
i 

Non-contact acoustic excitation and 
associated nonlinear dynamics of small 
levitated objects

by Mehdi Akbarzadeh 

Thesis submitted in fulfilment of the requirements for 
the degree of 

Doctor of Philosophy

under the supervision of Associated Prof. Sebastian Oberst, and 
co- supervision of Associated Prof. Benjamin Halkon

University of Technology Sydney
Faculty of Engineering and IT
July 2024



ii

CERTIFICATE OF ORIGINAL AUTHORSHIP 

I, Mehdi Akbarzadeh, declare that this thesis is submitted in fulfilment of the 

requirements for the award of Doctor of Philosophy, in the School of Mechanical and 

Mechatronic Engineering / Faculty of Engineering and IT, at the University of 

Technology Sydney.  

This thesis is wholly my own work unless otherwise referenced or acknowledged. In 

addition, I certify that all information sources and literature used are indicated in the 

thesis.  

This document has not been submitted for qualifications at any other academic institution. 

This research is supported by the Australian Government Research Training Program. 

Signature: 

Date: 30 June 2024 



iii 
 

ACKNOWLEDGMENT 

First, I would like to express my heartfelt gratitude to my supervisor, Associate Professor 

Sebastian Oberst, for his invaluable guidance and support throughout this research. His 

profound knowledge of nonlinear dynamics and nonlinear time series analysis and serious 

attitude toward academic research will benefit me throughout my life. I also sincerely 

thank Associate Professor Ben Halkon, my co-supervisor, and Dr. Shahrokh 

Sepehrirahnama for their sincere help, support, and advice in my research. 

I especially want to thank my lovely wife, Arezou, for her endless support during these 

years. Her emotional support, especially during the COVID-19 lockdown, has been a 

pillar of strength. She always inspired me with her hard work and persistence, 

encouraging me never to give up. This thesis will always remind me of her kindness, love, 

and encouragement. I would also like to thank my son, Ayrik. His presence was a source 

of joy and motivation throughout this journey. Finally, I want to express my deepest 

gratitude and love to my parents for their selfless support and continuous understanding. 

During my candidature, I encountered significant and unforeseen challenges, primarily 

due to the global COVID-19 pandemic and subsequent border closures. The pandemic 

caused many interruptions and delays, significantly affecting my study plan. Due to the 

COVID-19 pandemic and the closure of Australia’s borders, I was stuck in my home 

country, Iran, for 18 months. I had no access to my scholarship, university labs, or the 

academic environment during this time. The total duration of my PhD was 45 months, of 

which I spent 18 months (40%) in my home country. Despite these obstacles, I persevered 

and completed my research. This journey has been a testament to resilience and 

determination, and I am deeply grateful to everyone who supported me. 

 

 

 

 

 

 

 



iv 
 

LIST OF CONTRIBUTION 

 

Conference paper: 

1- M. Akbarzadeh, S. Oberst, S. Sepehrirahnama,Y. K.  Chiang, B. J. Halkon, A. 

Melnikov, D. A. Powell, A Numerical Study of Acoustic Radiation Forces for the 

Contactless Excitation of a Microcantilever, in NODYCON Conference 

Proceedings Series, Springer International Publishing, 2021, pp. 335 – 345. 

 

2- M. Akbarzadeh, S. Oberst, S. Sepehrirahnama and B. Halkon, B., Application of 

SINDy for the discovery of governing equations of a trapped particle in an 

acoustic radiation force field, Conf. Proceedings of NODYCON 2023, Italy, 

Rome, 18-22 June 2023. 

 

3- M. Akbarzadeh, S. Oberst, S. Sepehrirahnama and B. Halkon, Sensitivity and 

bifurcation analysis of an analytical model of a trapped object in an externally 

excited acoustic radiation force field, Conf. Proceedings of NOVEM23. 

Auckland, 1-10. 

 

4- M. Akbarzadeh, S. Oberst, S. Sepehrirahnama and B. Halkon, Modulated acoustic 

radiation force in a carrier standing wave, Virtual Conf. of Acoustofluidics 2021. 

 

Poster: 

1- M. Akbarzadeh, S. Oberst, S. Sepehrirahnama and B. Halkon, Recurrence plots 

for the analysis of nonlinear dynamical behaviour of a particle trapped in an 

external induced radiation force field, 10TH INTERNATIONAL SYMPOSIUM 

ON RECURRENCE PLOTS 2023, Tsukuba, Japan. 

 

Journal paper: 

1- M. Akbarzadeh, S. Oberst, and B. Halkon, Manipulation of an acoustically 

levitated object using externally excited standing waves, major revision submitted 

to JASA. 

 



v 
 

2- M. Akbarzadeh, B. Halkon, and S. Oberst, Sparse identification of nonlinear 

dynamics applied to the levitation of acoustically large objects, in preparation for 

submission. 

 

3- M. Akbarzadeh, S. Oberst, and B. Halkon, Nonlinear dynamical analysis of a 

particle trapped in an acoustic radiation force in a carrier standing wave, in 

preparation for submission. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENT 

CERTIFICATE OF ORIGINAL AUTHORSHIP…………………………... ii 

ACKNOWLEDGEMENTS…………………………………………………... iii 

LIST OF CONTRIBUTION ……….………………………………………... iv 

TABLE OF CONTENT.……………………...………………………………. vi 

LIST OF FIGURES ………………………...………………………………... x 

LIST OF TABLES...……………...…………………………………………... xvii 

NOMENCLATURE ….………………………………………………………. xviii 

ABSTRACT …………………………………………………………………... xxiv 

CHAPTER 1: LITERATURE REVIEW AND THESIS OUTLINE……….. 1 

  1.1. Introduction………………………………………………………………. 1 

  1.2. Mathematical description of acoustic radiation force……………………... 2 

    1.2.1. Homotopy perturbation method……………………………………….. 2 

    1.2.2. Eulerian mean excess pressure………………………………………… 3 

    1.2.3. Reynolds stress………………………………………………………... 6 

  1.3. Literature review………………………………………………………….. 8 

    1.3.1. Static (time averaging) component……………………………………. 9 

    1.3.2. Dynamic (time varying) component…………………………………... 16 

  1.4. Application of acoustic radiation forces in non-contact excitation and 

particle manipulation…………………………………………………………… 

 
 
18 

    1.4.1. Dual-frequency ultrasound beams…………………………………….. 18 

    1.4.2. Non-contact excitation………………………………………………… 20 

    1.4.3. Numerical study: contactless excitation of microcantilever…………… 22 

    1.4.4. Particle manipulation and acoustic levitation………....……………….. 27 

  1.5. Research motivation and gaps…………………………………………….. 31 



vii 
 

    1.5.1. Aim and objectives……………………………………………………. 32 

    1.5.2. Research questions…………………………………………………….. 34 

    1.5.3. Thesis outline………………………………………………………….. 34 

CHAPTER 2: VIBRATION CONTROL OF A LEVITATED OBJECTS 

THROUGH EXTERNAL EXCITATION…………………………………... 

 

37 

  2.1. Introduction…………………………………………………………..…... 37 

  2.2. Gorkov formulation………………………………………………………. 37 

  2.3. Theoretical modelling…………………………………………………….. 38 

  2.4. Numerical simulation……………………………………………………... 43 

    2.4.1. Numerical simulation based on finite element method (FEM)………… 44 

    2.4.2. Numerical simulation based on time averaged method………………... 48 

  2.5. Numerical and theoretical model validation………………………………. 49 

  2.6. Effects of external excitation on acoustic radiation force sign…………….. 55 

  2.7. Nonlinear dynamical model of the acoustic radiation forces……………… 56 

  2.8. Asymptotic methods……………………………………………………… 57 

    2.8.1. Nonlinear free undamped vibration analysis…………………………... 58 

      2.8.1.1. Global residue harmonic balance method (GRHBM)……………… 58 

      2.8.1.2. Homotopy perturbation method with multiple expanding 

parameters (HPMEP)…………………………………………………………… 

 

62 

    2.8.2. The effect of the viscosity on the nonlinear response………………….. 65 

    2.8.3. Parametric study of analytical solutions……………………………….. 68 

  2.9. Conclusion………………………………………………………………... 72 

CHAPTER 3: EXPERIMENTS AND STATISTICAL ANALYSIS……….. 74 

  3.1. Introduction………………………………………………………………. 74 

  3.2. Statistical model and Sobol sensitivity analysis…………………………... 75 



viii 
 

    3.2.1. Optimizing time step selection in numerical solutions: A statistical 

approach……....................................................................................................... 

 

75 

    3.2.2. Sobol’s method of sensitivity analysis………………………………… 77 

  3.3. Numerical frequency response and bifurcation diagram………………….. 79 

  3.4. Experimental analysis…………………………………………………….. 82 

    3.4.1. Tiny-Lev and levitated object properties………………………………. 83 

    3.4.2. Experimental set up……………………………………………………. 85 

    3.4.3. Filtering method in experimental time series data……………………... 87 

    3.4.4. Experimental verification……………………………………………... 89 

    3.4.5. Experimental bifurcation diagram…………………………………….. 94 

  3.5. Conclusion……………………………………………………………..…. 98 

CHAPTER 4: DATA-DRIVEN MODELLING FOR LARGE OBJECT 

MOTION………………………………………………………………………. 

 

101 

  4.1. Introduction………………………………………………………………. 101 

  4.2. SINDy algorithm…………………………………………………………. 102 

 4.3. Nonlinear time series analysis techniques – system identification…………  105 

    4.3.1. Phase space reconstruction ………………..…………………………... 105 

    4.3.2. Recurrence plot………………………………………...……………… 106 

    4.3.3. Recurrence networks and motifs…………….………………………… 107 

  4.4. Results from the application of the SINDy algorithm….………………….. 107 

    4.4.1. Application of the SINDy algorithm to time series data based on the 

noise free theoretical model…………………………………………………….. 

 

107 

    4.4.2. Application of the SINDy algorithm to a time series model based on 

the noisy theoretical model……………………………………………………... 

 

109 

    4.4.3. SINDy for acoustically small object: Experimental time series data…... 111 



ix 
 

    4.4.4. SINDy for acoustically large object: Experimental time series data…… 113 

4.5. Results for nonlinear time series analysis - System identification………….. 124 

 4.6. Conclusion………………………………………………………………… 128 

CHAPTER 5: CONCLUSION……………………………………………….. 130 

 5.1. Summery…………………………………………………………………... 131 

  5.2. Recommendations for future work………………………………………... 135 

    5.2.1. Multi-object dynamics………………………………………………… 135 

    5.2.2. More analysis for SINDy coefficients and its library functions………... 136 

    5.2.3. Nonlinear dynamics and synchronization…………………………..… 136 

REFERENCES………………………………………………………………... 138 

APPENDIX……………………………………………………………………. 156 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

Fig. 1.1. The interaction between incoming acoustic waves (with a specific 

frequency and wavelength, ) and an object, resulting in scattered 

waves. This interaction creates an interference pattern, which generates 

an acoustic radiation force acting on the object………………………... 

