the dependence on n and simply
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write At, as this dependence is often implicitly understood. Some important properties of

Kronecker products are

• For matrices A P Ct1ˆt2 , B P Ct2ˆt3 , C P Cs1ˆs2 , D P Cs2ˆs3 , we have pAb CqpB b

Dq “ AB b CD.

• For matrices A P Ct1ˆt1 , B P Ct2ˆt2 , we have trpAbBq “ trpAqtrpBq.

• For matrices A P Ct1ˆt2 , B P Cs1ˆs2 and C P Cs1ˆs2 , we have A b pB ` Cq “

pAbBq ` pAb Cq.

2.3 Quantum Computing and Quantum Information

2.3.1 Quantum State, Gates, and Measurement

A quantum state σ P LpCdq is a positive semi-definite operator acting on Cd with trace

1. When the rank of σ is 1, we say that σ is a pure state. Otherwise, we say that it is a

mixed state. A qubit is the fundamental implementable entity in quantum computing and

can admit any state σ P LpC2q as its value, similar to how a bit in classical computing can

admit any value in t0, 1u. When a qubit q takes a value σ, we say that q is in the state

σ, or the operator σ describes the state that q is in. One can also define qudits as similar

entities that can be in any state σ P LpCdq. Define a system or register to be a tuple of

such entities. It is better to fix the ordering of the entities and hence a tuple is preferred.

To describe the state of a system S “ pqn, qmq, where qn is a qu-n-it and qm is a qu-m-it,

we use operators acting on the tensor product of the vector spaces Cn and Cm, denoted as

CnbCm. This is the vector space defined as the span of all vectors of the form |v1yb |v2y,

where |v1y P Cn and |v2y P Cm. This vector space is the nm-dimensional vector space

Cmn. So, a system of n-qubits can be in any state in LpCq. A state σ P LpC2nq describing

a system of n-qubits, is sometimes referred to as an n-qubit state.

A quantum gate is defined as a unitary operator U P LpCdq. The application of such

a quantum gate on a system in the state σ P LpCdq transforms the state of the system as
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follows:

σ
U
Ñ́ σU , (2.2)

where σU :“ UσU :. One can see that this is a reversible operation and if we follow this

operation up with an application of U :, which is also a quantum gate, on this system, we

get the system back to the original state σ.

Given a system, generally, it is impossible to accurately compute the state that the

system is in. The standard way with which we read an observation from a system in some

state is through quantum measurements. A quantum measurement is defined by a set of

measurement operators M “ tM pjq P LpCdquj such that
ř

j
M pjq:M pjq “ 1Cd . When a

system in a state σ is “measured”, the state of the system undergoes a transformation

given as

σ
M
Ñ́

σMpjq

tr
´

σMpjq

¯ with probability tr
´

σMpjq

¯

. (2.3)

This is what one can observe from quantum systems. When a measurement using a

measurement set M is carried out, we will observe the index j of the operator M pjq that

was chosen as part of the probabilistic transformation. If one is only interested in the

index, and not interested in what the state of the system is after measurement, we can

denote the measurement protocol as

σ
M
““ñ j with probability tr

´

σMpjq

¯

. (2.4)

Due to the nature of the probabilistic transformation of the measurement protocol, one

can say that measurement “destroys the state”. In general, unlike the application of a

quantum gate, the measurement is an irreversible operation.

An observable is defined as any Hermitian operator. Any Hermitian operator O P

LpCdq can be decomposed in terms of its eigenbasis using spectral decomposition as

O “
ř

j
λjP

pjq, where λj and P pjq are eigenvalues and associated projections on to the
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corresponding eigenspace. Given a system in a state σ P LpCdq, the expectation of an

observable O is defined as trpOσq “
ř

j
λjtr

`

σP pjq
˘

.

The probabilistic interpretation of this can be found in [Par05]. If we know the full

spectral information of O, and have the capability of preparing a system in the state σ

multiple times (or we are provided with multiple systems all prepared in the state σ), then

trpOσq can be estimated by multiple measurements using the measurement set tP pjquj .

The number of measurements (equivalently the number of copies of σ since each mea-

surement destroys a copy) required to get an accurate estimate of trpσOq can be computed

using Hoeffding’s inequality [Hoe63], which says that for independent random variables

ηp1q, ηp2q, . . . , ηpT q with ηpiq P rai, bis, and for any ϵ P p0, 1q, we have

Prob p|η̂ ´ E pη̂q | ě ϵq ď 2e∆, (2.5)

where ∆ “

¨

˝

´T 2ϵ2

T
ř

i“1
pbi´aiq

2

˛

‚ and η̂ “ 1
T

T
ř

i“1
ηpiq. Let the outcome of the measurement be a

random variable η. So the range of η is rλmin, λmaxs, where λmin and λmax are the smallest

and largest eigenvalues of O respectively. If we measure T times, we are essentially getting

the outcomes of T independent and identically distributed random variables ηp1q, . . . , ηpT q

all distributed according to η. We also have Epηq “ trpσOq. Putting all this is Eq (2.5)

means that for any ϵ, δ P p0, 1q, if we measure the state T ě
2pλmax´λminq

2

ϵ2
log

`

2
δ

˘

times,

we will have

Prob p|η̂ ´ tr pσOq | ď ϵq ě 1´ δ, (2.6)

where η̂ “ 1
T

T
ř

i“1
ηpiq is the sample means estimator. This can be derived by setting δ

to be the right-hand side of Eq (2.5). Throughout this thesis, in similar contexts, the

parameters ϵ and δ are called precision and confidence parameters.

These kinds of measurements are called projective measurements. Measurements in

the computational basis, that is, using the set t|jy xj|uj is called standard projective mea-
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surement. This is the general type of measurement carried out in quantum circuits. To

measure using any orthonormal basis given by the columns of a unitary matrix V , one

simply applies the quantum gate V : on the system and carries out standard projective

measurement.

Quantum fidelity is a measure of similarity between two quantum states. For any two

states σ, ρ, the (squared) fidelity is defined as

F pσ, ρq “
´

tr
b

?
ρσ

?
ρ
¯2

. (2.7)

The higher the fidelity, the higher the similarity between the states, with a fidelity of 1 if

and only if ρ “ σ. A fidelity of 0 implies that the states are orthogonal, or equivalently, as

“different” as possible. If any one of the input states is pure, then we have F pρ, σq “ trpρσq.

Also, quantum infidelity is defined as 1´ F pρ, σq.

2.3.2 Pure State Dynamics

Let S be a system in the pure state σ P LpCdq. Pure quantum states will admit only one

non-zero eigenvalue. So, rather than using the matrix σ to describe the state of S, one can

also use any normalized (with respect to Euclidean 2-norm) eigenvector associated with

its non-zero eigenvalue. That is, let σ “ |ψy xψ| be an eigendecomposition of σ. Then,

the application of any quantum gate U P LpCdq on S can be modeled by the action of U

as an operator on |ψy. From (2.2), we can see that the resulting state is the unique pure

state whose eigenspace corresponding to the only non-zero eigenvalue is given by the span

of tU |ψyu. This means that the action of U can be seen as

|ψy
U
Ñ́ U |ψy . (2.8)
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Similarly, measuring S using the measurement set M “
␣

M pjq P LpCdq
(

can also be

described in terms of |ψy alone as

|ψy
M
Ñ́

M pjq |ψy
›

›M pjq |ψy
›

›

2

with probability
›

›

›
M pjq |ψy

›

›

›

2

2
(2.9)

or

|ψy
M
““ñ j with probability

›

›

›
M pjq |ψy

›

›

›

2

2
. (2.10)

When a state is represented using an operator, we call that representation of the state

the density matrix representation. So, given a pure state |ψy in vector form, its density

matrix representation can be computed as |ψy xψ|. One can also see that |ψy and eiγ |ψy

are indistinguishable for any pure state |ψy and γ P C, since by |ψy, what we are interested

in is not the vector but the space spanned by the vector. Both of them are essentially the

same quantum state σ “ |ψy xψ| “ eiγ |ψy xψ| e´iγ .

It is also convenient to define pure quantum states as tensors in a tensor product

space [KB09; Nic13] (cf. Section 8.1 for a brief introduction). Let t|0y , |1yu be the com-

putational basis of the 2-dimensional Hilbert space (in the finite dimensional setting, a

Hilbert space is a vector space endowed with an inner product) C2, where

|0y “

»

—

–

1

0

fi

ffi

fl

|1y “

»

—

–

0

1

fi

ffi

fl

. (2.11)

Consider n 2-dimensional Hilbert spaces tVj “ C2| j “ 1, 2, . . . , nu. So, the set

␣

|jy “ |j1y |j2y . . . |jny
ˇ

ˇ j “ 0, . . . , 2n ´ 1
(

, (2.12)

where j “ j1j2 . . . jn is the binary representation of the integer j, forms an orthonormal

basis (computational basis) for the 2n-dimensional Hilbert space
Ân

j“1 Vj “ C2n . This
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means that any n-qubit pure quantum state |ψy P C2n can be written as

|ψy “
2n´1
ÿ

j“0

ψj |jy “
1
ÿ

j1,j2,...,jn“0

ψj1j2...jn |j1y |j2y . . . |jny , (2.13)

where ψj P C. Also, since this is a normalized vector, we have that
2n´1
ř

j“0
|ψj |

2 “ 1.

One can also see that any normalized vector |ψy P Cd is a pure quantum state

since |ψy xψ| is a rank 1 positive semi-definite matrix with trace 1. When a system

S “ pq1, q2, . . . , qnq of n qubits is in such a state |ψy in a tensor product space, we

consider the jth mode of the tensor to correspond to the qubit qj . That is, the Hilbert

space Vj corresponds to qj . A consequence of this arrangement is that if you prepare

each individual qubit qj in the state |ψjy, then the state of S is given as
n
Â

j“1
|ψjy. Note

that not all systems can be decomposed as a product of small tensors in this nice man-

ner. One can prepare a system of qubits in such a manner that this decomposition in

terms of 2-dimensional complex vectors is not possible. In the case of a 2-qubit system

S “ pq1, q2q, if we can decompose the state |ψy of the system as |ψy “ |ψ1y |ψ2y, we say

that the qubits q1 and q2 are separable. In this case, we can say that the state of q1 is |ψ1y

and the state of q2 is |ψ2y. If we cannot decompose |ψy in this manner, we say that q1

and q2 are entangled. This concept can be extended to multiple qubits as well as density

matrices [Wat18]. Quantum entanglement is a fundamental resource in many quantum

protocols [NC11; Hor+09; Eke91; Bri+98; Ben+93].

2.3.3 Partial Trace

Let A be a register of dimension dA and B be a register of dimension dB. Given any state

σ P LpCdAdB q, σ “
dA´1
ř

i1,j1“0

dB´1
ř

i2,j2“0
σi1i2,j1j2 |i1y |i2y xj1| xj2| defined on these two registers, the

state of the subsystem A is computed using a operation linear operation called the partial

trace. This operation can be explained as applying the trace operation on one register
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alone. Formally, we define trBpσq, applying partial trace on B or tracing out B, as

trBpσq “
dB´1
ÿ

q“0

p1CdA b xq|qσ p1CdA b |qyq (2.14)

“

dB´1
ÿ

q“0

dA´1
ÿ

i1,j1“0

dB´1
ÿ

i2,j2“0

σi1i2,j1j2 p1CdA b xq|q |i1y |i2y xj1| xj2| p1CdA b |qyq (2.15)

“

dB´1
ÿ

q“0

dA´1
ÿ

i1,j1“0

dB´1
ÿ

i2,j2“0

σi1i2,j1j2 p1CdA b xq|q |i1y xj1| b |i2y xj2| p1CdA b |qyq (2.16)

“

dA´1
ÿ

i1,j1“0

dB´1
ÿ

q“0

σi1q,j1q |i1y xj1| . (2.17)

It is easy to see that partial trace is a linear operation. The state of the subsystem A is

trBpσq while the trace of the subsystem B is trApσq. To see why these are valid quantum

states, refer to Appendix 8.3. In many instances, we call σA :“ trBpσq the reduced density

matrix of σ on A.

Also, for any matrix C “ Cpaq b Cpbq, defined on the same two register Hilbert space,

we have trBpCq “ Cpaqtr
`

Cpbq
˘

. Hence, for any arbitrary matrix C defined on this Hilbert

space, since there always exists a finite number of matrix tCpakquak , tC
pbkqubk such that

C “
ř

k

Cpakq b Cpbkq, we have trBpCq “
ř

k

CpakqtrpCpbkqq.

We can also extend this definition to a state σ defined on many registers A1, A2, . . . , At

of dimensions d1, d2, . . . , dt. Application of partial trace on registers J “ tAJ1 , AJ2 , . . . , AJt1 u

results in the state trJ pσq where

trJ pσq “
d1´1
ÿ

j1“0

¨ ¨ ¨

dt1´1
ÿ

jt1“0

´

δp1q
:
b ¨ ¨ ¨ b δptq

:
¯

σ
´

δp1q b ¨ ¨ ¨ b δptq
¯

, (2.18)

where δpiq “ |jiy if i P tJ1, J2, . . . , Jt1u and δpiq “ 1Cdi .

2.3.4 Quantum Circuits

Similar to how a classical circuit is defined as a set of (classical) gates acting on n-bits

which encodes the n-bit long input values, a quantum circuit is defined by a set of quantum
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gates acting on a system of n-qubits, described by an input state (pure in most cases). The

output of a classical circuit can be easily read from the output bit string. However, the

output of a quantum circuit cannot be read directly from the final state that the system

is in after all gates have been applied. We call the state of the system after all gates have

been applied, the output state. What one can do, is measure the output state, usually a

standard projective measurement, and the probabilistic output is the observed output of

a quantum circuit. So that means, if the input state is |ψy and the circuit is given by

the collection of quantum gates
␣

U pjq P LpC2nq| j “ 1, . . . ,m
(

(where U p1q is applied first,

then U p2q and so on), then the output of the quantum circuit will be

|ψy
U1,U2,...,Um
´́ ´́ ´́ Ñ́ |ϕy “ñ j with probability |ϕj |

2, (2.19)

where |ϕy “ Um . . . U2U1 |ψy “
2n´1
ř

j“0
ϕj |jy. In this scenario, the post-measurement state of

the system will always be a computational basis vector |jy. So, even though an n-qubit

pure quantum state is described by or “stores” 2n complex numbers, we cannot access

these numbers as we can do from a classically stored n-bit string.

For a system of qubits S, define a subsystem or subregister to be a tuple of qubits

selected without replacement from S. Let S “ pq1, q2, . . . , qnq be a system of n qubits in a

state |ψy P
Ân

j“1 Vj . Let J “ pqj1 , qj2 , . . . , qjtq be a subsystem of S. One can also apply a

quantum gate U P LpC2tq on the subsystem J alone. Such an application can be modeled

using tensor operations. The resultant state can be computed as the matrix U acting on

the tuple of t indices pj1, j2, . . . , jtq of the tensor |ψy. That is, we contract these indices

of |ψy (viewed as a tensor with n indices of length 2) with the column index of U (after

splitting its row and column indices each into t indices of length 2). The exact definitions

of tensor contraction and index splitting are given in the Appendix (cf. Definitions 4

and 5. Then the state of S after applying U on J , |ϕy “ UJ |ψy, is given as

|ϕy “
1
ÿ

p1,...,pn“0

˜

1
ÿ

q1,...,qt“0

Up1...pt,q1...qtψp11...p1n

¸

|p1 . . . pny , (2.20)
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where

p1k “ qk if k P J (2.21)

p1k “ pk otherwise. (2.22)

This can concisely be written as |ϕy “ UJ |ψy or |ψy
UJ
´́Ñ |ϕy. Another way of describing

this operation using permutation matrices is given in Section 8.2 in the Appendix. A

quantum gate U P C2t is sometimes referred to as a t-qubit quantum gate.

Similarly, one can also measure a subsystem J of an n-qubit system S that is in the

state |ψy. This can be described using the measurement set M “
␣

M pjq
(

j
and the output

of the measurement is given as

|ψy
M
Ñ́

M pjq
J |ψy

›

›M pjqJ |ψy
›

›

2

with probability
›

›

›
M pjq

J |ψy
›

›

›

2

2
(2.23)

or

|ψy
M
““ñ j with probability

›

›

›
M pjq

J |ψy
›

›

›

2

2
. (2.24)

One can also easily model the same “partial” operations in the density matrix frame-

work by extending these tensor network contractions to matrix formalisms in a similar

way. That is, the application of any operator G (gate or measurement) can be computed

by using the previous method to first compute the result of the right multiplication of

σ with G, followed by a left multiplication of the result with G:. Denote such a gate

application as σGJ .

Another way of representing this operation is using reduced density matrices. Let σ

be an n-qubit state defined on pq1, q2, . . . , qnq. Application of a t-qubit gate U and/or

measurement t-qubit measurement operators
␣

M piq
(

i
on a subsystem J “ pqj1 , . . . , qjtq, is

equivalent to application of the same operations on σJ “ trJ pσq, where J is the register
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|0⟩
U
(2)
(1,2)

U
(3)
(2,4,3,1)

|0⟩

U
(1)
(4,2,3)|0⟩

|0⟩

0/1

0/1

0/1

|0⟩1

U
(2)
(1,2)

U
(3)
(2,4,3,1)

|0⟩2

U
(1)
(4,2,3)|0⟩3

|0⟩4

|ψ2⟩ |ψ3⟩|ψ1⟩

|0⟩ Z

|0⟩ H U

|0⟩

|0⟩ T

(a) (b) (c)

Figure 2.1: (a), (b) An example of a quantum circuit. The initial state of the system is
|0000y “ |0y. Throughout this thesis, we label qubits as 1, 2, . . . starting from the top.
The subscript below each |0y in (b) depicts that. The quantum gate U p1q is applied to

the tuple of qubits p4, 2, 3q. So, |ψ1y “ U
p1q
p4,2,3q |0y. Similarly |ψ2y “ U

p2q
p1,2qU

p1q
p4,2,3q |0y and

|ψ3y “ U
p3q
p2,4,3,1qU

p2q
p1,2qU

p1q
p4,2,3q |0y. |ψ3y is the output state and finally we measure qubits

p2, 3, 4q. The meter symbol is used to denote computational basis measurement. Then,
as the output of the circuit, we will see a 3 bit string. (c) Common representations of
quantum gates. The single qubit gates are represented by small boxes labeled with their
names. When it comes to CNOT and Toffoli gates, it is easier to denote the order of the
tuple of qubits that the gate acts on. The CNOTpq1,q2q gate is depicted by a line segment
with a black dot and a circle as ends. The ends determine which qubits the gate acts on.
The black dot points to the qubit q1 (control qubit), and the circle points to the qubit q2
(target qubit). Generally, any C-Upq1,q2q gate can be depicted by a line segment with a
black dot and the gate U as its ends, the black dot pointing to q1 and U on q2. Similarly
the Toffolipq1,q2,q3q is depicted by two black dots pointing to both the control qubits q1, q2
and the circle on the target qubit q3.

of all qubits not in J . That is, the probabilities for all i, we have an equivalence of the

measurement probabilities of the form tr

ˆ

σ
G

piq
J

˙

“ tr pσJ Gpiqq, where Gpiq “M piqU .

Some of the most popular quantum gates include

H “
1
?
2

»

—

–

1 1

1 ´1

fi

ffi

fl

, T “

»

—

–

1 0

0 e
iπ
4

fi

ffi

fl

, CNOT “

»

—

—

—

—

—

—

—

–

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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X “

»

—

–

0 1

1 0

fi

ffi

fl

, Y “

»

—

–

0 ´i

i 0

fi

ffi

fl

, Z “

»

—

–

1 0

0 ´1

fi

ffi

fl

, SWAP “

»

—

—

—

—

—

—

—

–

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

Toffoli “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

H gate is often referred to as Hadamard gate. The gates tX,Y, Zu are called Pauli

operators. The action of some of these gates on computational basis vectors reveals nice

analogies to their classical counterparts. The X gate maps |0y to |1y and vice-versa. This

is the quantum version of the classical NOT gate. The CNOT gate is simply a controlled-

NOT gate. It is a two qubit gate which maps |j1y |j2y to |j1y |j2 ‘ j1y. That is, CNOT

being applied to pq1, q2q can be seen as follows: if qubit q1 is in state |1y, apply an X gate

to qubit q2. The qubit q1 is called the control qubit and the qubit q2 is called the target

qubit. Similar controlled gates can be defined for other gates as well. An application of a

general controlled gate C-U on pq1, q2q can be seen as an application of the gate U on the

target qubit q2 if the control qubit q1 is in the state |1y.

The SWAP gate can be used to swap the information contained in two qubits. Its effect

can be neatly seen when applied to computational basis vectors. We can see that it leaves

both |00y and |11y unchanged while mapping |01y to |10y and vice versa. Application of

a Toffoli gate [Tof80] on pq1, q2, q3q can be seen as a double-controlled X gate which will
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apply an X gate to the target qubit q3 if both the control qubits q1 and q2 are in the

state |1y. In classical computing, any circuit can be implemented equivalently using just

Toffoli gates, with only polynomially growing additional resources required, in a reversible

manner [Ben73; FT02]. So in quantum computing, the fact that a Toffoli gate can be

efficiently constructed as a quantum gate using CNOT and 1-qubit gates [Bar+95] means

that any classical circuit can be efficiently implemented as a reversible circuit in a quantum

setting using qubits and quantum gates [NC11; SBM06].

Since the action on computational basis vectors of these classically analogous gates can

be seen like this, their action on any state can be easily computed by writing the state in

the computational basis and applying these operations linearly.

A typical n-qubit quantum circuit with input state |ψy can be written as follows:

|ψy
U

p1q
J1
,U

p2q
J2
,...,U

pmq

Jm
´́ ´́ ´́ ´́ ´́ Ñ́ |ϕy

M
““ñ j with probability

›

›

›
M pjq

F |ϕy
›

›

›

2

2
. (2.25)

We start with a system S of n qubits in an input quantum state |ψy P
n
Â

j“1
Vj as input. Then

a series of quantum gates U p1q, U p2q, . . . , U pmq will be applied on subsystems J1,J2, . . . ,Jm
respectively. Finally, subsystem F is measured and we observe a |F | length bit string as the

probabilistic output. A simple example is presented and discussed in detail in Figures 2.1

(a) and (b).

The common way of representing a quantum circuit is illustrated in Figure 2.1 (c).

This circuit can be read as follows: first, we apply a CNOT gate with control as the first

qubit and target as the third qubit and apply a T gate on the fourth qubit. Then we apply

a CNOT gate with control as the fourth qubit and the target as the third qubit as well

as Z and H gates on the first and second qubits. Then we apply a Toffoli gate with the

first and third qubits as control qubits and the second qubit as the target qubit. Finally,

we apply a controlled-U gate with the fourth qubit as the control and the second qubit as

the target and then measure the second and fourth qubits.

Notice that in the circuit given in Figure 2.1 (c), when we start implementing the
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circuit, we can either start with CNOTp1,3q or T4. Since these two gates are acting on

different qubits, the order in which they are implemented is irrelevant. The same goes

with Z1, H2 and CNOTp4,3q after the application of CNOTp1,3q and T . We say that such

gates can be implemented in the same timestep. But this is not the case for CNOTp4,3q and

CNOTp1,3q. This is because the state on which CNOTp4,3q is applied is directly dependent

on the output of CNOTp1,3q. The total number of such timesteps required for the whole

circuit is called the depth of the circuit. For example, for the circuit in Figure 2.1 (c),

the depth is 4. More detailed definitions and explanations of this concept can be found

in [Ge+24].

A universal gate set is defined as a set of quantum gates that can be used to ap-

proximate the action of an arbitrary quantum gate to any degree. That is, a set G is a

universal set if for any t-qubit quantum gate V and a precision parameter ϵ P p0, 1q, we

have a finite number of gates U p1q, U p2q, . . . , U pmq, all selected from G, and a finite number

of tuples of qubits J1,J2, . . . ,Jm such that the operation U pmq
ImU

pm´1q
Im´1 . . . U

p1q
I1 is

ϵ close to V in terms of operator norm. Typically, the dependency of m on ϵ should be in

Oppolyplog 1
ϵ qq. For example, the set tH,T,CNOTu is a universal gate set [Boy+99].

2.3.5 Quantum Channels

Let H1,H2,H3,H4 be finite dimensional complex Hilbert spaces. A super operator is a

map whose domain and co-domain are sets of operators themselves. Given two super

operators Φ1 : LpH1q Ñ LpH2q and Φ2 : LpH3q Ñ LpH4q, the action of the super

operator Φ1 b Φ2 : LpH1 b H3q Ñ LpH2 b H4q can be seen as follows: for any input

matrix W P LpH1 b H3q, there always exist two finite sets of matrices,
␣

Apiq P LpH1q
(

i

and
␣

Bpjq P LpH3q
(

j
, such that W “

ř

i

ř

j
Apiq bBpjq (we can construct on such set from

the computational basis of LpH1 bH3q). Then pΦ1 b Φ2q pW q “
ř

i,j
Φ1

`

Apiq
˘

bΦ2

`

Bpjq
˘

.

A map Φ : LpH1q Ñ LpH2q is a positive map if for all positive semi-definite matrices

W P LpH1q, ΦpW q is positive semi-definite in LpH2q.

Quantum channels constitute a broad class of implementable quantum operations. A
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map Φ : LpH1q Ñ LpH2q is a quantum channel if Φ satisfying two conditions:

• Trace preserving: trpW q “ trpΦpW qq @ W P LpH1q

• Completely positive: Φb1LpHq is a positive map for every finite-dimensional complex

Hilbert space H. Here, 1LpHq : LpHq Ñ LpHq, such that 1LpHqpW q “W .

If an operation preserves trace as well as positivity, it will map density matrices to den-

sity matrices. But from the point of view of quantum circuits, we should be able to

apply this operation on a subsystem of a system of qubits as well. This is why com-

plete positivity is required. The channels associated with any quantum gate U is simply

ΦpW q “ UWU :, while the channel associated with computational basis measurements is

ΦpW q “
ř

i
|iy xi|W |iy xi| “

ř

i
Wii |iy xi|.

Super operators can be conveniently described using different types of representations.

One of them is called the Kraus representation. For any super operator Φ : LpH1q Ñ

LpH2q, there exist two collections of operators
␣

Apiq : H1 Ñ H2

(

and
␣

Bpiq : H1 Ñ H2

(

,

not necessarily unique, such that ΦpW q “
ř

i
ApiqWBpiq:. This representation of Φ is called

the Kraus representation and the operators
␣

Apiq
(

and
␣

Bpiq
(

are called Kraus operators.

One can define quantum channels in terms of Kraus representation also. A super

operator Φ : LpH1q Ñ LpH2q is a quantum channel if and only if there exists a Kraus

representation which satisfies the following two conditions:

• Apiq “ Bpiq @ i. This makes the super operator completely positive.

•
ř

i
Apiq:Apiq “ 1H1 . This makes the super operator trace-preserving.

So, a quantum channel Φ can be defined by a single collection of operators
␣

Apiq
(

i
, such

that
ř

i
Apiq:Apiq “ 1 and ΦpW q “ ApiqWApiq:. The quantum channel representation of

gates and computational basis measurements that we provided earlier are examples of

Kraus representations.
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2.4 Matrix Product State

The MPS decomposition [Sch11; Vid03; Oru13; Hae+16] is well studied in quantum infor-

mation, mostly in fields that concern efficient classical simulations of quantum processes,

specifically of those involving weak entanglement structures. Although there are many

variants of MPS decompositions, we mostly stick to linear MPS decompositions in this

section, with other extensions discussed at the end. Under such an MPS decomposition,

any n-qubit state |ψy can be decomposed using n third order tensors as

|ψy “
1
ÿ

i1,i2,...,in“0

G
p1q
i1
G

p2q
i2
. . . G

pnq
in

|i1i2 . . . iny (2.26)

“

1
ÿ

i1,i2,...,in“0

˜

r2´1,r3´1,...,rn´1
ÿ

j2,j3,...,jn“0

G
p1q
i1,j2

G
p2q
i2,j2,j3

. . . G
pnq
in,jn´1,jn

G
pnq
in,jn

¸

|i1i2 . . . iny , (2.27)

where Gpjq P C2ˆrjˆrj`1 are called core tensors, G
pjq
ij

P Crjˆrj`1 is the matrix we get when

we set the first index of Gpjq to ij , and r1 “ rn`1 “ 1.

The first equality can be understood as follows. Each third order tensor G
pjq
ij

is simply

the pair of matrices G
pjq
0 and G

pjq
1 . Once we are provided with these n pairs of matrices,

to find the ψi1i2...in , we simply choose the matrices G
p1q
i1
, G

p2q
i2
, . . . G

pnq
in

and compute their

product. We get the second equality by expanding all the matrix multiplications involved.

The numbers r2, r3, . . . , rn are called bond dimensions. The bond dimension rj has

a direct relationship with the entanglement between qubits j and j ` 1. Although one

can have multiple MPS decompositions for the same state, with varying bond dimensions,

typically, the higher the rj , the higher the entanglement between these qubits. More

technical details regarding this can be found in [Cir+21; Sau+19]. Hence, typically, for

states where the entanglement between nearest neighbor qubits is weak, rj will be very

small, scaling as Oppolypnqq. This implies that storing all tensors Gpjq, which will have

space complexity Oppolypnqq, will be way more efficient than storing the full state vector,

which has space complexity O p2nq. Moreover, as mentioned earlier, each entry of |ψy

can be computed using the core tensors with computational cost scaling as Oppolypnqq as
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well. This makes MPS decompositions an attractive data structure to store information

regarding such weakly entangled states.

As an example, we give the MPS decomposition of the GHZ state, defined as |GHZny “

1?
2n

p|0y ` |1yq. This is a well-studied and useful state in several quantum information

[LWZ14; NLW13; GYW05; EP14; Żuk+98]. The MPS decomposition of |GHZ4y is

G
p1q
0 “

„

1?
24

0

ȷ

, G
p2q
0 “

»

—

–

1 0

0 0

fi

ffi

fl

, G
p3q
0 “

»

—

–

1 0

0 0

fi

ffi

fl

, G
p4q
0 “

»

—

–

1

0

fi

ffi

fl

,

G
p1q
1 “

„

0 1?
24

ȷ

, G
p2q
1 “

»

—

–

0 0

0 1

fi

ffi

fl

, G
p3q
1 “

»

—

–

0 0

0 1

fi

ffi

fl

, G
p4q
1 “

»

—

–

0

1

fi

ffi

fl

. (2.28)

In general, the core tensors of |GHZny are

G
pjq
i “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

|iy xi| , if j R t1, nu

|iy , if j “ n

1?
24

xi| , if j “ 1

(2.29)

The formulation provided in Eq (2.26) can be visualized using tensor network diagrams

(cf. Section 8.1.2) as given in Figure 2.2. Each box here represents a third order tensor

Gpjq, or equivalently, pairs of matrices G
pjq
0 and G

pjq
1 . The index on the right denotes the

choice of the matrix being selected. The rj ’s represent the dimension of the matrices, or

equivalently, the bond dimension. So, for any Gpjq, the line on its right represents its first

index (the index of length 2), the line going up represents its second index (the index of

length rj) and the line going down represents its third index (the index of length rj`1).

The fact that the third index of one tensor is connected to the second index of another

one situated below it represents a tensor contraction of these indices. The nature of the

contractions that give rise to each element of the vector as per Eq (2.26) can be visualized

here as a linear chain of contractions.
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Figure 2.2: (a) Linear tensor network structure of MPS representation of state vectors.
Each box represented a 3rd order tensor, or equivalently, pairs of matrices. The dimension
of the matrices also called the bond dimensions, is given as rj . The indices on the right,
which can take values in t0, 1u, represent the qubit indices, or equivalently, the index of
the matrices contained in the white box.

The concept of MPS can also be seen as a generalization of product states. The details

of this can be found in Section 8.5 in the Appendix.

2.4.1 Basic Operations Involving MPS

Here, we discuss some basic operations that one can do using MPS decompositions of

vectors, specifically using their core tensors alone without requiring to expand them as

full vectors.