 

 

 

1 

Fig. 1.2. Boundary of acoustic radiation force for a) rigid object: the time-

averaged radiation force on the object can be found by integrating the 

mean excess pressure over the object surface, , b) compressible 

object: the integration in Eq. (1.1) must be applied over the moving 

object surface, ……………………………………………………….. 

 

 

 

 

7 

Fig. 1.3.   Scattered pressure distribution around the object according to 

numerical simulation, with magnification showing the finite element 

model in COMSOL Multiphysics to find radiation forces on a 

compressible sphere; adopted from [61]……………………………… 

 

 

 

15 

Fig. 1.4. The dual-frequency ultrasound beam method, using two different 

frequencies (  and ), focused on a point to generate a dynamic 

radiation force………………………………………………………… 

 

 

19 

Fig. 1.5. A comparison between a) first, b) second, and c) third resonance 

frequency for ultrasound radiation force and base excitation obtained 

in the Huber’s experiment adopted from [36]……………….………... 

 

 

23 

Fig. 1.6. a) A 3D Finite element model of microcantilever, b) Three first mode 

shapes c) A 3D finite element model of microcantilever surrounded in 

a fluid domain, adopted from [32].……………………………………. 

 

 

23 

Fig. 1.7. The frequency response of the lowest three resonances of the 

microcantilever obtained by two excitation methods: a, b) boundary 

load excitation (a: displacement, b: phase) and c, d) acoustic wave 

excitation (c: displacement, d: phase), adopted from [32].……………. 

 

 

 

25 

Fig. 1.8. A comparison between numerical simulation and some points of the 

experimental results presented in [37] near a) the first resonance 

frequency and b) the second resonance frequency when the amplitude 

of the boundary load excitation in numerical simulation is ………… 

 

 

 

26 



xi 
 

Fig. 1.9. The sign of the acoustic contrast factor, , determines whether a 

particle is attracted to or repelled from a pressure node in a plane 

standing wave field with wavelength of ……………………………... 

 

 

29 

Fig. 2.1. A spherical object within an acoustic radiation force field with external 

sinusoidal excitation. (a) Schematic of an oscillatory object with mass 

 oscillating around its equilibrium position, ; (b) mechanical 

model with nonlinear stiffness ( ). denotes the 

object oscillation caused by external disturbance, 

, with its (c) experimental set up; c) photo of 

experimental setup with levitated object………………………………. 

 

 

 

 

 

 

39 

Fig. 2.2. A 2D axi-symmetrical finite element………………………………….. 45 

Fig. 2.3. The 3D model of a spherical object immersed in a water domain……... 47 

Fig. 2.4. a) Velocity field, and b) scattered pressure around the object in the 

fluid domain ( )…………………………………………….. 

 

48 

Fig. 2.5. Simulation steps in COMSOL Multiphysics to calculate  for a 

spherical object with a radius of 10 , a) Modelling, b) meshing, c) 

velocity field , and d) sound pressure level ……………….. 

 

 

48 

Fig. 2.6. A comparison of obtained acoustic radiation force (ARF) between a) 

King formulation [62], FEM (our 3D COMSOL simulation presented 

in section 2.4.1), and Gorkov formulation [64] versus the sphere radius, 

b) the same comparison plotted against the dimensionless parameter 

……………………………………………………………………... 

 

 

 

 

50 

Fig. 2.7. Acoustic radiation force (ARF) vs the distance between object centre 

and the velocity node (VN) for a) an object with  , and b) 

……………………………………………................................. 

 

 

50 

Fig. 2.8. The acoustic contrast factor for an oscillatory object trapped in an 

acoustic radiation force field using data provided in [118]. The non-

zero mean value is for the time-averaged component of the radiation 

force which matches the results of Eqs. (2.22) and (2.23). The object’s 

location corresponds to different spatial positions within the acoustic 

field during its oscillation, as the force is time-averaged and evaluated 

under steady-state conditions…………………………...……………... 

 

 

 

 

 

 

51 



xii 
 

Fig. 2.9. The acoustic contrast factor and   with respect to the 

oscillation amplitude oscillation, showing the variation of  from 

positive to negative value. The vertical “dot-dash line” represents the 

theoretical limit for the maximum value of the external excitation 

amplitude……………………………………………………………… 

 

 

 

 

52 

Fig. 2.10. The symmetry in the field variables a) acoustic pressure, and b) 

velocity field, in case of acoustic radiation force cancellation when  

 and …………………………………………. 

 

 

53 

Fig. 2.11. A comparison of  for some non-spherical objects using the current 

FEM study which shows similar behaviour to the spherical object in 

Fig. 2.9……………………………………………………………........ 

 

 

54 

Fig. 2.12. A comparison of the acoustic radiation force function obtained from 

the current study, Eq. (2.22), FEM (Eq. (2.25)), and the time-averaged 

radiation force, Eq. (2.27), with respect to  for an oscillating object, 

showing both (a) negative and (b) positive contrast factors as function 

of the oscillation amplitude , and deviation occurs at …… 

 

 

 

 

55 

Fig. 2.13. a) The acoustic radiation force function, , plotted against non-

dimensional value of object oscillation,  and b) The acoustic 

radiation force function, , plotted against non-dimensional value of 

object position,  [37]………………………………………………. 

 

 

 

55 

Fig. 2.14. The nonlinear frequency deviation obtained by Eq. (2.87) for first order 

and second order of GRHBM and HPMPE……………………………. 

 

69 

Fig. 2.15. The effect of the higher order terms in Taylor series in expanding 

 in calculating natural frequency using Eq. (2.61)……………… 

 

69 

Fig. 2.16. The effect of the density on the linear natural frequency according to 

the King model………………………………………………………... 

 

70 

Fig. 2.17. The effect of the compressibility on the linear natural frequency……… 70 

Fig. 2.18. A comparison study between analytical solution obtained by AGM and 

numerical simulation for two different initial condition: a) 

, and b) ……………………………….………. 

 

 

71 

Fig. 2.19. The effect of the viscosity on the a) phase and the b) nonlinear 

frequency deviation of oscillation for various initial condition ……… 

 

71 



xiii 
 

Fig. 3.1. Time step convergence study using a box plot.  The whiskers show the 

minimal and maximal values, the edges of the box indicate the 25 – 

and 75 – percentile the red line represents the median and the notches 

show the 95% confidence interval of the median. Non-overlapping 

notches show non-significant difference in median estimates of the 

relative error…………………………………………………………... 

 

 

 

 

 

77 

Fig. 3.2. Results of the variance-based sensitivity analysis when  and  are 

the first-order and total sensitivity coefficient, respectively. 

Importance ranking of the coefficients in Eq. (2.35) by sensitivity 

analysis using uniformly distribution. The external excitation has the 

strongest influence on the  coefficient in the equation of motion (Eq. 

(2.35)),  is having a rather small influence on the 

dynamics………….…………………………………………………... 

 

 

 

 

 

 

79 

Fig. 3.3. A comparison between the predicted frequency responses from Eq. 

(2.35) with the experimental results [118] for an object trapped in a 

standing wave levitator. The observed jump between different states 

indicates a softening behaviour. The theoretical predicted curve was 

generated by increasing the frequency, corresponding to the “sweep 

up” scenario in the experimental work………………………………… 

 

 

 

 

 

80 

Fig. 3.4. The bifurcation diagram for a spherical object trapped in an oscillating 

radiation force field using Eq. (2.35), . The chaotic (C) or 

quasi-periodic (QP) area from  to  indicates the 

intricate high-order periodic behaviour in low amplitude, the jump (J) 

phenomenon occurs at , period-doubling bifurcation (PDB) 

can be observed at  and increasing in periodic solutions or 

period adding bifurcations (PAB) occurs at ……………….. 

 

 

 

 

 

 

81 

Fig. 3.5. a) A single ultrasonic transducer, b) Simulation illustrating acoustic 

traps [125]. c) Visualization of traps exhibiting maximum strength in 

the middle. d) Image showcasing the Tiny-Lev apparatus with a 

spherical object levitated in mid-air…………………………………… 

 

 

 

83 

Fig. 3.6. a) Ultrasonic transducers arranged on one plate of the Tiny-Lev, b) the 

tool used for inserting particles into the standing wave’s node, c) visual 

inspection process employing a ruler………………………………….. 

 

 

84 



xiv 
 

Fig. 3.7. a) The analytical balance device used for particle mass measurement, 

b) statistical box plot illustrating particle density……………………… 

 

85 

Fig. 3.8. a) Entire Experimental setup located within the hemi-anechoic 

chamber. b) Schematic representation of the complete experimental 

setup………………………………………………………................... 

 

 

86 

Fig. 3.9.   a) A segment of the measured time series data in the experimental 

work, b) the same time series data in Fig. 3.9a after applying the 

GHKSS filter, and c) zoomed-in area of a peak in the measured time 

series data, and d) the same peak after applying the GHKSS filter…….. 

 

 

 

89 

Fig. 3.10. Fig. 3.10. Linear relationship in period-1 of oscillation and more 

frequencies, which could relate to bifurcation phenomena in some 

frequencies. b-d) PSD of the object's response at points marked by 

arrows in, with the red line indicating the threshold for identifying 

dominant frequencies………………………………………………..... 

 

 

 

 

90 

Fig. 3.11. Statistical analysis of a) frequency and b) phase difference, between 

external excitation and object response at various external excitation 

frequencies (  measurements). The notches indicate that phase 

and frequency differences are not significantly different anymore for 

frequencies greater than 20 Hz, and c) linear relationship between 

shaker input voltage and measured LDV signal on Tiny-Lev vibrations, 

and d) on spherical object response employing excitation frequencies 

ranging from 10 Hz to 100 Hz…………………………………………. 

 

 

 

 

 

 

 

91 

Fig. 3.12. Linear relationship between shaker input and LDV voltage for Tiny-

Lev vibrations (10–100 Hz) with irregular x-axis intervals from 

manual adjustments…………………………………………………… 

 

 

93 

Fig. 3.13. Fig. 3.13. Linear relationship between shaker input and LDV voltage 

for object vibrations (10–100 Hz) with irregular x-axis intervals due to 

manual adjustments…...………………………………………………. 

 

 

93 

Fig. 3.14. a) Levitated object in the Tiny-Lev on a vibrating shaker, with a red 

hue from LDV laser illumination; b) drilled hole in the Tiny-Lev’s top 

plate showing the object; c) laser beam path through the 

hole.……………………………………………………………….…. 

 

 

 

95 



xv 
 

Fig. 3.15. The bifurcation diagram for an acoustically small object ( ) 

derived analytically from Eq. (2.35) (solid line), and experimental data 

(dots)………………………………………………………………….. 

 

 

96 

Fig. 3.16. The bifurcation diagram for an acoustically large object ( ) 

derived analytically from Eq. 2.35 (solid line), and experimental data 

(dots)………………………………………………………………….. 

 

 

98 

Fig. 4.1. Schematic of SINDy algorithm to identify governing equation from 

nonlinear time series data including a time history of the states  and 

derivatives .  and  are unknown coefficients.………………….. 