• Addition of two vectors |ψ0y and |ψ1y, given as MPS decompositions with core ten-

sors Gp1q, . . . , Gpnq and Hp1q, . . . ,Hpnq results in the vector |ϕy which has an MPS
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decomposition with core tensors F p1q, . . . , F pnq, where

F
pjq
ij

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

„

Gij Hij

ȷ

, if j “ 1

»

—

—

–

Gij

Hij

fi

ffi

ffi

fl

, if j “ n

»

—

—

–

Gij 0

0 Hij

fi

ffi

ffi

fl

, otherwise

(2.30)

because

|ϕy “
1
ÿ

i1,...,in“0

F
p1q
i1

. . . F
pnq
in

|i1 . . . iny (2.31)

“

1
ÿ

i1,...,in“0

´

G
p1q
i1
. . . G

pnq
in

`H
p1q
i1
. . . H

pnq
in

¯

|i1 . . . iny (2.32)

“ |ψ0y ` |ψ1y , (2.33)

• Hadamard product (entrywise multiplication), denoted as ˚, of two vectors |ψ0y and

|ψ1y, given as MPS decompositions with core tensorsGp1q, . . . , Gpnq andHp1q, . . . ,Hpnq

respectively, results in a vector |ϕy with MPS decompostion given by core tensors
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F p1q, . . . , F pnq where F
pjq
ij

“ G
pjq
ij

bH
pjq
ij

, because

|ϕy “
1
ÿ

i1,...,in“0

F
p1q
i1

. . . F
pnq
in

|i1 . . . iny (2.34)

“

1
ÿ

i1,...,in“0

´

G
p1q
i1

bH
p1q
i1

¯

. . .
´

G
pnq
in

bH
pnq
in

¯

|i1 . . . iny (2.35)

“

1
ÿ

i1,...,in“0

´

G
p1q
i1
. . . G

pnq
in

¯´

H
p1q
i1
. . . H

pnq
in

¯

|i1 . . . iny (2.36)

“ |ψ0y ˚ |ψ1y . (2.37)

• Standard inner Product of two vectors |ψy and |ϕy, given as MPS decompositions

with core tensors Gp1q, . . . , Gpnq and Hp1q, . . . ,Hpnq respectively, can be computed as

follows:

xψ|ϕy “
1
ÿ

ii,...,in“0

ψi1...inϕi1...in (2.38)

“

1
ÿ

i1...in“0

G
p1q
i1
. . . G

pnq
in
H

p1q
i1
. . . H

pnq
in

(2.39)

“

n
ź

j“1

¨

˝

1
ÿ

ij“0

G
pjq
ij

bH
pjq
ij

˛

‚. (2.40)

• Multiplication of a vector |ψy, with MPS decomposition given by core tensors Gp1q,

. . . , Gpnq, with a scalar γ results in a vector |ϕy with MPS decomposition given by

core tensors F p1q, . . . , F pnq, where

F pjq “

$

’

’

&

’

’

%

γGpjq, if j “ 1

F pjq, otherwise

. (2.41)

because

|ϕy “
1
ÿ

i1,...,in“0

F
p1q
i1

. . . F
pnq
in

|i1 . . . iny “ γ
1
ÿ

i1,...,in“0

G
p1q
i1
. . . G

pnq
in

|i1 . . . iny “ γ |ψy .
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Figure 2.3: Tensor network diagram illustrating an example of a single-qubit gate V being
applied on an MPS. The resulting MPS differs from the original MPS only in the core
tensor associated with the qubit on which the gate was applied. Also, the new core tensor
has the same bond dimension as the one it replaced.

2.4.2 Classical Simulation of Quantum Circuits Using MPS

One important application of MPS is in the classical simulation of quantum circuits. To

see how this can be done, we require the ability to do two things: classically simulate the

application of a single-qubit gate or a two-qubit gate being applied on nearest neighbor

qubits, and classically simulate computational basis measurement, all without needing to

know the full state description in some basis. Moreover, we also require the cost of all

the operations scaling polynomially in the bond dimension and the total number of qubits

involved.

We start with the application of single-qubit gates. Let
␣

Gpjq P C2ˆrjˆrj`1
(

j
constitute

an MPS description of some state |ψy, and let V “
1
ř

p,q“0
Vpq |py xq| be a single qubit gate.

We will discuss how the application of V on a qubit i other than the first or last can be

simulated. It is trivial to extend this to those qubits. The application of V on the ith
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min

Figure 2.4: Tensor network diagram illustrating an example of a two-qubit gate V being
applied on an MPS. After the tensor contractions, we can replace the core tensors associ-
ated with both qubits on which the gate is being applied with a single order 4 tensor G1.
Then, we use SVD to factorize or “break” G1 into the contraction of two order 3 tensors
which are the reshaped versions of the resulting matrices Sp1q and Sp2q. The final MPS
differs from the original MPS only in the two core tensors associated with the qubits on
which the gate was applied. Also, the new bond dimension is the minimum of twice the
neighboring bond dimensions, which is a result of the SVD factorization involved.

qubit of |ψy gives us

Vi |ψy “
1
ÿ

j1,...,jn“0

G
p1q
j1
. . . G

pnq
jn

|j1 . . . ji´1y

˜

1
ÿ

k“0

Vkji |ky

¸

|ji`1 . . . jny (2.42)

“

1
ÿ

j1,...,jn,k“0

G
p1q
j1
. . . G

pi´1q
ji´1

VkjiG
piq
ji
G

pi´1q
ji`1

. . . G
pnq
jn

|j1 . . . ji´1kji`1 . . . jny (2.43)

“

1
ÿ

j1,...,jn“0

G
p1q
j1
. . . G

pi´1q
ji´1

G1
jiG

pi`1q
ji`1

. . . G
pnq
jn

|j1j2, . . . jny , (2.44)

where G1 P C2ˆriˆri`1 with G1
ji,p,q

“
1
ř

j“0
VjijG

piq
j,p,q. All we have done here is that

we have contracted the second index of V and the first index of Gpiq. So the tensors

Gp1q, . . . , Gpi´1q, G1, Gpi`1q, . . . , Gpnq make up an MPS decompostion of Vi |ψy. All we had

to do was replace Gpjq with G1. Computation of G1 is dependent only on Gpiq and V

and the cost of this operation scales as Opriri`1q. This process is illustrated using tensor

networks in Figure 2.3.

Now, let’s move on to the application of two-qubit gates on nearest neighbor qubits.

We shall only explain the case when it is applied to any nearest neighbor pair that does
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not involve the first or last qubits. As mentioned earlier, the same approach can be easily

extended when the gate is applied on the first or last qubit. Let

V “

1
ÿ

p1,p2,q1,q2“0

Vp1p2,q1q2 |p1p2y xq1q2| (2.45)

be a two-qubit gate. Then, the application of V on qubits i, i` 1 gives us

Vpi,i`1q |ψy

“

1
ÿ

j1,...,jn“0

G
p1q
j1
. . . G

pnq
jn

|j1 . . . ji´1y

¨

˝

1
ÿ

k1,k2“0

Vk1k2,jiji`1
|jiy |ji`1y

˛

‚|ji`2 . . . jny

“

1
ÿ

j1,...,jn,k1,k2“0

G
p1q
j1
. . . G

pi´1q
ji´1

Vk1k2,jiji`1
G

piq
ji
G

pi`1q
ji`1

. . . G
pnq
jn

|j1 . . . ji´1k1k2ji`2, . . . jny

“

1
ÿ

j1,...,jn“0

G
p1q
j1
. . . G

pi´1q
ji´1

G1
ji,ji`1

G
pi`1q
ji`1

. . . G
pnq
jn

|j1 . . . jny ,

where G1 P C2ˆ2ˆriˆri`2 . In this case, to get G1 we have contracted the first indices of Gpiq

and Gpi`1q with the column index of V , split into two indices of length 2. But the issue

now is that G1 is not an order 3 tensor. To get an MPS structure, we need to split G1 into

two order 3 tensors lying in C2ˆriˆr and C2ˆrˆri`2 such that contracting the third index

of the first and the second index of the second would give G1, for some r P N.

One way to do this is by computing the Singular Value Decomposition (SVD) of the

matrix G2 P C2riˆ2ri`2 that we get by reshaping G1 into a matrix, where we combine

the odd and even indices of G1. The SVD of this matrix allows us to decompose G2 as

G2 “ Sp1qSp2q, where Sp1q P C2riˆr and Sp2q P Crˆ2ri`2 , and r ď mint2ri, 2ri`2u. By

reshaping Sp1q into an order 3 tensor of the form Sp1q1 P C2ˆriˆr (by splitting the row

index into two) and Sp2q into an order 3 tensor of the form Sp2q1 P C2ˆrˆri`2 (by splitting

the column index and permuting the indices accordingly), we get the required two order

3 tensors. So, to get the MPS decomposition after the application of the two-qubit gate,

we simply need to replace Gpiq and Gpi`1q with Sp1q1 and Sp2q1 respectively. The cost

of doing this operation scales as Oppolypri, ri`1, ri`2qq. This process is illustrated using
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tensor networks in Figure 2.4.

So far we have discussed a method that can be used to apply a two-qubit gate V on

neighboring qubits. If we want to apply it on qubits i and j with i ă j that are not

neighbors, we can first apply a sequence of SWAP gates on pairs of neighboring qubits

pi, i` 1q, pi` 1, i` 2q, . . . , pj ´ 1, jq. Now, the qubits i and j have become neighbors and

we can simulate the application of V . After that, we apply SWAP gates on pj´ 1, jq, pj´

2, j ´ 1q, . . . , pi, i` 1q to get i back to its original position.

Finally, we move on to measurement. Notice that the single qubit gate operation we

described previously does not necessitate the matrix being applied to be unitary. That

is, we can compute the MPS decomposition of Vi |ψy for any V P LpC2q not necessarily a

unitary efficiently. This is crucial in simulating computational basis measurements classi-

cally. Assume we want to measure qubit i. This means that after the measurement, we

should get

1

} |0y x0|i |ψy }2
|0y x0|i |ψy with probability } |0y x0|i |ψy }

2
2, (2.46)

1

} |1y x1|i |ψy }2
|1y x1|i |ψy with probability } |1y x1|i |ψy }

2
2. (2.47)

So, to simulate measurement, we must be able to compute the probabilities
␣

} |0y x0|i |ψy }
2
2, } |1y x1|i |ψy }

2
2

(

and compute the associated post-measurement states as

well. To compute the probability associated with |0y x0|i |ψy, we first compute the MPS

decomposition of the state using the method we described for single-qubit gates. After

that, we have to compute the 2-norm of the resultant vector, which is simply an inner

product between two MPS decompositions. Moreover, to compute the post-measurement

states, all we have to do is divide these vectors by the square root of their associated prob-

abilities. Both these operations can be done by the methods we described in Section 2.4.1.

The initial state in many quantum circuits is assumed to |0y, which is a separable

state. Now, given any quantum circuit V and any qubit i, we define the number of times

a gate touches or crosses the qubit wire as RV,i. Formally, this is the number of 2-qubit
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gates being applied on any qubits j, k such that j ď i ď k. Let RV “ maxiRV,i. Then we

have the following theorem, first introduced in [Joz06].

Theorem 1. Every quantum circuit V that has |0y as the initial state and involves com-

putational basis measurements can be classically simulated using MPS with cost Opn ¨

polyp2RV qq.

Proof. The input state has a trivial MPS decomposition with all bond dimensions 1. First,

we shall absorb all single-qubit gates into their closest two-qubit gates so that the resultant

circuit contains only two-qubit gates. That is, when a single qubit gate A has to be applied

right after (or right before) a two-qubit gate B has to be applied, on a qubit that B is being

applied on, we can combine A and B as pAb 1qB or p1bAqB (BpAb 1q or Bp1bAq).

Now we replace all two-qubit gates that are not being applied on neighboring qubits with

only gates acting on neighboring qubits using SWAP gates. For every such replacement,

RV can only increase by a maximum of 4.

Then we shall start applying each two-qubit gate one by one on the input state |0y. Let

Gp1q, . . . , Gpnq make up the MPS decomposition of the state at some point in this process,

with bond dimensions r1, . . . rn. Assume that we have to apply a two-qubit gate on some

pair of qubits i, i`1 on this state. The resultant state will have an MPS decomposition with

bond dimensions r1, . . . , ri, r, ri`2, . . . , rn, with r “ mint2ri, 2ri`2u. So each application

of a two-qubit gate on a qubit can potentially double the resources required to store the

core tensors associated with the qubits on which it was applied. RVi tracks how many

two-qubit gates are applied on the qubit i, after introducing SWAP gates into the circuit.

Since that introduction can only increase all the RVi by a constant number, the overall

cost of implementing all the gates will be Op2RV q. The fact that measurement can be

carried out efficiently completes the proof.

2.4.3 MPS Decomposition Algorithm

In this section, we discuss a method that can be used to find an MPS decomposition of a

quantum state |ψy whose description in the computational basis is given. For that, we first
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define the concept of matricization. Given a tensor X P CI1ˆ¨¨¨ˆIk , its jth matricisation

Xrjs P CI1I2...IjˆIj`1Ij`2...Ik is the matrix that we get when we reshape X into a matrix

with indices 1, 2, . . . , j featuring as rows and the rest as columns.

The decomposition algorithm can be seen as an extended version of the SVD subroutine

featured in the two-qubit gate application procedure. The SVD was used to break a tensor

of order 4 into a contraction of two order 3 tensors. Similarly, we shall sequentially break

the state, which is an order n tensor, into multiple contractions of order 3 tensors.

Let ψrjs be the j
th matricisation of ψ. The procedure starts with an SVD of ψr1s, giving

a decomposition of the form ψr1s “ U p1qU p2q, where U p1q P C2ˆr2 and U p2q P Cr2ˆ2n´1
.

The U p1q here is the first core tensor. To get the subsequent core tensors, we simply carry

out SVD of U p2q, and the left singular matrix that we get can be reshaped into the next

core tensor and so on. The full algorithm is provided in Algorithm 1 and is illustrated

using tensor networks in Figure 2.5.

So far, we have discussed how the MPS data structure is used to store and work with

pure state described in vector form efficiently. MPS can be similarly used for density

matrices as well. The details of this can be found in Section 8.4 in the Appendix.

Algorithm 1 MPS decompostion algorithm

Require: A tensor |ψy P C2ˆ¨¨¨ˆ2

Ensure: Core tensors Gp1q, Gp2q, Gp3q, . . . , GpN´1q, GpNq

1: Compute the reduced SVD of ψr1s to get a decomposition of the form ψr1s “ U p1qU p2q,

where U p1q P C2ˆr2 and U p2q P Cr2ˆ2n´1
and r2 ď 2.

2: Set Gp1q as U p1q reshaped into a tensor of shape 2ˆ 1ˆ r2.
3: Split the columns indices of U p2q into n´ 1 indices of length 2 to get A P Cr2ˆ2ˆ¨¨¨ˆ2

such that Ar1s “ U p2q.
4: for k “ 2 . . . n´ 1 do
5: Compute the reduced SVD of Ar2s to get a decomposition of the form Ar2s

“ U p1qU p2q, where U p1q P C2rkˆrk`1 , U p2q P Crk`1ˆ2n´k
and rk`1 ď mint2rk, 2

n´ku.
6: Set Gpkq as U p1q reshaped as a order 3 tensor with shape 2 ˆ rk ˆ rk`1, by

splitting its row index.
7: Split the columns indices of U p2q into n ´ k indices of length 2 to get A P

Crk`1ˆ2ˆ¨¨¨ˆ2 such that Ar1s “ U p2q.
8: end for
9: Set Gpnq as A reshaped into a order 3 tensor of shape 2ˆ rn´1 ˆ 1.

10: return Gp1q, Gp2q, . . . , Gpn´1q, Gpnq.
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SVD

SVD

SVD

Figure 2.5: Tensor network diagram illustrating an example of the MPS decomposition
algorithm. SVD is used to sequentially break the order n tensor into a linear chain of
order 3 tensors, similar to how SVD was used to break an order 4 tensor into a chain of
two order 3 tensors within the two-qubit gate application procedure.

2.4.4 MPS Tomography

Quantum tomography is a subfield of quantum information that deals with techniques

designed to compute the classical description of an unknown state σ, when multiple copies

are provided [Gro+10; OW16; Haa+16; FBK21; Guţ+20]. It has already been shown that

in general, to get a classical description of an arbitrary state σ, to any fidelity, we require

a number of copies of σ that scales exponentially in the number of qubits involved [Yue23].

But if the target state is pure and admits an MPS description with all bond dimensions

small, say bounded by a small number B, then [Cra+10] introduces two tomography

procedures that would consume a number of copies scaling linearly in n and polynomial

in B [Cra+10]. In this section, we shall explain one of them in detail.

Let |ψy be the target pure state, which has such an efficient MPS decomposition.

Define Q “ rlogBs ` 1. The method starts with estimating the state of the first Q qubits

J “ p1, 2, . . . , Qq using any conventional quantum tomography technique. This would

require Op4QqpOppolypBqqq copies of σ.

For simplicity, assume we have a perfect estimation of σJ . Let σJ “

rankpσJ q
ř

j“1
ωj |wjy xwj |

be its eigendecomposition. From Algorithm 1, we can see that the ith bond dimension is

the rank of ψris. Also, notice that σJ “ ψrisψ
:

ris, meaning that the ith bond dimension is

the same as rankpσJ q. Since rankpσJ q ď 2Q´1, there exist a Q-qubit unitary U p1q such

that U p1qσJU
p1q: “ |0y x0| b σ1 for some state σ1 P LpC2Q´1

q. That is, application of
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Figure 2.6: Tensor network diagram illustrating a 5-qubit example of the MPS tomography
protocol. All the bond dimensions of the input state |ψy is 4. Hence, we only require
tomography of 3-qubit subsystems of |ψy. After the first tomography subroutine, we can
compute U p1q. Application of U p1q results in a state with the first qubit being |0y. Then, we
carry out tomography of the next 3 qubits, from which we can compute U p2q. Application
of U p1q followed by U p2q results in a state with the first two qubits being in |0y. Since the
resulting part is simply a 3-qubit state, we carry out tomography of that part to find a
circuit U p3q that prepares it. Hence, application of the inverse of all these gates in reverse,

that is, U p3q: on the bottom three qubits, U p2q: on the next three, and U p1q: on the first
three qubits, of |0y, will prepare |ψy.

U p1q on the first Q qubits “disentangles” the first qubit and results in a state of the form

|0y b |ψ1y, for some |ψ1y P C2n´1
.

Repeat this entire process again for |ψ1y. Then, repeat the whole thing for the corre-

sponding resultant states n´Q times, to get unitaries U p1q, U p2q, . . . , U pn´Qq. After n´Q

rounds, we will get

U
pn´Qq

pn´Q,n´Q`1...,n´1q . . . U
p2q
p2,3...,Q`1qU

p1q
p1,2...,Qq

|ψy “ |0ybn´Q b |ψ2y , (2.48)

where |ψ2y is a Q qubit state. Now, do full tomography on |ψ2y to find a unitary U pn´Q`1q

such that U pn´Q`1q |ψ2y “ |0ybQ. Hence, we see that if we apply the inverses of all these
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(a) Cyclic MPS (b) MPO (c) PEPS

Figure 2.7: Extensions of MPS. (a) Cyclic MPS, which is a typical MPS with the first and
last core tensors connected with an additional edge. ik, rk represent the free qubit indices
and bond dimensions respectively. (b) MPO, where each core tensor has an extra index
jk making it a 2nˆ 2n dimensional matrix. (c) PEPS representing a grid of qubits, where
rk1,k2 , sk1,k2 are bond dimensions.

gates in reverse, we will get a circuit that prepares |ψy.

Let U be the combined circuit. Then, since RU is bounded by B (cf. Theorem 1),

classically simulating this circuit using MPS simulation will result in an MPS decomposi-

tion of |ψy with all bond dimensions bounded by B. A 5-qubit example of the protocol is

illustrated in Figure 2.6.

The method described previously assumed that each of the tomography procedures

was perfect. In reality, this is not possible. But it turns out that all errors accrued as part

of such tomography procedures add up only linearly in n. More details regarding this can

be found in [Cra+10].

2.4.5 Cyclic MPS and Beyond

There are many extensions and variations of MPS used within quantum information and

tensor networks. One example that features in many areas within this thesis is the cyclic
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MPS. In this framework, an n-qubit state |ψy is decomposed as

|ψy “
1
ÿ

i1,...,in“0

tr
´

G
p1q
i1
. . . G

pnq
in

¯

|i1 . . . iny (2.49)

“

1
ÿ

i1,...,in“0

¨

˝

r1´1,r2´1,...,rn´1´1,rn´1
ÿ

j1,j2,...,jn´1,jn“0

G
p1q
i1,j1,j2

. . . G
pn´1q
in,jn´1,jn

G
pnq
in,jn,j1

˛

‚|i1 . . . iny , (2.50)

where Gpjq P C2ˆrjˆrj`1 are the core tensors and r1 “ rn`1 but need not be 1. In Figure 2.7

(a), we illustrate this structure using tensor networks.

Two other related examples of extensions in quantum information are the Matrix

Product Operator (MPO) [Pir+10; HMS17; Kel+15; Cha+16; KGE14] and Projected

Entangled Pair States (PEPS) [SPC11; Sch+13; Per+07; Sch+12; LCB14]. The former,

illustrated in Figure 2.7 (b), is a decomposition of a 2n ˆ 2n matrix with each core tensor

having an extra free index. The latter, illustrated in Figure 2.7 (c), can be used to de-

compose a system of qubits arranged (interacting) in a grid-like structure, with multiple

bond dimensions representing horizontal and vertical interactions. All the properties and

operations involving MPS can be easily extended to these scenarios using trivial modifi-

cations.

2.5 Unitary t-Designs

Consider a finite collection of m unitary operators F “
␣

U piq P Cd
(

i
. Associated with this

collection, we can define a super operator Φ
ptq
F : L

´

Cdt
¯

Ñ L
´

Cdt
¯

on quantum states

describing t-qudit systems, where

Φ
ptq
F pW q “

1

m

m
ÿ

i“1

˜

t
â

j“1

U piq

¸

W

˜

t
â

j“1

U piq:

¸

. (2.51)

One can see that Φ is a valid quantum channel with Kraus operates
!

1?
m
U piq

)

i
. This

is a channel that can be easily implemented as well. One just has to sample a unitary

from the collection uniformly and then apply the unitary on each of the t-qudits.
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One can also consider the collection to be all unitary matrices from the unitary group

Ud. In this case, we sample unitaries based on the uniform Haar measure on the unitary

group [CŚ06; Wat18]. So, the super operator associated with this collection ΦUd
is defined

as

Φ
ptq
Ud
pW q “

ż

U

˜

t
â

j“1

U

¸

W

˜

t
â

j“1

U :

¸

dU, (2.52)

where the integral is taken over the uniform Haar measure. One way of implementing Φ
ptq
Ud

is by sampling a unitary U P Ud according to the Haar measure and applying it on all

t-registers. One can classically carry out this sampling, or generate a uniformly random

unitary matrix using QR factorization [Mez06]. Carrying out such sampling in a quantum

computer is inefficient, that is, it will require resources exponential in the number of qubits

involved [Dan+09].

But Φ
ptq
Ud

can be implemented without sampling from the unitary group according to

the Haar measure. To be precise, we can have other finite sets F of unitary operators such

that

Φ
ptq
F “ Φ

ptq
Ud
. (2.53)

These sets are called unitary t-designs. It is clear that a unitary t-design is always a unitary

pt ´ 1q-design as well, since the fact that it should work for all W P LpCdtq will imply

that it should work for all operators of the form 1Cd bW 1 as well, where W 1 P LpCdt´1
q.

From (2.53), one derives another useful equivalent characterization of unitary t-designs.

A finite set F of m unitary operators is a t-design if and only if for every homogeneous

polynomial Ppt,tq which has degree at most t in the matrix elements of U and at most t is

the complex conjugate of these elements, we have

1

m

m
ÿ

i“1

Ppt,tq

´

U piq
¯

“

ż

U

Ppt,tqpUq dU. (2.54)

To see why, first assume that Φ
ptq
Ud

“ Φ
ptq
F . Let |iy P Cdt be a computational basis vector

with |iy “ |i1y |i2y . . . |ity and |ijy is a computational basis vector in Cd, for all j P t1, . . . , tu.
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Then, we know that

xi|

ż

U

˜

t
â

p“1

U

¸

|jy xk|

˜

t
â

p“1

U :

¸

dU |ly “ xi|
1

m

m
ÿ

q“1

˜

t
â

p“1

U pqq

¸

|jy xk|

˜

t
â

p“1

U pqq:

¸

|ly .

(2.55)

This implies

ż

U

˜

t
â

p“1

xip|U |jpy

¸˜

t
â

p“1

xkp|U
: |lpy

¸

dU “
1

m

m
ÿ

q“1

˜

t
â

p“1

xip|U
pqq |jpy

¸˜

t
â

p“1

xkp|U
pqq: |lpy

¸

,

(2.56)

and furthermore,

ż

U

˜

t
ź

p“1

Upip, jpq

¸˜

t
ź

p“1

Uplp, kpq

¸

dU “
1

m

m
ÿ

q“1

˜

t
ź

p“1

U pqqpip, jpq

¸˜

t
ź

p“1

U pqqplp, kpq

¸

.

(2.57)

This means that the required condition is satisfied for every monomialMpt,tq and hence by

linearity of sum and integral, it will be satisfied for every homogeneous polynomial Ppt,tq.

To prove the converse, since the condition is satisfied for every homogenous polynomial

Ppt,tq, it should be satisfied for every monomial Mpt,tq, which means that it should be

satisfied for every computational basis element in LpCdtq, which combined with linearity,

completes the proof.

From this definition, we can see that sampling uniformly from a unitary t-design is

equivalent to sampling from the unitary group according to Haar measure up to t statistical

moments, since the tth statistical moment is a polynomial of degree t. This property

makes unitary t-designs particularly useful in many areas of quantum information where

generation of a uniformly sampled random unitary is required, such as [AS04; RRS06;

Bou+19; Sze+11; Gro11].

There is a similar concept for quantum states called the state t-design [HL09a], which

uses the spherical measure. We define a state t-design as a set of states t|ϕ1y , |ϕ2y , . . . , |ϕmyu
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such that

ż

ψ

˜

t
â

j“1

|ψy xψ|

¸

dψ “
1

m

m
ÿ

i“1

˜

m
â

j“1

|ψiy xψi|

¸

, (2.58)

where dψ is the uniform spherical measure [Wat18] defined over normalized vectors. Also,

a set tψiui is a state t-design if and only if for every homogeneous polynomial Ppt,tq which

has degree at most t in elements of |ψy and at most t in the complex conjugate of these

elements, we have

1

m

m
ÿ

i“1

Ppt,tq p|ψiy xψi|q “

ż

ψ

Ppt,tq p|ψiy xψi|q dψ. (2.59)

An important result connecting unitary t-designs and spherical t-designs is that for a

unitary t-design
␣

U piq
(

i
, the set

␣

U piq |0y
(

i
is a spherical t-design [Wat18]. Hence, unitary

t-designs are more “powerful” than state t-designs in the sense that they can be used to

generate state t-designs and do other things as well. [SZ84] have proved the existence of

unitary t-designs for any value of d and t, But for arbitrary values of t, sampling from

such t-designs is still an exponentially expensive procedure in terms of the number of

qubits [Nak+21], except for some specific cases [RS09; Ban+18; Ban+19].

A slightly different definition of unitary t-designs is considered in [HL08]. Consider a

set of unitaries F “ tU1, U2. . . . , Umu and a probability vector p “ rp1 p2 . . . pms. Let

Φ
ptq
pF ,pqpW q “

m
ÿ

i“1

pi

˜

t
â

j“1

U piq

¸

W

˜

t
â

j“1

U piq:

¸

. (2.60)

The ensemble pF , pq is a unitary t-design if and only if Φ
ptq
pF ,pq “ Φ

ptq
Ud
. The ensemble

can be generalized to probability distributions on the group of unitaries. Consider a

probability distribution gpUq defined over the unitary group and let

Φptq
g pW q “

ż

U

˜

t
â

j“1

U

¸

W

˜

t
â

j“1

U :

¸

dgpUq. (2.61)
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Then, the ensemble generated by g is a unitary t-design if and only if Φ
ptq
g “ Φ

ptq
h .

Here, h is the Haar measure over the unitary group. When we talk about randomized

circuit constructions which generate a unitary sample from a distribution that is, up to

t moments, similar to the Haar distribution, we generally use this definition of a unitary

t-design to analyze the protocol.

In many applications, one might not necessarily require exact unitary t-designs, but a

good controllable approximation will do. An ϵ-approximate unitary t-design is an ensem-

ble generated by a distribution g, such that
›

›

›
Φ
ptq
g ´ Φ

ptq
h

›

›

›

˛
ď ϵ. Here, } ¨ }˛ is the diamond

norm [Wat18], which is generally used to assess the “distance” between different quantum

channels, and as a fundamental measure in problems involving distinguishing quantum

channels. Approximate unitary t-designs can be constructed with much fewer resources

compared to exact unitary t-designs [HL09b; Haf+20]. Another interesting line of research

is that certain types of randomly generated quantum circuits eventually converge to ap-

proximate unitary t-designs [Ćwi+12; HM18], at depth Oppolypnqq with degree bounded

by t.

Now, we shall recall a useful and important property of the Haar measure from [Sep06]:

for any (integrable) function η, we have

ż

U

ηpUqdU “

ż

U

ηpU :qdU. (2.62)
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This means that for any matrices A,B P LpCdtq, we have

tr
´

A:Φ
ptq
h pBq

¯

“

ż

U

tr

˜

A:

˜

t
â

j“1

U

¸

B

˜

t
â

j“1

U :

¸¸

dgpUq (2.63)

“

ż

U

tr

˜

A:

˜

t
â

j“1

U

¸

B

˜

t
â

j“1

U :

¸¸

dU (2.64)

“

ż

U

tr

˜˜

t
â

j“1

U :

¸

A:

˜

t
â

j“1

U

¸

B

¸

dU (2.65)

“

ż

U

tr

˜˜

t
â

j“1

U

¸

A:

˜

t
â

j“1

U :

¸

B

¸

dU (2.66)

“ tr
´

Φ
ptq
h pAq:B

¯

, (2.67)

implying that Φ
ptq
h is a Hermitian operator. Moreover, with a bit more effort, we can also

show that Φ
ptq
h is a projection [HL09a].

Identifying the eigenspace with eigenvalue1 1 of Φ
ptq
h , which is simply the space spanned

by all the permutation operators of the form W given in (8.2) defined for qudits [HL08],

is key to solving integrals of polynomials of Haar random unitaries of degree pt, tq. The

recipe is as follows, let the eigendecompostion of the matrix form of Φ
ptq
h be

ř

i
|Wiy xWi|,

where Wi are the eigenvectors. Then, we know that every monomial will have the form

Φ
ptq
h p|iy xj|q and replicating this operation in the bigger vector space with

ř

i
|Wiy xWi| will

give us the answer. The solutions for common polynomials for t “ 1 and t “ 2 are given

in Lemma 6 and Lemma 5. More details about such integration techniques can be found

in [HL08; CŚ06].

An important class of unitary t-designs used and studied extensively in the literature

is the unitary 2-design. These sets of unitaries are capable of simulating sampling from

Haar distribution over the unitaries up to 2 moments. So, they are similar in terms of

mean and variance. They are the most commonly used approximations for sampling from

the unitary group.

Let Ψ : LpCdq Ñ LpCdq be a quantum channel and g a distribution over Ud. Consider
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the function Twpg,Ψq : LpCdq Ñ LpCdq defined as

Twpg,ΨqpW q “

ż

U

U :ΨpUWU :qU dfpUq “

ż

U

ÿ

i

U :ApiqUWU :Apiq:U dgpUq,

where
␣

Apiq
(

is the Kraus operators of Ψ. Condition (2.54), which works for continuous

distributions also, clearly tells us that if g is a 2-design, then Twpg,Ψq “ Twph,Ψq, even if

Ψ was an arbitrary super operator and not necessarily a quantum channel. So, to show

the converse, similar to the proof of the previous condition, we just apply Twpg,Ψijq
to

computational basis vectors, where ΨijpW q “ |i1y xi2|W |j1y xj2| and |iy “ |i1y |i2y , |jy “

|j1y |j2y.