 

 

104 

Fig. 4.2. Error estimation values according to Eq. (4.7) evaluating the resilience 

of the SINDy algorithm to theoretical noisy time series data. Here,  

represents the standard deviation of the Gaussian noise deliberately 

added to the system……………………………………………………. 

 

 

 

110 

Fig. 4.3. Nonlinear time series data a) the theoretical dynamical equation of 

motion and the b) measured by the LDV and collected by oscilloscope. 

This data set and a library of nonlinear functions of the state variables 

are used to determine the matrix coefficients of  and  and c) 

sparse identified model………………………………………………... 

 

 

 

 

112 

Fig. 4.4. A comparison between a) the theoretical dynamical equation of motion 

and the b) experimental data which shows the s well-captured by sparse 

identified system and c) sparse identified model………………………. 

 

 

113 

Fig. 4.5. Comparison of experimentally measured data and SINDy predictions 

using averaged coefficients from Table 4.2 with filtered data for 

example 1. The plot highlights the accuracy of the SINDy algorithm in 

predicting the system dynamics……………………………………….. 

 

 

 

115 

Fig. 4.6. PSD of original signal measured by LDV before applying filter, after 

applying filter and according to Eq. (4.13) for example 

1……………………………………………………………………… 

 

 

117 

Fig. 4.7. Comparison of experimentally measured data and SINDy predictions 

using averaged coefficients from Table 4.5 with filtered data for 

example 2…………………………………………………………….. 

 

 

118 



xvi 
 

Fig. 4.8. PSD of original signal measured by LDV before applying filter, after 

applying filter and according to Eq. (4.15) for example  

2……………………………………………………………………… 

 

 

118 

Fig. 4.9. Comparison of experimentally measured data and SINDy predictions 

using averaged coefficients from Table 4.6 with filtered data for 

example 3………………………………………………………...…… 

 

 

120 

Fig. 4.10. PSD of original signal measured by LDV before applying filter, after 

applying filter and according to Eq. (4.16) for example 3……………..  

 

120 

  Fig. 4.11. a) Bifurcation diagram for an acoustically large object: analytical 

(solid line) vs. experimental data (dots), showing discrepancies due to 

Gorkov's small-object assumption. b) Comparison of the SINDy 

results (red), and experimental data (blue), highlighting deviations at 

higher excitation amplitudes due to the polynomial-based library 

limitations. Some distinct regions with different dynamics are selected 

for further analysis.……………………………………………………. 

 

 

 

 

 

 

123 

  Fig. 4.12. a) MI test for selecting time delay of τ and b) FNN functions for 

selecting embedding dimension of m, according to case studies 

presented in Table 4.5..………………………………………………... 

 

 

125 

  Fig. 4.13. Fig. 4.13. Motifs for a) regular harmonic motion related to network in 

Table 4.2: case 1, and b) irregular quasi-periodic motion related to 

network in Table 4.2: case 2…..………………………………….......... 

 

 

128 

 

 

 

 

 

 

 

 



xvii 
 

LIST OF TABLES 

Table 1.1. A comparison between King, Yosioka and Gorkov’s formulation, 

( )………………………………………………………….. 

 

9 

Table 1.2. Steps, aim and objectives of the thesis……………………………. 33 

Table 2.1. Baseline parameters [61]…………………………………………. 46 

Table 2.2. Comparison of FEM perturbation result based on the 3D model 

with 2D-axisymmetric model and analytical results……………… 

 

49 

Table 2.3. Dimensions for calculating the acoustic radiation force using the 

3D FEM for some simple nonspherical objects………………….. 

 

54 

Table 4.1. Application of the SINDy algorithm to a time series model based 

on theoretical model taken from Chapter 2: Case studies, their 

coefficients extracted and phase portraits…………………............ 

 

 

109 

Table 4.2. Coefficient predicted by SINDy for case 1 according to four 

measurements…………………………………………………….. 

 

114 

Table 4.3. Coefficient predicted by SINDy for case 2 according to four 

measurements…………………………………………………….. 

 

117 

Table 4.4. Coefficient predicted by SINDy for case 3 according to four 

measurements…………………………………………………….. 

 

119 

Table 4.5. Three different filtered time series data and their PSD, obtained by 

measuring voltage by using LDV in the experimental setup, when 

 varies from  to  for an object with a radius of 

, with the external excitation frequency of 

……………………………………………………………... 

 

 

 

 

125 

Table 4.6. Reconstructed phase space, RP, and RN for three case studies 

presented in Table 4.5…………………………………………….. 

 

126 

 

 

 

 

 



xviii 
 

NOMENCLATURE 

 Acoustic radiation force 

 Acoustic radiation stress tensor 

 Normal vector on the surface 

 Object surface 

 A general differential operator 

 A known analytical function 

 Domain in Eq. (1.2) 

 
Boundary operator in Eq. (1.2) 

 Boundary of the domain  in Eq. (1.2) 

 Pressure 

 Velocity 

 Density 

 Gradient operator 

 Kronecker delta 

 mbedding parameter in HPM 

 Linear part of the Eq. (1.2) 

 Nonlinear part of the Eq. (1.2) 

 Gradient of potential function of velocity 



xix 
 

  Fox-Wallace parameter in Eq. (1.13) 

 Laplace operator 

 Cylindrical coordinates in a plane 

 Wave number 

 Spherical object volume 

 coustic energy density 

 Amplitude of the incident pressure field 

 Distance between the pressure node and the object centre  

 Compressibility 

 Speed of sound 

 Force potential 

 Time-averaged of incident pressure  

 ime-averaged of incident velocity 

 and  Monopole and dipole coefficients in Gorkov formula 

 Lame elastic constants 

 
Del operator 

 Curl operator of  

 displacement gradient  

 Field displacements  



xx 
 

 Bessel function of the first kind 

,  Expansion coefficients 

 Neumann factor 

 Bessel function of the second kind 

 Hankel function of the second kind 

 Stress tensor 

 Absolute temperature in Eq. (1.36) 

κ Thermal conductivity in Eq. (1.36) 

,  Frequency 

 Time 

 and  Object radius 

 ynamic radiation force function 

 Phase-shift 

 The loss factor  

 Acoustic contrast factor,  

 Linearized acoustic radiation force 

 and  Mass 

 Gravity acceleration 

 Displacement and its time derivatives 



xxi 
 

 and   Constants in Eq. (1.55) 

 Object’s distance from a pressure node 

 Acoustic wavelength 

 Nonlinear softening spring constant  

 Object’s response  

 External excitation 

 Object’s amplitude 

 and  ime components of the acoustic pressure 

 Phase modulation in the incident pressure field 

 and  Constant coefficients in Eq. (2.17) 

 and  Amplitudes of the harmonic forces in Eq. (2.20) 

 Time averaged of acoustic radiation force 

 Drag coefficient 

, ,  Constant coefficients in Eq. (2.35) 

, ,  Dimensionless displacement of object and its time 

derivatives 

 Nonlinear amplitude function 

 Acoustic resistance 

 Gamma function 



xxii 
 

 Relative error 

 Variance of the  

 Variance because of the first order effects 

 First-order sensitivity coefficient for the  parameter 

 Second and higher order sensitivity coefficient for each 

parameter 

 Total sensitivity coefficient for the  parameter 

 Amplitude of external excitation 

 Voltage measured by the LDV 

 Amplitude of object oscillation 

 Amplitude of object velocity 

 Mutual information between two random variables  and  

 Joint probability distribution 

,  Marginal probability distribution functions of  and  

 Time delay 

 Embedded dimension 

 Threshold value in Eq. (4.2) 

  Heaviside function 



xxiii 
 

 A library matrix of potential candidate nonlinear functions 

in SINDy 

 State space variable in SINDy  

 Unknown matrices of coefficients in SINDy 

 Unknown function in SINDy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxiv 
 

ABSTRACT 

Acoustic radiation force occurs when an object scatters part of the incident momentum 

from an acoustic wave. Most studies focus on the acoustic field, while the dynamic 

response of objects in the acoustic radiation force field is less explored. This research 

addresses this gap by applying external excitation to manipulate the force’s magnitude 

and direction. A theoretical model is developed, demonstrating that the acoustic contrast 

factor depends on the properties of the spherical object, fluid characteristics, and the 

external excitation properties. This model is extended to non-spherical objects using a 

finite element analysis. Then, by using the Gorkov formulation, a mathematical model is 

developed for the governing equation of motion, like the Duffing equation. The system’s 

dynamic sensitivity is analysed using the Sobol indices, revealing that external vibrations 

can significantly alter the system’s response. Using experimental time series data and the 

Sparse Identification of Nonlinear Dynamics (SINDy) algorithm, the nonlinear 

differential equations of motion for the object oscillating in an acoustic radiation force 

field are extracted. Bifurcation diagrams reveal the system’s transition from regular to 

irregular motion. Recurrence plots and motifs classify these dynamics, offering insights 

into controlling the system and studying the nonlinear dynamics of levitated objects. 
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CHAPTER 1: LITERATURE REVIEW AND THESIS OUTLINE

1.1. Introduction

One of the most interesting phenomena in the nonlinear acoustic field is the acoustic 

radiation force ( ), which occurs when incident acoustic waves interact with scattered 

waves from an object positioned in the path of the incoming acoustic wave with 

wavelength [1-3] (Fig. 1.1). Many applications have been developed to exploit this 

force; for example, some of these applications are lab-on-a-chip technology [4-10], 

medical diagnostics [11-13], levitation [14-19], biomedical research [20-26], sorting, 

separation, and particle manipulation [27-33], and (operational) modal analysis by non-

contact excitation [34-37].

Fig. 1.1. The interaction between incoming acoustic waves (with a specific frequency 

and wavelength, ) and an object, resulting in scattered waves. This interaction creates 

an interference pattern, which generates an acoustic radiation force acting on the object.

The acoustic radiation force is known to be static when the incident field is continuous 

with constant amplitude, but it can become dynamic for a continuous wave-field for 

which intensity varies with time [38,39]. 

Scattering waves

Incoming acoustic waves
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1.2. Mathematical description of acoustic radiation force 

Mathematically, the acoustic radiation force can be calculated by integrating the acoustic 

radiation stress tensor, , on the object’s surface, , as [40-42] 

,    (1.1) 

where  represents the normal vector on the surface. Acoustic radiation force can be 

calculated by solving the scattering problem and determining the stress tensor. The 

fundamental equations for calculating the acoustic radiation stress tensor result from 

applying the perturbation theory and time averaging method to continuity and Navier-

Stokes equations [42-50]. 