The channel Twpg,Ψq can be implemented as follows: apply a unitary U sampled ac-

cording to the distribution g, to the input W . Then we apply the channel Ψ and then

finally apply the inverse of U to the resultant state. This process is called g-twirling, or

twirling the channel Ψ using the ensemble generated by g. A unitary 2-design is generated

by a distribution g if and only if Twpg,Ψq “ Twph,Ψq. Another interesting characterization

of unitary 2-designs is presented in [GAE07]. A distribution g generates a unitary 2-design

if and only if
ż

U

ż

V

ˇ

ˇtrpU :V q
ˇ

ˇ

4
dgpV q dgpUq “ 2. (2.68)

Let t-SWAP P LpCd2q such that t-SWAP |xy |yy “ |yy |xy. This operator is the SWAP

gate defined for qudit systems. Condition (2.68) can also be derived as follows: for any

distribution g, Φ
p2q
g will have 1Cd2 and t-SWAP as singular vectors, with singular value

1. Moreover, if g is a 2-design, then Φ
p2q
g is a rank 2 projection [HL09a; Guţ+20]. That

means that the square of the Frobenius norm p} ¨ }2q of Φ
p2q
g , seen as a matrix defined on

Cd4 , is 2 if and only if g is a 2 design. This implies that

tr

¨

˝

ż

U

ż

V

U :V b U :V b U
T
V b U

T
V

˛

‚ dgpUq “ 2 ðñ g “ h. (2.69)
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Hence,

ż

U

ż

V

ˇ

ˇtrpU :V q
ˇ

ˇ

4
dgpV q dgpUq “ 2 ðñ g “ h. (2.70)

Let P “ t1, X, Y, Zu and let Pn contain all possible distinct 4n n-fold tensor product

of the elements in P . That is, Pn “ tP1b¨ ¨ ¨bPn | @ P1, . . . , Pn P P u. Pn is an orthogonal

(with respect to trace inner product) basis for LpC2nq, called the Pauli basis, and hence

any operator A P LpC2nq can be written as

A “
ÿ

PPPn

trpAP q
?
2n

¨
P

?
2n
. (2.71)

For every quantum gate U , define ΦU as its quantum channel representation, that is,

a channel with the sole Kraus operator tUu. This is the unique way of representing a

quantum gate, that is if for any two gates U, V their action on states will be equivalent

if and only if ΦU “ ΦV . This representation neatly avoids the impact that global phases

can have when representing quantum gates as unitaries, and hence, is the more rigorous

representation of a quantum gate.

Notice that the set tΦP | @P P Pnu, along with the composition of channels, forms a

group. Let Cn be the normalizer of this group in tΦU | U P U2nu. Cn is called the Clifford

group over n qubits. This set is a unitary 2-design of dimension 2n [Dan+09]. In fact,

they form a unitary 3-design [Web16; Zhu17], but fails to be a unitary 4-design [Zhu+16].

This means that the protocols such as [Ber20; BM21] which are efficient methods that can

be used to sample uniformly from the Clifford group, can be used to sample efficiently

from a unitary 3-design. Other constructions of exact and approximate unitary 2-designs

include [Cle+15; Dan+09; BWV08; GAE07; Nak+17].
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Chapter 3

Variational Quantum Algorithms

VQAs [Cer+21c; Ben+19] are quantum-classical hybrid algorithms whose goal is to use

quantum devices to encode and solve optimization algorithms that are typically believed

to be extremely difficult or intractable to do so classically. A VQA encodes the task

under consideration using parameterized quantum circuits, also called ansatzes. Write

Cpθq for the ansatz, where θ is a real-valued vector of parameters. The VQA uses Cpθq to

estimate a target function’s outputs and gradients for different inputs, and then optimizes

the parameters of the ansatz by feeding the circuit’s output to a classical optimizer. We

explain this in more detail in the coming sections.
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3.1 Quantum Ansatzes

We explain the concept of quantum ansatzes using a simple example. Consider the rotation

gates defined as

RXpθq “ e
iXθ
2 “

»

—

–

cos θ2 ´i sin θ
2

´i sin θ
2 cos θ2

fi

ffi

fl

RY pθq “ e
iY θ
2 “

»

—

–

cos θ2 ´ sin θ
2

sin θ
2 cos θ2

fi

ffi

fl

RZpθq “ e
iZθ
2 “

»

—

–

e´i
θ
2 0

0 ei
θ
2

fi

ffi

fl

,

where θ P R is a tunable parameter. These gates combined with a CNOT gate make

up a universal gate set. One can build parameterized circuits using such universal gate

sets [Bar+95]. The universality of this gate set implies that any unitary can be approxi-

mated by such a parameterized circuit of sufficient depth. Hence, we can use these gates

to design and implement optimization algorithms over unitaries, by optimizing their pa-

rameters.

A general ansatz defined on n qubits has the form

Cpθq “ G0e
iH1θ1

2 G1e
iH2θ2

2 G2 . . . e
iHpθp

2 Gp, (3.1)

where H1, . . . ,Hp P H2n , θ P Rp is a vector of parameters, G0, G1, . . . , Gp P U2n are gates

independent of θ. Some examples of ansatzes are given in Figures 3.5, 3.6, and 3.7.

3.2 Overview of VQAs

Now, consider a parametrized circuit Cpθq. If we apply this circuit to a system prepared

in a quantum state σ (that can be prepared multiple times), and then estimate the expec-

tation of an observable O through measurements, we obtain an estimate of the output of
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the function

fσ,O,Cpθq “ tr
`

OCpθqσCpθq:
˘

. (3.2)

One can also estimate its gradient at any point, with respect to individual parameters

through measurements and minor changes to the parameters of the circuit using standard

methods such as finite differencing [LeV07], or a quantum-specific one called the parameter

shift rule [Mit+18] (cf. Lemma 7 in Appendix).

VQAs aim to optimize fσ,O,C over θ. Note that although most VQAs involve objective

functions of this form, this is not true for all cases. But, in this thesis, we stick to VQAs

that optimize objective functions of this form. The idea is to use quantum devices as black

boxes that can estimate the function or its partial derivatives and update the parameters

classically as per the update rules of any classical optimization algorithm such as gradi-

ent descent or ADAM. It turns out that many optimization problems in combinatorial

optimization, quantum machine learning, and quantum chemistry can be framed as opti-

mization of fσ,O,C , for suitable choices of σ,O and ansatz C [Per+14; FGG14; ROA17].

For the remainder of this thesis, we shall omit C from this notation and use only fσ,O,

since the choice of ansatz C can be implicitly understood from the context.

We explain this with a simple example: computing the smallest eigenvalue λmin of an

observable O P H2n , and an associated eigenvector. Within quantum information, this

problem is called finding the ground state or ground state energy of a Hamiltonian [SN20;

SO82; Per+14]. Here, Hamiltonian is any observable with interesting physical properties

such as the Ising Model Hamiltonian [GS18], Bose-Hubbard Hamiltonian [Sac11], Hydro-

gen Atom Hamiltonian [Sha11], etc, the ground state energy is simply λmin while the

ground state is an associated eigenvector. One can see that minimizing fσ,O for some ini-

tial state σ, can give us a good heuristic approximation of λmin. The choice of the ansatz

C and the initial state σ generally depends on O. Consider a typical classical gradient

descent optimization algorithm with its update rule given as θpt`1q “ θptq ´ η▽fσ,Opθptqq.

Hence, we can start with a randomly chosen θp0q, use the quantum device to estimate
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▽fσ,Opθp0qq, compute θp1q as per the update rule, and repeat this.

In practice, an n-qubit VQA is designed to carry out optimization of a function that

would require resources exponential in n to evaluate or estimate classically. In the previ-

ous example, if we do not use a quantum circuit, we will have to carry out computation

involving matrix multiplication with cost exponential in n, for a single update step of the

optimization. Although there are more advanced classical simulation techniques such as

MPS, stabilizer formalism [AG04], match gates[JM08], Lie algebraic simulation [Goh+23],

Hamming bound circuits [Che+23], permutation equivariant circuits [Sch+24], etc, there

exist many VQA objective functions that we strongly believe cannot be classically simu-

lated efficiently using any such techniques [Hav+19; Cer+21c].

One thing to keep in mind here is that when optimizing the variational circuit, one

might not be able to search through all of the search space, since the family of unitaries

that the circuit can simulate might not contain all the elements of the search space.

Therefore, these algorithms are generally suited for NISQ devices, where, as an example,

with around 40-50 qubits, one can optimize functions defined over some subset of unitaries

acting on spaces of dimension « 109, which classically might be extremely expensive or

intractable. One also has to keep in mind that these circuits estimate the function values

and gradients using measurements by estimating the sample proportion. This technique

will require O
`

1
ϵ2

˘

executions of the circuit to estimate each of them up to a precision of

ϵ.

3.3 Trainability Issues

Although by leveraging the universality of certain parameterized gate sets such as the

example given in Section 3.1 one could argue that given enough gates or depth in the

circuit, we must be able to estimate most of the unitaries, this approach brings severe

trainability issues into the circuit such as the ones that we will discuss in this section.



52

3.3.1 Barren Plateaus

Recent works on general variational circuits have revealed a major obstacle regarding the

trainability of quantum circuits called barren plateaus in the training landscape [Lar+24;

Wan+21; OKW21; Cer+20]. This can, in some ways, be seen as an analog of the vanishing

gradient phenomenon in classical neural networks [AG17; Hoc98]. It has been proved that

in general, most of the objective function landscape could end up being barren plateaus,

even with modest circuit depth linear in the number of qubits [McC+18]. The existence of

these regions in the objective function landscape is usually characterized by the variance

of all the partial derivatives when the parameters of the variational circuit are (uniformly)

randomly initialized, being exponentially small.

We can formalize this and define barren plateaus as follows:

Definition 1. Let σ be an n-qubit state and let O P H2n. For any ansatz Cpθq “

t
ś

p“1
Uppθpq, where Uppθpq “

m
ś

q“1
e´iθpqHpq , θp “ rθ1 . . . θms

T , Hpq P H2n and θ “ θ1 ‘

¨ ¨ ¨ ‘ θt, and for any p, q, define

U pL,qq
p pθpq “

q´1
ź

j“1

e´iθpjHpj , U pR,qq
p pθpq “

m
ź

j“q`1

e´iθpjHpj . (3.3)

Then, fσ,Opθq exhibits a barren plateau if @ p, q such that 1 ď p ď t, 1 ď q ď m

Varθ
`

Bθpqfσ,Opθq
˘

P O
ˆ

1

bn

˙

, (3.4)

for some constant b ą 1, where Bθpqfσ,O is its partial derivative with respect to θpq and

U1, . . . Up´1, Up`1, . . . Ut, along with one of U
pL,qq
p or U

pR,qq
p , are distributed according to

the Haar measure and θpq is distributed uniformly.

Now, we shall explain the reason and consequence of this definition using Chebyschev’s

inequality. The expectation of any partial derivative of fσ,O under uniform initial param-
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eterization is 0 [McC+18] (cf. Lemma 8 in Appendix). Hence, we have

Probθp|Bkfσ,Opθq| ď ϵq ě 1´VarθpBkfσ,Opθqq{ϵ
2, (3.5)

for any k with Bkfσ,Opθq being the partial derivative of fσ,Opθq along its kth direction. So,

if @ k,VarθpBkfσ,Opθqq for uniformly randomly sampled θ is scaling as Op1{bnq for some

b ą 1, then the probability that Bkfσ,Opθq will be exponentially small is very high.

Many algorithms typically initialize the parameters uniformly at random, and can

thus end up facing barren plateaus. If the partial derivatives are exponentially small, the

number of samples required to get a meaningful estimate of them will be exponentially

high since sample means estimation requires Op1{ϵ2q samples to estimate the expectation

to precision ϵ (cf. Eq. (2.6)). Also, even if we somehow estimate them very well, the fact

that they are exponentially small means that from the perspective of a gradient-based

algorithm, the updates that one makes to the parameters will also be exponentially small,

effectively rendering the training procedure extremely slow. Recent works have shown that

barren plateaus can affect the training of non-gradient-based optimization algorithms as

well [Arr+21].

Moreover, the choice of uniform distribution in this context intuitively means that most

areas of the objective function landscape will have exponentially small partial derivatives,

with the minima encountered in narrow gorges. Also, it turns out that there are many

reasons other than circuit depth that can induce barren plateaus into the objective function

such as simple hardware error models [Wan+21], choice of observables [Cer+20], level of

entanglement [OKW21], etc.

But later works have identified the existence of certain circuit structures and objective

functions that can have a polynomially vanishing lower bound for the variance of the gra-

dient [Cer+20; LSW21a; Gra+19b; Pes+21; Mon+23; Sch+24; Dia+23; PKH24; Wes+24;

Rud+23], which makes them trainable and provably avoid barren plateaus. These works

have put forward directives that future circuit designs should follow, to be trainable. One

example of a strategy that generally avoids barren plateaus is to use objective functions
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that feature local ansatzes and local observables. These are circuits or components that

act only on subsystems rather than the whole system of qubits. An example of such a

circuit is shown in Figure 3.5. The locality of the circuits, or more importantly, the fact

that all parameterized subcircuits are acting on a number of qubits independent of n, is

crucial to avoiding barren plateaus. Using this, researchers have shown that the variance

of the gradient can be shown to be exponentially small only in the number of qubits that

the local circuits and observables act on [Cer+20; Wan+21], which means that the number

of executions of the circuit that one would require to estimate the gradient is exponentially

small only in the same number of qubits, rather than the total number of qubits in the

system. Other strategies include smarter initialization techniques [Zha+22b], advanced

quantum tomography techniques [Sac+22], etc.

3.3.2 Cost Concentration

Another related trainability issue that has received comparatively lesser attention is called

cost concentration [Arr+22]. This happens when the objective function values themselves

are exponentially small in most areas of the objective function landscape. Similar to the

case of barren plateaus, this phenomenon is identified using the variance of the objective

function itself. That is, we will have

Probp|fσ,Opθq ´ Eθpfσ,Opθqq| ě ϵq ď
Varθpfσ,Opθqq

ϵ2
, (3.6)

implying that if Varθ pfσ,Opθqq P Op1{bnq for some b ą 1, the objective function will be

exponentially close to its mean with very high probability for a uniformly sampled input

parameter. This further implies that an exponentially large number of executions will be

required to estimate the objective function to meaningful precision. Formally, we shall

define cost concentration as follows:

Definition 2. Let σ be an n-qubit state and O P H2n. For any ansatz Cpθq, the function
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fσ,O exhibits cost concentration if

Varθ pfσ,Opθqq P O
ˆ

1

bn

˙

(3.7)

for some b ą 1.

We refer the reader to [Arr+22] for a comprehensive work relating barren plateaus and

cost concentration.

3.4 VQA Applications Discussed in This Thesis

VQAs have been proposed for various kinds of applications including combinatorial opti-

mization [FGG14; FH19; Zho+20b], variational quantum eigensolver [Per+14; Til+22a;

Cer+22], quantum autoencoder [ROA17; Wan+17; VPB18], quantum classifiers [Hav+19;

Sch21; CCL19], etc. In this section, we delve a little bit deeper into those specific ap-

plications that we have used in this thesis mostly to demonstrate the capabilities of the

protocols developed.

3.4.1 State Preparation

State preparation is a problem that is extensively studied and used in quantum informa-

tion [Cer+20; MJP21; Gar+20]. The problem that we consider here is as follows: given

many copies of an n-qubit pure state σ (or access to a circuit that can prepare σ), output

the parameters of an ansatz Cpθq such that we can approximately prepare σ using these

parameters. Broadly speaking, there are two different approaches to solving this problem,

differing only in their measurement strategies.

• Global Observables : In this method, the idea is to maximize the fidelity between

|0y x0|Cpθq: and σ, over θ. That is, find

argmax
θ

fσ,|0yx0|pθq. (3.8)
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Figure 3.1: An example of a state preparation circuit using global observables. Here, we
apply Cpθq to the input state σ, estimate the probability of all qubits being in 0, which is
the fidelity between σ and |0y x0|Cpθq: and maximize it.

This fidelity can be estimated by applying Cpθq on σ, measuring all qubits simulta-

neously using the observable Z, and estimating the probability of all measurements

resulting in `1. So, the observable whose expectation features as the objective

function is the global observable |0y x0|. The circuit is given in Figure 3.1.

In many instances, this approach has been shown to induce barren plateaus in the

training landscape [Cer+20; Liu+22]. However, methods such as [Pat+21; Mel+22;

RSL22; Sko+21; Gri+23a; Gri+23b; FM22; Ver+19; Gra+19a; KS22; Zha+22a]

could be used to heuristically mitigate this issue.

tr tr

Figure 3.2: An example of quantum state preparation circuit using local observables. Here,
we apply Cpθq to the input state σ, estimate the sum of probabilities of each qubit being
in 0, and maximize it.

• Local Observables : Alternatively, one can employ the expectation of F :“

1{n
řn
i“1 |0y x0|i, which is a sum of 1-local observables, as the objective function,
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since as per [Cer+21b], we have

argmax
UPU2n

x0|σU |0y “ argmax
UPU2n

trpFσU q “ argmax
UPU2n

1

n

n
ÿ

i“1

trp|0y x0|i σU q. (3.9)

The intuition here is that if θ˚ maximizes fσ,|0yx0|, then σCpθ˚q “ |0y x0| and hence

fσ,F also attains its maximum on θ˚.

Hence, from Eqs. (3.8) and (3.9), we can see that maximizing the sum of proba-

bilities of each qubit of σCpθq yielding `1 when measured using Z is (heuristically)

approximately equivalent to maximizing the probability of all qubits simultaneously

yielding `1. Hence, in this regime, we try to find argmax
θ

fσ,F pθq. The circuit can

be seen in Figure 3.2.

The advantage of this approach is that in works such as [Cer+20; Wan+21; Liu+22],

it has been shown that this measurement strategy coupled with certain shallow

ansatzes (ansatzes with depth logarithmic in the number of qubits) can provably

avoid barren plateaus.

max

Figure 3.3: An example of VQCS. Initially, we prepare the maximally entangled state

|ϕmaxy “ 1?
2n

2n´1
ř

i“0
|iy |iy on two n qubit registers by applying H gates on all n qubits

in the first register and following it up with a series of n CNOT gates on corresponding
qubits in both registers. Then we apply the unknown gate V on it to prepare its vectorized
version |V y. Then we implement a state preparation circuit on it (global measurement
method). That is, we would like to maximize the fidelity between |V y and |Cpθqy. To
do this, we should apply the inverse of the circuit that prepares |Cpθqy on |V y (Cpθq
on the second register followed by application of the inverse of the gates that prepared
|ϕmaxy which are CNOTs followed by the H gates), estimate the probability of all qubits
simultaneously being in 0 and maximize it.



58

3.4.2 Variational Quantum Circuit Synthesis (VQCS)

VQCS is a natural extension of state preparation to quantum circuits. Here, our goal is to

learn the parameters of an n-qubit ansatz Cpθq that best approximates a given unknown

quantum gate V . Similar to how we use fidelity or infidelity for quantum states, we can

use the Hilbert-Schmidt cost function defined for unitaries in [Kha+19]. For any θ, this is

computed as Hpθq “ 1´|trpCpθq:V q|2{4n and minimizing H gives us the set of parameters

that (approximately) prepares V .

To see why, first note that any quantum gate W can be uniquely identified using a

representation given as W bW , where W is the complex conjugate of W . This can be

derived from its action on the vectorized version of elements in LpC2nq. Then, we see that

Hpθq is proportional to
›

›

›
Cpθq b Cpθq ´ V b V

›

›

›

2

2
.

To evaluateHpθq for any θ, we start with the maximally entangled state on two n-qubit

systems, defined as |ϕmaxy “
1?
2n

2n´1
ř

i“0
|iy |iy. To see how we can prepare this state, define

the two n qubit systems as p1, 2, . . . , 2n ´ 1, 2nq. |ϕmaxy can be prepared by initializing

the whole system in |0y, applying H on the first n qubits, and applying CNOTpq,q`nq for

all q “ 1, 2, . . . , n.

Once |ϕmaxy is prepared, apply V on qubits pn` 1, . . . , 2nq to obtain 1?
2n

|V y, where

|V y “

2n´1
ÿ

i“0

|iy |v‚iy , (3.10)

where |v‚iy is the i
th column of V . Also, applying Cpθq on |ϕmaxy in a similar manner will

produce 1?
2n

|Cpθqy. Then we have Hpθq “ 1 ´ 1
4n trp|Cpθqy xCpθq| |V y xV |q, which is the

infidelity between the states 1?
2n

|Cpθqy and 1?
2n

|V y. To estimate the infidelity between

any two states |ψy andW |0y for some unitaryW , we simply applyW : on |ψy and estimate

the probability of all qubits being in 0. Hence, to estimate the Hilbert Schmidt cost, we

simply apply the inverse of the circuit that prepares 1?
2n

|Cpθqy on 1?
2n

|V y, that is, Cpθq:

on qubits pn ` 1, . . . , 2nq followed by CNOTpq,q`nq for all q “ 1, 2, . . . n and then H on

qubits p1, 2, . . . , nq, and then estimate the probability of all 2n qubits returning 0. The
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circuit is given in Figure 3.3.

Figure 3.4: An example of a quantum autoencoder circuit. We first apply Cpθq to σZ “
ř

i
pi |ψiy xψi|. Then, we measure and estimate the sum of the probability of each qubit in

B being in 0. This probability is then used to maximize the objective function fσZ ,F pθq,

where F “ 1
nB

1C2nA b
n
ř

i“1
|0y x0|i. This forces all the population (probabilities) of the σ

(equivalently, of all input states |ψiy) to be in register B.

3.4.3 Quantum Autoencoder

Autoencoder is a popular dimensionality reduction technique in classical machine learning

[HZ93]. Using deep neural networks, autoencoders learn low-dimensional representations

of high-dimensional input data, which should ideally keep hold of the original charac-

teristics of the data. This can also be seen as a form of data compression. Recently,

there have been numerous works on extending this concept to quantum data [ROA17;

Wan+17; VPB18; PTP19; Lam+18]. Although there are many variations of quantum

autoencoders, we shall focus on the one presented in [ROA17], as that is the version that

we use in Chapter 4.

The idea behind this version of the quantum autoencoder is to compress n-qubit

quantum states into nB ă n qubit states. Consider an ensemble of n-qubit states

Z “ tppi, |ψiyqu with each state being prepared in registers A and B having nA and

nB qubits respectively, where n “ nA ` nB. Let σZ “
ř

i
pi |ψiy xψi|. As a measure of the

compression effect, we consider fσZ ,1C2
nA bF pθq, where F “ 1

nB

nB
ř

i“1
|0y x0|i is defined, as

in the state preparation problem, to be a sensible objective function that not only forces
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(a) ALA (b) HEA

Figure 3.5: (a) ALA: Here each block represents a parameterized subcircuit acting on
a subset of qubits, in a brick-like manner. The number of vertical columns of these
subcircuits is called the depth of the circuit. (b) HEA: The circuit structure is very
similar to the ALA. In this architecture, we apply layers of single qubit parameterized
gates (represented by boxes), followed by CNOT gates being applied for two layers in a
brick-like manner to introduce entanglement into the circuit.

the population (probabilities) of all the states to be in the qubits in the register B, but

also involves the same 1-local observables that we have used for the more trainable version

of state preparation given in Section 3.4.1. Again, this objective function has been used

in [Cer+20]. The circuit can be seen in Figure 3.4.

3.5 Ansatzes Used in This Thesis

In this section, we introduce the ansatzes we use in this thesis.

3.5.1 Alternating Layered Ansatz

The Alternating Layered Ansatz (ALA) is the brick-like circuit structure presented in

Figure 3.5 (a), where each subcircuit is a parameterized circuit acting on a small number

of qubits. A simple example of a subcircuit, the one we have used for the experiments

in Chapter 4 regarding ALA, is given in Figure 4.1 (b). ALA is well studied in the

literature for its expressivity [NY21] (the volume of unitaries that it can represent) and

trainability [Cer+20] when used in combination with local observables. The Hardware

Efficient Ansatz (HEA) given in Figure 3.5 (b) is a slightly modified variant of ALA,
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(a) QCNN (MERA) (b) TTN

Figure 3.6: (a) The QCNN ansatz. Each pair of connected boxes represents a param-
eterized two-qubit subcircuit. Multiple layers of ALA are applied, with half the qubits
omitted as we progress, thus resulting in an ansatz of depth Oplog nq. This ansatz can
also be seen as a special case of the MERA. (b) Tree Tensor Network: a special case of
QCNN with the ALA being used having depth 1.

where we apply single qubit gates on all qubits, followed by 2 layers of CNOT gates in a

brick-like manner to introduce entanglement into the ansatz. Other examples of works that

have used or studied these ansatzes include [Leo+24; Tan21; PKH24; Kar+21; Kan+17].

ALA will be discussed in more detail in Chapter 4.

3.5.2 Quantum Convolutional Neural Network

The Quantum Convolutional Neural Network Ansatz (QCNN), introduced in [CCL19] is a

variant of the popular Multiscale Entanglement Renormalization Ansatz (MERA) [MV18;

EV13; FV12] and is given in Figure 3.6 (a). It is the quantum analog of the classical

Convolutional Neural Network (CNN) [Den+88; Li+22]. Each layer is an ALA, with

subcircuit width 2. After the application of ALA on each layer, in the subsequent layer,

we only apply the next ALA on half the number of qubits on which the previous ALA was

applied. Thus, the total circuit consists of Oplog nq layers. In the first layer, the ALA is

applied to all qubits r1, 2, . . . , ns. Then in the lth layer, a similar ALA is applied to qubits

r2pl´1q, 2 ¨ 2pl´1q, 3 ¨ 2pl´1q, . . . , ns.

To see the relationship with classical CNN, we look at the original version of QCNN

presented in [CCL19]. In that version, each subcircuit within the ALAs is the quantum
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Figure 3.7: Example of an MPS ansatz with n “ 5 and t “ 3. The numbers on the end
of each qubit wire are the indices of the qubits. Each box is a parameterized subcircuit,
which is applied in a staircase manner.

version of a convolutional layer. Similar to the classical case, where the convolutional

layer consists of filters applied on different parts of the input, here the subcircuits act on

different parts of the input state. Each ALA layer is then followed by a pooling layer.

In the lth pooling layer, between each pair of adjacent qubits on which the ALA is being

applied, say k ¨2l´1 and pk`1q ¨2l´1, we apply a classically controlled (an operation where

the control qubit is measured and a controlled gate based on the classical output is applied

on the target qubit) single qubit parameterized gate. Since half the qubits featured in that

layer get measured, the number of qubits gets halved after each layer, and the next ALA

is applied to all qubits that featured as target qubits in the previous pooling layer. Similar

to how pooling introduces a non-linear operation in the classical CNN, here the pooling

layer introduces a non-unitary operation. The version of QCNN that we described in

the previous paragraph is simply an extension of this. The Tree Tensor Network (TTN)

ansatz [SDV06; TEV09; Mur+10; NC13] given in Figure 3.6 (b) is a simple case of MERA

with the ALAs having depth 1.

3.5.3 MPS Ansatz

The MPS ansatz is given in Figure 3.7. It is built using cascading layers of smaller k-qubit

parameterized subcircuits, in a staircase manner. From the MPS tomography procedure
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explained in Section 2.4.4, we can see that every state that can be represented using

an MPS representation with bond dimensions at most 2k´1 can be implemented using

this ansatz (assuming that each of the subcircuits can implement any k-qubit unitary).

This is what led many works to use the MPS ansatz to solve state preparation problems

variationally [Lin+21; Rud+22; Dov+22; Ran20]. More details on this ansatz can be

found in Chapter 6.
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Chapter 4

Alternating Layered Shadow

Optimization

4.1 Overview

In this chapter, we explain the first major contribution of this thesis, an efficient training

algorithm for VQAs that involves ALAs and local observables which is exponentially better

than the standard method. We start with a small review of the properties of this ansatz-

observable combination.

In [Cer+21b], it is proved that barren plateaus can be avoided for VQAs involving

ALAs provided that the depth of the ansatz is Oplog nq, where n is the number of qubits

and the objective function is defined with local observables. Surprisingly, in [NY21], it

was recently proved that shallow ALAs are almost as expressive as the more widely used

HEA. Thus, the ALA is both expressive and trainable. In addition, this ansatz has been

investigated or implemented in works such as [Hin+21; Wu+21; Arr+21; SVC22].

Our work introduces a training algorithm with an exponential improvement in the

number of copies of input states consumed during training an alternating layered VQA

with shallow depth and local observables. Moreover, the training can be done entirely on

a classical computer efficiently (with computational cost depending only polynomially on
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n) without the need to implement the ansatz on a quantum device. This result is achieved

by using the classical shadow technique and working in the Heisenberg picture rather than

the Schröndinger model.

Specifically, for an ALA Cpθq, an input state σ and an observable O, the VQAs of

our interest estimate each evaluation of fσ,O using quantum computers. In contrast, our

method can efficiently compute this classically using classical shadows of σ. But note that

all VQAs that use ALAs need not have this specific form.

Our method, called Alternating Layered Shadow Optimization, or simply ALSO, out-

performs standard alternating layered VQA in two aspects:

1. Exponential savings on input state copies. Note that the number of copies of the in-

put state needed in the standard VQA scales linearly in the total number of function

evaluations required. In contrast, to achieve a similar precision, ALSO only uses log-

arithmically many copies. This allows for more iterations and better approximations

in the classical optimization algorithm for a given ansatz. In addition, it allows for

more hyperparameter tuning with very few copies of the input state, and the same

set of shadows can be used for multiple similar optimization problems and ALAs.

2. Easy implementation on quantum hardware. ALSO only requires the quantum device

to be able to carry out single-qubit Pauli basis measurements on the input states.

But standard VQA requires the ability to apply CNOT gates and rotation gates on

them, and measurement also.

We demonstrate the practical efficacy of our result with two important examples: find-

ing state preparation circuits and quantum data compression using a quantum autoen-

coder. In both cases, we demonstrate that ALSO can match the results of the impossible

ideal VQA that uses infinite copies, using a comparatively small number of copies of the

input quantum state. We also show that, with the same number of copies of the input

state, ALSO outperforms the standard VQA significantly.

The ALA is the brick-like circuit structure presented in Figure 4.1 (a), where each

Spθijq is a parameterized circuit acting on a small number of qubits. A brief introduction
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RX(γ0) RY (γ1) RX(γ2) RX(γ3) RY (γ4) RX(γ )

RX(γ6) RY (γ7) RX(γ8) RX(γ9) RY (γ10) RX(γ11)

(a) (b)

Figure 4.1: (a) A detialed illustration of ALAs where the parameterized sub-circuit Spθ32q
is applied on the first and the last qubits. Here, θ is an order 3 tensor with each θij being
vectors of real parameters. (b) The structure of the parameterized subcircuit Spγq used
in the simulation.

is given in Section 3.5.1. A simple example of S is given in Figure 4.1 (b). This work

assumes that each S acts on two qubits and has p real parameters, but our idea can be

easily extended to the general case. In Figure 4.1 (a), the total number of vertical blocks

of S gates, written d, is the depth of the ansatz. The circuit depicted in the figure has

d “ 3. In a specific vertical block j, each circuit Spθijq acts on qubits 2pi´ 1q ‘ j and its

neighbor 2pi´ 1q ‘ j ‘ 1. So, the final form of the circuit is given as

Cpθq “
d
ź

j“1

n{2
ź

i“1

Spθijqp2pi´1q‘j,2pi´1q‘j‘1q, (4.1)

where ‘ denotes addition modulo n, θ P R
n
2
ˆdˆp is a tensor of real parameters where θij

is a p-dimensional real vector of parameters.

ALA is one of the most researched ansatzes in the literature [Leo+24; Tan21; PKH24;

Kar+21; Kan+17; Cer+20; NY21]. The fact that the subcircuits act on a small number of

neighbouring qubits means that the physical qubits of the hardware need less connectivity

to implement this. But, the drawback of the nearest neighbour structure is the lack of

ability to represent quantum circuits that induce a lot of entanglement. Also, it has already

been shown that this ansatz can induce barren plateaus if used with depth Ωppolypnqq,

while Oplog nq depth avoids it. But, at the latter small depth, if the initial state is also

one that can be prepared by a (known) circuit with similar depth, then the whole VQA
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circuit can be simulated classically efficiently using MPS (cf. Section 2.4.2). Hence, it is

necessary to have an input state that requires a Oppolypnqq depth circuit to implement to

take the whole VQA protocol beyond the realm of (full) classical simulation.

4.2 Classical Shadow Tomography

We start by introducing classical shadows. Let Op1q, Op2q, . . . , OpMq be arbitrary n-qubit

observables the classical descriptions of which are given. As mentioned in Section 2.4.4,

using conventional quantum tomography techniques, Op2nq copies of σ are required to

estimate tr
`

Opiqσ
˘

for each Opiq.

Many techniques have already been developed in the literature that try to circumvent

this issue, that is, estimate these expectations without carrying out full quantum state

tomography [Pai+21; Yu20; HKP20; Aar18; Aar07; FL11; GA22]. The classical shadow

technique [HKP20], developed from shadow tomography [Aar18], provides succinct clas-

sical descriptions of quantum states. Using this technique, trpOpiqσq can be collectively

predicted by consuming only OplogMq copies of σ. Moreover, when these observables

belong to certain classes, the dependency on n is polynomial or constant.

Now let us explain the procedure in more detail. Let Φ be the measurement (in the

computational basis) channel and let g be a distribution on unitaries such that Twpg,Φq

(channel twirling cf. Section 2.5) is invertible. Consider a randomized protocol implement-

ing Twpg,Φq defined as follows: (i) sample an n-qubit unitary U according to g, (ii) apply

U on σ, (iii) measure all qubits of the resulting state, giving the classical n-bit string i as

output, (iv) compute a classical shadow, defined as σ̂ :“ Tw´1
pg,Φq

`

U : |iy xi|U
˘

, classically.

The whole protocol is illustrated in Figure 4.2.

The classical shadow is a random variable that reproduces the original state in expec-

tation. To see this, we first have to prove that Twg,Φ is a Hermitian map. To see that, we

further require proving that Φ is a Hermitian map. This can be seen as follows; for any



68

Tw

Figure 4.2: Protocol to generate a classical shadow of a state σ, given a distribution
g defined over all unitaries. The only prerequisite is that Twg,Φ should be an invert-
ible map, where Φ is the computational basis measurement channel. First, we apply a
unitary U sampled according to g on σ. Then, we measure the resultant state in the
computational basis, resulting in a classical bit string i. Finally, we compute the shadow
σ̂ “ Tw´1

g,ΦpU
: |iy xi|Uq classically.

two operators A,B, we have

tr
`

ΦpAq:B
˘

“
ÿ

i

AiiBii “ tr
`

A:,ΦpBq
˘

. (4.2)

Now, we move on to Twg,Φ. The reason why Twg,Φ is Hermitian is

trpTwg,ΦpXq:Y q “ tr

¨

˝

ż

U

U :ΦpUXU :q:UY dgpUq

˛

‚ (4.3)

“ tr

¨

˝

ż

U

ΦpUXU :q:UY U :dgpUq

˛

‚ (4.4)

“ tr

¨

˝

ż

U

UX:U :ΦpUY U :qdgpUq

˛

‚ (4.5)

“ tr

¨

˝

ż

U

X:U :ΦpUY U :qUdgpUq

˛

‚ (4.6)

“ tr

¨

˝

ż

U

X:Twg,ΦpY q

˛

‚. (4.7)
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This also implies that Tw´1
g,Φ is Hermitian. Hence, for any observable O, we have

Eg,Φ ptrpOσ̂qq “ EU,i
´

tr
´

OTw´1
g,Φ

`

U : |iy xi|U
˘

¯¯

(4.8)

“

ż

U

ÿ

i

xi|UσU : |iy tr
´

OTw´1
g,Φ

`

U : |iy xi|U
˘

¯

dgpUq (4.9)

“

ż

U

tr

˜

Tw´1
g,ΦpOqU :

«

ÿ

i

`

xi|UσU : |iy
˘

|iy xi|

ff

U

¸

dgpUq (4.10)

“ tr
´

Tw´1
g,ΦpOqTwg,Φpσq

¯

(4.11)

“ trpOσq. (4.12)

A classical shadow is a unit trace matrix but not necessarily positive semidefinite.

To see why it has unit trace, notice that Twg,Φp12nq “ 12n . Since Twg,Φ is linear and

invertible, it should be an injective map, meaning that Tw´1
g,Φp12nq “ 12n . Hence, we have

tr
´

Tw´1
g,Φ

`

U : |iy xi|U
˘

¯

“ tr
´

Tw´1
g,Φ

`

U : |iy xi|U
˘

12n

¯

(4.13)

“ tr
´

U : |iy xi|UTw´1
g,Φ p12nq

¯

(4.14)

“ tr
`

U : |iy xi|U
˘

(4.15)

“ 1. (4.16)

Eq 4.8 means that classical shadows can be used to estimate the expectation of any

observable unbiasedly. To see how good the estimate is, we shall try to derive a bound on

the variance, or the second moment.

Varg,Φ ptrpOσ̂qq “ Eg,ΦptrpOσ̂q ´ trpOσqq2 (4.17)

“ Eg,ΦptrpOTLσ̂q ´ trpOTLσqq
2 (4.18)

ď Eg,Φptr
`

OTLσ̂q
2
˘

, (4.19)

where OTL “ O ´
trpOq

2n 1C2n , the traceless part of O. This can be seen when we consider

the trace inner product as a standard inner product in the orthonormal Pauli basis, that



70

is,

trpA:Bq “
ÿ

PPPn

tr
`

A:P
˘

tr
`

B:P
˘

2n
“

tr
`

A:
˘

tr
`

B:
˘

2n
`

ÿ

PPPn{t1{
?
2nu

tr
`

A:P
˘

tr
`

B:P
˘

2n

(4.20)

@ A,B P L
`

C2n
˘

, and the fact that shadows have unit trace. Then we have,

Varg,Φ ptr pOσ̂qq ď Eg,Φ
´

tr pOσ̂q2
¯

(4.21)

“

ż

U

ÿ

i

xi|UσU : |iy tr
´

Tw´1
g,ΦpWTLqU

: |iy xi|U
¯2

dgpUq (4.22)

“ }OTL}
2
σ,sh. (4.23)

This state-dependent function }¨}σ,sh, which is also a norm, is called the state-dependent

shadow norm. Hence, the norm is defined as } ¨ }sh :“ max
σ

} ¨ }σ,sh, called the shadow norm,

gives us an upper bound on the variance of the estimator.

Since we have an upper bound on the variance, we can use Chebyshev inequality [Knu97],

which states that for any (integrable) random variable η,

Probp|η ´ Epηq| ě ϵq ď
Varpηq

ϵ2
. (4.24)

for any ϵ ą 0, to assess the performance of a sample means estimator. Let σ̂1, σ̂2, . . . , σ̂T

be independently generated classical shadows. Then, using Chebychev inequality, we have

Prob

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

i“1

trpOσ̂iq ´ trpOσq

ˇ

ˇ

ˇ

ˇ

ˇ

ě ϵ

¸

ď
Varg,Φptr pOσ̂qq

Tϵ2
ď

}OTL}
2
sh

Tϵ2
.

Set δ “
}O}2sh
T 2ϵ2

. Then we can say that for any precision and confidence parameters ϵ, δ P

p0, 1q, if we use T “
}OTL}

2
sh

δϵ2
shadows, we will have

Prob

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

i“1

trpOσ̂iq ´ trpOσq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ

¸

ě 1´
Varg,ΦptrpOσ̂qq

Tϵ2
ě 1´ δ.
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Now, if we had multiple observables Op1q, Op2q, . . . , OpMq, then, for any δ1, ϵ P p0, 1q, we get

Prob

˜

M
č

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

i“1

tr
´

Opjqσ̂i

¯

´ tr
´

Opjqσ
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ě ϵ

¸

(4.25)

ď

M
ÿ

j“1

Prob

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

i“1

tr
´

Opjqσ̂i

¯

´ tr
´

Opjqσ
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ě ϵ

¸

(4.26)

ď Mδ1 (4.27)

if we choose T ě
max

j
}O

pjq
TL}sh

δ1ϵ2
. So if we set, δ “ δ1{M , we get the desired precision and

confidence.

But the issue here is that this sample complexity is linearly dependent on M . Now

we shall explain how this dependency can be improved to logM . The key is to use the

median of means estimation instead of sample means estimation. Given T1T2 samples

ηp1q, ηp2q, . . . , ηpT1T2q of an arbitrary random variable η, the median of means estimator

µT1T2 is defined as

µT1T2ptη
piquiq :“ median

$

&

%

1

T1

T1
ÿ

k“1

ηpkq,
1

T1

2T1
ÿ

k“T1`1

ηpkq, . . . ,
1

T1

T2T1
ÿ

k“pT2´1qT1`1

ηpkq

,

.

-

. (4.28)

If we use median of means estimation, then a µT1T2 estimate can achieve any precision ϵ

and confidence δ if T1 ě
34
ϵ2
Varpηq and T2 ě 2 logp2δ q [JVV86; Bla85].

So, if we use the median of means estimation for shadow estimation, we can achieve

precision ϵ and confidence δ1 as per Eq 4.2, using a number of samples T1T2, where T1 ě

34
ϵ2

max
j

›

›

›
O

pjq
TL

›

›

›

sh
and T2 ě 2 log

`

2
δ1

˘

. In this setting, if we introduce δ “ δ1{M , we see that

the dependency of the total sample of complexity on M is only logarithmic. Hence, we

get the following result.

Theorem 2. [HKP20] Let σ P LpC2nq be a quantum state, Op1q, Op2q, . . . , OpMq P H2n,

and ϵ, δ P r0, 1s be precision and confidence parameters respectively. By using T1T2

classical shadows
␣

σ̂p1q, σ̂p2q, . . . , σ̂pT1T2q
(

where T1 ě 34
ϵ2

max
i

›

›

›

›

Opjq ´
trpOpjqq

2n 12n

›

›

›

›

sh

and

T2 ě 2 log
`

2M
δ

˘

, we have
ˇ

ˇµT1T2
`

ttr
`

Opjqσ̂piq
˘

ui
˘

´ tr
`

σOpjq
˘
ˇ

ˇ ď ϵ @ j with probability
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at least 1´ δ.

This is remarkable because the number of shadows required to estimate the expectation

of the observables depends only on (i) the shadow norm of the observable, (ii) the precision

to which we want to estimate the expectation, and (iii) the error probability, and not on

the state itself. Also, to estimate the expectation of M observables, we only require

OplogMq classical shadows loaded. To make this procedure efficient, we should have

g defined over unitaries that enables computing Tw´1
pg,Φq

pU : |by xb|Uq classically feasible,

with classical cost polynomial in n. Two such distributions g have been proposed in the

original paper [HKP20], each resulting in different ranges of values for the shadow norm.

1. Pauli ensemble: In this case, g is the discrete uniform distribution over the set
␣

Qp1q b ¨ ¨ ¨ bQpnq | @ Qp1q, . . . , Qpnq P
␣

1, H,HS:
((

. Here, it turns out that the

quantum operations required to generate a shadow are simply measuring each qubit

in the eigenbasis of a uniformly randomly sampled non-identity Pauli. In this

case, for any observable for the form O “
n
Â

i“1
Opiq with Opiq P L

`

C2
˘

, we have

Tw´1
pg,Φq

pOq “
n
Â

i“1

`

3Opiq ´ 1C2

˘

and }O}sh “ O
`

4k
˘

, where k is the total number

of qubits which is non-trivially acted upon by O. Interestingly, for this ensemble,

it has also been proved in [Sac+22] that the usage of sample means estimation will

also guarantee a similar exponentially low dependence on M .

Note that one can achieve similar results by simply carrying out full tomography of

the input state on the subsystem where the target local observables act non-trivially.

But classical shadow tomography is a simpler protocol and more importantly, can

be extended to other classes of observables by using different choices of unitary

ensembles.

2. Clifford ensemble: In this case, g is the discrete uniform distribution over all n-

qubit Clifford gates. Here, Tw´1
pg,Φq

pOq “ p2n ` 1qO ´ 1C2n . The stabilizer formal-

ism [AG04] can be used to work with classical shadows in this scenario. In this case,

}O}sh “ O
`

}O}22

˘

.
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If the observable is a quantum state (occurs when we want to compute the fidelity with

a pure state), one can choose to use the Clifford ensemble, and if the observable is a local

observable (or can be written as a linear combination of a few local observables), then we

can use the Pauli ensemble. Many relevant observables in nature can be written as linear

combinations of a few observables that act non-trivially on only a few qubits [BL08]. This

makes classical shadows a very powerful “storage facility” for states as well. In many con-

texts, this is why classical shadows are considered an alternative to conventional quantum

state tomography, which requires resources exponential in the number of qubits. The key

fact here is that to estimate many properties of quantum states, up to acceptable precision

and quality, one does not need to know the full classical description of the states. Simi-

lar complexity guarantees are extended to other important problems involving quantum

states such as finding entanglement witnesses [GT09], direct fidelity estimation [FL11],

estimating the output of non-linear functions involving quantum states, etc. It was also

proved that this protocol saturates the lower bound (in terms of the number of copies of

the state required) over all protocols that can be used to predict the outputs of M linear

functions defined on quantum states.

Many variants of classical shadows can be found in the literature, such as optimal

classical shadows for pure states [GPS24], error mitigated classical shadows [Jna+24],

classical shadows for continuous-variable quantum systems [Bec+24], classical shadows

for process tomography [Kun+23], classical shadows generated using shallow circuit en-

sembles [Ber+23], etc. We shall explain the latter in detail in the next section since it is

an important tool used in Chapter 5.

4.3 Method

We first explain our approach in a simpler model, with 1-local observables and ALAs built

with 2-local circuits, and then extend the results to circuits and observables with arbitrary

localities. The detailed proof of our results can be found in Section 4.6 in the Appendix.

For ALSO, we will be using classical shadows generated using the Pauli ensemble. We



74

first discuss this particular shadow-generating process in more detail and then introduce

an improved version of Theorem 2 for the Pauli ensemble that does not use the median of

means estimation.

To generate a shadow, the first step is to measure the individual qubits of σ on a random

Pauli basis. To this end, for each qubit i, we apply a gate Ui uniformly randomly chosen

from
␣

1, H,HS:
(

, and then measure it in the computational basis. Let the measurement

outcome be ui P t 0, 1 u. Then a classical shadow of σ is calculated (classically) as

σ̂ “ Φ
´

U :
1 |u1y xu1|U1

¯

b ¨ ¨ ¨ b Φ
`

U :
n |uny xun|Un

˘

, (4.29)

where ΦpAq “ 3A´ 1. As a fully separable matrix, σ̂ can be stored efficiently as n 2ˆ 2

matrices. Furthermore, σ̂ gives an unbiased estimation of the unknown state σ and hence

tr
`

Opiqσ̂
˘

is an unbiased estimator of tr
`

Opiqσ
˘

for all i.

Specifically, we have:

Theorem 3. [Sac+22] Let σ P LpC2nq be a quantum state. Suppose Op1q, Op2q, . . . , OpMq P

LpC2nq are M k-local observables. For any δ, ϵ P p0, 1q, let T be any integer not smaller

than 4k`1

ϵ2
¨ logp2Mδ qmaxi }O

piq}28 and define shadow state σ̂T as σ̂T “ 1
T

T
ř

j“1
σ̂pjq, where σ̂pjq

are single-qubit classical shadows as in Eq. (4.29). Then, with probability at least 1 ´ δ

and for all i, we have
ˇ

ˇtrpOpiqσ̂T q ´ trpOpiqσq
ˇ

ˇ ď ϵ.

Note that the original version of this theorem required }Opiq}8 ď 1 for all i. However,

this can be relaxed by dividing every matrix by max
i

}Opiq}8 and then estimating with

precision ϵ{maxi }O
piq}8.

Moreover, each estimation tr
`

Oplqσ̂T
˘

can be classically computed very efficiently. Let

Al “ pql1 , . . . , qlkq be the sub-register that Oplq acts non-trivially on and Oplq “ Õplq b

1C2n´k with Õplq P LpC2kq. To compute expectation with this observable using the shadow

σ̂ in Eq. (4.29), we only need to use the k 2ˆ 2 matrices corresponding to the sub-register

Al. Denote by σ̂T
ˇ

ˇ

Al
the classical shadow obtained by taking an average of T such reduced

shadows. Then we have tr
`

Oplqσ̂T
˘

“ tr
´

Õplqσ̂T
ˇ

ˇ

Al

¯

and hence it can be computed with
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cost exponential only in k and independent of n.

We start with a lemma that forms the backbone of ALSO. Note that the proofs of all

theorems and lemmas introduced in this section can be found in Section 4.6.

Lemma 1. Let d, S and C be defined as in Eq. (4.1), and θ P R
n
2
ˆdˆp. For any n-

qubit 1-local observable O, we have
›

›

›
OCpθq:

›

›

›

8
“ }O}8 and OCpθq: is 2d-local, that is,

OCpθq: “ Õ
Cpθq:A

for some sub-register A of 2d qubits.

Figure 4.3: The structure of OCpθq: “ Upθq:OUpθq where the blue box is a 1-local observ-
able, and all other boxes are S sub-circuits. Except for the red ones, all other sub-circuits
cancel each other out, resulting in OCpθq: being 2d-local.

Moreover, from Figure 4.3, we can see that for any θ, ÕCpθq: can be computed with

cost exponential only in d using tensor contractions of the observable with all the S gates

marked in red.

Let O “
D
ř

i“1
Opiq be an observable, where each Opiq is 1-local. Assume that we are

using an iterative optimization algorithm, one that takes as input a target function and

outputs its optimizer, to find the maximizer of Eq. (3.2), and the whole optimization proce-

dure requires M function evaluations of the form fσ,O
`

θp1q
˘

, fσ,O
`

θp2q
˘

, . . . , fσ,O
`

θpMq
˘

.

Lemma 1 says that each function evaluation can be seen as estimating the expectation of

2d-local observables, because fσ,Opθq “
D
ř

i“1
tr
`

OpiqσCpθq

˘

“
D
ř

i“1
tr
´

O
piq

Cpθq:
σ
¯

.

Now using Theorem 3, we can estimate all the M function evaluations and the whole

ALSO algorithm goes as follows:

1. Load T “ OplogpMq ¨ polypnqq classical shadows of σ. Let σ̂T be the shadow state

(cf. Theorem 3).
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2. For all i, compute σ̂T
ˇ

ˇ

Ai
, where Ai is the sub-register that O

piq

Cpθ:q
acts non-trivially

on.

3. Use the iterative optimization algorithm to optimize the target function f̂σ,Opθq “
D
ř

i“1
tr
´

Õ
piq

Cpθ:q
σ̂T

ˇ

ˇ

Ai

¯

.

Note that the cost of classical computation is dominated by the computation of
D
ř

i“1
tr
´

Õ
piq

Cpθ:q
σ̂T

ˇ

ˇ

Ai

¯

and so it scales exponentially only in d. Hence, when d P Oplog nq,

the classical computational cost scales polynomially on n.

4.4 Sample Complexity

In this section, we discuss the sample complexity of the protocol, that is, the range of

values of T that guarantee good estimations of all the function evaluations. We show that

when d P Oplog nq, the sample complexity is OplogpMq ¨ polypnqq.

Theorem 4. Let d, S and C be defined as in Eq. (4.1). Suppose σ is an arbitrary n-qubit

state and O “
D
ř

i“1
Opiq, where each Opiq is an n-qubit 1-local observable. Then, for any

δ, ϵ P p0, 1q and any M parameter tensors θp1q,θp2q, . . . , θpMq, all values fσ,O
`

θpmq
˘

can be

estimated using f̂σ,Opθ
pmqq :“ tr

ˆ

O
Cpθpmqq

: σ̂T

˙

with the guarantee

Prob

˜

M
č

m“1

”
ˇ

ˇ

ˇ
fσ,O

`

θpmq
˘

´f̂σ,O
`

θpmq
˘

ˇ

ˇ

ˇ
ď ϵ

ı

¸

ě 1´ δ, (4.30)

where T ě D2 log
`

2MD
δ

˘

¨ 42d`1

ϵ2
max
i

}Oi}
2
8.

This is remarkable as, without using classical shadows, we may need to estimate fσ,Opθq

for any parameter tensor θ through measurements. Suppose K copies of σ are consumed

to estimate each of these values. Then, we end up consuming MK copies of σ, which can

be exponentially larger than the number consumed by ALSO.

In our method, the measurements that we have to make are solely for computing the

classical shadows and hence are independent of all θpmq. Moreover, each measurement
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outcome can be reused multiple times. In the standard method of training VQAs, we are

not able to reuse the measurement outcomes that are made as part of the optimization,

because each measurement outcome is dependent on the input parameter θpmq. This is a

crucial reason why ALSO is a much more appealing option to optimize these functions,

especially from a practical perspective where one has to do hyperparameter tuning, find

the right classical optimizer, etc.

One important point to note is that even though the constants look large, in practice,

we need not necessarily require this many copies (classical shadows) of σ. This is illus-

trated in our experimental results, where we are able to match the results of ideal VQA

simulations (simulations that use infinite copies of the input state σ) by using a number

of copies of σ orders of magnitude fewer than the number suggested by Theorem 4.

Figure 4.4: Plot showing the time (in seconds) taken for a single function evaluation using
ALSO. Here, d P tlog nu, S is a 2-qubit parameterized sub-circuit and O is a 1-qubit
observable. Along with the execution times, we plot the function p0.02nq5 to highlight the
polynomial dependence of time on the number of qubits.

The space complexity of the protocol is dominated by the storage of the matrices σ̂T
ˇ

ˇ

Ai
.

Since the dimension of each of these matrices is 4d, we need 16dM complex numbers to

store all of them. For example, let n,M “ 50, d “ 5. Then we see that if we are using

128 bits to store each complex number, then we only require 838MB to store all matrices

σ̂T
ˇ

ˇ

Ai
. Time taken for single function evaluations is plotted in Figure 4.4. On the x-axis,

we have the number of qubits, and on the y-axis, we have the time (in seconds) taken

to compute a single function evaluation, averaged over 5 cases. In each case, d P tlog nu
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and the observable O is a 1-local observable, with S being the circuit in Figure 4.1 (b).

We plot the results showing a polynomial dependence of time on the number of qubits for

both ‘complex128’ and ‘complex64’ being used as datatypes in Python. The simulation

was carried out on a laptop with 16GB RAM and 2.6GHz Intel i7 processor.

One can easily generalize Theorem 4 for arbitrarily local observables and circuits. In

a similar setting, if we use k0-local parameterized circuits and an observable that is a sum

of k1-local observables, then we can carry out an iterative optimization algorithm with all

function evaluations satisfying Eq. (4.32) using

T ě
D2

ϵ2
¨ log

ˆ

2MD

δ

˙

¨ 4k1`p2k0´2qd´1 ¨max
i

}Oi}
2
8

copies of the input state. This is because for each increment in-depth, the locality of

O
piq

Cpθq:
increases by at most 2k0 ´ 2, starting from k1.

4.5 Simulation Results

In this section, we discuss the experimental results comparing the performance of ALSO

and the standard VQA in two applications: state preparation and quantum autoencoder.

4.5.1 Experiments Set-Up

For all experiments, each brick-like sub-circuit Spθijq (cf. Figure 4.1 (a)) has the form

given in Figure 4.1 (b). The simulation results presented in this section (except for Ta-

ble 4.1) have used Simultaneous Perturbation Stochastic Approximation [Spa92] (SPSA),

where the converging sequences used for state preparation and quantum autoencoder are,

respectively, cr “ ar “ r´0.5 and cr “ ar “ r´0.3.

In the following, we denote by ALSO-T the ALSO algorithm that uses T shadows and

by VQA-K the VQA algorithm that consumes per function evaluation K state copies (for

state preparation) or K samples from Z “ tppi, |ψiyqu (for quantum autoencoder). In

addition, we write VQA-infinite for the VQA algorithm which has access to an infinite
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Simulation results for state preparation (a-c) and quantum autoencoder (d-f)
using SPSA. Each graph corresponds to 5 instances of a problem. VQA-K consumes K
copies (samples) per function evaluation while ALSO-T consumes T copies (samples) in
total. In (a) and (c), we compare the performance of ALSO with standard VQA in the case
of 8-qubit problems. Here, VQA-10, VQA-50, and VQA-100 will consume 4.8ˆ105 (4.8ˆ
105), 2.4ˆ106 (2.4ˆ106) and 4.8ˆ106 (4.8ˆ106) copies (samples) respectively while ALSO-
105 consumes only 105 (105) copies (samples), and still outperforms VQA considerably.
Continuing in the 8-qubit scenario, In (b) and (d), we compare the performance of ALSO
with the ideal VQA that consumes infinite copies, and we see that ALSO is able to almost
match the results of this ideal VQA using a modest 5ˆ 105 (5ˆ 105) copies (samples). In
(c) and (f), we plot the results of similar experiments carried out on 30-qubit states. In
this case, VQA consumes 5.4 ˆ 106 (1.8 ˆ 106) and 5.4 ˆ 107 (1.8 ˆ 107) copies (samples)
respectively. Note that here, only iteration numbers that are multiples of 1000 are plotted.

number of state copies.

Let R be the total number of iterations of SPSA. Since SPSA requires 2 function

evaluations per iteration, for state preparation and quantum autoencoder, VQA-K will

consume 2KRn and 2KRnB state copies respectively.

4.5.2 State Preparation Experiments

For the state preparation problem, we first consider the case when n “ 8, i.e., the target

state is an 8-qubit state. In each experiment, the target state is compatible with an ALA.
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We repeat the experiments for five different target states and our results are shown in

Figure 4.5 (a,b), where each plot corresponds to five different instances of a problem. At

any value on the x-axis, we plot the mean of infidelity/cost values across the five different

experiments that were carried out. The colored area of the plot is marked on top and

bottom by the mean plus and minus the standard deviation of the 5 values at each point

respectively.

In Figure 4.5 (a), VQA-10 consumes 2KRn “ 2ˆ10ˆ3000ˆ8 “ 4.8ˆ105 state copies

and in a similar manner, the other VQA algorithms consume 2.4ˆ 106 and 4.8ˆ 106 state

copies, which are 4.8x, 24x, and 48x of that ALSO consumes. Furthermore, from Fig. 4.5

(b), we can see that ALSO closely matches the outcome of VQA-infinite with only 5ˆ 105

state copies.

Moving on from the 8-qubit scenario, we then carry out similar experiments for 30-

qubit systems. Fig. 4.5 (c) shows the results, where, as in [Cer+21b] (2021), all states

involved are computational basis states.

We note in this case, VQA-10 consumes 2 ˆ 10 ˆ 9000 ˆ 30 “ 5.4 ˆ 106 state copies

while ALSO-T remains unchanged with the change of n from 8 to 30. From the figure,

it is clear that a similar conclusion for 8-qubit state preparation also applies to 30-qubit

state preparation. In particular, ALSO (with 5 ˆ 105 samples) significantly outperforms

VQA with 100x more samples.

4.5.3 Quantum Autoencoder Experiments

For quantum autoencoder, similar experiments are carried out for both 8- and 30-qubit

systems. Ensembles containing two pure states |ψ1y and |ψ2y are chosen with p1 “ 1{3 and

p2 “ 2{3, and nB is set as 4 and 10, respectively, for 8- and 30-qubit systems. We repeat

the experiments for five different ensembles. The results are summarised in Figures 4.5

(d), (e), and (f), which have the same explanation as those in Figures 4.5 (a), (b), and

(c). Note that the cost values plotted here are 1 ´ fσ,F pθq (cf. Section 3.4.3). Moreover,

it is the actual true cost and not their estimations. From the figures, we can see similar
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conclusion we have obtained for state preparation also holds for quantum autoencoder.

It seems that in this case ALSO with 105 samples significantly outperforms VQA with

48 ˆ 105 samples and ALSO with 5 ˆ 105 samples can often match VQA-infinite.

4.5.4 Resource Consumption for the Same Objective

(a) 8-qubit state preparation (b) 8-qubit quantum autoencoder

Figure 4.6: Resource requirement for different objectives. On the x-axis, we plot the least
average infidelity (cost) of 5 instances of the corresponding problem. On the y-axis, we
plot the number of copies (samples) that were required to achieve them using SPSA. We
see that ALSO achieves an order of magnitude savings in the number of copies (samples).

In the above, we compared the performance of ALSO and VQA algorithms with prede-

termined resources. The efficiency of ALSO over VQA can also be illustrated by comparing

the resource consumption required for the same objective. Given an objective, which can

be either the average lowest infidelity or the average lowest cost, we carry out experiments

to check how many state copies or samples are required for ALSO or VQA to achieve the

objective. The results are presented in Figure 4.6, where each point represents the average

of five instances. It is clear that ALSO achieves a huge advantage in the number of state

copies or samples that were required to achieve the specific levels of quality.

4.5.5 More Iterations by Using Powell’s Method

All the simulation results discussed above have used SPSA to find the optimal parameters.

In each case, we set the maximum iterations to be the same for ALSO and VQA. From

a practical point of view, this is unfair as ALSO can carry out more iterations with the

given number of state copies or samples.
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state preparation quantum autoencoder

#copies infidelity #samples cost

VQA-102 5ˆ 105 0.921 5.6ˆ 105 0.494
VQA-103 1.3ˆ 107 0.348 4.6ˆ 106 0.408
VQA-104 3.3ˆ 108 0.094 108 0.250
VQA-105 4ˆ 109 0.069 2.1ˆ 109 0.188
ALSO 5ˆ 105 0.004 5ˆ 105 0.117

Table 4.1: Simulation results comparing the performance of ALSO and the standard VQA
when using Powell’s method, where infidelity (cost) is the average lowest infidelity (cost)
of five instances, and #copies (#samples) is the number of state copies (samples) used by
the algorithm.

To further demonstrate this advantage of ALSO, we turn to Powell’s method [Pow64]

to optimize the parameters. We carry out 8-qubit state preparation as well as quantum

autoencoder optimizations and the results are presented in Table 4.1. In the infidelity

(cost) columns, each entry is an average optimal infidelity (cost) of 5 instances of the

problem, and we give an approximation of the average number of copies consumed (except

for ALSO where exactly 5ˆ105 copies are consumed) to achieve these values in the #copies

(#samples) columns.

We set 5ˆ 104 as an upper limit on the total number of function evaluations for VQA.

But, since ALSO does not consume any copies for more iterations, we don’t set any limit

in the case of ALSO. As we can see, our approach greatly outperforms VQA in this case.

Interestingly, in the case of VQA, the optimizers terminated in 5ˆ 103 ´ 3ˆ 104 function

evaluations in most cases. Only for the state preparation problem and with 105 copies

consumed per function evaluation, we saw the optimizer exceeding the 5ˆ 104 limit. We

also observe that VQA with Powell’s method performs very poorly compared to VQA with

SPSA when K is small, which is possibly due to the inherent ability of SPSA to deal with

noisy functions.

4.6 Proofs of All Theorems

Here, we present the proofs of Lemma 1 and Theorem 4. First, we recall
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Theorem 4. [Sac+22] Let σ P LpC2nq be a quantum state. Suppose Op1q, Op2q, . . . , OpMq P

LpC2nq are M k-local observables. For any δ, ϵ P p0, 1q, let T be any integer not smaller

than 4k`1

ϵ2
¨ logp2Mδ qmaxi }O

piq}28 and define shadow state σ̂T as σ̂T “ 1
T

řT
j“1 σ̂

pjq, where

σ̂pjq are single-qubit classical shadows as in Eq. (4.29). Then, with probability at least 1´δ

and for all i, we have |trpOiσ̂T q ´ trpOiσq| ď ϵ.

Note that the ALA used here has the form

Upθq “
d
ź

j“1

n{2
ź

i“1

Spθijqr2pi´ 1q ‘ j, 2pi´ 1q ‘ j ‘ 1s. (4.31)

Lemma 1. Let d, S and C be defined as in Eq. (4.1), and θ P R
n
2
ˆdˆp. For any n-

qubit 1-local observable O, we have
›

›

›
OCpθq:

›

›

›

8
“ }O}8 and OCpθq: is 2d-local, that is,

OCpθq: “ ÕCpθq: rAs for some sub-register A of 2d qubits.

Proof. For any θ, OCpθq: is obtained by conjugating O with a unitary matrix. This means

that the eigenvalues of O and OCpθq: are the same. So,
›

›

›
OCpθq:

›

›

›

8
“ }O}8. Figure 4.3

shows the structure of OCpθq: . If d “ 1, then OCpθq: will be an observable with locality 2

as all blocks of the parameterized circuit except the ones acting on the qubit where the

observable acts on will cancel out. Similarly, if d “ 2, then OCpθq: will have locality 4.

For each increment in d, the locality of OCpθq: increases by 2. So, the locality of OCpθq: is

2d.