1.2.1.  Homotopy perturbation method 

The basic idea behind a perturbation technique is the transforming of a nonlinear 

differential equation into an infinite number of linear ones. The small parameter 

determines not only the accuracy of the perturbation approximations but also the validity 

of the perturbation method [51]. The Homotopy Perturbation method (HPM) is a type of 

perturbation method that does not require the presence of a small parameter (perturbation 

parameter) in the equation which makes it versatile for a wide range of applications [51-

53]. While the literature presents the perturbation method for deriving fundamental 

equations of acoustic radiation force [5], this section demonstrates that the same equations 

can be readily derived using the HPM. The main objective of this section is to obtain the 

acoustic radiation force formulation from the Navier- stokes and continuity equations, by 

means of the HPM [52,53]. To show the basic ideas of the HPM, the following equation 

is considered [51-53] 

, ,  (1.2) 

with the boundary condition of: 

, ,  (1.3) 

where  is a general differential operator,  a boundary operator,  a known analytical 

function and  is the boundary of the domain ,  can be divided into two parts which 

are  and , where  is linear and  is nonlinear part of the Eq. (1.2). Therefore Eq. (1.2) 

can be rewritten as follows 
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, , (1.4) 

Homotopy perturbation structure is shown as: 

    , (1.5) 

where: 

, 
(1.6) 

in Eq. (1.5),      is an embedding parameter and  is the first approximation that 

satisfies the boundary condition. The solution of Eq. (1.5) can be assumed and written as 

a power series in , as following 

. (1.7) 

1.2.2. Eulerian mean excess pressure 
In calculating the acoustic radiation forces using the perturbation theory, the first-order 

quantities are used to obtain the second-order quantities and, accordingly, the acoustic 

radiation stress tensor, . In this procedure, the acoustic radiation force can be calculated 

by considering terms up to the second-order quantities, while higher-order terms are 

ignored. While the time average of the first-order terms is zero, the time average of the 

second-order terms over one period is non-zero. To obtain fundamental equations, the 

HPM is applied to the Navier-Stokes equations and the continuity equation, for an ideal 

fluid flow in an arbitrary direction of  [44].  The tensor form of Navier-Stokes equations, 

and continuity equation for an ideal fluid can be presented as Eq. (1.8a) and (1.8b) [44]. 

By expanding the parameters until the third order, the pressure ( ), velocity ( ), and 

density ( ) can be written as Eq. (1.8c) 

, 
(1.8a) 

, (1.8b) 

, 

, 

, 

(1.8c) 
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When,  is the gradient operator, and  is the kronecker delta. According to the HPM and 

substituting Eq. (1.8c) into Navier-Stokes equations Eq. (1.8a) and rearranging based on 

powers of , these equations are obtained 

 ρ , (1.9) 

and 

 ρ ρ ρ

, 

(1.10) 

by solving the Eq. (1.9), the solution can be obtained as 

ρ
, (1.11) 

by substituting the Eq. (1.11) into Eq. (1.10) and solving for the second order of the 

pressure, one can obtain 

ρ ρ
ρ

ρ . 

(1.12) 

The barotropic equation of state,  is used, when   and  

 is the Fox-Wallace parameter which characterizes the nonlinearity of the fluid. Also, 

we know that in an ideal fluid , which means that an ideal fluid is 

irrotational and the velocity, , can be described by a potential function, . By 

replacing the second order of the velocity with the second order of the potential function 

of velocity, , and by defining the sound velocity as 

, the second order of the pressure can be obtained as [9] 

ρ ρ . (1.13) 

For a linear fluid , and the second order of the pressure can be re-written as 

ρ
ρ , (1.14) 
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the third order of the pressure also, can be obtained similarly by the coefficient of  

ρ ρ

ρ ρ ρ

ρ , 

(1.15) 

by solving Eq. (1.15) the third order of the pressure can be obtained as 

, 

(1.16) 

In HPM we can continue the procedure to achieve a desired accuracy. The third order of 

the pressure, Eq. (1.16), has not been reported in any publications, but considering its 

much smaller value compared to the second-order pressure, it is a reasonable decision to 

ignore the third-order and higher solutions [41]. By applying the time averaged operator, 

, on the Eq. (1.14), the time averaged of second order pressure, called the Eulerian 

mean excess pressure [5], can be obtained which is a nonzero value as 

. (1.17) 

The obtained results for the second order of the pressure are like which were reported by 

[38,41]. It is termed “Eulerian” because it is evaluated at any position of a given point, as 

opposed to a “Lagrangian” one. The velocity field can also be obtained using the HPM. 

Using the same approach for continuity equation [44] 

  ρ , (1.18) 

and 

ρ ρ ρ , (1.19) 

from the Eq. (1.18), and by using the barotropic equation of state [38], and for a linear 

fluid, and by replacing the first order of the potential function of the velocity in the 

equation, one can obtain 
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, 
(1.20) 

Eq. (1.20) is the well-known acoustic wave equation that is the starting point of 

investigating acoustic radiation force. To obtain the first order of velocity field, these 

boundary conditions are related to the object geometry and object and medium 

compressibility. This equation has been solved in the literature for simple geometrical 

objects such as spheres and cylinders. Because the boundary conditions can be stated in 

a polar coordinate system for spheres or cylinders, the wave equation should be 

transferred to the polar coordinate system. Therefore, the Laplace operator, , should be 

transferred to the polar system [55,56]. Hence, the Laplace operator for the two radial and 

angular directions can be re-written as 

, (1.21) 

by using the Laplace operator in polar system, the Eq. (1.20) converts to 

, 
(1.22) 

by using the separation variables method and assuming that  

 the boundary value problems for the Eq. (1.22), can be presented by 

, (1.23) 

in Eq. (1.23) the first equation for   is the well-known Bessel equation [21], where 

 is the wave number and  is a positive integer number. Bessel functions and spherical 

harmonics often appear when solving scattering problems in spherical and cylindrical 

coordinate. Multipole expansion techniques can then be used to decompose the scattered 

field into simpler components, providing a more manageable way to analyse and 

understand the scattering process [54-57]. 

1.2.3. Reynolds stress 

In an ideal fluid, the acoustic radiation stress tensor may consist of the mean excess 

pressure and the Reynolds stresses [58,59]. If the object boundary is fixed, with a slip 

condition at the boundary, the time-averaged radiation force on the object is found by 
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integrating the mean excess pressure over the object surface, [60-62]. However, we 

know that the object surface is free to move in response to the movements of the fluid, 

hence applying this integration over the moving object surface, is paramount (Fig. 1.2).

Fig. 1.2. Boundary of acoustic radiation force for a) rigid object: the time-averaged 

radiation force on the object can be found by integrating the mean excess pressure over 

the object surface, , b) compressible object: the integration in Eq. (1.1) must be 

applied over the moving object surface, .

Yosioka and Kawasima showed that a correction term called Reynolds stress should be 

added to the mean excess pressure. The mathematical description of Reynolds stress is 

discussed in the following.  In the Eulerian coordinate system, the continuity equation 

(Eq. 1.8b) can be written as [63]

, (1.24)

multiplying Eq. (1.24) by and add the result to the Navier-Stokes equations [44], and 

by using the product rule of differentiation

, (1.25)

The term of is called Reynolds stress and demonstrates the time-averaged 

transport of the momentum density with velocity across an area normal to the 

direction . is the dyadic product of velocity and is a -unit matrix. Then, the 

Incident wave

Scattered wavea) Scattered wave

Incident wave

b)
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acoustic radiation stress tensor, , is defined as summation of Eulerian mean excess 

pressure and Reynolds stresses as [61] 

. (1.26) 

Eq. (1.26) describes the acoustic radiation stress tensor, which represents the stresses 

exerted on an obstacle surface when subjected to an acoustic field. This tensor provides 

valuable information about how the acoustic waves interact with the object, including the 

magnitude, direction, and distribution of the stresses experienced by the surface. 

Understanding the acoustic radiation tensor enables us to study the dynamics of objects 

within acoustic environments which help us for developing theories and methodologies 

to compute acoustic radiation forces for various geometries. 

1.3. Literature review 

In the context of acoustic radiation force, the terms “static” and “dynamic” are inherently 

tied to the timescales over which the force is observed and analysed. The “static” acoustic 

radiation force refers to the time-averaged force resulting from the interaction of acoustic 

waves with an object. This force is considered constant when observed over timescales 

much longer than the acoustic wave period, effectively averaging out the rapid 

oscillations and dynamic interactions originating from continuous wave-object 

interactions. The acoustic radiation force’s “dynamic” component pertains to variations 

occurring over shorter timescales, where temporal fluctuations in the acoustic field or the 

object’s response are significant. These fluctuations can arise from modulations in the 

acoustic wave’s amplitude, frequency, or phase, leading to time-dependent forces that 

induce oscillatory motions or deformations in the object. Understanding the interplay 

between static and dynamic acoustic radiation force and their associated timescales is 

crucial for accurately characterising and utilising these forces in various applications, 

such as non-contact modal excitation and elasticity imaging [31-39].  

Closed-form formulae are widely available in the literature for computing static (time-

averaged) and dynamic (time-varying) acoustic radiation forces acting on objects with 

simple geometries, such as acoustically small spheres, cylinders, and ellipsoids [59-74]. 

However, no closed-form analytical solutions exist for acoustically large objects to 

calculate the acoustic radiation force. While spherical harmonics and perturbation 

techniques provide promising approaches [75], they often necessitate complex numerical 

or semi-analytical methods rather than straightforward analytical solutions. 



9 
 

Consequently, although analytical formulas are well-established for acoustically small 

objects, numerical simulations remain indispensable for studying small and large objects. 

Here, “acoustically small” and “acoustically large” are terms used to describe the size of 

an object relative to the acoustic wavelength. 

1.3.1. Static (time averaging) component  

In the literature, “acoustic radiation force” typically refers to the static component of the 

time-averaged force. In contrast, “dynamic acoustic radiation force” describes the time-

varying component. King was the first person to present an analytical model for the acting 

acoustic radiation force on solid small spheres, which is small relative to the wavelength 

of the sound, placed in a standing acoustic wave field immersed in an ideal fluid [62]. 

Yosioka and Kawasima extended King’s theory to encompass compressible small spheres 

[63].  Gorkov developed a formulation for the acoustic force based on time-averaged 

kinetic and potential energies within stationary acoustic fields [64].  

Gorkov’s theory, when applied to acoustically small and compressible objects, predicts 

that the acoustic radiation force acts as the gradient of a potential function. The King, 

Yosioka, and Gorkov’s formulation are succinctly presented in Table 1.1. 

Table 1.1. A comparison between King, Yosioka and Gorkov’s formulation, ( ). 