Theorem 5. Let d, S and C be defined as in Eq. (4.1). Suppose σ is an arbitrary n-qubit

state and O “
D
ř

i“1
Opiq, where each Opiq is an n-qubit 1-local observable. Then, for any

δ, ϵ P p0, 1q and any M parameter tensors θp1q,θp2q, . . . , θpMq, all values fσ,O
`

θpmq
˘

can be

estimated using f̂σ,Opθ
pmqq :“ tr

ˆ

O
Cpθpmqq

: σ̂T

˙

with the guarantee

Prob

˜

M
č

m“1

”ˇ

ˇ

ˇ
fσ,O

`

θpmq
˘

´f̂σ,O
`

θpmq
˘

ˇ

ˇ

ˇ
ď ϵ

ı

¸

ě 1´ δ, (4.32)

where T ě D2 log
`

2MD
δ

˘

¨ 42d`1

ϵ2
max
i

}Oi}
2
8.
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Proof. Note that for any θ P R
n
2
ˆdˆp, we have fσ,Opθq “ trpOσCpθq “ trpOCpθq:σq.

First, consider the case when D “ 1. From Lemma 1, we know that OCpθq: is a 2d-local

operator, with
›

›

›
OCpθq:

›

›

›

8
“ }O}8. This means that all the function evaluations can be

seen as computing expectations of observables with locality 2d and } ¨ }8 the same as O.

The function evaluations that we have to approximate are fσ,O
`

θp1q
˘

, fσ,O
`

θp2q
˘

, . . . ,

fσ,O
`

θpMq
˘

and hence the observables whose expectation that we have to find are O
Cpθp1qq

: ,

O
Cpθp2qq

: , . . . , O
CpθpMqq

: . Then from Theorem 4, by using

T ě log

ˆ

2M

δ

˙

¨
42d`1

ϵ2
}O}28 (4.33)

classical shadows of σ, we can estimate the expectation of all of these observables to

precision ϵ with a probability of at least 1´ δ.

When D ą 1, we no longer have O being necessarily a 1-local observable. So, for

every m we have to estimate the expectation of σ with the observables O
piq

Cpθpmqq
: for all i,

and compute their sum. Hence, the total number of observables that we have to compute

expectations with is now MD.

By using

T ě log

ˆ

2MD

δ

˙

¨
42d`1

pϵ{Dq2
max
i

}Opiq}28 (4.34)

classical shadows, we will have approximations of fσ,Opiqpθpmqq given as f̂σ,Opiqpθpmqq “

trpO
piq

Cpθq:
σ̂T q such that ProbpEq ě 1´ δ for

E “

M
č

m“1

D
č

i“1

”ˇ

ˇ

ˇ
fσ,Opiqpθpmqq ´ f̂σ,Opiqpθpmqq

ˇ

ˇ

ˇ
ď ϵ{D

ı

. (4.35)

This is because, if we consider the difference
ˇ

ˇ

ˇ
fσ,Opiq

`

θpmq
˘

´ f̂σ,Opiq

`

θpmq
˘

ˇ

ˇ

ˇ
being less than

or equal to ϵ{D to be an event, then Theorem 4 says that the intersection of these events

for all i,m occurs with probability at least 1´ δ.

Then, with probability at least 1´ δ, for all m we have
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D
ÿ

i“1

ˇ

ˇ

ˇ
fσ,Opiqpθpmqq ´ f̂σ,Opiqpθpmqq

ˇ

ˇ

ˇ
ď ϵ

and thus

ˇ

ˇ

ˇ
fσ,Opθ

pmqq ´ f̂σ,Opθ
pmqq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

D
ÿ

i“1

”

fσ,Opiqpθpmqq ´ f̂σ,Opiqpθpmqq

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď ϵ,

where f̂σ,O
`

θpmq
˘

“
řD
i“1 f̂σ,Opiq

`

θpmq
˘

. So all approximations f̂σ,O
`

θp1q
˘

, . . . , f̂σ,O
`

θpMq
˘

satisfy Eq (4.32). Furthermore, since each single-copy classical shadow requires only 1 copy

of the input state σ, we can estimate all the function evaluations to the required quality

with T copies of σ.

4.7 Related Works

Studying alternating layered VQAs as optimizations of local parameterized observables is

already considered in [Oka+22]. Here, the locality of OCpθq: is leveraged to implement

variational quantum eigensolvers. ALSO can be seen as a generalization of this method

because the input state can be arbitrary in our setting (due to the use of classical shadows).

[Fon+22] have experimentally shown that in certain cases, the quantum alternating

operator ansatz [FGG14] and the Hamiltonian variataionl ansatz [Wie+20] can be trained

by estimations in the Fourier basis [SSM21], with Oppolypnqq copies of the input state and

Oppolypnqq classical computational cost. Similarly, [YBL20] showed that reinforcement

learning [DN08] can be used to optimize the learning process of variational parameters in

the former ansatz. In our work, we focus on the ALA and prove theoretically the existence

of sample efficient training methods for this ansatz.

In [Sto+20] and [BK22], new classical optimization algorithms are introduced and

analyzed (the latter also uses classical shadows) and are shown to converge using much

fewer iterations compared to the standard gradient descent. However, since ALSO is

agnostic towards the choice of the classical optimizer, our method can be used to boost

the performance of these methods by significantly reducing the number of state copies



86

used. Variational shadow quantum circuits developed by [LSW21b], extract local classical

features by focusing on a series of local subcircuits. Although inspired by the classical

shadow work, the approach itself does not use classical shadows.
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Chapter 5

Ansatz Independent Shadow

Optimization

5.1 Overview

Recall that ALSO uses a version of shadow tomography that requires local target observ-

ables. This constraint restricts the ansatzes to require simple entanglement structures,

such as the ALA. This limitation becomes significant when the optimal circuit or state

cannot be approximated with ALAs.

Shallow shadow technique [Ber+23] (cf. Section 5.2) describes a tomography proce-

dure similar to classical shadow tomography but designed for easy implementation in NISQ

devices. Even better, it does not rely directly on the locality of the observables. Build-

ing upon this, we introduce Ansatz Independent Shadow Optimization (AISO), another

method that achieves an exponential reduction in quantum resources for VQA training.

AISO is compatible with almost any shallow quantum circuit structure found in the liter-

ature when used in conjunction with observables of low Frobenius norm. We demonstrate

these resource savings for two important problems in quantum information where VQAs

are applicable: state preparation and VQCS. Both problems involve determining the op-

timal circuit parameters for an ansatz that best approximates unknown quantum states



88

or circuits.

The benefits of AISO can be summarized as follows:

1. Exponential reduction in input state copies: AISO achieves arbitrarily precise esti-

mates of all function evaluations encountered during iterative optimization of the

VQA objective function while consuming exponentially fewer copies of the input

state compared to standard VQA. This enables more iterations, and better approx-

imations, and facilitates extensive hyperparameter tuning.

2. Ansatz-agnostic implementation on quantum hardware: Our method ensures a re-

duction in input state copies for almost any shallow ansatz studied in the literature.

Additionally, the operations executed on the quantum device remain independent of

the chosen ansatz.

3. Optimization with different ansatzes: The combination of the above two advantages

implies that, for a given unknown input state or circuit, optimization can be per-

formed using various types of ansatzes. This flexibility allows one to choose the most

suitable ansatz with substantial savings in the utilization of quantum devices.

4. Compatibility with VQCS: Solving VQCS requires the utilization of maximally en-

tangled states. Due to the requirement of ansatzes with limited entanglement for

ALSO, it is not suitable for efficiently implementing VQCS. In contrast, AISO is

ansatz independent, allowing its effective use in VQCS.

The advantages are experimentally demonstrated in state preparation and VQCS,

where we show that AISO significantly outperforms standard VQA with the same number

of copies across four different ansatzes: ALA, MERA, HEA, and TTN. These shallow

ansatzes have been researched and their potential have been studied in many works in the

literature [Leo+24; Tan21; PKH24; Kar+21; Kan+17; Cer+20; NY21; CCL19; MV18;

EV13; FV12]. Such shallow ansatzes induce less hardware related noise since the depth

and gate counts are small. Also, all of these ansatzes are proven to avoid barren plateaus
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when used in combination with local observables [Cer+20; Pes+21]. But, the key feature

that enables these benefits, the shallowness of the circuit, also restricts the class of unitaries

that these circuits can represent. More specifically, the types of entanglement that these

circuits can generate are greatly limited.

We also establish that the sample complexity of AISO, and consequently shallow shad-

ows, can be enhanced when the input state being sampled is from a 2-design instead of

a 1-design. Finally, we discuss how AISO aligns with many heuristic methods commonly

used to tackle trainability issues, such as barren plateaus, that may arise during optimiza-

tion.

5.2 Shallow Shadows

-qubit
Clifford

-qubit
Clifford

Figure 5.1: The structure of the unitary ensemble used to generate shallow shadows. Each
1-qubit gate is a uniformly randomly sampled 1-qubit Clifford gate, while each 2-qubit
block here is a uniformly randomly sampled 2-qubit Clifford gate. d is the number of
vertical layers of 2-qubit gates in the circuit.

Shallow shadows were introduced in [Ber+23]. These shadows are generated using

an ensemble of shallow-depth circuits Ud (with depth d), given in Figure 5.1. Each 1-

qubit gate is a uniformly randomly sampled 1-qubit Clifford gate, while each two-qubit

subcircuit here is a uniformly randomly sampled 2-qubit Clifford gate. The shadow can

be classically computed and stored in an MPS form, with cost O
`

2d
˘

. This is enabled

by first showing that TwUd,Φ is a diagonal operator in the Pauli basis, and the diagonal

elements seen as a vector has a known MPS structure with bond dimension O
`

2d
˘

. Since

it is a diagonal operator, its inverse must simply be its elementwise inverse. To find this
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inverse, we minimize the objective function of the form

ζpAq “ }diagpTwUd,Φq ˚A´ 1}22 , (5.1)

where 1 is the vector with all entries 1. All objects featured in the above expression can

be computed using MPS methods with cost scaling as O
`

2d
˘

. Moreover, one can see

that as ζpAq gets smaller, A will get closer to the diagonal part of Tw´1
Ud,Φ

. Also, for

any observable whose Pauli basis coordinates admit an MPS decomposition with bond

dimension O
`

2d
˘

, computation of expectations with shallow shadows can also be carried

out using cost O
`

poly
`

2d
˘˘

since all circuits in the ensemble have depth d.

Its effect can be seen as a generalization of both the ensembles that we have discussed

in the previous section. When d “ 0, we get the Pauli ensemble, and when dÑ 8, we get

the Clifford ensemble. Moreover, it is shown that when d P Θplog nq, the shallow shadow

ensemble exhibits the properties of both the Pauli as well as the Clifford ensembles to some

degree. That is, shallow shadows can be used to estimate expectations of local observables

as well as observables of low Frobenius norm.

Formally, we have

Theorem 5. [Ber+23] If d P Θplog nq, then }O}2
1{2n,Ud

ď 4}O}22 for any observable O

with trpOq “ 0. Furthermore, let l be the maximum distance between two qubits on which

O is not acting as 1C2. Then

}O}21{2n,Ud
ď nOp1q }O}22

2n
. (5.2)

The term }O}2
1{2n,Ud

in Theorem 5 is called the locally scrambled shadow norm. To see

the properties of this norm, notice that for any state 1-design D1,

E|ψy„D1
p|ψy xψ|q “

ż

U

U |0y x0|U :dU “
1

2n
. (5.3)

The first equality can be seen from the relationship between state 1-design and unitary
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1-design discussed in Section 2.5 and the last equality can be seen from Lemma 6 in the

Appendix.

Then, we have }O}2
1{2n,U “ Eσ„D1}O}2σ,U . Hence, we can view }O}1{2n,U as a quantity

that intuitively characterizes the sample complexity of a shadow protocol for a “typical”

state or the performance of the protocol on average, similar to how the shadow norm

describes the worst-case performance because of the presence of the maximization over all

states.

To generate a shallow shadow, we first apply a circuit U sampled from the ensemble

Ud (cf. Figure 5.1), and then measure the resultant state according to the computational

basis to obtain an n-bit string u. A shallow shadow is computed classically as

σ̂U,u “ Tw´1
Ud,Φ

`

U : |uy xu|U
˘

, (5.4)

5.3 Ansatz Independent Shadow Optimization

Now, we shall explain the main idea and theoretical results behind AISO.

For any quantum circuit V , we recall the definition ofRV given in Section 2.4.2. For any

qubit i, this is the number of 2-qubit gates being applied on any qubits j, k such that j ď

i ď k. Let RV “ max
i
RV,i. We require our ansatz C to have RC P Oplog nq. Most shallow

ansatzes used in the literature satisfy this. Let fσ,O
`

θp1q
˘

, fσ,O
`

θp2q
˘

, . . . , fσ,O
`

θpMq
˘

,

be function evaluations that one encountered while optimizing Eq. (3.2) using an iterative

optimization algorithm.

Each function evaluation can be seen as estimating the expectation of σ with param-

eterized observables of the form OCpθq: because

fσ,Opθq “ tr
`

OσCpθq

˘

“ tr
´

OCpθq:σ
¯

(5.5)

Moreover, the Frobenius norm remains invariant since }O}22 “ }OV }
2
2 for any unitary V .

Now, using Theorems 2 and 5, we can estimate allM function evaluations using shallow
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shadows, and the AISO protocol goes as follows.

1. Choose precision and confidence parameters ϵ, δ P p0, 1q. Let γ ě 1{δ. Generate

T1T2 shallow shadows of σ (with d P Θplog nq), where

T1 ě 2 log

ˆ

2pγ ´ 1qM

γδ ´ 1

˙

, T2 ě
136

ϵ2
γ}O}22. (5.6)

Let them be σ̂U1,u1 , σ̂U2,u2 , . . . , σ̂UT1T2
,uT1T2

.

2. Use the iterative optimization algorithm to optimize the target function

f̂σ,Opθq :“ µT1,T2

´!

fσ̂Uj,uj
,Opθq

ˇ

ˇ

ˇ
1 ď j ď T1T2

)¯

. (5.7)

Now, we shall prove that when T1 and T2 satisfy Eq. (5.6), the AISO protocol achieves

the desired precision and confidence. Proofs of all theorems discussed in this chapter can

be found in Section 5.7.

Theorem 6. Let σ be an n-qubit pure state sampled from a state 1-design D1. For any

δ, ϵ P p0, 1q, γ ą 1{δ, and any M P N, let T1 and T2 satisfy Eq. (5.6). Then, for any

parameter vectors θp1q, . . . , θpCq, with probability at least 1 ´ δ, we have |fσ,O
`

θpmq
˘

´

f̂σ,O
`

θpmq
˘

| ď ϵ for all 1 ď m ď M , where fσ,O
`

θpmq
˘

and f̂σ,O
`

θpmq
˘

are defined in

Eq.s (5.5) and (5.7), respectively.

The rationale behind AISO’s ability to yield exponential savings in estimating the

objective function is similar to AISO and can be intuitively grasped as follows. In standard

VQA, estimating M evaluations requires preparing C
`

θpmq
˘

for all m and conducting

multiple measurements for each. Therefore, the total number of required copies would

be OpMq. One key limitation arises from the inability to reuse measurement results, as

each measurement is conducted specifically to estimate fσ,O
`

θpmq
˘

for a particular m. In

contrast, in AISO, all quantum measurements made are independent of θpmq, and these

measurements are used when estimating all the expectations.
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Although the constants in Eq. (5.6) appear large, due to the use of union bounds as

well as a few loose constants, in practice significantly fewer copies than what is suggested

there suffice. We explore this in detail in our experimental results.

The cost of classical computation is dominated by the cost of computing fσ,Opθq clas-

sically. Thus, we have the following theorem.

Theorem 7. In AISO, for any quantum ansatz C with RC P Oplog nq, fσ,Opθq can be

classically evaluated with cost Oppolypnq ¨ logM ¨ }O}22q for state preparation and VQCS.

The overall classical computational cost for M function evaluations is thus Oppolypnq ¨

M logM ¨ }O}22q.

The space complexity of the protocol is dominated by the storage of shallow shadows.

Each shadow is an MPS with maximum bond dimension at most 2d´1. This means that

each shadow can be stored using at most n2d complex numbers and hence the total space

complexity is at most nT1T22
d. So, when d P Oplog nq, the space complexity is Oppolypnq ¨

T1T2q.

Last but not least, in the state preparation problem, for any shallow shadow σ̂, fσ̂,Opθq

can be computed classically efficiently by contracting the tensor network given in Figure 5.2

(a). Even though the example given here is the ALA, using Theorem 7, one can easily

replace it with any ansatz with RC P Oplog nq. The reasoning is explained in detail in the

proof of Theorem 7 in the Appendix.

Regarding VQCS, in terms of classical computational complexity, 1
2n trp|Cpθqy xCpθq| σ̂q

for any shallow shadow σ̂ can be computed by contracting the tensor network given in

Figure 5.2 (b), the cost of which is polynomial in n. The explanation regarding the usage

of ALA in this figure is the same as the one for state preparation. From now on, when

discussing the sample complexity of VQCS, the “number of copies” will mean the number

of copies of 1?
2n

|V y consumed (equivalently, the number of applications of V ).

For VQCS, from Section 3.4.2, recall that Hpθq “ 1 ´ 1
4n trp|Cpθqy xCpθq| |V y xV |q,

where 1?
2n

|Cpθqy version of Cpθq. Therefore, we can use shallow shadows of 1?
2n

|V y

to estimate Hpθq. Since 1
2n } |Cpθqy xCpθq| }2 “ 1 for all θ, the number of shadows, or
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(a) State preparation (b) Circuit synthesis (c) Subcircuit used in our
experiments.

Figure 5.2: (a,b) Tensor networks to compute fσ̂,Opθq. The examples used here use the
ALA. (a) corresponds to state preparation while (b) corresponds to VQCS. To contract
(a) efficiently, we can start from the top qubit wire and contract wire by wire. One can
see that, at every step, the total number of free indices the tensor will have is Oplog nq,
thus the cost of contraction is Oppolypnqq. Note that this is true for any ansatz with
RC P Oplog nq. A similar argument can be made for (b) when we start contracting ring
by ring from the top. (c) Structure of the two-qubit subcircuits used in our simulations
concerning AISO. Here, each black box is a single-qubit subcircuit while the two-qubit
gate is the CNOT gate.

equivalently, the number of applications of V , is independent of n.

Also, note that the sample complexity will remain the same for any ansatz of any

depth. But for deeper circuits, especially those with RC P Ωppolypnqq and beyond, the

classical computational complexity will suffer as it scales exponentially in RC .

Finally, we comment on the impact of the dimensionality of the lattice on AISO. The

dimensionality describes how the qubits are physically arranged and connected within

the device. For example, in a one dimensional lattice, the qubits are arranged linearly

and we can only apply two qubit gates between neighbouring qubits. Similarly, in a

two-dimensional lattice, the qubits are arranged in a grid-like manner. As mentioned

previously, the sample complexity is agnsotic to the nature of the ansatz. The only factor

to consider is the classical computational complexity. We have already seen that this is

exponential in RC for linear qubit arrays. However, for two dimensional lattices also, we

can derive similar bounds by using PEPS simulation (cf. Section!2.4.5) within the classical
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computation. Note that for ALSO, since it is only defined for ALA, which is in turn only

defined for linear qubit arrays, this discussion is not relevant.

5.4 Simulation Results

Here, we elaborate on the experimental results by comparing the sample complexity of

AISO and the standard VQA in 8-qubit state preparation and VQCS experiments.

The depth d of the shallow shadow ensemble (cf. Figure 5.1) is set to 3 throughout

the experiments. The viability of AISO in solving both problems is tested across four

different ansatzes that are widely used in the literature, whose structures are given in

Figures 3.5 (a,b) and 3.6 (a,b) . Except in HEA, all two-qubit gates can be arbitrary

two-qubit subcircuits. The specific ones used in our simulation are given in Figure 5.2 (c).

Also, for VQCS, each two-qubit subcircuit is a combination of two of these. In HEA, the

two-qubit gate used is the CNOT gate.

For state preparation, we have used the Simultaneous Perturbation Stochastic Ap-

proximation [Spa92] (SPSA), where the converging sequences used are, respectively, cr “

ar “ r´0.4 and the total number of iterations is 5000. On the other hand, the results of

VQCS have used Powell’s method [Pow64] with a maximum of 103 function evaluations

allowed. We denote by AISO/VQA (T ) the AISO/VQA algorithm that uses T copies in

total. This means that VQA pT q will consume T {104 copies per function evaluation in

SPSA and T {103 copies in Powell’s method. This is because SPSA requires two function

evaluations to produce estimates of the gradient.

The unknown target states considered in the state preparation are 8-qubit states,

which are also compatible with the corresponding ansatzes being used. In each setting,

the experiment is carried out across five different states and the results are shown in

Figure 5.3. Here, we have plotted the mean of infidelity values achieved at different

iterations across the five different experiments that were carried out. The shaded region

comprises the mean plus and minus 0.3 times the standard deviation of the five different

infidelities.
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(a) ALA (b) MERA

(c) HEA (d) TTN

Figure 5.3: Simulation results comparing the learning curves of AISO with the standard
VQA, when solving state preparation problem. Each shaded region corresponds to 5
instances of a problem. VQA/AISO pT q consumes T copies in total throughout the op-
timization. Plots (a), (b), (c), (d) correspond to ALA, MERA, HEA, and TTN being
used as the ansatz, respectively. The classical optimizer used is the SPSA algorithm, with
5ˆ 103 iterations. The red curve represents AISO p104q while the orange, green, and blue
curves represent VQA p5 ˆ 105q, VQA p106q, and VQA p2.5 ˆ 106q consuming 50, 100,and
250 copies per function evaluation respectively. We can see that AISO can closely match
or outperform standard VQA by consuming orders of magnitude fewer copies in total.

In Figure 5.3, VQA p5ˆ 105q, which utilizes 5ˆ 105 copies in total, consumes 50 state

copies per function evaluation. Similarly, the other VQA algorithms consume 100 and 250

state copies per evaluation. One can see that AISO closely matches or outperforms the

results of VQA by consuming only 104 copies in total.

Moving on to VQCS, similar experiments are carried out for 4-qubit quantum gates

(meaning 8-qubits used in total). The results are summarized in Figure 5.4. Here, the

minimum Hpθq in each interval of 102 function evaluations out of the total allowed 103

is plotted. The three VQA algorithms used here consume 102, 103, and 104 copies per

function evaluation respectively. It is clear from the plots that AISO can match the

performance of standard VQA similarly using considerably fewer copies to what we saw

in the case of state preparation.

In Figures 5.5 and 5.6, we present the superiority of AISO over VQA in a different
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(a) ALA (b) MERA

(e) HEA (f) TTN

Figure 5.4: Simulation results comparing the learning curves of AISO with the standard
VQA, when solving VQCS. Each shaded region corresponds to 5 instances of a problem.
VQA/AISO pT q consumes T copies in total throughout the optimization. Plots (a), (b),
(c), (d) correspond to ALA, MERA, HEA, and TTN being used as the ansatz, respectively.
The classical optimizer used is Powell’s method, with a total of 103 function evaluations
allowed. In these plots, the minimum Hilbert-Schmidt cost in each interval of 100 function
evaluations is plotted. The red curve represents AISO p104q while the orange, green, and
blue curves represent VQA p105q, VQA p106q, and VQA p107q consuming 10, 102, and 103

copies per function evaluation respectively. We can see that AISO can closely match or
outperform standard VQA by consuming orders of magnitude fewer copies in total.

light. On the x-axis, we plot different infidelity or Hilbert-Schmidt cost values, and on the

y-axis, we plot the number of copies required to achieve them, which are exponentially

better for AISO.

5.5 Improved Bounds Using 2-Design Assumption

In this section, we analyze the assumption of the input state in more detail. The assump-

tion that the state is sampled from a 1-design merely says that the input state is the

maximally mixed state. So, to further understand the notion of a “typical input state”

and to get closer to the notion of the input state being an average state or a randomly

generated state, we make a stronger assumption on the distribution. More precisely, we

assume that the input state is sampled from a state 2-design D2.
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(a) ALA (b) MERA

(c) HEA (d) TTN

Figure 5.5: Resource needs for different infidelity objectives. All points plotted correspond
to the mean of 5 instances of a state preparation problem, with the x-axis representing the
average lowest infidelity achieved and the y-axis representing the total number of copies
consumed to achieve it. The classical optimizers used are the same as Figure 5.3. Plots
(a), (b), (c), (d) correspond to ALA, MERA, HEA, and TTN being used as the ansatz
respectively. The order of magnitude savings in the number of copies when using AISO is
evident.

In this regime, we derive two results, starting with an upper bound on the variance of

the state-dependent shadow norm when the state is sampled from a state 2-design.

Theorem 8. Let D2 be a state 2-design and d P Θplog nq. Then, for any observable O,

we have

Varσ„D2

`

}O}2σ,Ud

˘

ď 64}O}22. (5.8)

Using this result, we can derive a result similar to Theorem 6, with better constants.

Theorem 9. Let d P Θplog nq and σ be an n-qubit pure state sampled from a state 2-design

D2. For any δ, ε P p0, 1q, γ ą 1{
?
δ, and any M P N, let

T1 ě 2 log

ˆ

2pγ2 ´ 1qM
γ2δ ´ 1

˙

, T2 ě 136

ε2
p2γ ` 1q}O}22. (5.9)
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(a) ALA (b) MERA

(c) HEA (d) TTN

Figure 5.6: Resource needs for different Hilbert Schmidt Cost objectives. All points plotted
correspond to the mean of 5 instances of VQCS, with the x-axis representing the average
lowest Hilbert-Schmidt Cost achieved and the y-axis representing the total number of
copies consumed to achieve it. The classical optimizers used are the same as Figure 5.4.
Plots (a), (b), (c), and (d) correspond to ALA, MERA, HEA, and TTN being used as the
ansatz respectively. The order of magnitude savings in the number of copies when using
AISO is evident.

For any parameter vectors θp1q, . . . ,θpMq, with probability at least 1´δ, we have |fσ,Opθpmqq´

f̂σ,Opθpmqq| ď ε for all 1 ď m ď M , where fσ,Opθpmqq and f̂σ,Opθpmqq are defined in

Eq.s (5.5) and (5.7), respectively.

Hence, we see that the lower bound on T1 in Eq. (5.32) is a constant time better than

the lower bound on T1 in Eq. (5.6). By replacing the function evaluations in Theorem 9

with expectations with arbitrary observables, one can see that similar advantages can

be gained for regular shallow shadow estimation also when the input is sampled from a

2-design.
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5.6 Dealing With Barren Plateaus

Global observables may lead to barren plateaus occurring in the training landscape [Cer+21b;

Liu+22], which makes evaluating them using quantum devices extremely difficult. Al-

though the gradients are evaluated classically in AISO, since we may encounter global ob-

servables and require Op1{ϵ2q shadows to additively approximate the gradients to precision

ϵ, in some cases, we might end up requiring exponentially many shadows for meaningful

approximations. However, several heuristic approaches have been proposed, which have

been experimentally shown to reduce barren plateaus in many cases. We note that our

method is compatible with almost all barren plateau mitigating methods that have been

proposed in the literature. For example, [Pat+21; Mel+22; RSL22; Sko+21; Gri+23a;

Gri+23b; FM22; Ver+19; Gra+19a; KS22; Zha+22a] are methods that ultimately use the

quantum device only to estimate fσ,Opθq at certain carefully chosen inputs θ. So, it is

clear that if we use shadows to estimate them, then exponential advantages similar to the

ones discussed in this paper can be achieved.

5.7 Proofs of All Theorems

Here, we present the proofs of Theorems 6, 7, 8 and 9. For brevity, we recall two important

definitions here;

f̂σ,Opθq :“ µT1,T2

´!

fσ̂Uj,uj
,Opθq

ˇ

ˇ

ˇ
1 ď j ď T1T2

)¯

, (5.10)

where µT1,T2 is the median-of-means estimator (median of T1 means of T2 values each),

and

fσ,Opθq :“ trpσCpθqOq “ tr
´

OCpθq:σ
¯

. (5.11)

Theorem 6. Let σ be an n-qubit pure state sampled from a state 1-design D1. For any

δ, ϵ P p0, 1q, γ ą 1{δ, and any M P N, let T1 and T2 satisfy Eq. (5.6). Then, for any
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parameter vectors θp1q, . . . , θpCq, with probability at least 1 ´ δ, we have |fσ,O
`

θpmq
˘

´

f̂σ,O
`

θpmq
˘

| ď ϵ for all 1 ď m ď M , where fσ,O
`

θpmq
˘

and f̂σ,O
`

θpmq
˘

are defined in

Eq.s (5.5) and (5.7), respectively.

Proof. As we have already established, all M function evaluations are expectations of σ

with M parameterized observables O
Cpθpmqq

: , each with

›

›

›

›

O
Cpθpmqq

:

›

›

›

›

2

“ }O}2.

From Theorem 5, we know that

}OTL}
2
1{2n,Ud

ď 4}OTL}
2
2, (5.12)

implying that

Eσ„D1}OTL}
2
σ,Ud

ď 4}OTL}
2
2. (5.13)

Now, We recall the Markov inequality [Sha05] here, which says that for any non-negative

random variable η, we have

Probpη ď γEpηqq ě 1´
1

γ
. (5.14)

So by using Markov Inequality, we have

Prob
“

}OTL}
2
σ,Ud

ď γEσ„D1}OTL}
2
σ,Ud

‰

ě 1´ 1{γ, (5.15)

implying that

Prob
“

}OTL}
2
σ,Ud

ď 4γ}OTL}
2
2

‰

ě 1´ 1{γ. (5.16)

So with probability at least 1 ´ 1{γ, the state-dependent shadow norm is bounded

by 4γ}OTL}
2
2. So, for any δ1, ϵ P p0, 1q, if we use T1T2 shallow shadows, where T1 “

2 logp2M{δ1q, T2 “ p136γ{ϵ2q}OiTL}
2
2, with probability at least p1´ δ1q p1´ 1{γq, for all

m, we will have |fσ,Opθq ´ f̂σ,Opθq| ď ϵ.
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Set 1´ δ “ p1´ δ1qp1´ 1{γq. So, we have

1´ δ “ p1´ δ1qp1´ 1{γq, (5.17)

which implies that

δ1 “1´

ˆ

1´ δ

1´ 1{γ

˙

“ 1`
γpδ ´ 1q

γ ´ 1
“
γδ ´ 1

γ ´ 1
. (5.18)

This completes the proof.

Theorem 7. In AISO, for any quantum ansatz C with RC P Oplog nq, fσ,Opθq can be

classically evaluated with cost Oppolypnq ¨ logM ¨ }O}22q for state preparation and VQCS.

The overall classical computational cost for M function evaluations is thus Oppolypnq ¨

M logM ¨ }O}22q.

Proof. The proof is based on the proof of classical simulation of quantum circuits in [Joz06],

which we have already discussed in Section 2.4.2 (Theorem 1).

Earlier we explained a proof for this theorem using MPS theory. Another reasoning,

from a tensor network perspective, is that when we start contracting the tensor network

from the top qubit-wire, the maximum number of free indices the tensor can have at any

point will be OpRCq. This means that the size of the tensor at every point will be Op2RC q.

So, such contractions for all n qubit-wires can be done using cost Opn ¨ polyp2RC qq.