Theory Acoustic radiation force formula Variables 

 

King 

 

 

 

 

 

, 

 

 

Yosioka, 

Kawasima 

 

 
, , 

 

 

Gorkov 

 

, 

 

 

, 
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In the Table 1.1,   is the wave number,  is the radius of the particle,  is the spherical 

object volume,  being the acoustic energy density,  is the amplitude of the incident 

pressure field,  is the distance between the pressure node and the centre of the small 

object or particle in the wave direction, , , and  are the density, compressibility, and 

speed of sound with indices 0 and 1 denoting the fluid and the particle respectively,  is 

the force potential when the force can be written as   and  represent the 

gradient operator.  and  are the time-averaged incident pressure and velocity 

field, and  and  are the monopole and the dipole coefficients in Gorkov formula. To 

calculate the acoustic radiation force on particles the Gorkov’s formulation has been 

coded in the COMSOL Multiphysics “Particle Tracing for Fluid Flow” interface. But 

this formulation neglects thermo-viscous effects and only applies to acoustically small 

particles [61].  According to the formulation presented in Table.1.1 The Yosioka’s 

formula adds a correction term of , into the King’s formula to take the compressibility 

into account and the Gorkov and Yosioka formula are equivalent, and both give the same 

results. Farran was the first researcher who extended the theory of the scattering of the 

plane waves of sound by isotropic solid cylindrical and spherical objects, by considering 

the shear waves. His work reveals that how sound waves interact with solid cylinders and 

spheres. According to this theory, the equation of motion of a solid elastic medium can 

be written as [65] 

, (1.27) 

in Eq. (1.27)  are lame elastic constants,  is the del operator, 

 is the dilatation and is the divergence of displacement vector , 

 is the curl operator of ,  is the dual rotation vector of displacement gradient , 

and  is density of the object. By assuming that the displacement  including scaler, , 

and vector potential, , functions 

, (1.28) 

according to Eq. (1.28) displacement has two parts, first is associated with compressional 

waves and the second is associated with shear waves. Substituting Eq. (1.28) into Eq. 

(1.27): 
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, (1.29) 

the field displacements  must satisfy Eq. (1.28), and should be harmonic 

, and ,  (1.30) 

where 

, ,  (1.31) 

in the cylindrical coordinate,  can be obtained as 

, ,  (1.32) 

where  is the Bessel function of the first kind,  are expansion coefficients,  is the 

wave number. From Eq. (1.28) and Eq. (1.32), the displacement field can be obtained in 

cylindrical coordinates. Also, the stress field can be obtained from the continuum 

mechanics and by using the displacement field. By solving the wave equation in spherical 

coordinate, the incident and scattered acoustic wave pressure for a nonviscous fluid 

medium can be obtained as [65]: 

, 

, 

 (1.33) 

where  is Neumann factor , ,  is the Bessel 

function of the second kind,  is the Hankel function of the second kind, and  is the 

expansion coefficient. To calculate ,  there are three boundary conditions: 

1- At the interface surface, the normal component of stress in the solid 

must be equal to the pressure in the fluid. 

2- At the interface surface, the normal component of displacement in 

the solid must be equal to the normal component of displacement 

in the fluid. 

3- At the surface of the solid, the tangential components of shearing 

stress must vanish. 
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By transferring the boundary conditions to the spherical coordinate, Farran calculated the 

scattering by a solid spherical object. The analysis for the cylindrical coordinates is like 

the spherical case coordinate case [37]. Farran’s groundbreaking study marked a 

significant achievement by introducing a novel perspective to sound scattering. 

Specifically, his approach revolutionized considering non-spherical objects in studying 

acoustic interactions.  

Using the Farran’s results, Hasegawa et al. calculated the acoustic radiation force acting 

on a solid cylindrical object in a plane progressive sound field by an analytical 

formulation [66]. Hasegawa et al.’s formulation had the strength that it was the first 

attempt to calculate acoustic radiation force on non-spherical objects, but some shortages 

remain; for example, this theory is very limited and only valid for cylindrical objects, and 

other geometrical shapes fall outside of this theory realm.  

Wu et al. studied analytically and experimentally the acoustic radiation force exerted on 

long, rigid cylindrical objects whose axes are perpendicular to the direction of the 

propagation of sound waves [67]. In this theory, they used boundary conditions similar 

to those applied in King’s theory, but by using the coordinate transformation, they 

transferred the boundary conditions to a cylindrical coordinate system. The great 

advantage of this study was reporting experimental data that agreed with results obtained 

theoretically. This work was a good example of a comparison between theory and 

experiment, and the deviation between obtained results shows other factors that are not 

included in the theory and their effect on the radiation force magnitude. Although Wu et 

al. did not discuss these unknown factors, this deviation may be because of temperature 

changes, media losses, and other nonlinear properties. 

Mitri is a researcher who has worked extensively on static and dynamic acoustic radiation 

force on non-spherical objects [68-74]. He presented an analytical approach for 

calculating the acoustic radiation forces on elastic and viscoelastic cylinders in a quasi-

standing wave field. [68]. Also, he presented an analytical formulation to obtain the 

acoustic radiation forces exerted on the spherical shells and layered cylinders [69]. In this 

study and to obtain the acoustic field inside, the boundary conditions were considered at 

the inner and outer surfaces of the shell, and the shell material was assumed to be elastic 

and viscoelastic. Also, he found that the acoustic radiation forces in the near and far fields 

were equivalent. Moreover, he studied the acoustic radiation moment analytically and 
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found that it results in the rotation of the spherical objects irradiated by a Bessel beam 

[73]. 

Doinikov was the first researcher to study the effect of fluid viscosity on acoustic 

radiation force [76], and by considering the effects of viscosity, he expanded our 

understanding of how the surrounding medium influences the interaction between sound 

waves and particles. He presents a general formula to calculate the acoustic radiation 

force exerted on a spherical particle in an axisymmetric sound field immersed in a viscous 

heat-conducting fluid. The important feature of Doinikov’s theory is that it does not 

depend on particle size compared to the fluid viscous, thermal, and sound wavelengths. 

Doinikov obtained a general formulation for the acoustic radiation force, which can be 

applied to different spherical particles such as liquid drops, gas bubbles, spherical shells, 

rigid or elastic spheres, etc. As a result of scattered waves from the spheres, Doinikov 

derived a solution to consider acoustic streaming, which forms a foundation for 

comprehending the complexities of acoustic radiation force in realistic fluid 

environments. Doinikov considered the equations of motion of a viscous fluid as [76]: 

, (1.34) 

, (1.35) 

. (1.36) 

The Eq. (1.34) describes the momentum equation in fluid dynamics, the Eq. (1.35) 

describes the continuity equation in continues media, and the Eq. (1.36) describes the 

Maxwell’s relation which is the combination of first and second low of the 

thermodynamics. In these equations,  is the stress tensor,  is the absolute temperature, 

and  is the thermal conductivity. In his model, he considered the rotation in fluid caused 

by viscosity, and assumed that the velocity can be defined by a scalar term as the velocity 

potential function and vorticity velocity potentials of first order as [76]: 

, (1.37) 

In an ideal fluid, the force on a sphere aligns with the direction of wave propagation. 

However, Doinikov’s study reveals significant variations in forces between viscous and 
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non-viscous fluids. Specifically, spheres move toward wave propagation when a plate 

progressive wave applies viscous radiation pressure. In contrast, for gas bubbles in liquid, 

with wave frequencies exceeding a certain coefficient of the resonant frequency of the 

gas bubble, the pressure acts opposite to the wave propagation. Doinikov highlights that 

viscosity introduces an additional force on objects in the sound field. He concludes that 

viscosity can be neglected when the particle radius far exceeds the boundary layer 

thickness, and radiation force becomes a substantial component of the total force. 

Conversely, viscosity becomes non-negligible when the boundary layer thickness equals 

or surpasses the particle radius, significantly influencing the force exerted on the object. 

Analytical research, despite the ability to provide acceptable results for calculating the 

radiation force and how it changes, only allows a partial study of this issue due to the 

complexity of the geometry of the problem. For this reason, in recent years, numerical 

modelling of the acoustic radiation force has been considered by some researchers. 

Glynne-Jones et al. presented a finite element-based method to calculate radiation force 

acting on elastic particles of arbitrary size and geometry [61]. The proposed model was 

based on the propagation of the acoustic waves in non-viscous mediums and the linear 

scattering model. In their work and for a compressible sphere, as shown in Fig. 1.3, 

numerical simulation was done by constructing a 2D model implemented in COMSOL 

v.4.0a, and they showed that for an axisymmetric structure, the simulation time was a few 

seconds. They compared and verified the results they obtained with existing analytical 

solutions. Their work uses the perturbation analysis to obtain the second-order terms of 

the acoustic pressure and the velocity field. 
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Fig. 1.3.  Scattered pressure distribution around the object according to numerical 

simulation, with magnification showing the finite element model in COMSOL 

Multiphysics to find radiation forces on a compressible sphere; adopted from [61].

Their model was axisymmetric, and the particle was presented in a semicircular domain, 

and the fluid was shown as a rectangular domain surrounding it. NRBCs mean non-

reflecting boundary conditions (NRBCs) that delimit the computational domain and allow 

an acoustic field to be introduced by specifying pressure conditions over the boundary.

Lim and Sepehrirahnama used the multipole expansion method to compute acoustic 

radiation force and moment on rigid spheres and spheroids. They conducted finite element 

simulations for validating their results and found a good agreement between numerical 

and analytical results for small-sized spheres and ellipsoids [21]. Additionally, 

Sepehrirahnama et al. extended their numerical calculations to spheres in a viscous fluid. 

Their method incorporated multipole series and Stokeslet to compute radiation force in a 

viscous medium. The solution involved obtaining first-order velocity and pressure from 

the multipole series and calculating volumetric force in acoustic streaming [42]. 

Compared to the static acoustic radiation force, few papers have investigated the dynamic 

acoustic radiation force. In recent years, dynamic acoustic radiation force has become of 

practical importance in medicine tissue imaging or elastography, and non-contact 

excitation [34-37]. 
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1.3.2. Dynamic (time varying) component 

As discussed in the previous section, the acoustic radiation force becomes dynamic for a 

continuous wavefield in which the intensity varies with time. There are four most 

employed methods in the literature for producing dynamic (time-varying) acoustic 

radiation forces [77-79]: 

  Frequency Modulation: Modulating the frequency of the acoustic wave can introduce 

variations in the acoustic radiation force. By changing the frequency dynamically, one 

can influence the force acting on objects. 

  Amplitude Modulation: Varying the amplitude of the acoustic wave over time can also 

result in dynamic changes in the radiation force.  

  Parametric Excitation: Changing the properties of the medium or the object itself, can 

dynamically change the acoustic radiation force. 

  Dual-Frequency Beams: Using ultrasound beams with two different frequencies can 

leads to generation of dynamic acoustic radiation forces. 

Silva et al. presented a theory to calculate dynamic acoustic radiation force produced by 

dual-frequency ultrasound beams in ideal fluids [38]. Using a low-amplitude dual 

frequency plane wave, they calculated the dynamic acoustic radiation force exerted on 

solid elastic spheres made of Brass and Steele. They obtained two analytical formulations 

for dynamic and static acoustic radiation pressure and calculated the static and dynamic 

acoustic radiation forces accordingly. Finally, they concluded that the three different 

sources affect the dynamic radiation force magnitude during the interactions between the 

acoustic waves and the object. The first interaction is the momentum rate exchange due 

to object vibration, which causes fluid mass variation. The second interaction results from 

the second-order velocity potential, and the third interaction is due to the dynamic 

radiation stresses  

Also, Silva et al. investigated the parametric amplification of dynamic radiation force 

induced by acoustic waves in fluids [77]. Their method accounted for fluid nonlinearity 

and resolved the scattering problem to compute the radiation force accurately. To validate 

their findings, they conducted experiments measuring dynamic radiation force on an 

acrylic sphere submerged in degassed water and ethyl alcohol. This study addressed a 

previous limitation where fluid nonlinearity was disregarded, enhancing accuracy across 

various difference frequencies. 
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Moreover, they explored multifrequency radiation force, which can be used in vibro-

acoustography, which is a promising imaging technique with implications in biological 

science [78]. The method offers enhanced image fidelity by simultaneously capturing 

multiple tissue images, each corresponding to a spectral line of multifrequency radiation 

force. Multifrequency radiation force can be produced by a polychromatic propagated 

acoustic beam in a fluid. In their work, they presented an analytical approach for the 

dynamic radiation force exerted on a rigid sphere by a plane wave containing  frequency 

components. They found that the generated radiation force is consist of up to  

distinct frequency components. Moreover, because of the nonlinear nature of the wave 

propagation, the exerted radiation force is mainly caused by parametric amplification 

[78]. According to their paper, if an object is acoustically excited by a polychromatic 

acoustic beam with different frequencies , then the multifrequency 

radiation force,  , can be found as follows 

 
(1.38) 

where  is the component of the multifrequency radiation force,  , at difference 

frequencies . After solving the scattering problem, they 

presented an analytical formula to calculate , as 

, (1.39) 

when  is the acoustic energy density,  is the object radius, and   is the dynamic 

radiation force function, and can be found in Ref. [38]. Mitri and Fatemi presented an 

analytical approach to calculate acting dynamic acoustic radiation force on cylindrical 

shells in ideal fluid [79]. In their work, the radiation force generated by interference of a 

pair of low power, ultrasonic frequencies (dual beam mode). Then, by solving the 

scattering problem, they presented a formula to calculate exerted radiation force on 

cylindrical shells. According to their findings the radiation force consists of three parts, 

as 

 (1.40) 
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where  and  are static radiation force because of each individual wave, separately, 

and  is the dynamic radiation force in difference, .  Finally, they calculated the 

dynamic radiation force as follows 

 (1.41) 

where  and  are the energy density, and the dynamic radiation force function, and 

phase-shift, respectively [79].  

1.4. Application of acoustic radiation forces in non-contact excitation and 

particle manipulation 

Dynamic and static acoustic radiation forces find diverse applications, notably in non-

contact excitation utilizing dual beam frequencies, particle manipulation, and levitation 

[32-41]. In this section, some of these applications are mentioned and briefly described. 

1.4.1. Dual-frequency ultrasound beams 

In the literature, the dual-frequency ultrasound beam method presented as a way for 

generating dynamic acoustic radiation force and found various applications, such as tissue 

imaging and non-contact excitation [34-37]. If an object acoustically excited through a 

pair of ultrasound frequencies,   and , the exerted acoustic radiation force has five 

components, a component at  called static acoustic radiation force, three component 

at high frequency ,  2 , and  2  and a component  at the difference frequency 

(Fig. 1.4), .  

In dual-frequency ultrasound beams, the first order of the potential functions of velocity 

for each ultrasound acoustic wave can be written by [35] 

, 

, 

(1.42) 
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Fig. 1.4. The dual-frequency ultrasound beam method, using two different frequencies 

( and ), focused on a point to generate a dynamic radiation force.

s indices show the incident and scattered waves, respectively. Using Eq. (1.1) the 

dynamic radiation force can be obtained as [38]

,

(1.43)

the sign donates the dyadic product, by assuming that the potential function of the 

velocity is a harmonic function as [25]

,

,
(1.44)

and by using these two Trigonometric relations

,

,
(1.45)

Eq. (1.43) can be re-written as

Object

Focal point
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(1.46) 

     By taking time average of Eq. (1.46), and by considering that  

, 

, 

  (1.47) 

they presented radiation force has two static components, one related to the first wave and 

another related to second wave and has dynamic components at 2 , 2  ,

 and . In the literature, the component at the difference frequency, 

,  called dynamic acoustic radiation force [38].   

1.4.2. Non-contact excitation 

Huber et al. were the first to suggest dual beam mode for non-contact excitation of 

different range sizes of objects, from microcantilever to guitar body, to obtain their 

resonant frequencies. In dual beam mode they assumed that the velocity potential function 

can be expressed as [34-37] 

.    (1.48) 

Two ultrasound waves have same amplitude , their frequencies are  and , 

respectively, and  is the phase difference between two waves. In this case, the dynamic 

acoustic radiation force acting on the object, is proportional to the square of the velocity 

potential function. As discussed previously, the exerted dynamic acoustic radiation force 

has four components. First, a component at frequency difference , second 

and third components at  and , and forth component at . To perform non-
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contact excitation in audible frequency range  and , are chosen close to each other, 

and symmetric about a central frequency  as 

, 

. 

   (1.49) 

In many experiments, except  component other components will be more than audible 

frequency range and can be neglected, therefore, the only time-varying component of 

interest for the modal analysis in audible frequency range is the radiation force component 

at the difference frequency of , in this case, the dynamic acoustic radiation force can 

be written as [37] 

.   (1.50) 

In 2006, Huber et al. suggested dynamic acoustic radiation force for non-contact 

excitation of a pipe organ reed. He compared and discussed the results obtained using 

single, dual, and confocal ultrasound transducers in (AM) and two-beam modes, along 

with results obtained using a mechanical shaker and audio excitation using a speaker [34]. 

In another paper, Huber et al.  performed non-contact excitation of hard-drive suspensions 

using ultrasound radiation force. This paper was like the previous work for operation 

deflection shape of a pipe organ reed but with a different case study. The head gimbal 

assembly suspension used in this study was a roughly  length cantilever 

structure with an average width of about  [35]. Using the acoustic radiation 

force, Huber et al. used focused acoustic waves to conduct a non-contact excitation of 

microcantilevers and coupled microcantilever arrays [36]. The diameter of the focal spot 

produced by this transducer is 3 mm, it is much bigger than microcantilever dimension, 

and it can be assumed that the entire microcantilever (Mikromasch CSC12-E silicon 

AFM, m3) is uniformly excited [36]. An operation deflection shape was 

conducted using acoustic radiation force to obtain the first three resonance frequencies of 

the microcantilever. Then, results were compared with those obtained by base excitation, 

which shows a good agreement. Also, Huber et al. used acoustic radiation force for non-

contact excitation of a classical guitar. In previous studies, he demonstrated that it is 

possible to use the ultrasound radiation force in the air for operation deflection shape of 

objects ranging in size from microcantilevers that are a few hundred microns in length to 

hard drive suspensions and other cantilevers a few centimetres long [37]. In this study, he 

demonstrated that the ultrasound radiation force excitation technique could also be used 
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for non-contact excitation of larger objects such as acoustic guitars. He measured the 

frequency response and deflection shapes of a Cordoba 45R (70–800 Hz) and compared 

results with mechanical shaker excitation. As noted, Huber’s papers focus primarily on 

identifying resonance frequencies and mode shapes rather than mentioning the applied 

acoustic force magnitude. To address this gap and estimate the acoustic force, in the next 

section a numerical simulation was conducted using COMSOL Multiphysics software. 

1.4.3. Numerical study: contactless excitation of microcantilever 

In this section, the numerical study of contactless excitation of microcantilevers is 

discussed, directly linking to the broader theme of using dynamic acoustic radiation 

forces for non-contact excitation. By exploring the behaviour of microcantilevers under 

acoustic excitation, the study provides deeper insights into the mechanisms and potential 

applications of acoustic radiation forces in non-contact scenarios. Additionally, it offers 

an opportunity to build on the work done by Huber in experimental studies. While Huber 

effectively demonstrated acoustic forces for non-contact excitation, his research did not 

include simulations to quantify the forces exerted on the objects. To extend this work, 

numerical simulations were employed using COMSOL Multiphysics to model the 

system, focusing on acoustic-structure interactions driven by first-order pressure 

fluctuations. This simulation-based approach complements Huber’s experimental 

findings and provides a more detailed understanding of the forces involved. Moreover, 

the work sets the foundation for the modelling techniques presented in Chapter 2, where 

the analysis is extended to include second-order time-averaged acoustic radiation forces, 

offering a more comprehensive understanding of non-contact excitation and its 

applications. Here, a numerical study is conducted to determine the vibration response of 

a silicon microcantilever based on the Huber et al.’s experimental results. Boundary load 

and acoustic wave excitation techniques are employed to identify the first three resonance 

frequencies of the microcantilever and their corresponding mode shapes [36]. Comparing 

the numerical responses with Huber et al.’s experimental results suggests that the 

dynamic acoustic radiation force behaves similarly to a uniform boundary load. The 

numerical analysis reveals resonance peaks at 11.4 kHz, 72.1 kHz, and 198 kHz, which 

show good agreement with Huber’s findings, as shown in Fig. 1.5. Subsequently, the 

dynamic acoustic radiation force is estimated using the resonance frequencies obtained 

from the numerical simulation. 
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Fig. 1.5. A comparison between a) first, b) second, and c) third resonance frequency for 

ultrasound radiation force and base excitation obtained in the Huber’s experiment 

adopted from [36].

To obtain the first three resonance frequencies, the mode shapes, and the exerted radiation 

force, A numerical simulation using COMSOL Multiphysics (Fig. 1.6) was conducted to 

model a microcantilever, and its results were compared with experimental findings from 

[36].

Fig. 1.6. a) A 3D Finite element model of microcantilever, b) three first mode shapes, 

and c) a 3D finite element model of microcantilever surrounded in a fluid domain,

adopted from [32].
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Resonant frequencies are obtained using boundary load and acoustic plane pressure wave 

excitations. According to [36], dynamic acoustic radiation force uniformly excites the 

microcantilever, allowing it to be modelled as a harmonic boundary load. In Huber’s 

work, the force frequency is known and adjustable via amplitude modulation, but its 

amplitude remains unknown. 

To do analysis by boundary load excitation, the solid mechanics physics in COMSOL 

was selected, using a linear elastic microcantilever. A mapped mesh of 18,033 cube-

shaped elements was generated and fixed boundaries were used to clamp the beam 

(Fig.1.6a). A boundary pressure load of  amplitude and a frequency range of 5 

kHz to 210 kHz was applied using 1 kHz frequency steps.  Using both the pressure 

acoustics module, and the solid mechanics module within the acoustic-structure 

interaction Multiphysics interface in frequency domain, the microcantilever was excited 

using a plane acoustic wave of 10 Pa amplitude and three first mode shapes obtained 

(Fig.1.6b). The fluid domain has been modelled as a spherical region surrounding the 

microcantilever (Fig 1.6c). Due to free tetrahedral meshing of both, the solid and fluid 

domain, this model includes with 127,003 tetrahedral elements many more elements than 

the boundary load excitation model in which the solid domain only was meshed. The 

boundary condition for the fluid at the outer boundary of the spherical domain is that of 

spherical wave radiation which allows acoustic waves to exit the domain without 

reflection (i.e. fulfilling the Sommerfeld radiation condition) [80].  