For state preparation of an unkwown state σ, the required classical computation is

mainly computing fσ̂,|0yx0|pθq for some shallow shadow σ̂. An example of this can be

seen in Figure 5.2(a). But one can see that this is almost the same as a quantum circuit

tensor network. The only difference is the fact that the core tensors of σ̂ may not be valid

quantum operations. But that does not affect the complexity of tensor contraction. Since

the shadows are generated using an ensemble with d “ Oplog nq, the core tensors will

have dimension Oppolypnqq. Combining this with the fact that there are OplogM ¨ }O}22q

shadows, the complexity of classical computation is Oppolypnq ¨ logM ¨ }O}22q.
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For VQCS of an unknown circuit V , the expectation that we are estimating is given

as

ˇ

ˇtrpCpθq:V q
ˇ

ˇ

2

4n
“

1

4n
|xCpθq|V y|

2
“

1

4n
xCpθq| |V y xV | |Cpθqy . (5.19)

So for any shadow σ̂ of the state 1?
2n

|V y, we have

x|Cpθqy xCpθq|yσ̂ “ xCpθq| σ̂ |Cpθqy . (5.20)

Note that for any unitary matrix W , 1?
2n

|W y is simply the vectorized and normalized

version of W . If any unitary is depicted as a tensor block, we can always get a vectorized

version of it by bending the output wire as shown in Figure 8.1 (d). So, given the circuit

description of Cpθq, we can get a tensor network depicting |Cpθqy by bending the output

wires in the manner shown in Figure 5.2 (b). Similar to how Figure 5.2 (a) can be

contracted efficiently if we start from the top and go in a line-by-line manner, this network

can also be contracted efficiently if we start from the top and contract ring by ring. That

is, contract tensors along the top ring, then contract tensors along the second ring, and

so on. Finally, we divide the answer by 2n. Similar to the previous case, we see that at

every instance, the number of free indices will be Oplog nq, and hence the complexity of

contracting this tensor is Oppolypnqq. Hence, since we have OplogM ¨ }O}22q shadows, the

complexity of a single function evaluation is OplogM ¨ }O}22 ¨ polypnqq.

It is easy to see that one can generalize this to arbitrary observables that can be

represented as a quantum circuit-like tensor network with RO P Oplog nq.

Theorem 8. Let D2 be a state 2-design and d P Θplog nq. Then, for any observable O,

we have

Varσ„D2

`

}O}2σ,Ud

˘

ď 64}O}22. (5.21)
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Proof. Let Ud “ tU1, U2, . . . , U|Ud|
u. Given any unitary 2-design W, tW |0y | @ W P Wu

is a state 2-design [Wat18] (Section 2.5). Using this, we have

Varσ„D2

`

}O}2σ,Ud

˘

ď Eσ„D2

`

}O}4σ,Ud

˘

(5.22)

“ EW„W

´

}O}4W |0yx0|W :,Ud

¯

(5.23)

“ EW„W

«

EU„Ud

2n´1
ÿ

u“0

xu| |0y x0|UW |uy tr pσ̂U,uOq
2

ff2

(5.24)

“ EW„WEU1„Ud
EU2„Ud

2n´1
ÿ

u1,u2“0

xu1| |0y x0|U1W
|u1y tr pσ̂U1,u1Oq

2

xu2| |0y x0|U2W
|u2y tr pσ̂U2,u2Oq

2 (5.25)

“ EU1„Ud
EU2„Ud

2n´1
ÿ

u1,u2“0

tr pσ̂U1,u1Oq
2 tr pσ̂U2,u2Oq

2

EW„Wtr
”

|0y x0|W |u1y xu1|U:
1

ı

tr
”

|0y x0|W |u2y xu2|U:
2

ı

. (5.26)

Now, we shall derive a simple corollary of Lemma 5 which will be useful in the proof.

Corollary 1. Let W be a unitary 2-design of operators acting on C2n and let A,B,C,D P

LpC2nq be pure states. Then, we have

EW„W tr rAWBs tr rCWDs ď
4

4n
. (5.27)

Proof. The third and fourth terms are non-negative and can be dropped since they involve

only traces of states and fidelity between states. The first two terms are upper bounded

by 1 due to the same reason as well. Finally, consider the fact that 1{p4n ´ 1q ď 2{4n for

any n ě 1.

Plugging this in Eq (5.22) gives us

Varσ„D2

`

}O}2σ,Ud

˘

ď
4

4n
EU1„Ud

EU2„Ud

2n´1
ÿ

u1,u2“0

tr pσ̂U1,u1Oq
2 tr pσ̂U2,u2Oq

2 . (5.28)
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Since a state 2-design is also a state 1-design, we have

Eσ„D2EU„Ud

2n´1
ÿ

u“0

xu|UσU : |uy tr pσ̂U,uOq
2
“

1

2n
EU„Ud

2n´1
ÿ

u“0

tr pσ̂U,uOq
2 (5.29)

“ }O}21{2n,Ud
(5.30)

ď 4}O}22. (5.31)

This completes the proof.

Theorem 9. Let d P Θplog nq and σ be an n-qubit pure state sampled from a state 2-design

D2. For any δ, ϵ P p0, 1q, γ ą 1{
?
δ, and any M P N, let

T1 ě 2 log

ˆ

2pγ2 ´ 1qM

γ2δ ´ 1

˙

, T2 ě
136

ϵ2
p2γ ` 1q}O}22. (5.32)

For any parameter vectors θp1q, . . . , θpMq, with probability at least 1´δ, we have |fσ,Opθ
pmqq´

f̂σ,Opθ
pmqq| ď ϵ for all 1 ď m ď M , where fσ,Opθ

pmqq and f̂σ,Opθ
pmqq are defined in

Eq.s (5.5) and (5.7), respectively.

Proof. Using Chebychev’s Inequality, when we sample a state σ from a 2 design, we have

Prob
” ˇ

ˇ

ˇ
}OTL}

2
σ,Ud

´ }OTL}
2
1{2n,Ud

ˇ

ˇ

ˇ
ď γ

b

Varσ„D2}OTL}
2
σ,Ud

ı

ě 1´
1

γ2
, (5.33)

implying that

Prob
“

}OTL}
2
σ,Ud

´ 4}O}22 ď 8}OTL}
2
2γ
‰

ě 1´
1

m2
, (5.34)

and hence, we have

Prob
“

}OTL}
2
σ,Ud

ď 4p2γ ` 1q}OTL}
2
2

‰

ě 1´
1

γ2
. (5.35)

So with probability at least 1 ´ 1{γ2, the state dependent shadow norm is bounded by

4p2γ ` 1q}OTL}
2
2. So, for any δ1, ϵ P p0, 1q, if we use T1T2 shallow shadows, where T1 “
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2 logp2M{δ1q, T2 “ p136p2γ ` 1q{ϵ2q}OiTL}
2
2, with probability p1´ δqp1´ 1{γ2q, for all m,

we will have |fσ,Opθ
pcqq ´ f̂σ,Opθ

pcqqyσ| ď ϵ.

Set 1´ δ “ p1´ δ1qp1´ 1{γ2q. So, we have

1´ δ “ p1´ δ1qp1´ 1{γ2q, (5.36)

implying that

δ1 “ 1´

ˆ

1´ δ

1´ 1{γ2

˙

“ 1`
γ2pδ ´ 1q

γ2 ´ 1
“
γ2δ ´ 1

γ2 ´ 1
. (5.37)

This completes the proof.

5.8 Related Works

In [SEM22], classical shadows have been employed to reduce the sample complexity in

quantum machine learning applications. Given an already learned VQA model, the ap-

proach uses a quantum computer to generate classical shadows so that predictions can be

made of the learned model using a classical computer. It is important to note that, in this

approach, the learning procedure is still carried out on a quantum computer. In contrast,

in AISO, the entire learning procedure takes place on a classical computer.

In [Cer+23], the authors conjecture that VQA models that can avoid barren plateaus

are also classically simulable (with quantum experiments polynomial in the number of

qubits). Strong evidence is also provided to support their conjecture. In their terms, our

approach actually shows that VQA problems with shallow ansatz and low Frobenius norm

observables are also classically simulable, but it is still unclear if these models are barren

plateau-free.
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Chapter 6

Trainability and Classical

Simulability of Learning MPS

Variationally

6.1 Overview

One VQA application that features in quantum information is learning weakly entangled

MPS approximations of target states [Rud+22; Ran20; Dov+22; Lin+21; RKR23] varia-

tionally using the MPS ansatz (cf. Figure 3.7). This method can be used to learn simpler

circuits capable of preparing (approximating) states for which the previously known gen-

eration methods are inefficient in terms of gate count or require high connectivity within

the qubit topology.

As detailed in Section 3.4.1, learning state approximations variationally can be per-

formed using either global or local observables [Cer+21b]. Experimental results in [Dov+22]

showed that using the MPS ansatz along with global observables for state approximations

can result in barren plateaus, where all partial derivatives become exponentially small in

the number of qubits. This makes estimating these derivatives using quantum devices

require exponentially many executions. Moreover, the parameter updates also become
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exponentially small. In contrast, using local observables can help mitigate this issue.

The usage of global observables inducing barren plateaus is expected for most ansatzes

(even for an ansatz with only a single layer of rotation gates as shown in [Cer+20]).

However, theoretically proving this phenomenon is a challenging task. Although this has

been achieved for similar problems such as optimization over the HEA [Cer+21b] and

tensor network-based optimization in quantum information [Liu+22], these results cannot

be used to explain exponentially vanishing objective functions and gradients for the MPS

ansatz.

This work aims to provide rigorous trainability proofs for MPS ansatzes. We prove

that under uniformly random initialization of the circuit parameters, when using global

observables, the variance of the objective function decreases exponentially while the usage

of local observables ensures that the same variance is lower bounded by a quantity whose

dependence on the number of qubits is linear and scales exponentially only in the width

of the subcircuit involved. We also relate this with the variance of the partial derivatives

and show that similar results hold for them as well.

Trainability is closely interrelated with classical simulability. In [Cer+23], it was con-

jectured, with evidence, that provably avoiding barren plateaus in this manner could imply

classical simulability with few quantum resources. That is, for all provably trainable VQA

objective functions, one can simulate the whole optimization classically using the outputs

of a few quantum measurements implemented beforehand on the input state. By proving

the trainability of the MPS ansatz-local observable combination, our work prepares the

groundwork for studying its classical simulability.

On this side, we demonstrate that these trainable VQA objective functions exhibit

effective subspaces. These subspaces are loosely defined as the subspaces where the ob-

servables, when conjugated with the ansatzes, tend to be mostly concentrated, for almost

all input parameters [Cer+23]. If the objective function exhibits this property, then most

function evaluations, which are nothing but inner products of the state with these conju-

gated observables (cf. Eq (3.2)), could potentially be classically estimated using the input



109

state’s coefficients in this subspace estimated beforehand using a quantum device. We first

characterize the property of exhibiting effective subspaces by introducing an efficiently es-

timable norm for observables, the C-K norm, which we use to experimentally show that

the MPS ansatz-local observable combination exhibits an effective subspace within the

Pauli basis.

Our main contributions can be summarized as follows:

1. For the problem of learning weakly entangled state approximations variationally, we

rigorously prove that the usage of global observables will induce barren plateaus,

while the usage of local observables will avoid them.

2. We empirically show that the MPS ansatz, when used in combination with local ob-

servables, exhibits an effective subspace within the Pauli basis, which is conjectured

to be a consequence of avoiding cost concentration and a sufficient condition for the

ansatz to be classically simulable using few quantum resources as per [Cer+23].

Finally, we experimentally validate our results across various scenarios, including the im-

pact of observable choices on MPS ansatz optimization and the detection of effective

subspaces in MPS ansatz as well as other ansatzes such as HEA, and QCNN. Note that

proofs of all theorems introduced in this section can be found in Section 6.6.

6.2 Mathematical Formulation of the Ansatz

The MPS ansatz is given in Figure 3.7. Let k be the width of the subcircuit that one is

using to build the MPS ansatz. Then, the MPS ansatz is defined as

C
pnq
t pθq “

t
ź

p“1

Uppθpqpn´k´p`2,...,n´p`1q,

where t ď n ´ k ` 1, θ “ θ1 ‘ ¨ ¨ ¨ ‘ θt with θp “ rθp1, θp2, . . . , θpms
T and Uppθpq “

m
ś

q“1
e´iθpqHpq are k-qubit parameterized subcircuits, with Hpq P H2k .
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This ansatz has a close relationship with the MPS data structure. From Section 2.4.4,

we can see that every state that can be represented efficiently as an MPS with bond

dimensions at most 2k´1 can be implemented using this ansatz (assuming that Up can

implement any k-qubit unitary). This is what led many works to use the MPS ansatz

to solve state approximation problems variationally [Lin+21; Rud+22; Dov+22; Ran20;

RKR23].

Throughout this section, we set T “ n ´ k ` 1, and our focus is on C
pnq
T . Also, in

appropriate contexts, we denote C
pnq
T as CT , as the dependency on n is implied by the

system’s size. Also, in this section, we restrict all the discussion to pure states, and so we

define Dn to be the set of all n-qubit pure density matrices.

6.3 Trainability

In this section, we present our theoretical results regarding cost concentration and barren

plateaus of state approximation carried out using global and local observables.

6.3.1 Cost Concentration

Here, we present our theoretical results regarding cost concentration in learning MPS

approximations variationally using C
pnq
T . Many trainability results in the literature assume

one of two assumptions on the input state [Cer+23]; either they are ”close” to product

states [Pes+21; Cer+21b] or they are sparse [Mon+23; Lar+22; Che+23]. Our results also

make such assumptions and hence use h1pσq :“ minV1,...,VnPU2 }σV1b¨¨¨bVn}
2
1 and h2pσq “

minρ1,...,ρnPD1 }ρ1b¨ ¨ ¨bρn´σ}tr, to characterize sparsity and proximity to product states

respectively.

We start by proving that using global observables for state approximation can give rise

to an objective function that exhibits cost concentration.

Theorem 10. Let σ be an n-qubit pure state and C
pnq
T be an MPS ansatz where each
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parameterized subcircuit Ui forms a unitary 2-design. Then, we have

Varθ
`

fσ,|0yx0|pθq
˘

ď
h1pσq

4n´k´1
. (6.1)

Hence, for states with h1pσq P Op4n{pq with p ą 1, we see that the upper bound will

decrease exponentially.

In contrast, the next theorem shows that the alternative method leveraging local ob-

servables provably avoids cost concentration.

Theorem 11. Let σ be an n-qubit pure state, O :“ 1{n
řn
i“1 |0y x0|i, and C

pnq
T be an MPS

ansatz, where each parameterized subcircuit Ui forms a unitary 2-design. Then we have

Varθ pfσ,Opθqq ě
1

np22k`1 ` 4q
´
h2pσq

2n
. (6.2)

So, when h2pσq ! 1{p22k ` 2q, the lower bound scales linearly in n and exponentially

only in k.

The proofs regarding trainability in works such as [Cer+20; Pes+21] also uses inte-

gration of subcircuits over the Haar measure. But in these works, the function being

integrated is the partial derivative of the cost function. In our work, we first prove sim-

ilar results for cost concentration and leverage the relationship that it has with barren

plateaus introduced in [Arr+21] to extend the result to barren plateaus. We adopt this

strategy since integrating the VQA cost function is much easier than integrating the par-

tial derivatives, as evidenced in [Cer+20; Pes+21] where the integrations are very complex

and sometimes involve heuristic approximations. In addition, we employ a method that

makes use of the specific structure of the MPS ansatz to derive analytical expressions for

cost concentration when different types of observables are used.

The core idea behind both cost concentration proofs is to integrate each Ut starting

from UT using standard Haar random integration methods (cf. Lemma 5 in Appendix).

Typically, this would yield a linear combination of multiple terms, each being an expecta-

tion of MPS ansatz circuit outputs with the same observables but defined over n´T`t´1
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qubit systems and different input states that were dependent on the previous state. Thus,

naively integrating each Ut one at a time requires integrating a number of terms expo-

nential in T . However, we demonstrate that for the MPS ansatz and the state classes

in Theorems 10 and 11, integrating any Ut results in a linear combination of such terms

that are independent of the previous state, with such state dependency only in the coeffi-

cients. This allowed us to compute all T integrations using products of T matrices, whose

dimension is the number of terms in the linear combination, which in our case, is 2.

Our experimental results discussed later in this work used input states with h1 and

h2 not necessarily small, suggesting the existence of similar bounds for a wide variety of

states.

Some works in the literature that use the MPS ansatz consider efficient MPS descrip-

tions of states as input, rather than actual quantum states. In such cases, the entire VQA

optimization can be efficiently implemented on classical computers using tensor network

simulation. Within such methods, the objective function is evaluated exactly, not esti-

mated, so cost concentration is not an issue. However, as we will see in the next section,

cost concentration also leads to barren plateaus, which can cause parameter updates to

be exponentially small, thus hindering even fully classical optimization protocols.

6.3.2 From Cost Concentration to Barren Plateaus

In this section, we discuss the relationship of Theorems 10 and 11 to barren plateaus. We

will use Theorem 10 to demonstrate that employing the MPS ansatz for learning state

approximations leads to barren plateaus when global observables are used.

Corollary 2. Let σ be an n-qubit pure state and C
pnq
T be an MPS ansatz. Then, we have

Varθ
`

Bθpqfσ,|0yx0|pθq
˘

ď
hpσq

4n´k´1
(6.3)

@ p, q such that 1 ď p ď T, 1 ď q ď m , where hpσq is defined in Theorem 10 and

U1, . . . Up´1, Up`1, . . . UT , along with one of U
pL,qq
p or U

pR,qq
p form unitary 2-designs and

θpq is distributed uniformly.
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Similarly, we extend Theorem 11 to demonstrate that using the MPS ansatz with local

observables prevents barren plateaus.

Corollary 3. Let σ be an n-qubit pure state and C
pnq
T be an MPS ansatz. Let O :“

1{n
n
ř

i“1
|0y x0|i. Then, there exist p, q with 1 ď p ď T, 1 ď q ď m such that

Varθ
`

Bθpqfσ,Opθq
˘

R O
ˆ

1

bn

˙

, (6.4)

where U1, . . . Up´1, Up`1, . . . UT , along with one of U
pL,qq
p or U

pR,qq
p form unitary 2-designs

and θpq is distributed uniformly.

But keep in mind that this does not necessarily mean that the variance of all partial

derivatives will escape exponential upper bounds. In fact, [ZG21] gives us an example of

an MPS ansatz-local observable combination having a partial derivative whose variance is

exponentially small.

6.4 Towards Classical Simulation Through Effective Sub-

spaces

In this section, we discuss the possibility of designing an efficient classical algorithm capa-

ble of simulating state approximation VQAs involving MPS ansatzes and local observables,

using very few copies of the input quantum state.

The idea builds on the conjecture from [Cer+23] which says that any objective function

avoiding cost concentration exhibits effective subspaces, a property useful for designing

classical simulation algorithms with minimal quantum resources. Our simulations demon-

strate that objective functions involving MPS ansatz and local observables, which we

previously proved to avoid cost concentration, indeed exhibit effective subspaces within

the Pauli basis, further supporting this conjecture.

Note that in this work, we do not present an explicit algorithm for the aforementioned

classical simulation, but rather present evidence that such a protocol could exist. First,
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we introduce effective subspaces as outlined in [Cer+23].

6.4.1 Effective Subspace

Let Cpθq be an n-qubit ansatz and let W P Hn, σ P Dn. Effective subspaces are loosely

defined as follows:

Definition 3. [Cer+23] For any orthonormal basis K “ tK1,K2, . . .K4nu of C2nˆ2n, and

for any θ, define a distribution Pθ,W,K over K as

Pθ,W,KpKjq “
fKj ,W pθq2

}W }22
. (6.5)

An ansatz-observable combination exhibits an effective subspace if there exists a basis K

such that for almost all θ, Pθ,W,KpKjq is large only for those Kj contained in a subset

Ks Ă K, that is independent of θ and has |Ks| P Oppoly(n)q.

(a) (b)

Figure 6.1: Simulation results of state approximation using MPS ansatz. In (a), we
plot the learning curves of state approximation using the MPS ansatz with subcircuit
width 2 for the target state |0y x0|, optimized by SPSA with n “ 20 and n “ 28. The
results demonstrate that global observables significantly hinder the learning process. In
(b) state approximation results for the same target state using the MPS ansatz with local
observables are plotted for n “ 12 with varying subcircuit widths k. The plots indicate
that increasing the subcircuit width progressively impairs learning efficiency.

In [Cer+23], it is conjectured, with evidence, that all ansatz-observable combinations

that have been shown to provably avoid barren plateaus exhibit an effective subspace,

at least for some non-trivial subset of input states. Popular examples involving shallow

(Oplog nq-depth) ansatzes include HEA-local observable and the QCNN-local observable
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combinations. In both these cases, the basis K can be Pn. The presence of effective

subspaces means that if we estimate trpKσq @ K P Ks as a preprocessing step, and if we

can classically compute tr
´

KWCT pθq:

¯

@ K P Ks and @ θ efficiently, then in many cases,

fσ,W pθq can be classically estimated with good precision, because

fσ,W pθq “ tr
`

WσCT pθq

˘

“ tr
´

WCT pθq:σ
¯

“
ÿ

KPK
tr
´

KWCT pθq:

¯

trpKσq,

and if most tr
´

KWCT pθq:

¯

is large only for those K P Ks, then

fσ,W pθq «
ÿ

KPKs

tr
´

KWCT pθq:

¯

trpKσq. (6.6)

This is the underlying principle behind designing classical simulations using effective sub-

spaces. One can also use powerful tomography protocols such as classical shadow tomog-

raphy to gain exponentially better sample efficiency.

When it comes to the classical simulation of fσ,Opθq “ 1{n
ř

i fσ,|0yx0|ipθq, it is sufficient

to be able to classically estimate each fσ,|0yx0|ipθq efficiently. Among these n terms, the

hardest to estimate are fσ,|0yx0|ipθq for i P tn ´ k ` 1, . . . , nu, because for all other i, at

least one subcircuit within C
pnq
T pθq will be canceled. When t subcircuits are canceled, at

least 4n´tp4t ´ 1q outcomes of Pθ,|0yx0|i,Pn
will be zero for any θ, making the distribution

very concentrated. Using Lemma 12 in the Appendix, we find that for any i, j P tn ´

k ` 1, . . . , nu, Eθ

´

fσ,|0yx0|ipθq
¯

“ Eθ

´

fσ,|0yx0|j pθq
¯

. Therefore, we focus on fσ,|0yx0|npθq

and aim to show that the CT -|0y x0|n combination also exhibits an effective subspace with

K “ Pn.

6.4.2 C-K Norm

Now, we introduce a norm that can be used to measure how concentrated the distributions

Pθ,W,K would be, for typical values of θ. Given any discrete distribution P, }P}2 can be

used to measure how concentrated the distribution is. A higher }P}2 indicates that the

distribution is concentrated among a few outcomes with high probability. Hence, we can
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use the 2-norm of the distributions Pθ,W,K to assess how concentrated these distributions

are. So, we define the K-norm (in Hn) as this 2-norm, that is

}W }K :“
1

}W }2

«

ÿ

KPK
trpKW q

4

ff1{4

(6.7)

We first prove the following result regarding the cost of computing
›

›

›
WCpθq:

›

›

›

K
for any θ.

Theorem 12. For any n-qubit quantum circuit V , let RV “ maxiRV,i, where RV,i is the

number of 2-qubit gates being applied on any qubits j, k such that j ď i ď k. Then, for

any product observable W , }WV :}K can be classically evaluated with cost Op2RV q.

From Figure 3.7, we can see that RV is independent of n. Typically, it scales as

Oppolypkqq meaning that the cost of evaluating
›

›

›
WCT pθq:

›

›

›

K
will be O

`

2polypkq
˘

.

Now, as mentioned earlier, we would like to analyze
›

›

›
|0y x0|nCT pθq:

›

›

›

K
for typical values

of θ. Hence, we introduce the C-K norm in the following theorem.

Theorem 13. For any parameterized circuit C, and an orthonormal basis K of C2nˆ2n,

define

}W }C,K :“

ż

θ

›

›

›
WCpθq:

›

›

›

K
dθ. (6.8)

for any W P Hn. Then, } ¨ }C,K is a norm on Hn.

Intuitively, if }W }C,K remains constant or reduces only polynomially with respect to

n, then we can expect the C-W combination to exhibit an effect subspace since the distri-

bution Pθ,W,K is defined over 4n outcomes. Conversely, if }W }C,K reduces exponentially

with respect to n, then the C-W combination need not exhibit one.

We first test this hypothesis on some instances where the presence and absence of

effective subspaces are known. To do this, we choose two ansatzes; shallow HEA and

QCNN, in combination with local and global observables.

It is known that effective subspaces exist when both these ansatzes are used in com-

bination with local observables. The results (presented in Figure 6.2) strongly support
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the hypothesis and hence we carry out the same experiments for C
pnq
T . We discuss these

simulation results in detail in the following section.

Finally, the effective subspace for CT -|0y x0|n can be roughly identified by considering

the cancellation of subcircuits. Typically, the probability PCT ,|0yx0|n,Pn
pPjq increases when

more subcircuits are canceled within its expression, as this forces some qubits to have no

circuits being acted on them and hence contribute the maximum that any qubit can to the

expectation. This is also true for shallow HEA and QCNN ansatzes when used with local

observables, where higher probabilities are associated with 1-local Paulis, regardless of

the position of its non-local component. For Paulis with a higher locality, one can always

find an upper bound on the total number of non-canceled subcircuits that is independent

of n and dependent only on the locality. However, for the CT -|0y x0|n combination, the

position of the non-local part of the Pauli is crucial. The closer it is to the last qubit,

the more subcircuits are canceled, resulting in higher probabilities. Similarly, if the non-

local component is on the first qubit, unlike the other ansatzes, even a 1-local observable

can have no subcircuits getting canceled in the expression of the probability. Thus, the

concentration of probabilities should be towards Paulis where non-local components occur

near the last qubit. This hypothesis is also validated using experiments discussed in the

next section.

6.5 Simulation Results

In this section, we discuss and present the numerical simulations that we have conducted

as part of this work. The main aims of the simulations are threefold: visualize the impact

of Theorems 10 and 11 using learning curves, argue that similar results could also hold

for most states not necessarily satisfying the criteria mentioned in these theorems and

demonstrate the presence (absence) of effective subspaces when MPS ansatzes are used

with local (global) observables. The structure of all two-qubit subcircuits used in Figure 6.2

is given in Figure 5.2 (c), but instead of RX and RY , the single qubit gates are Haar random

gates.
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MPS HEA QCNN

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Simulation results of C-K norms and second moments. In all the plots, the
x-axis represents the number of qubits. Plots (a-c) show the second moment of objective
functions while plots (d-f) show the C-Pn norms. In (a), the ansatz used is the MPS
ansatz with subcircuits being HEAs with depth tlog nu. Here, we plot the second moment
of x0|σCpθq |0y and trpOσCpθqq, estimated using 10 different θ and averaged over five
different input states randomly generated from HEAs of depth tlog nu. We can see that
global observables induce cost concentration while local observables avoid it. In (b) and
(c), we plot similar second moments for the shallow HEA and QCNN ansatzes respectively,
which are following similar trends as well. In (e) and (f), we plot estimated C-Pn norms
for these 2 ansatzes. From plots (b), (c), (e), and (f), we see that larger C-Pn norms
are associated with trainable ansatz-observable combinations known to exhibit effective
subspaces. Hence, in (d), we plot the C-Pn norms of the MPS ansatz, with subcircuit
width tlog nu, showing a trend similar to the other ansatzes.

We start with the learning curves presented in Figure 6.1. Here, we have carried

out state approximation using the MPS ansatz with subcircuit width 2, and target state

|0y x0|. The classical optimizer used here is SPSA [Spa92], where the converging sequences

are aj “ cj “ 0.4 and all parameters are initialized uniformly from r0, π{2s. The x-axis

and y-axis represent the iteration number and corresponding infidelity, respectively. In

(a), we have plotted results for n “ 20, 28, with k “ 2. We can see global observables

hindering the optimization. In (b), we plot the results of similar experiments carried out

for n “ 12, but with k “ 2, 3 and 4. The subcircuits are HEA with depth k. From, this
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we can see that increasing k negatively impacts the optimization.

Now, we move on to Figure 6.2 (a). Here, the x and y axes represent the number of

qubits and the estimated second moments of the objective functions fσ,|0yx0|pθq and fσ,Opθq

averaged over 5 input states randomly generated using HEA ansatz of depth tlog nu. The

subcircuit used here is HEA with width and depth tlog nu. We can see global observables

inducing cost concentration, and local observables avoiding it, even though the input states

do not necessarily satisfy the conditions required as per theorems 10 and 11.

(a) k “ 2 (b) k “ 4

(c) k “ 2 (d) k “ 4

Figure 6.3: Boxplots of distributions Pθ,|0yx0|16,P16
in (a), (b) Pθ,|0yx0|,P16

in (c), (d). with
subcircuit widths k “ 2, 4. For every Zi on the x-axis, we plot a boxplot of the probabilities
computed across 10 different values of θ. The subcircuit used in each plot is an HEA with
width and depth k “ 2, 4. In (a) and (b), we can see that higher probabilities are associated
Zi, with i close to 16, suggesting the presence of an effective subspace consisting of these
terms. Also, the distribution gets flatter as we increase k. In (c) and (d), we see that
the distribution remains flat for all values of k, suggesting the absence of any effective
subspace.

Next, we move on to Figures 6.2 (b-f). The idea here is to show that the C-K norm can

be used to detect the presence of effective subspace. From [Cer+23], we know that shallow

HEA and QCNN ansatzes exhibit effective subspaces when used in combination with local

observables. This can be seen from the plots (b), (c), (e), and (f). In (b) and (c), we have
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plotted the estimated second moments of the objective functions fσ,Zbnpθq and fσ,Znpθq,

averaged over 5 states generated in the same manner as in the previous experiment, for the

shallow HEA and QCNN ansatzes respectively. In (e) and (f), we have plotted estimated

C-Pn norms of these combinations. From these four plots, we can see that the C-Pn

norms are behaving as we expected. So, in Figure 6.2 (d), we plot the CT -Pn norms, with

subcircuits having the same structure as in (a). The observable is chosen to be |0y x0|n

since as mentioned earlier when it comes to classical simulation, it suffices to estimate the

CT -Pn norms of |0y x0|n. We can see that when we use local observables, we get very high

CT -Pn norms, thus suggesting the presence of effective subspaces.

As noted at the end of Section C-K Norm, this effective subspace is the one that

is spanned by Paulis whose non-identity components are near the last qubit. This is

experimentally verified using 16-qubit simulations whose results are shown in Figure 6.3.

In (a) and (b) we plot a portion of the distribution Pθ,|0yx0|16,P16
with subcircuits being HEA

built using 2 qubit Haar random gates, with depths and widths of k “ 2, 4. Although there

are 416 possible outcomes, we focus on 16, specifically the 1-local Paulis tZi | i “ 1, . . . , nu,

shown on the x-axis. In these figures, boxplots of probabilities Pθ,|0yx0|16,P16
pZiq, computed

across 10 different θ values are plotted. We can see that as the Z component in the

observables on the x-axis is closer to the last qubit, the probability is exponentially higher.

In (d) and (e), similar experiments are carried out for the distribution Pθ,|0yx0|,P16
, but we

notice no such concentration of probabilities, indicating the absence of effective subspaces.

6.6 Proofs of All Theorems

We start with some notation used throughout the proofs.

• For any function η defined on Haar random matrices U1, U2, . . . , UT , we define

ż

UT

ηpU1, . . . , UT qdUT :“

ż

U1

¨ ¨ ¨

ż

UT

ηpU1, . . . , UT qdU1 . . . dUT , (6.9)

where UT “ tU1, . . . , UT u.
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• For any string i “ i1i2, . . . it, it1:t2 “ it1it1`1 . . . it2 .

• For any t1 P N such that 1 ď t1 ď T ´ 1 and W P C2t2ˆ2t2 with 1 ď t2 ď n, define

µ
pW q

t1
: C2t2ˆ2t2 ˆ C2t2ˆ2t2 Ñ C, where

µ
pW q

t1
pX,Y q :“

ż

Ut1

tr
`

WXCt1

˘

tr
`

WYCt1

˘

dUt1 , (6.10)

• Pn :“ tPi1i2...in | i1, i2, . . . , in P t0, 1, 2, 3uu, where we define P0 :“ 1, P1 :“ X,P2 :“

Z,P3 :“ Y and

Next, we introduce some definitions and lemmas that will be useful throughout our

proofs.

Lemma 2. Let k ď t ď n. For any W,X, Y P C2tˆ2t , we have

µ
pW q

t´k`1pX,Y q “ µ
pW q

t´k`1

`

XV1b¨¨¨bVt´k`1
, YV1b¨¨¨bVt´k`1

˘

, (6.11)

for any k-qubit unitary V1 and 2 qubit unitaries V2 . . . Vt´k`1.

Proof. This can be seen from the structure of C
pnq
T in Figure 3.7 and Lemma 4.