Fig.1.7a shows the frequency response of the microcantilever tip with the lowest three 

resonances obtained with boundary load excitation. The first three resonant peaks are 

determined at 11.4 kHz, 72.6 kHz, and 198 kHz and are in good agreement with Huber’s 

experimental results showing less than 0.5% difference (11.2 kHz, 72.4 kHz, and 204 

kHz) [37]. Using acoustic wave excitation, the first three resonances are obtained at the 

same frequencies obtained by boundary load excitation as shown in Fig.1.7b.   
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Fig. 1.7. The frequency response of the lowest three resonances of the microcantilever 

obtained by two excitation methods: a, b) boundary load excitation (a: displacement, b: 

phase) and c, d) acoustic wave excitation (c: displacement, d: phase), adopted from [32].

Based on the numerical simulation, and the obtained resonant frequencies the dynamic 

acoustic radiation force can be estimated. By comparing different excitation methods, we 

can approximate the known response of the system. However, another unknown 

parameter in this experiment is damping which has been considered in the following as 

“loss factor” in terms of material damping. The loss factor depends on other parameters 

such as temperature or frequency and by increasing frequency the loss factor decreases

[81]; for silicon, is generally expected to lie between 0.001 and 0.1 [81]. the acoustic 

radiation force can be expressed as [37]

, (1.51)
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with being its resonance frequency. To estimate the amplitude of the acoustic 

radiation force we adjust the input force so that the output of the microcantilever tip speed 

corresponds to the value measured by Huber et al. [37] as presented in Fig.1.5.

Fig. 1.8. A comparison between numerical simulation and some points of the 

experimental results presented in [36] near a) the first resonance frequency and b) the 

second resonance frequency when the amplitude of the boundary load excitation in 

numerical simulation is .

As shown in Fig. 1.8a, for the first resonant frequency and if and 

, the frequency responses of the computational model match well those of the 

experiments. For the first resonant frequency, , and the radiation force we can hence 

write

. (1.52)

Similarly, as shown in Fig. 1.8b, for the 2nd resonant frequency, if and 

, the response is similar to that found in experiments and the radiation 

force can be written as

, (1.53)

finally, for the 3rd resonant frequency, , if , the radiation force expression 

becomes 

. (1.54)
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 Due to having at least two unknowns, forcing and damping, the latter having different 

components including anchor and radiation losses, or internal damping, which has yet to 

be studied experimentally, no clear answer can be obtained here.  

If one considered nonlinear vibrations of the microcantilever as related to nonlinear 

stiffness or nonlinear damping, the estimated acoustic radiation force would have to 

change. The absolute deviation between the magnitudes of the forces, as calculated using 

linear and nonlinear assumptions, depends on the kind, the degree, and the strength of the 

nonlinearity involved [81]. The finite element method could calculate the radiation force 

exerted on a nonlinear microcantilever by knowing all those nonlinear parameters for 

stiffness, damping, etc.  

Huber et al. [34-37] studied non-contact excitation to determine natural frequencies and 

deflection shapes, providing key insights into acoustic radiation forces. This thesis builds 

on their work by investigating the dynamic response of levitated objects in acoustic fields. 

It introduces an experimental setup to study their behaviour under external vibrations. 

Unlike Huber’s approach, which focused on dynamic reaction for frequency and shape 

analysis, this research examines object responses within acoustic radiation forces for 

levitated objects, adding to existing knowledge. 

1.4.4. Particle manipulation and acoustic levitation 

Manipulation and control of particle movement can be applied in various ways. 

Traditional methods for particle manipulation include magnetic fields [82], electric fields, 

and dielectric manipulation [83]. However, these techniques heavily depend on the 

electrical and magnetic properties of the particles involved. In contrast, acoustic waves 

offer a versatile approach to manipulating a wide range of particles [84]. Compared to 

other types of forces, the use of acoustic radiation force has very low limitations and only 

depends on the existence of differences between structure properties and host fluid 

properties. Methods based on the acoustic radiation forces show minimal adverse effects 

compared to conventional techniques relying on electric and magnetic fields, particularly 

notable in biological applications. Unlike electric fields, which can generate excessive 

heat and potentially cause overheating concerns, ultrasonic waves generate little to no 

heat during their application, ensuring the safety of delicate biological samples. For 

example, acoustic radiation forces do not interfere with iron balance, a critical 

consideration in many biological and biomedical contexts where magnetic fields can 
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disrupt cellular processes [85,86]. Therefore, there is a compelling need to investigate the 

mechanisms behind the generation and application of acoustic radiation forces [82-86].  

Additionally, acoustic levitation has emerged as a powerful tool across various fields, 

including volumetric displays, additive manufacturing, and microfluidics, demonstrating 

its versatility and broad potential applications [87,88]. Volumetric displays leverage the 

ability of acoustic levitation to manipulate particles in mid-air, creating three-dimensional 

visualizations without the need for a physical screen.  

In additive manufacturing, acoustic levitation is utilized for precise, non-contact 

manipulation of materials, enabling innovative fabrication techniques. The ability to 

levitate and merge droplets or particles has been applied to build structures layer by layer, 

offering advantages in precision and cleanliness over traditional methods [89]. Research 

in this area, such as that by Andrade et al. has highlighted the potential for acoustic 

levitation in creating complex geometries and handling sensitive materials without 

contamination [90]. In microfluidics, acoustic levitation plays a crucial role in lab-on-a-

chip applications, where it is used for tasks such as cell sorting, mixing, and manipulation 

of droplets. Guo et al. explored using acoustofluidic techniques to achieve high-

throughput and precise control over fluidic processes. These applications demonstrate the 

versatility of acoustic levitation in advancing micro-scale operations, particularly in 

biomedical research and diagnostics [91]. 

Phased array levitators have revolutionized acoustic manipulation by enabling precise, 

non-contact control of objects through dynamically modulated acoustic fields [92,93]. It 

is an array of ultrasonic transducers that is set to combine and focus sound energy at 

specific points in the fluid volume (in front of the array). Each transducer helps create an 

ultrasonic wave at a specific point. Seah et al. [94] conducted a groundbreaking study on 

dexterous ultrasonic levitation of millimetre-sized objects in the air, showcasing the 

precise manipulation capabilities of phased array levitator systems. By dynamically 

modulating acoustic fields, they achieved stable levitation and controlled translation, 

rotation, and orientation of particles with high accuracy, even in free air. This approach 

allowed for effective manipulation of various object sizes and materials, emphasizing the 

potential of ultrasonic levitation for non-contact applications such as material handling 

and assembly [94]. Building on these advancements, Marzo et al. [95] introduced a novel 

method utilizing ultrasonic phased arrays to create holographic acoustic fields for three-

dimensional levitation and manipulation. Through phase-shifting individual transducers, 
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they demonstrated precise control over particle positioning and motion, enabling 

simultaneous levitation of multiple particles and dynamic manipulation along complex 

trajectories. Their work highlighted the versatility of holographic acoustic methods in 

generating intricate pressure fields for stable and precise particle trapping. Together, these 

studies underscore the potential of phased array systems in advancing the field of acoustic 

manipulation.

In acoustic manipulation, being able to control the magnitude and direction of the exerted

acoustic radiation forces and produce alternating pushing and pulling forces is desired. 

One factor determining the direction of the acoustic radiation force is the acoustic contrast 

factor, denoted as . This dimensionless parameter, which is caused by the interaction 

between the sound waves emitted in the medium and the particle in its path, determines 

the direction of the acoustic radiation forces, and according to the Gorkov’s formulation, 

it depends on the ratio of density and compressibility of the particle to the surrounding 

fluid (Fig. 1.9).

Fig. 1.9. The sign of the acoustic contrast factor, , determines whether a particle is 

attracted to or repelled from a pressure node in a plane standing wave field with 

wavelength of .

There are some techniques to produce acoustic radiation forces with pushing and pulling 

effects beyond the particles and medium density and compressibility, such as Gaussian 

Beams [96,97], cross-plane beams [98], and Bessel beams [99-101] with some 

restrictions. For example, in the case of Bessel beams, the negative radiation force 

emerges in specific frequency-beam angle values depending on the target object 

properties, and the generated negative radiation forces have small values compared with 

the positive (pushing) force. In the case of Gaussian beams, the off-axis component of 
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radiation force is positive, which may lead to instability. Several recent theoretical studies 

have pioneered methods for generating negative (pulling) radiation forces in the context 

of acoustic manipulation [102-108]. The interaction between the fluid and the levitated 

objects in the acoustic radiation force field is nonlinear in nature. Several recent studies 

have significantly advanced the understanding of the dynamic behaviour of levitated 

objects.  

Dolev et al. investigated the stability of acoustic traps under varying frequencies, offering 

key insights into the conditions necessary for maintaining equilibrium [109]. Paneva et 

al. examined the effects of fluid viscosity on levitated object dynamics, emphasizing the 

role of medium properties in influencing behaviour [110]. Sugita et al. analysed nonlinear 

responses in high-amplitude acoustic fields, presenting both theoretical and experimental 

studies on a nonlinear dynamic model for single-axis standing-wave acoustic levitation. 

They focused on the nonlinear coupling between radial and axial vibrations and explored 

its effect on levitation stability. The model predicts that levitation stability can be lost due 

to forced axial vibrations. Using acoustic potential theory, the acoustic radiation force 

acting on a levitated spherical particle was derived and expanded into a power series to 

incorporate nonlinear terms. The equation of motion was analysed, and asymptotic 

solutions Ire compared with experimental data. The study concluded that axial vibrations 

reduce the natural radial frequency, destabilizing radial equilibrium. A stability criterion 

was proposed, showing that the critical axial vibration amplitude for instability depends 

on sound wavelength and standing wave geometry, matching experimental observations 

of levitation failure [111]. 

Research on levitated liquid droplets has focused on droplet shape oscillations [112]. Ilsar 

and Bucher implemented a feedback controller to improve control over acoustically 

suspended objects [113]. Studies on the instability of solid particles, such as those by 

Rudnik and Barmatz, explored resonant chamber-based acoustic levitators. These studies 

revealed that the presence of levitated particles alters the resonant frequency, creating a 

velocity-dependent acoustic radiation force. This force can act as negative damping at 

higher velocities, leading to particle instability [114]. Foresti et al. investigated the 

stability of spherical and ellipsoidal particles in acoustic fields under varying viscosity 

conditions, providing valuable insights into the role of medium properties [115]. 

Similarly, Pérez et al. conducted experimental research on the dynamics of an acoustically 

levitated sphere within a single-axis classical acoustic levitator, adding to the 
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understanding of particle motion in controlled acoustic environments [116]. The 

dynamics of the levitated particle in mid-air were analysed as follows 

   (1.55) 

here,  represents the linearized acoustic radiation force, calculated using Hooke’s Law 

of linear spring stiffness,  denotes the gravitational force,  and  are constants 

utilized for linear or nonlinear damping [116]. While these constants were determined 

through experimental work, no explicit justifications were provided for the assumption 

of linear acoustic radiation force. Using experimental analysis, Andrade et al. showed that 

some nonlinear effects, such as the jump phenomenon, harmonic generation, and 

hysteresis, can be observed for a small particle levitated between an acoustic transducer 

and reflector [117].  