Theorem 1. Let σ P Dn and C
pnq
T be an MPS ansatz where each parameterized subcircuit

Ui forms a unitary 2-design. Then, we have

Varθ
`

fσ,|0yx0|pθq
˘

ď
h1pσq

4n´k´1
. (6.12)

Proof. Note that since

Varθ
`

fσ,|0yx0|pθq
˘

ď Eθ

`

fσ,|0yx0|pθq
˘2

(6.13)

it is sufficient to prove µ
p|0yx0|q
T pσ, σq ď

`

h1pσq{4
n´k´1

˘

.
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Let σ “
ř

ij
σij |iy xj|. Then, we have

µ
p|0yx0|q
T pσ, σq “

ÿ

pqrs

σpqσrsµ
p|0yx0|q
T p|py xq| , |ry xs|q

ď
ÿ

pqrs

|σpq||σrs||µ
p|0yx0|q
T p|py xq| , |ry xs|q|. (6.14)

Our next step is to prove that |µ
p|0yx0|q
T p|py xq| , |ry xs|q| is upper bounded by 1{4n´k´1. Let

p “ p1p2 . . . pn be the binary expansion of p (similar definitions for q, r and s). Then, we

have

µ
p|0yx0|q
T p|py xq| , |ry xs|q

“

ż

UT

x0| p|py xq|qCT
|0y x0| p|ry xs|qCT

|0y dUT (6.15)

“

ż

UT

x0|
´

|p1:ky xq1:k|UT
b |pk`1:ny xqk`1:n|

¯

CT´1

|0y

x0|
´

|r1:ky xs1:k|UT
b |rk`1:ny xsk`1:n|

¯

CT´1

|0y dUT (6.16)

“
1

22k

ż

UT

ÿ

i1:k
j1:k

x0| pPi1:k b |pk`1:ny xqk`1:n|qCT´1
|0y tr

´

Pi1:k |p1:ky xq1:k|UT

¯

x0| pPj1:k b |rk`1:ny xsk`1:n|qCT´1
|0y tr

´

Pj1:k |r1:ky xs1:k|UT

¯

dUT (6.17)

“
1

2k

ż

UT´1

ÿ

i1:k
j1:k

x0| pPi1:k b |pk`1:ny xqk`1:n|qCT´1
|0y x0| pPj1:k b |rk`1:ny xsk`1:n|qCT´1

|0y

ˆ
1

2k

ż

UT

tr
´

Pi1:k |p1:ky xq1:k|UT

¯

tr
´

Pj1:k |r1:ky xs1:k|UT

¯

dUT (6.18)

“
1

2k

ÿ

i1:k
j1:k

µ
p|0yx0|q
T´1 pPi1:k b |pk`1:ny xqk`1:n| , Pj1:k b |rk`1:ny xsk`1:n|q

ˆ
1

2k

ż

UT

tr
´

Pi1:k |p1:ky xq1:k|UT

¯

tr
´

Pj1:k |r1:ky xs1:k|UT

¯

dUT . (6.19)

Our goal is to integrate over UT and get expressions that look like µ
p|0yx0|q
T p|py xq| , |ry xs|q,

but with different bit strings, defined over an n ´ 1 qubit system, and as an integral of
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T ´ 1 Haar random gates.

We shall use Lemma 5 to integrate over UT in the previous equation. Notice that when

b1 R t0, 2u, x0| pPb1:k b |pk`1:ny xqk`1:n|qCT´1
|0y “ 0. Similarly, using Lemma 5, we can see

that when Pi1:k and Pj1:k are not equal,
ş

UT

tr
´

Pi1:k |p1:ky xq1:k|UT

¯

tr
´

Pj1:k |r1:ky xs1:k|UT

¯

“

0.

When i1:k “ j1:k “ 0 . . . 0, we have

1

2k

ż

UT

tr
´

Pi1:k |p1:ky xq1:k|UT

¯

tr
´

Pj1:k |r1:ky xs1:k|UT

¯

dUT “
δ
p1q
tr

2k
(6.20)

and when i1:k “ j1:k ‰ 0 . . . 0 with i1 P t0, 2u, we have

1

2k

ż

UT

tr
´

Pi1:k |p1:ky xq1:k|UT

¯

tr
´

Pj1:k |r1:ky xs1:k|UT

¯

dUT “
2kδ

p1q
ip ´ δ

p1q
tr

2kp22k ´ 1q
“ τ. (6.21)

where δ
p1q
ip “ δp1:k,r1:kδq1:k,s1:k , δ

p1q
tr “ δp1:k,q1:kδr1:k,s1:k . Hence, we have

µ
p|0yx0|q
T p|py xq| , |ry xs|q

“
δ
p1q
tr

22k
µ
p|0yx0|bn´1

q

T´1 p12k´1 b |pk`1:ny xqk`1:n| ,12k´1 b |rk`1:ny xsk`1:n|q

`
τ

2k

ÿ

PPPk´1
P‰1

2k´1

µ
p|0yx0|bn´1

q

T´1 pP b |pk`1:ny xqk`1:n| , P b |rk`1:ny xsk`1:n|q. (6.22)

Now, using Lemma 2, we have

µ
p|0yx0|q
T p|py xq| , |ry xs|q

“
δ
p1q
tr

22k
µ
p|0yx0|bn´1

q

T´1

`

12k´1 b |pk`1:ny xqk`1:n| ,12k´1 b |rk`1:ny xsk`1:n|
˘

`
p22k´2 ´ 1qτ

2k
µ
p|0yx0|bn´1

q

T´1

`

Zbk´1 b |pk`1:ny xqk`1:n| , Z
bk´1 b |rk`1:ny xsk`1:n|

˘

.

(6.23)

This is because there always exists a unitary that will map any non-identity Pauli to
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any other non-identity Pauli. Let 12k´1 “
2k´1´1
ř

i“0
|iy xi| and Zbpk´1q “

2k´1´1
ř

i
λi |iy xi| be

spectral decompositions. Then, we have

µ
p|0yx0|q
T p|py xq| , |ry xs|q

“
δ
p1q
tr

22k

2k´1´1
ÿ

i,j“0

µ
p|0yx0|bn´1

q

T´1 p|iy xi| b |pk`1:ny xqk`1:n| , |jy xj| b |rk`1:ny xsk`1:n|q

`
p22k´2 ´ 1qτ

2k

2k´1´1
ÿ

i,j“0

λiλjµ
p|0yx0|bn´1

q

T´1 p|iy xi| b |pk`1:ny xqk`1:n| ,

|jy xj| b |rk`1:ny xsk`1:n|q. (6.24)

Now, using Lemma 2, we also have that

µ
p|0yx0|bn´1

q

T´1 p|iy xi| b |pk`1:ny xqk`1:n| , |iy xi| b |rk`1:ny xsk`1:n|q

“µ
p|0yx0|bn´1

q

T´1 p|0y x0|bk´1
b |pk`1:ny xqk`1:n| , |0y x0|

bk´1
b |rk`1:ny xsk`1:n|q (6.25)

and

µ
p|0yx0|bn´1

q

T´1 p|iy xi| b |pk`1:ny xqk`1:n| , |jy xj| b |rk`1:ny xsk`1:n|q

“µ
p|0yx0|bn´1

q

T´1 p|0y x0|bk´1
b |pk`1:ny xqk`1:n| , |1y x1|

bk´1
b |rk`1:ny xsk`1:n|q. (6.26)

The reason for the second equation is that we can always find a k´ 1-qubit unitary V

such that V |iy xi|V : “ |0y x0|bk´1 and V |jy xj|V : “ |1y x1|bk´1. A similar explanation

for the first equation as well.

Now, define ∆t
p“q and ∆t

p‰q as

∆t
p“q “ µ

p|0yx0|bn´tq
T´t p|0y x0|bk´1

b |pk`t:ny xqk`t:n| , |0y x0|
bk´1

b |rk`t:ny xsk`t:n|q (6.27)

∆t
p‰q “ µ

p|0yx0|bn´tq
T´t p|0y x0|bk´1

b |pk`t:ny xqk`t:n| , |1y x1|
bk´1

b |rk`t:ny xsk`t:n|q. (6.28)
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Then, we have

µ
p|0yx0|bn´1q
T´1 p12k´1 b |pk`1:ny xqk`1:n| ,12k´1 b |rk`1:ny xsk`1:n|q

“ 2k´1∆
p“q

1 ` 2k´1p2k´1 ´ 1q∆
p‰q

1 . (6.29)

Similarly, we have

µ
p|0yx0|bn´1q
T´1

´

Zbk´1 b |pk`1:ny xqk`1:n| , Z
bk´1 b |rk`1:ny xsk`1:n|

¯

“ 2k´1∆
p“q

1 `

2k´1´1
ÿ

i,j“0,i‰j

λiλj∆
p‰q

1

“ 2k´1∆
p“q

1 ´ 2k´1∆
p‰q

1 . (6.30)

The reason for the last equality is as follows. Notice that the set tλi | i “ 0, . . . , 2k´1u has

2k´2 1s and 2k´2 ´1s. So, using Lemma 11 we see that
ř

i‰j
λiλj “ ´2k´1.

Hence, we have

µ
p|0yx0|q
T p|py xq| , |ry xs|q “ α1∆

p“q

1 ` β1∆
p‰q

1 , (6.31)

where

α1 “
δ
p1q
tr

2k`1
`

`

22k´2 ´ 1
˘

´

2kδ
p1q
ip ´ δ

p1q
tr

¯

2k`1 p22k ´ 1q
, (6.32)

β1 “
δ
p1q
tr

`

2k´1 ´ 1
˘

2k`1
´

`

22k´2 ´ 1
˘

´

2kδ
p1q
ip ´ δ

p1q
tr

¯

2k`1 p22k ´ 1q
. (6.33)

So we have achieved the goal of reducing the Eq (6.15) to a similar integral of n´ 1 qubit

systems and T ´ 1 Haar random gates.
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Now we can integrate ∆
p“q

1 and ∆
p‰q

1 in the same way. For that, we first define

α
p“q

t “
δ
p1q
tr

2k`1
`

`

22k´2 ´ 1
˘

´

2kδ
ptq
ip ´ δ

ptq
tr

¯

2k`1 p22k ´ 1q
, (6.34)

β
p“q

t “
δ
p1q
tr

`

2k´1 ´ 1
˘

2k`1
´

`

22k´2 ´ 1
˘

´

2kδ
ptq
ip ´ δ

ptq
tr

¯

2k`1p22k ´ 1q
(6.35)

α
p‰q

t “
δ
p1q
tr

2k`1
`

`

22k´2 ´ 1
˘

´

´δ
ptq
tr

¯

2k`1 p22k ´ 1q
(6.36)

β
p‰q

t “
δ
p1q
tr

`

2k´1 ´ 1
˘

2k`1
´

`

22k´2 ´ 1
˘

´

´δ
ptq
tr

¯

2k`1 p22k ´ 1q
(6.37)

for 2 ď t ď T and

δ
ptq
ip “ δpk`t´1,rk`t´1

δqk`t´1,sk`t´1
(6.38)

δ
ptq
tr “ δpk`t´1,qk`t´1

δrk`t´1,sk`t´1
. (6.39)

Integrating ∆
p“q

1 will result in α
p“q

2 ∆
p“q

2 `β
p“q

2 ∆
p‰q

2 and integrating ∆
p‰q

1 will result in

α
p‰q

2 ∆
p“q

2 ` β
p‰q

2 ∆
p‰q

2 .

Assume that after integration over unitaries UT , . . . UT´t`1, we get γ
p“q∆

p“q

t `γp‰q∆
p‰q

t .

Now, if we integrate over UT´t, the coefficients of ∆
p“q

t`1 and ∆
p‰q

t`1 will be α
p“q

t`1γ
p“q `

α
p‰q

t`1γ
p‰q and β

p“q

t`1γ
p“q ` β

p‰q

t`1γ
p‰q respectively. Therefore, we have

µ
p|0yx0|q
T p|py xq| , |ry xs|q “MTMT´1 . . .M1 (6.40)

where

M1 “

»

—

–

α1

β1

fi

ffi

fl

, MT “

„

αt βt

ȷ

, Mt “

»

—

–

αt α1
t

βt β1t

fi

ffi

fl

. (6.41)

αt “ ∆
p“q

T´1 “
δ
pT q
tr ` δ

pT q
ip

2k ` 1
, βt “ ∆

p‰q

T´1 “
δ
pT q
tr

2k ` 1
(6.42)
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and 2 ď t ď T ´ 1. αt and βt can be evaluated directly using Lemma 5. Since each Mt

is a 2 ˆ 2 matrix, its eigenvalues can be computed analytically. We use SymPy for this

computation and the eigenvalues are

δ
ptq
tr

4
,

δ
ptq
tr

`

4k ´ 4
˘

8 p4k ´ 1q
. (6.43)

We can see that the absolute values of all these eigenvalues are upper bounded by 1{4.

Also, we have

}MT }2}M1}2 ď

d

10 ¨ 26k ` 140 ¨ 24k ´ 240 ¨ 23k ´ 220 ¨ 22k ` 240 ¨ 2k ` 160

22k`6 p2k ` 1q
2
p22k ´ 1q

2 ď 1 (6.44)

(computed using SymPy). Combining Eq (6.44) with Eq (6.14) gives us

µ
p|0yx0|q
T pσ, σq ď

ÿ

pqrs

|σpq||σrs|
1

4n´k´1
“

}σ}21
4n´k´1

. (6.45)

Combining Eq (6.45) with Lemma 2 completes the proof.

Theorem 2. Let σ P Dn, O :“ 1{n
řn
i“1 |0y x0|i, and C

pnq
T be an MPS ansatz, where each

parameterized subcircuit Ui forms a unitary 2-design. Then, we have

Varθ pfσ,Opθqq ě
1

np22k`1 ` 4q
´
h2pσq

2n
. (6.46)

Proof. First, notice that for any i P t1, . . . , nu,

fσ,|0yx0|ipθq “
1

2
`
fσ,Zipθq

2
, (6.47)

implying that

Varθ

´

fσ,|0yx0|ipθq
¯

“
1

4
Varθ pfσ,Zipθqq . (6.48)
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So, we have

Varθ pfσ,Opθqq “
1

n2
Varθ

˜

n
ÿ

i“1

fσ,|0yx0|ipθq

¸

(6.49)

“
1

4n2
Varθ

˜

n
ÿ

i“1

fσ,Zipθq

¸

(6.50)

“
1

4n2
Eθ

˜

n
ÿ

i“1

fσ,Zipθq

¸2

´
1

4n2

˜

Eθ

n
ÿ

i“1

fσ,Zipθq

¸2

(6.51)

“
1

4n2

n
ÿ

i“1

Eθ pfσ,Zipθqq
2
`

2

4n2

n
ÿ

i,j“1
iąj

Eθ

`

fσ,Zipθqfσ,Zj pθq
˘

´
1

4n2

˜

Eθ

n
ÿ

i“1

fσ,Zipθq

¸2

(6.52)

Hence, from Lemmas 12 and 13, we have

Varθ pfσ,Opθqq “
1

4n2

n
ÿ

i“1

Eθ pfσ,Zipθqq
2 . (6.53)

Similar to the beginning of the proof of Theorem 10, for any pure product state ρ,

using Lemmas 2, we can see that for any i

Eθ pfρ,Zipθqq
2
“ µ

pZiq

T pρ, ρq “ µ
pZiq

T p|0y x0| , |0y x0|q. (6.54)

Now, we shall derive a lower bound for Eq (6.54) @ i. We only derive this for i ď k,

since we will see that the same lower bound works for any i ą k as well. Hence, assume

i ď k. First, we compute

µ
pZiq

T p|py xp| , |qy xq|q (6.55)

This will be used later on to compute µ
pZiq

T p|0y x0| , |0y x0|q.

Our goal is to integrate over UT and get expressions that look like Eq (6.55), but with

different bit strings, defined over an n´ 1 qubit system, and as an integral of T ´ 1 Haar

random gates.
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Following the proof of Theorem 10, from Eq (6.15), we have

µ
pZiq

T p|py xp| , |qy xq|q

“
1

2k

ÿ

i1:kj1:k

µ
pZiq

T´1

ˆ

Pi1:k b |pk`1:ny xpk`1:n| , Pj1:k b |qk`1:ny xqk`1:n|

˙

ˆ
1

2k

ż

UT

tr
´

Pi1:k |p1:ky xp1:k|UT

¯

tr
´

Pj1:k |q1:ky xq1:k|UT

¯

dUT . (6.56)

We see that whenever i1 ‰ 0, the integral drops to 0. Similar to the proof of Theorem 10,

we see that when i2:k ‰ j2:k, the integral drops to 0. Hence, when P012...ik “ P0j2...jk ‰ 12k ,

we can directly use Eq (6.15) to get

1

2k

ż

UT

tr
´

P0i2:k |p1:ky xp1:k|UT

¯

tr
´

P0i2:k |q1:ky xq1:k|UT

¯

dUT “
2kδq1:kq1:k ´ 1

2kp22k ´ 1q
. (6.57)

Similarly, when P012...ik “ P0j2...jk “ 12k , we have

1

2k

ż

UT

tr
´

P0i2:k |p1:ky xp1:k|UT

¯

tr
´

P0j2:k |q1:ky xq1:k|UT

¯

dUT “
1

2k
. (6.58)

Given Eqs (6.58), (6.57), and (6.56), we have

µ
pZiq

T p|py xp| , |qy xq|q

“
1

22k´2
µ
pZiq

T´1

ˆ

12k´1 b |pk`1:ny xpk`1:n| ,12k´1 b |qk`1:ny xqk`1:n|

˙

`

`

2k`1δp1:kq1:k ´ 2qp22k´2 ´ 1
˘

22k´1p22k ´ 1q
µ
pZiq

T´1

ˆ

Zbpk´1q b |pk`1:ny xpk`1:n| ,

Zbk´1 b |qk`1:ny xqk`1:n|

˙

. (6.59)

Let 12k´1 “
2k´1´1
ř

i“0
|iy xi| and Zbpk´1q “

2k´1´1
ř

i
λi |iy xi| be spectral decompositions. Then,
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we have

µ
pZiq

T p|py xp| , |qy xq|q

“
1

22k´2

2k´1´1
ÿ

i,j“0

µ
pZiq

T´1p|iy xi| b |pk`1:ny xpk`1:n| , |jy xj| b |qk`1:ny xqk`1:n|q

`
p2k`1δp1:kq1:k ´ 2qp22k´2 ´ 1q

22k´1p22k ´ 1q

2k´1´1
ÿ

i,j“0

λiλjµ
pZiq

T´1p|iy xi| b |pk`1:ny xpk`1:n| ,

|jy xj| b |qk`1:ny xqk`1:n|q. (6.60)

Next, we define

∆
p“q

t “

ż

UT´t

µ
pZiq

T´tp |0y x0|
bk´1

b |pk`t:ny xpk`t:n| , |0y x0|
bk´1

b |qk`t:ny xqk`t:n|q, (6.61)

∆
p‰q

t “

ż

UT´t

µ
pZiq

T´tp |0y x0|
bk´1

b |pk`t:ny xpk`t:n| , |1y x1|
bk´1

b |qk`t:ny xqk`t:n|q. (6.62)

In a similar manner to how we proceeded in Theorem 10, using Lemmas 2 and 11, we have

µ
pZiq

T p|py xp| , |qy xq|q “ α∆
p“q

1 ` β∆
p‰q

1 , (6.63)

where

α “
1

2k´1
`

p22k´2 ´ 1qp2kδp1:kq1:k ´ 1q

2k´1p22k ´ 1q
, (6.64)

β “
2k´1 ´ 1

2k´1
´

p22k´2 ´ 1qp2kδp1:kq1:k ´ 1q

2k´1p22k ´ 1q
. (6.65)
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Now, let us consider these values when p “ q and p ‰ q. Define

αp“q “
1

2k´1
`

22k´2 ´ 1

2k´1p2k ` 1q
, (6.66)

βp“q “
2k´1 ´ 1

2k´1
´

22k´2 ´ 1

2k´1p2k ` 1q
, (6.67)

αp‰q “
1

2k´1
´

22k´2 ´ 1

2k´1p22k ´ 1q
, (6.68)

βp‰q “
2k´1 ´ 1

2k´1
`

22k´2 ´ 1

2k´1p22k ´ 1q
. (6.69)

So we have

µ
pZiq

T p|0y x0| , |0y x0|q “ αp“q∆
p“q

1 ` βp“q∆
p‰q

1 . (6.70)

Similar to the proof of Theorem 10, we can see that when we integrate ∆
p“q

1 and ∆
p‰q

1

with respect to UT´1, we get linear combinations of ∆
p“q

2 and ∆
p‰q

2 .

Assume that after integration over unitaries UT , . . . UT´t`1, we get γ
p“q∆

p“q

t `γp‰q∆
p‰q

t .

Now, if we integrate over UT´t, the coefficients of ∆
p“q

t`1 and ∆
p‰q

t`1 will be α
p“qγp“q`αp‰qγp‰q

and βp“qγp“q`βp‰qγp‰q respectively. Unlike in the proof of Theorem 10, these coefficients

are independent of t.

So we have

µ
pZiq

T p|0y x0| , |0y x0|q “MTMn´k´1M1 (6.71)

where

M1 “

»

—

–

α

β

fi

ffi

fl

, MT “

„

αT βT

ȷ

, M “

»

—

–

αp“q αp‰q

βp“q βp‰q

fi

ffi

fl

, (6.72)

αT “ ∆
p“q

T´1 “
1

2k ` 1
, βT “ ∆

p‰q

T´1 “
´1

22k ´ 1
. (6.73)
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αt and βt can be evaluated directly using Lemma 5. The eigenvalues of the matrix M are

1 and

B2 “
22k´2 ´ 1

22k ´ 1
. (6.74)

Therefore,

µ
pZiq

T p|0y x0| , |0y x0|q “ B0 `B1B
n´k´1
2 ě B0, (6.75)

where

B0 “
1

22k´1 ` 1
, (6.76)

B1 “
25k ´ 24k ´ 6 ¨ 23k ` 4 ¨ 22k ` 2 ¨ 2k

2p2k ` 1q2 ¨ p22k ´ 1qp22k ` 2q
. (6.77)

Now, notice that whenever i ą k, we have

ż

UT

´

tr
´

Zi|0y x0|CT

¯¯2
dUT “

ż

UT´i`k

tr
´

Zk |0y x0|
bn´i`k
CT´i`k

¯2
dUT´i`k, (6.78)

which is also an instance of the previous case defined over n´ i ` k qubits. Hence, from

Eq (6.75), we can see that the same lower bound shall apply in this case as well. So, we

have

Varθ pfρ,Opθqq ě
1

4n
B0. (6.79)

Now, consider σ P Dn such that }ρ´σ}tr ď ϵ for some pure product state ρ. Then, for
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any i, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

UT

tr pZiρCT
q
2 dUT ´

ż

UT

tr pZiσCT
q
2 dUT

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

UT

ˇ

ˇ

ˇ
tr pZiρCT

q
2
´ tr pZiσCT

q
2
ˇ

ˇ

ˇ
dUT (6.80)

“

ż

UT

|tr pZiρCT
q ´ tr pZiσCT

q| ˆ |tr pZiρCT
q ` tr pZiσCT

q| dUT (6.81)

“

ż

UT

|tr pZipρ´ σqCT
q| ˆ |tr pZipρ` σqCT

q| dUT (6.82)

ď }ρ´ σ}tr ˆ }ρ` σ}tr (6.83)

ď 2}ρ´ σ}tr, (6.84)

where } ¨ }tr is the trace norm and the second-last inequality follows from Tracial Matrix

Hölder’s Inequality (Lemma 9). Then, we have

n
ÿ

i“1

ż

UT

tr pZiρCT
q
2 dUT ´ 2n}σ ´ ρ}tr ď

n
ÿ

i“1

ż

UT

tr pZiσCT
q
2 dUT . (6.85)

This implies that

1

4n2

n
ÿ

i“1

ż

UT

tr pZiρCT
q
2 dUT ´

1

2n
}σ ´ ρ}tr ď

1

4n2

n
ÿ

i“1

ż

UT

tr pZiσCT
q
2 dUT (6.86)

further implying that

Varθ pfρ,Opθqq ´
1

2n
}σ ´ ρ}tr ď Varθ pfσ,Opθqq (6.87)

and hence we have

B0

4n
´

ϵ

2n
ď Varθ pfσ,Opθqq . (6.88)
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Now, for this σ, minimization over all ρ as required by the theorem completes the proof.

Corollary 1. Let σ P Dn and C
pnq
T be an MPS ansatz. Then, we have

Varθ
`

Bθpqfσ,|0yx0|pθq
˘

ď
hpσq

4n´k´1
(6.89)

@ p, q such that 1 ď p ď T, 1 ď q ď m , where hpσq is defined in Theorem 10 and

U1, . . . Up´1, Up`1, . . . UT , along with one of U
pL,qq
p or U

pR,qq
p form unitary 2-designs and

θpq is distributed uniformly.

Proof. Throughout this proof, we assume that within the computation of the variance,

U
pL,qq
p is distributed according to the Haar measure since trivial changes to the proof are

sufficient to prove the same when U
pR,qq
p is distributed according to Haar measure. Let

U
pp,qq
T “ tU1, . . . , Up´1, θpq, U

pL,qq
p , Up`1, . . . , UT u. Using Lemmas 8 and 7, we have

Varθ
`

Bθpqfσ,|0yx0|pθq
˘

“Eθ

`

Bθpqfσ,|0yx0|pθq
˘2

(6.90)

“
1

4
Eθ

`

fσ,|0yx0|pθpq`q ´ fσ,|0yx0|pθpq´q
˘2

(6.91)

“
1

4
Eθ

´

`

fσ,|0yx0|pθpq`q
˘2

`
`

fσ,|0yx0|pθpq´q
˘2

´ 2fσ,|0yx0|pθpq`qfσ,|0yx0|pθpq´q
¯

(6.92)

ď
1

4
Eθ

´

`

fσ,|0yx0|pθpq`q
˘2

`
`

fσ,|0yx0|pθpq´q
˘2
¯

`
1

2

ˇ

ˇEθ

`

fσ,|0yx0|pθpq`qfσ,|0yx0|pθpq´q
˘
ˇ

ˇ . (6.93)

Now, notice that

Eθ

`

fσ,|0yx0|pθpq`q
˘2

“ Eθ

`

fσ,|0yx0|pθpq´q
˘2

“ Eθ

`

fσ,|0yx0|pθq
˘2
. (6.94)

This follows from combining Lemma 4 with the fact that

Uppθpq˘q “ U pL,qq
p pθpqe

´ipθpq˘π{2qHpqU pR,qq
p pθpq “ U pL,qq

p pθpqe
´iθpqHpqe˘

iπHpq
2 U pR,qq

p pθpq

(6.95)
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Also,

ˇ

ˇ

ˇ

ż

U
pθq
T

fσ,|0yx0|pθpq`qfσ,|0yx0|pθpq´q

˜

T
ź

j“1,j‰p

dUj

¸

dU pL,qq
p dθpq

ˇ

ˇ

ˇ

ď

g

f

f

f

e

ż

U
pθq
T

`

fσ,|0yx0|pθpq`q
˘2

˜

T
ź

j“1,j‰p

dUj

¸

dU
pL,qq
p dθpq

ˆ

g

f

f

f

e

ż

U
pθq
T

`

fσ,|0yx0|pθpq´q
˘2

˜

T
ź

j“1,j‰p

dUj

¸

dU
pL,qq
p dθpq (6.96)

“ Eθ

`

fσ,|0yx0|pθq
˘2
. (6.97)

This follows directly from Cauchy Schwarz inequality (cf. Lemma 10). Plugging Eqs (6.96)

and (6.94) into Eq (6.90) completes the proof.

Corollary 2. Let σ P Dn and C
pnq
T be an MPS ansatz. Let O “ 1{n

n
ř

i“1
|0y x0|i. Then,

there exist p, q with 1 ď p ď T, 1 ď q ď m such that

Varθ
`

Bθpqfσ,Opθq
˘

R O
ˆ

1

bn

˙

, (6.98)

where U1, . . . Uq´1, Uq`1, . . . UT , along with one of U
pL,qq
p or U

pR,qq
p form unitary 2-designs

and θpq is distributed uniformly.

Proof. First, we recall an important lemma relating cost concentration with barren plateaus

from [Arr+22].

Lemma 3. [Arr+22] For any ansatz Cpθq, σ P Dn and W P Hn, if @ p, q, where 1 ď p ď

T, 1 ď q ď m,

Varθ pBpqfσ,W pθqq P Op1{bnq (6.99)
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for some b ą 1, then

Varθ pfσ,W pθqq P Op1{bnq. (6.100)

The result then follows from the contrapositive of Theorem 3.

Theorem 3. For any n-qubit quantum circuit V , let RV “ maxiRV,i, where RV,i is the

number of 2-qubit gates being applied on any qubits j, k such that j ď i ď k. Then, for

any product observable W , }WV :}K can be classically evaluated with cost Op2RV q.

Proof. From [Joz06], we can see that given a classical description of a circuit V , an MPS

description of WV : with bond dimension Op2RV q can be computed using with computa-

tional cost scaling as Op2RV q. The change from the standard basis to the orthonormal

Pauli basis is efficient, involving only local rotations. Let ŴV : be a vector of Pauli ba-

sis coefficients of WV : . Then, }W }K “

b

}ŴV : ˚ ŴV :}2{2n, where ˚ is the Hadamard

product. From [Ose11], the Hadamard and inner products of tensors represented as MPS

can be computed efficiently, with cost scaling polynomially in their bond dimension, thus

completing the proof.

Theorem 4. For any parameterized circuit C, and an orthonormal basis K of C2nˆ2n,

define

}W }C,K :“

ż

θ

›

›

›
WCpθq:

›

›

›

K
dθ. (6.101)

for any W P Hn. Then, } ¨ }C,K is a norm on Hn.

Proof. First notice that }W }C,K is non-negative since it is an average of norms. When

W “ 0, then }W }C,K “ 0. Similarly, when }W }C,K “ 0, we will have
›

›

›
WCpθq:

›

›

›

K
“ 0 @ θ

and hence W “ 0.
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Next, we prove the triangle inequality.

›

›

›
W p1q

›

›

›

C,K
`

›

›

›
W p2q

›

›

›

C,K
“

ż

θ

›

›

›
W

p1q

Cpθq:

›

›

›

K
`

›

›

›
W

p2q

Cpθq:

›

›

›

K
dθ (6.102)

ě

ż

θ

›

›

›
W

p1q

Cpθq:
`W

p2q

Cpθq:

›

›

›

K
dθ (6.103)

“

ż

θ

›

›

›

›

´

W p1q `W p2q
¯

Cpθq:

›

›

›

›

K
dθ (6.104)

“

›

›

›
W p1q `W p2q

›

›

›

C,K
. (6.105)

6.7 Related Works

In [Liu+22; Gar+23; BM24], the theoretical study of barren plateaus in tensor-network-

based machine learning with MPS inputs reveals that using global observables in the objec-

tive function introduces barren plateaus, whereas local observables avoid them. However,

as mentioned in [Liu+22], their model and assumptions differ from a variational circuit

model. They model the input using the unitary decomposition of MPS, where each compo-

nent tensor is reshaped into a 2Dˆ2D unitary matrix, with D as the bond dimension. The

randomness is modeled by assuming these unitaries form unitary 2-designs. In contrast,

we assume that the subcircuits are sampled from unitary 2-designs, which is more natural

for circuit-based problems as a circuit depth polynomial in the width of the subcircuits

suffices for them to behave like a unitary 2-design under uniformly random parameter

initialization [HL09a].

In [Dov+22], it was experimentally observed that the usage of global observables leads

to exponentially decreasing gradient magnitudes, whereas local observables avoid this

issue. In our work, we study this phenomenon as well as similar trends in cost concentration

theoretically. The existence of exponentially decreasing partial derivatives in MPS ansatz-

based VQAs is proved using ZX-calculus in [ZG21]. However, the method can only be
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used to prove this for individual examples of the MPS ansatz, with pre-defined structures

for the subcircuits. In contrast, our proofs consider the most generalized form of the

ansatz, with the only assumption being that the subcircuits form unitary 2 designs. Also

in [ZG21], there are no discussions regarding the impact that observables and subcircuit

widths can have on trainability, which we theoretically demonstrate in the case of cost

concentration as well as barren plateaus.
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Chapter 7

Conclusion and Future Direction

In this thesis, we have presented advancements in the training and optimization of VQAs.

Our contributions span from introducing novel algorithms to providing theoretical insights

and experimental validations, all aimed at making VQAs more efficient and scalable.

Firstly, we introduced ALSO, an efficient method for training alternating layered

VQAs. By leveraging classical shadows, ALSO significantly reduces the number of in-

put state copies required, providing exponential improvements over traditional methods,

with rigorous performance guarantees. This is particularly beneficial in practical scenar-

ios that necessitate multiple optimization rounds such as when hyperparameter tuning or

finding the right optimizer is required. Additionally, the simplicity of ALSO’s implementa-

tion, requiring only single-qubit measurements, further enhances its practicality. Another

notable advantage is that the generated classical shadows can be reused for various in-

dependent tasks. For instance, the same set can be employed to find state preparation

circuits and to build quantum autoencoders. We also experimentally demonstrate 2-3

orders of magnitude reduction in training costs for these tasks.

Secondly, we proposed AISO, a training algorithm that achieves similar exponential

reductions in quantum resource requirements through the use of shallow shadows. AISO’s

general applicability to various shallow quantum circuit structures and observables with

low Frobenius norms allows for extensive optimization with minimal quantum device ex-
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ecutions. Our demonstrations in state preparation and VQCS underscore the practical

advantages of AISO in important quantum information use cases.

Lastly, we explored the trainability and classical simulability of learning MPS approx-

imations of quantum states using VQAs. Our theoretical results highlight the importance

of local observables in avoiding the exponential decay in the variance of the cost function

and its derivatives, which is induced by global observables. We further demonstrated that

local observables induce effective subspaces within the Pauli basis, enabling the potential

classical simulation of the MPS ansatz. These findings were experimentally validated,

confirming their applicability across various scenarios.

In conclusion, the algorithms and theoretical insights presented in this thesis offer

improvements in the efficiency and feasibility of VQAs. By addressing key challenges

in the training and optimization of VQAs, our work paves the way for more scalable

quantum technologies. Future research can build upon these foundations to explore further

applications and refinements, ultimately advancing the field of VQAs.

For future work, we aim to extend our resource-efficient VQA protocols to other train-

able ansatz-observable combinations, such as the QCNN ansatz-local observable combi-

nation. Leveraging classical machine learning techniques with classical shadows, similar

to the approach in [Hua+21], will be a key focus area. Another significant avenue for fu-

ture research is to apply similar shadow tomography methods to other important domains

within quantum information, such as error correction [KL97; Fow+12; Kit03] and device

calibration [Li+13; Jai+11; Wit+21], which typically require large amounts of copies or

executions.

Also, we plan to conduct a more extensive study of the performance of these methods in

the presence of noise in real quantum devices, and compare these results with other classical

simulation strategies available in the literature. Hypothetically, interesting challenges

could arise in the presence of noise. For example, when using a standard VQA to solve

state preparation on a real quantum device, the learned parameters adapt to the device’s

specific noise profile. In contrast, classical simulation methods optimize parameters in an
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ideal, noiseless setting, potentially leading to different outcomes. Moreover, if the data

acquisition phase was significantly affected by noise, then the results could vary even

more. Hence, this area is an intriguing and promising area of study which we would like

to embark on in the future.

Regarding the trainability of learning MPS approximations using VQAs, we plan to

generalize and enhance our results by theoretically proving the trainability of protocols

when multiple layers are used. Also, we aim to extend the current proofs to encompass all

quantum states and perform a more rigorous theoretical analysis of effective subspaces.

Furthermore, since we have already presented strong evidence for the existence of a classi-

cal simulation algorithm that consumes only a few quantum resources, we aim to develop

such an efficient algorithm with rigorous performance guarantees.
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Chapter 8

Appendix

8.1 Tensors

A tensor can be seen as a multidimensional array. These are data structures with multiple

number of indices allowed. For example, a matrix M with entries Mi,j can be seen as a

tensor with 2 indices. Every tensor can be mathematically defined using the Kronecker

product operation. Let |xy P V Ă Cm, where |xy “
m´1
ř

i“0
xi |iy and |yy P W Ă Cn,

where |yy “
n´1
ř

j“0
yj |jy. Then |xy b |yy P Cmn and |xy b |yy “

m´1
ř

i“0

n´1
ř

j“0
xiyj |iy b |jy “

mn´1
ř

k“0

xtk{nuyk mod n |ky. A tensor product of two finite dimensional vector spaces V and

W, defined by V bW is the vector space of all possible linear combinations of vectors of

the form |vy b |wy for all |vy P V and |wy PW . If t|v1y , |v2y , . . . , |vnyu is a basis of V and

t|w1y , |w2y , . . . , |wmyu is a basis of W, then t|viy b |wjy |i “ 1, . . . , n, j “ 1, . . . ,mu is a

basis of V bW. Hence, the dimension of V bW is the product of the dimension of V and

dimension of W.

Let V “
N
Â

n“1
CIn “ CI1ˆ¨¨¨ˆIN be a tensor product of vector spaces. Let |vy P V. |vy

can always be written as

|vy “
I1´1
ÿ

i1“0

¨ ¨ ¨

IN´1
ÿ

iN“0

vi1,...,iN |i
p1q
1 y . . . |i

pNq

N y (8.1)
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Here, |i
pjq
j y is the ithj standard basis vector of CIj and each of the vector spaces are called

modes. These tensors are also sometimes called order N tensors or N th order tensors. For

notational convenience, this is also written as

|vy “
Ik´1
ÿ

ik“0
k“1,...,N

vi1,...,iN |i1y . . . |iNy (8.2)

From a multidimensional array perspective, the coordinate of |vy in the standard basis

of V , associated with the vector |i1yb¨ ¨ ¨b|iNy, that is, vi1,...,iN , is the pi1, . . . , iN q element

of the multidimensional array v associated with |vy. So, throughout this section, we might

define tensors simply as A P CI1ˆ...Ik , where Ai1,...ik is its pi1, . . . , ikq element.

Now, we shall define tensor splitting, which we will be using in multiple parts of the

thesis.

Definition 4. Given a tensor A P CI1ˆI2ˆ¨¨¨ˆIt , splitting the kth index into two indices of

length I 1k and I2k (such that I 1kI
2
k “ Ik) results in a new tensor

A1 P CI1ˆIk´1ˆI
1
kˆI

2
kˆ¨¨¨ˆIt (8.3)

where

A1
i1,...,i1k,i

2
k,...it

“ Ai1,...,ik´1,I
2
k i

1
k`i

2
k,ik`1,...,it . (8.4)

Similarly, for any tensor A P CI1ˆI2ˆ...Ik´1ˆp
mˆIk`1ˆ¨¨¨ˆIt, splitting its kth index into m

indices of length p results in the tensor

A1 P CI1ˆI2ˆ...Ik´1ˆpˆpˆ¨¨¨ˆpˆIk`1ˆ¨¨¨ˆIt (8.5)
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where

A1
i1,...,ik´1p0,p1,...,pm´1,ik`1,...,it

“ A
i1,...,ik´1,

˜

m´1
ř

j“0
pm´1´jpj

¸

,ik`1,...,it

. (8.6)

Here, p0p1 . . . pm´1 is simply a p-nary expansion of
m´1
ř

j“0
pm´1´jp

j.

Also, @A P CI1ˆ¨¨¨ˆIk we define Ai1...ik1 P CIk1`1ˆ¨¨¨ˆIk such that its pik1`1, . . . , ikq
th

entry is Ai1...ik .

8.1.1 Tensor Contraction

Similar to how we can view tensors as an extension of the concept of matrices to multiple

dimensions, one can also extend matrix multiplication to a more general operation with

tensors. It is called tensor contraction. Within matrix multiplication of two matrices

A P CI1ˆI2 and B P CI2ˆI3 , what essentially happens is that we get a matrix C P CI1ˆI3 ,

whose each entry is a summation of the form Ci1i3 “
I2´1
ř

i2“0
Ai1,i2Bi2,i3 . Here, it is crucial

that the second index of A should have the same length as the first index of B. The natural

way to extend this to tensors is to allow one to sum over multiple indices of two tensors,

having the same lengths. For example, if we are given two tensors A P CI1ˆI2ˆI3ˆI4

and B P CI6ˆI4ˆI3ˆI7ˆI8 , we can carry out this extended matrix multiplication with the

last two indices of A and the third and second indices of B. The resultant tensor C P

CI6ˆI7ˆI8ˆI1ˆI2 will contain all the remaining indices (ordered as the remaining indices of

B first, then the remaining indices of A) and would then have the form

Ci6,i7,i8,i1,i2 “

I3´1
ÿ

i3“0

I4´1
ÿ

i4“0

Ai1,i2,i3,i4Bi6,i4,i3,i7,i8 . (8.7)

Notice that unlike matrix multiplication, this is an index-dependent operation, in the

sense that we can choose to contract any pairs of indices (one from each tensor), as long

as they have the same length. The formal definition of this operation is as follows:
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Definition 5. Let A P CI1ˆI2ˆ¨¨¨ˆIt1 and B P CJ1ˆJ2ˆ¨¨¨ˆJt2 be two tensors. Tensor

contraction of the indices I “ rp1, . . . , pts of A with indices J “ rq1, . . . , qts of B requires

Ipk “ Jqk @ k, is depicted as pA, Iq ‹ pB,J q and results in a tensor

C P C

¨

˚

˚

˝

t2
Ś

k“1
JkRJ

Jk

˛

‹

‹

‚̂

¨

˚

˚

˝

t1
Ś

k“1
IkRI

Ik

˛

‹

‹

‚

(8.8)

with

Cj1,...,jq1´1jq1`1,...,jq2´1jq2`1,...,jqt´1jqt`1,...,jt2
i1,...,ip1´1ip1`1,...,ip2´1ip2`1,...,ipt´1ipt`1,...,it1

“
ÿ

ip1 ,ip2 ,...,ipt

Ai1,...,it1Bj1,...,jq1´1,ip1 ,jq1`1...,jq2´1,ip2 ,jq2`1,...,jqt´1iptjqt`1,...jqt2
.

The cost of multiplying two matrices (carried out naively) A P CI1ˆI2 , B P CI2ˆI3

is OpI1I2I3q since we have to compute I1I3 new values, each requiring computation

of inner product of vectors of length I2. A similar logic can be used to argue that

the cost of pA, rp1, . . . , ptsq ‹ pB, rq1, . . . , qtsq A P CI1ˆ¨¨¨ˆIN and B P CJ1ˆ¨¨¨ˆJM will be

O

¨

˚

˝

¨

˚

˝

M
ś

j“1
jRJ

Jj

˛

‹

‚

¨

˚

˝

N
ś

i“1
iRI

Ii

˛

‹

‚

ˆ

t
ś

k“1

Ipk

˙

˛

‹

‚

.

8.1.2 Tensor Networks

Tensor networks are diagrammatical representations of tensors and contractions. Any

order N tensor is represented using a box (or any other shape) with n lines sticking out,

where each line represents an index (mode). Examples are given in Figure 8.1. Given any

two tensors A P CI1ˆ¨¨¨ˆIN , B P CJ1ˆ¨¨¨ˆJN , to depict the contraction of a pair of modes,

we simply connect the two lines representing them. Examples are given in Figure 8.2.

In some sense, one can also view quantum circuits as tensor networks, by viewing all the

|0ys in the beginning as vectors and k-qubit gates as 2k dimensional tensors. To compute

the probability of any specific outcome b1b2 . . . bn, one simply connects |b1y |b2y , |bny to

the end of the circuit. Also, if we wish to compute the expectation of an observable of the
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(a) (b)

(c) (d)

Figure 8.1: Tensor network examples: (a) An order 5 tensor A with each of its five indices
represented using the black lines. (b) Tensor network representation of a vector. (c)
Tensor network representation of a matrix. (d) Vectorization of a matrix W .

form O “ Op1qb¨ ¨ ¨bOpnq, where Opiq P LpC2q, we have to contract a tensor network that

depicts x0|U :OU |0y, where U is the quantum circuit. First, depict this using n single

qubit matrices, then attach all free indices of the circuit to all the second indices of all

the matrices Opiq. Then add another tensor network circuit depicting U :, which is the

same tensor network written in reverse, with all gates replaced with their inverses. Then

connect all the free indices of this circuit to all the first indices of all Opiqs. An example

is provided in Figure 8.3.

8.2 Qubit Permutation

Another way of describing the application of a t-qubit gate U on an n-qubit state |ψy is

by changing the indices of the tensor |ψy. Let π P Sn, where Sn is the symmetric group

on n elements. Consider the operator Wπ P LpC2nq defined as

Wπ

˜

n
â

k“1

|jky

¸

“

n
â

k“1

|jπ´1pkqy . (8.9)
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(a) (b)

(c) (d)

Figure 8.2: Tensor contraction examples. (a) Contraction of two pairs of modes, r2, 3s
and r2, 3s, of two order 5 tensors A P CI1ˆI2ˆI3ˆI4ˆI5 and B P CJ1ˆJ2ˆJ3ˆJ4ˆJ5 resulting
in an order 6 tensor C P CJ1ˆJ4ˆJ5ˆI1ˆI4ˆI5 . The kth mode of A,B is depicted using
indices ik, jk respectively. (b) Matrix multiplication of A P CI1ˆI2 , B P CI2ˆI3 resulting in
a matrix C P CI1ˆI3 . (c) The standard inner product of two vectors A,B. (d) Trace of a
matrix A.

Since this is a norm-preserving transformation, it is a unitary transformation and |ϕy can

be computed as

|ϕy “Wπ

`

U b 1C2n´k

˘

Wπ´1 |ψy “ QU,π |ψy , (8.10)

where

πpjq “

$

’

’

&

’

’

%

jk if k P t1, 2, . . . , tu

any permissible value otherwise,

(8.11)

and QU,π “ Wπ

`

U b 1C2n´k

˘

Wπ´1 . This can be interpreted as follows: the gate Wπ´1

will rearrange the qubits (or the modes of the tensor) in such a manner that the qubits in

J are together and in order. Then, we apply U on them and leave other qubits untouched.

Finally, we bring the qubits back to its original position.
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(a) (b)

Figure 8.3: Tensor network circuit examples. (a) Tensor network to compute the proba-

bility of the outcome b1b2b3b4 of a circuit U “ U
p3q
r1,2sU

p2q
r2,3,4sU

p1q
r1,2,3s and input state |0y. The

application of all three gates gives us the state U |0y. Then, compute the inner product
with the vector |b1b2b3b4y (cf. Figure 8.2 (d)), whose squared absolute value is the proba-
bility in question. (b) Tensor network to compute the expectation of a product observable
O “ Op1q b Op2q b Op3q b Op4q. We have used the same circuit as previously. We can
interpret this as computing the inner product between U :OU |0y and |0y, which is the
required expectation x0|U :OU |0y.

8.3 Partial Trace of Quantum States

Let A be a register of dimension dA and B be a register of dimension dB. Given any state

σ P LpCdAdB q, the aim of this section is to show that trBpσq is a valid quantum state,

that is, it is a trace 1 positive semidefinite matrix. The same proof can be easily used for

trApσq.

First, we shall show that it is a unit trace matrix. From Eq (2.14), we have

trptrBpσqq “
dA´1
ÿ

p“0

xp|

˜

dA´1
ÿ

i1,j1“0

dB´1
ÿ

q“0

σi1q,j1q |i1y xj1|

¸

|py (8.12)

“

dA´1
ÿ

p“0

dB´1
ÿ

q“0

σpq,pq (8.13)

“ trpσq (8.14)

“ 1, . (8.15)

Next, we shall show that trBpσq is positive semidefinite. To see this, let |ψy be an arbitrary
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vector in CdA . Then, from Eq (2.14), we have

xψ| trBpσq |ψy

“

dB´1
ÿ

q“0

dA´1
ÿ

i1,j1“0

dB´1
ÿ

i2,j2“0

σi1i2,j1j2 xψ| p1CdA b xq|q |i1y xj1| b |i2y xj2| p1CdB b |qyq |ψy

“

dB´1
ÿ

q“0

dA´1
ÿ

i1,j1“0

dB´1
ÿ

i2,j2“0

σi1i2,j1j2 pxψ| b xq|q |i1y xj1| b |i2y xj2| p|ψy b |qyq

“

dB´1
ÿ

q“0

xψ| b xq|

˜

dA´1
ÿ

i1,j1“0

dB´1
ÿ

i2,j2“0

σi1i2,j1j2 |i1y xj1| b |i2y xj2|

¸

|ψy b |qy

“

dB´1
ÿ

q“0

pxψ| b xq|qσ p|ψy b |qyq

ě 0.

The last inequality follows since σ is positive semi-definite.

8.4 MPS Decomposition for Density Matrices

We can extend MPS decompositions for pure state vectors to density matrices as well.

The only changes required is to view these objects as tensors lying in C4ˆ¨¨¨ˆ4. The core

tensors will then have their first indices having length 4. All the operations that we have

discussed can be easily extended to the case of density matrices in such a decomposition.

For example, let

σ “

1
ÿ

i1,...,in“0

1
ÿ

j1,...,jn“0

“ σi1...in,j1...jn |i1 . . . iny xj1 . . . jn| (8.16)

be a density matrix. Define vectorization as an operation that converts such a matrix σ

to

|σy “
1
ÿ

i1,...,in“0

1
ÿ

j1,...,jn“0

σi1...in,j1...jn |i1 . . . iny |j1 . . . jny . (8.17)
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Although we can work with the MPS decomposition of |σy, there is an issue there. The

problem is that, in that case, 2-dimensional vector spaces associated with the qth qubit,

represented by |iqy and |jqy, are situated at the qth and pn`qqth positions. This means that

any operations applied on the qth qubit is no longer a local or nearest neighbor operation,

as is required in a standard MPS regime.

One easy way to resolve this is to vectorize σ and reorder the indices as

|σROy “

1
ÿ

i1,...,in“0

1
ÿ

j1,...,jn“0

“ σi1...in,j1...jn |i1j1y |i2j2y . . . |injny . (8.18)

Now, each pair of indices |ikjky can be combined into an index of length 4. In this basis,

the application of any single qubit gate V on the qth qubit of σ can be implemented as
`

V b V
˘

q
|σROy. The reason is that for any matrices A,B, we have |ABy “

`

B bB
˘

|Ay.

Application of a two-qubit gate V “
1
ř

i1,i2“0

1
ř

j1,j2“0
Vi1i2,j1j2 |i1i2y xj1j2| will require a

small permutation of the indices of V b V . This is because

V b V “

1
ÿ

i1,i2“0

1
ÿ

j1,j2“0

1
ÿ

k1,k2“0

1
ÿ

l1,l2“0

Vi1i2,j1j2Vk1k2,l1l2 |i1i2k1k2y xj1j2l1l2| . (8.19)

Since we have applied a permutation of 1-qubit vector spaces on the input state, we

have to apply the same permutation here. Mimicking the same permutation on V bV will

give us

pV b V qRO “

1
ÿ

i1,i2“0

1
ÿ

j1,j2“0

1
ÿ

k1,k2“0

1
ÿ

l1,l2“0

Vi1i2,j1j2Vk1k2,l1l2 |i1k1i2k2y xj1l1j2l2| . (8.20)

Note that in the single-qubit gate case, we don’t require such a permutation of indices.

Now, we can say that the application of V on the qth can be simulated by computing

pV b V qROq |σROy. So both single-qubit and two-qubit operations have been localized and

the same techniques we have used for vector-based MPS simulations can be used for the

density matrix-based MPS as well.
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8.5 MPS as an Extension of Product States

The concept of MPS can be seen as a generalization of product states. Note that for any

product state |ψy “ |ψp1qyb ¨ ¨ ¨ b |ψpnqy, with |ψpjqy “ ψ
pjq
0 |0y`ψ

pjq
1 |1y being single qubit

pure states, we have ψi1i2,...in “
n
ś

j“1
ψ
pjq
ij

. Hence, a valid MPS decompostion of |ψy is given

by core tensors Gpjq with G
pjq
0 “ ψ

pjq
0 and G

pjq
1 “ ψ

pjq
1 . All the bond dimensions here are

1, which is the least possible. As mentioned earlier, the bond dimensions are positively

correlated with the entanglement. So, for separable states, we get the lowest possible

bond dimension. When the scalars in the product state decomposition are replaced with

matrices, we get an MPS decomposition.

8.6 Additionally Required Lemmas

Lemma 4. For any unitary V , we have

ż

U

ηpUV qdU “

ż

U

ηpV UqdU “

ż

U

ηpUqdU (8.21)

for any integrable functional η where dU is the Haar measure.

Lemma 5. Let A,B,C,D P CNˆN be arbitrary matrices. Then, we have

ż

U

trpBAU qtrpDCU qdU “
1

N2 ´ 1
ptrpAqtrpBqtrpCqtrpDq ` trpACqtrpBDqq

´
1

NpN2 ´ 1q
ptrpACqtrpBqtrpDq ` trpAqtrpCqtrpBDqq , (8.22)

where dU is the Haar measure.

Lemma 6. Let A,B P CNˆN be arbitrary matrices. Then, we have

ż

U

trpBAU qdU “
tr pAq tr pBq

N
,

where dU is the Haar measure.
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Lemma 7. [Mit+18] Parameter Shift Rule: Let σ P Dn and let O P Hn. Then, for any

ansatz Cpθq “
m
ś

p“1
e´iθpHp, where θ “ rθ1 . . . θms

T and Hp P Hn @ p, we have

Bθpfσ,Opθq “
fσ,Opθp`q ´ fσ,Opθp´q

2
, (8.23)

where Bθp is the partial derivative with respect to θp, θp˘ “ rθ1, . . . , θp´1,θp˘π{2,θp`1, . . . , θms
T .

Lemma 8. [Cer+21b] Let σ P Dn and let O P Hn. For any ansatz Cpθq “
t
ś

p“1
Uppθpq

where Uppθpq “
m
ś

q“1
e´iθpqHpq , where θp “ rθ1 . . . θms

T , Hpq P Hn and θ “ θ1 ‘ ¨ ¨ ¨ ‘ θt,

and for any p, q, define

U pL,qq
p pθpq “

q´1
ź

j“1

e´iθpjHpj , (8.24)

U pR,qq
p pθpq “

m
ź

j“q`1

e´iθpjHpj . (8.25)

Then, we have

Eθ

`

Bθpqfσ,Opθq
˘

“ 0, (8.26)

where U1pθ1q, U2pθ2q, . . . , Up´1pθp´1q, Up`1pθp`1q, . . . , Utpθtq along with either U
pL,qq
p or

U
pR,qq
p form unitary 2-designs.

Lemma 9. Tracial Matrix Hölder’s Inequality [Bau11]: For any A,B P Ctˆt, and any

1 ď p, q ď 8 such that 1
p `

1
q “ 1, we have,

ˇ

ˇtrpA:Bq
ˇ

ˇ ď }A}p}B}q. (8.27)

Lemma 10. Cauchy-Schwarz Inequality: Let x, y be vectors in some inner product space

with inner product x , y. Then, we have

|xx, yy|2 ď xx, xyxy, yy. (8.28)
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Lemma 11. For a set of numbers λ0, λ1, . . . , λD´1, where D is even, with λi P t1,´1u

and |tλi “ 1 | i “ 0, . . . , D ´ 1u| “ D{2, we have
D´1
ř

i,j“0,i‰j
λiλj “ ´D.

Proof. Let I “ tpi, jq | i, j “ 0, 1, 2, . . . , D ´ 1u. Define I˘ “ tpi, jq P I |λiλj “ ˘1u. So

|I˘| “ D2{2. All D
2

2 elements in I´ should have i ‰ j. But only D2

2 ´D elements in I`

can have i ‰ j since whenever i “ j, pi, jq P I`. Hence,
ř

i‰j
λiλj “ ´D.

Lemma 12. Let A P C2nˆ2n. Then, we have,

ż

U

tr
`

ZiA1n´kbU

˘

dU “ 0, (8.29)

for any i P tn´ k ` 1, . . . , nu, where dU is the Haar measure.

Proof. Let A “
2n´1
ř

p,q“0
Apq |p1:n´ky xq1:n´k| b |pn´k`1:ny xqn´k`1:n|. Then, we have

ż

U

tr
`

ZiA1n´kbU

˘

dU “

2n´1
ÿ

p,q“0

Apqδp1:n´k,q1:n´k

ż

U

tr pZip|pn´k`1:ny xqn´k`1:n|qU q dU “ 0,

(8.30)

where the last equality follows from Lemma 6.

Lemma 13. Let A P C2nˆ2n. Then, we have,

ż

U

trpZiA1n´kbU qtrpZjA1n´kbU qdU “ 0, (8.31)

for any i, j P tn´ k ` 1, . . . , nu with i ‰ j, where dU is the Haar measure.
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Proof. Let A “
2n´1
ř

p,q“0
Apq |p1:n´ky xq1:n´k| b |pn´k`1:ny xqn´k`1:n|. Then, we have

ż

U

tr
´

ZiA1
2n´kbU

¯

tr
´

ZjA1
2n´kbU

¯

dU

“

ż

U

2n´1
ÿ

p,q,r,s“0

ApqArsδp1:n´k,q1:n´k
δr1:n´k,s1:n´k

ˆ trpZip|pn´k`1:ny xqn´k`1:n|qU q

ˆ trpZjp|rn´k`1:ny xsn´k`1:n|qU qdU (8.32)

“ 0, (8.33)

where the last equality follows from Lemma 5.



155

Bibliography

[Aar07] Scott Aaronson. “The learnability of quantum states”. In: Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 463.2088
(Sept. 2007), pp. 3089–3114. doi: 10.1098/rspa.2007.0113. url: https:
//doi.org/10.1098%2Frspa.2007.0113.

[Aar18] Scott Aaronson. “Shadow Tomography of Quantum States”. In: Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing.
STOC 2018. Los Angeles, CA, USA: Association for Computing Machinery,
2018, pp. 325–338. isbn: 9781450355599. doi: 10.1145/3188745.3188802.
url: https://doi.org/10.1145/3188745.3188802.

[AG04] Scott Aaronson and Daniel Gottesman. “Improved simulation of stabilizer cir-
cuits”. In: Phys. Rev. A 70 (5 Nov. 2004), p. 052328. doi: 10.1103/PhysRevA.
70.052328. url: https://link.aps.org/doi/10.1103/PhysRevA.70.
052328.

[ABG20] Afham, Afrad Basheer, and Sandeep Goyal. Quantum k-nearest neighbor ma-
chine learning algorithm. Mar. 2020.

[ABG07] Esma Aımeur, Gilles Brassard, and Sébastien Gambs. “Quantum Clustering
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[GT09] Otfried Gühne and Géza Tóth. “Entanglement detection”. In: Physics Reports
474.1–6 (Apr. 2009), pp. 1–75. issn: 0370-1573. doi: 10.1016/j.physrep.
2009.02.004. url: http://dx.doi.org/10.1016/j.physrep.2009.02.
004.
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Induced Barren Plateaus”. In: PRX Quantum 2 (4 Oct. 2021), p. 040316.
doi: 10.1103/PRXQuantum.2.040316. url: https://link.aps.org/doi/
10.1103/PRXQuantum.2.040316.

[Oru13] Roman Orus. “A Practical Introduction to Tensor Networks: Matrix Product
States and Projected Entangled Pair States”. In: Annals of Physics 349 (June
2013). doi: 10.1016/j.aop.2014.06.013.

[Ose11] I. V. Oseledets. “Tensor-Train Decomposition”. In: SIAM Journal on Scien-
tific Computing 33.5 (2011), pp. 2295–2317. doi: 10.1137/090752286. eprint:
https://doi.org/10.1137/090752286. url: https://doi.org/10.1137/
090752286.

[Pai+21] Marco Paini et al. “Estimating expectation values using approximate quan-
tum states”. In: Quantum 5 (Mar. 2021), p. 413. issn: 2521-327X. doi: 10.
22331/q-2021-03-16-413. url: https://doi.org/10.22331/q-2021-03-
16-413.

[PKH24] Chae-Yeun Park, Minhyeok Kang, and Joonsuk Huh. Hardware-efficient ansatz
without barren plateaus in any depth. 2024. arXiv: 2403.04844 [quant-ph].
url: https://arxiv.org/abs/2403.04844.

[Par05] K. R. Parthasarathy. “Lectures on Quantum Computation, Quantum Error
Correcting Codes And Information Theory”. In: 2005.

[Pat+21] Taylor L. Patti et al. “Entanglement devised barren plateau mitigation”. In:
Physical Review Research 3.3 (July 2021). doi: 10.1103/physrevresearch.
3 . 033090. url: https : / / doi . org / 10 . 1103 % 2Fphysrevresearch . 3 .
033090.

https://doi.org/10.1007/s11128-012-0388-5
https://doi.org/10.1007/s11128-012-0388-5
https://doi.org/10.1007/s11128-012-0388-5
https://doi.org/10.1145/2897518.2897544
https://doi.org/10.1145/2897518.2897544
https://doi.org/10.48550/ARXIV.2202.02909
https://arxiv.org/abs/2202.02909
https://arxiv.org/abs/2202.02909
https://doi.org/10.1103/PRXQuantum.2.040316
https://link.aps.org/doi/10.1103/PRXQuantum.2.040316
https://link.aps.org/doi/10.1103/PRXQuantum.2.040316
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.22331/q-2021-03-16-413
https://doi.org/10.22331/q-2021-03-16-413
https://doi.org/10.22331/q-2021-03-16-413
https://doi.org/10.22331/q-2021-03-16-413
https://arxiv.org/abs/2403.04844
https://arxiv.org/abs/2403.04844
https://doi.org/10.1103/physrevresearch.3.033090
https://doi.org/10.1103/physrevresearch.3.033090
https://doi.org/10.1103%2Fphysrevresearch.3.033090
https://doi.org/10.1103%2Fphysrevresearch.3.033090


172

[PTP19] Alex Pepper, Nora Tischler, and Geoff J. Pryde. “Experimental Realization of
a Quantum Autoencoder: The Compression of Qutrits via Machine Learning”.
In: Phys. Rev. Lett. 122 (6 Feb. 2019), p. 060501. doi: 10.1103/PhysRevLett.
122.060501. url: https://link.aps.org/doi/10.1103/PhysRevLett.
122.060501.

[Per+07] D. Perez-Garcia et al. Matrix Product State Representations. 2007. arXiv:
quant-ph/0608197 [quant-ph].

[Per+14] Alberto Peruzzo et al. “A variational eigenvalue solver on a photonic quan-
tum processor”. In: Nature Communications 5.1 (July 2014). doi: 10.1038/
ncomms5213. url: https://doi.org/10.1038%2Fncomms5213.

[Pes+21] Arthur Pesah et al. “Absence of Barren Plateaus in Quantum Convolutional
Neural Networks”. In: Physical Review X 11.4 (Oct. 2021). doi: 10.1103/
physrevx.11.041011. url: https://doi.org/10.1103%2Fphysrevx.11.
041011.

[Phu+10] Clifton Phua et al. “A Comprehensive Survey of Data Mining-based Fraud
Detection Research”. In: CoRR abs/1009.6119 (Sept. 2010).

[Pir+10] B Pirvu et al. “Matrix product operator representations”. In: New Journal of
Physics 12.2 (Feb. 2010), p. 025012. doi: 10.1088/1367-2630/12/2/025012.
url: https://dx.doi.org/10.1088/1367-2630/12/2/025012.

[Pow64] M. J. D. Powell. “An efficient method for finding the minimum of a function of
several variables without calculating derivatives”. In: The Computer Journal
7.2 (Jan. 1964), pp. 155–162. issn: 0010-4620. doi: 10.1093/comjnl/7.2.
155. eprint: https://academic.oup.com/comjnl/article-pdf/7/2/155/
959784/070155.pdf. url: https://doi.org/10.1093/comjnl/7.2.155.

[Pre18] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quan-
tum 2 (Aug. 2018), p. 79. issn: 2521-327X. doi: 10.22331/q-2018-08-06-
79. url: http://dx.doi.org/10.22331/q-2018-08-06-79.

[Qi+23] Han Qi et al. “The barren plateaus of quantum neural networks: review,
taxonomy and trends”. In: Quantum Information Processing 22 (2023), pp. 1–
26. url: https://api.semanticscholar.org/CorpusID:266164696.

[RSL22] Ali Rad, Alireza Seif, and Norbert M. Linke. “Surviving The Barren Plateau
in Variational Quantum Circuits with Bayesian Learning Initialization”. In:
arXiv:2203.02464 (2022). url: https://arxiv.org/abs/2203.02464.

[RRS06] Jaikumar Radhakrishnan, Martin Rötteler, and Pranab Kumar Sen. “Ran-
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