Fushimi et al. investigated the nonlinear dynamics of an acoustic levitator under external 

perturbation and derived a Duffing-like equation using the Gorkov formulation [118]. 

Through the study of bifurcation phenomena, they identified that system parameters, such 

as the frequency of the applied external excitation, significantly influence the nonlinear 

behaviour of the levitated object. They further observed that the force-displacement 

relationship is linear only for small displacements, beyond which nonlinear effects 

become prominent.  

1.5. Research motivation and gaps 

Since most studies in the literature have focused on the behaviour of the acoustic field 

and the generation of acoustic radiation forces, the main motivation of this study is to 

address the gap in understanding these forces by applying external sinusoidal excitation 

to the force field. This approach allows us to examine the resulting changes in the force 

and, subsequently, in the dynamic behaviour of the levitated object. For this purpose, 

some tools and techniques in the field of nonlinear dynamics are used, such as analytical 

and numerical methods in nonlinear problems, bifurcating diagram analysis, statistical 

analysis, and sensitivity analysis. Nonlinear time series analysis techniques, such as 

recurrence plots (RPs) and recurrence networks (RNs), are also employed in this study. 

Additionally, the data-driven method (DDM) of sparse identification of nonlinear 

dynamics (SINDy) is used to reconstruct the equation of motion from the experimentally 

extracted time series data. These methods enable the identification and analysis of 

complex dynamics, offering insights into the system's behaviour and providing a more 
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comprehensive understanding of the underlying nonlinear processes. To ensure coherence 

and avoid redundancy, the relevant literature review on these tools and techniques has 

been integrated into the relevant chapters and explained in the sections discussing these 

methods before their application. After a literature review, three important gaps in the 

understanding of acoustic radiation forces and the dynamic behaviour of levitated objects 

are going to be investigated as justified by the literature review.  

a) We have currently a limited understanding of the levitated object’s 

dynamics: This research aims to fill this gap by considering the dynamic 

behaviour of the trapped object under the influence of external sinusoidal 

excitation. In this case, theoretical and analytical methods, along with numerical 

simulations, are used to study the effect of external excitation on the forces exerted 

on the object and, consequently, its dynamic behaviour. 

b) Bifurcation analysis, recurrence plots and networks to classify system 

behaviour for acoustically large objects: The generation of experimental 

bifurcation diagrams and the use of recurrence plots and networks for analysing 

system dynamics contribute to a deeper understanding of the complex behaviour 

of levitated objects in different dynamical regimes for acoustically small and large 

objects.  

c) Linear and duffing modelling shortcomings: Several studies in this field have 

utilized linear models or the well-known Duffing equation to characterize acoustic 

traps. However, the limitations of these models have led to a need for a deeper 

understanding of the dynamic behaviour of levitated objects, especially 

acoustically large objects. This research addresses this gap by introducing the 

Sparse Identification of Nonlinear Dynamics (SINDy) algorithm to extract the 

nonlinear differential equation of motion from experimental time series data.  

   
1.5.1. Aim and objectives 

The study is structured into six interconnected steps. The key aims and objectives for each 

step are outlined in Table 1.2. 
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Table 1.2. Steps, aim and objectives of the thesis. 

 Step Aim Objectives 
1 Theoretical 

approach 
for acoustic 
radiation 
force (ARF) 
 

Developing a robust 
theoretical foundation for 
understanding the ARF 
exerted on small objects. 

1-Applying Gorkov theory to model ARF on 
small objects. 
2-Utilizing COMSOL simulation to enhance 
theoretical insights. 
3-Applying analytical methods to investigate 
governing equation of motion analytically. 

2 Sensitivity 
analysis and 
bifurcation 
diagram 

Investigating the 
sensitivity of ARF 
dynamics and exploring 
bifurcation phenomena 
through theoretical 
analysis and 
experimentation. 

1-Conducting sensitivity analysis to identify 
key parameters influencing ARF. 
2-Developing bifurcation diagrams based on 
theoretical predictions. 
3-Experimentally characterizing the setup 
and extract nonlinear time series data to 
validate theoretical expectations. 

3 Experiment 
validation 

Validating theoretical 
predictions through 
experimental analysis, 
emphasizing the transition 
from small to large objects 

1-Validating theoretical bifurcation diagrams 
for small objects through experiments. 
2-obtaing bifurcation diagrams for large 
objects. 
3-Assessing and comparing experimental 
results with theoretical expectations. 

4 Nonlinear 
time series 
analysis 

Investigating large object 
behaviour in different 
dynamical regimes using 
advanced nonlinear time 
series analysis techniques. 

1-Reconstructing the phase space using 
nonlinear time series data. 
2-Applying recurrence plots and network 
analysis to unravel intricate large object 
dynamics and detect motifs to quantify 
object behaviour in various dynamical 
regimes. 

5 Applying 
SINDy 
algorithm 

Extracting nonlinear 
equations of motion for 
both small and large 
objects. 

1-Applying Sparse Identification of 
Nonlinear Dynamics (SINDy) to extract 
equations of motion. 
2-Exploring the implications of the extracted 
equations for both small and large objects. 

6 Conclusion 
and future 
directions 

Synthesizing findings and 
propose implications for 
the broader acoustic 
radiation force 
community. 

1-Summarizing key results and insights 
obtained from each step. 
2-Highlighting the potential for future 
research and the development of new 
techniques for trapping, handling, and 
levitating objects using acoustical energy. 
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1.5.2. Research questions 

Based on the aim and objectives, the research questions can be summarized as follows 

1. How does external excitation impact the magnitude and direction of acoustic 

radiation forces on levitated objects? 

2. What is the dynamic behaviour of acoustically small and large objects trapped in 

acoustic radiation force fields under external mechanical excitation? 

3. Can SINDy algorithm accurately extract nonlinear equations of motion from 

experimental time series data for large acoustically objects, complementing the 

predictions of Gorkov’s theory for small objects, and how can we effectively 

characterize the nonlinear behaviour of the system using its experimental time 

series data? 

 
1.5.3. Thesis outline 

Chapter 1 presents a literature review of acoustic radiation forces, theories, and 

formulations (King, Yosioka, Gorkov, etc.) and then discusses the gaps, aims and 

objectives, and research questions of the thesis.  

In Chapter 2, the theory of the Gorkov potential function and its acoustic contrast factor 

are re-examined considering the scenario of a harmonic disturbance that causes an 

acoustically spherical object to undergo rigid-body oscillations in an ideal fluid in a 

standing plane ultrasonic wave field. In this context, the direction and magnitude of time-

averaged acoustic radiation force and the dynamic behaviour of the levitated object are 

of interest, especially when using an additional external energy source, such as the control 

of vibrations in vibrating platforms. A nonlinear governing equation of motion is obtained 

by applying Newton’s second law. By changing the amplitude of the external excitation, 

positive, negative, and zero acoustic radiation forces can be achieved. External excitation 

amplitude dependence and force inversion are new features that can be used in acoustic 

manipulation for non-contact dynamic properties of the smallest objects. This is 

interesting because it raises the question of whether, in principle, the potential field can 

be used to control the acoustic radiation force on an object through an external 

perturbation, leaving other field parameters intact. Then, a three-dimensional numerical 

model of the acoustic radiation force presented in COMSOL was created, which validated 

the theoretical results. The advantage of the 3D finite element proposed model in 

comparison with previous studies in the literature is that it can be used to study objects 
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with non-rotational symmetry, multi-object interaction, and near-wall analysis for future 

research. Nonlinear dynamic analysis often uses asymptotic methods to study complex 

systems. In Chapter 2, after introducing some of these effective methods in this field, 

these methods will be used to theoretically investigate the system's dynamic behaviour 

for governing equations of motion describing acoustically small objects within an 

acoustic radiation force field. In Chapter 3, using the theoretical formulation presented in 

Chapter 2, the bifurcation behaviour is studied, and this is shown together with a 

sensitivity analysis to represent the system’s dynamic behaviour in specific regimes of 

the bifurcation diagram. In this Chapter, the governing equation of motion is solved using 

the Runge–Kutta order fourth, and the appropriate time step is selected utilizing a 

statistical observation and based on the variance of results shown by a box plot diagram. 

The system’s behaviour sensitivity is investigated by calculating the Sobol indices in 

relation to various system parameters, including coefficients related to levitated object 

and fluid properties, external vibration frequency, and amplitude. An experimental setup 

to extract nonlinear time series data will be discussed in this Chapter. Recently, SINDy 

approach has been proposed to identify nonlinear dynamical systems from time series 

data. SINDy assumes that the equations of motion have only a few important terms. In 

Chapter 4, SINDy algorithm is applied to reconstruct the nonlinear differential equation 

of motion of a levitated acoustically small and large object trapped in an acoustic radiation 

force field, using experimental time series data. In the first step, the aim is to evaluate the 

robustness of the SINDy algorithm against noisy data. The study confirms the theoretical 

robustness of SINDy against noise in low-noise conditions, while experimental data 

filtering is recommended for high-noise data. Here, and due to the nonlinear nature of the 

problem, the GHKSS filter is used, which effectively reduces the noise in the 

experimental data. Also, Chapter 4 discusses nonlinear time series analysis, recurrence 

plot, recurrence network, and SINDy algorithm. Recurrence is a fundamental property of 

dynamical systems, and recurrence plots (RPs), a powerful tool for visualizing and 

analysing a nonlinear system’s behaviour, are used to study the system in its phase space. 

In this case, the system’s phase space must be reconstructed using its time series data to 

obtain RPs. The first minimum of the mutual information (MI) and false nearest 

neighbours (FNN) method is used to reconstruct the phase space using experimental 

nonlinear time series data. Using the generated adjacency matrix, recurrence networks 

are formed, and motifs are searched for to classify the dynamics of the system.  
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Chapter 5 is the conclusion and future directions. It is hoped that this connection between 

nonlinear time series analysis, SINDy, and the acoustic radiation force community will 

spur new techniques for trapping, handling, and levitating small objects using acoustical 

energy.   
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CHAPTER 2:  VIBRATION CONTROL OF A LEVITATED OBJECTS 

THROUGH EXTERNAL EXCITATION 

 

2.1. Introduction 

As highlighted in the literature review, the non-contact manipulation of samples in the air 

has emerged as a foundational technology across various disciplines, ranging from 

engineering to medicine [82-124]. While acoustic levitation stands out as a promising 

method in this regard, most research efforts have been directed toward characterizing the 

properties of the acoustic field rather than exploring the dynamic behaviour of levitated 

objects. This Chapter seeks to bridge this gap by studying the nonlinear dynamics of solid 

objects levitated acoustically by using theoretical and numerical modelling.  

2.2. Gorkov formulation 

According to the literature review, analytical expressions of acoustic radiation force, , 

were reported for simple geometries such as spherical objects much smaller than the 

wavelength  and are therefore treated as particles [60-64]. Gorkov used the 

principle of conservation of momentum and far-field scattering to derive the same 

analytical expression for the force. Gorkov assumed that  can be described by time-

averaged of potential and kinetic energy of the acoustic field presented and presented his 

formulation for an acoustically small particle placed in standing acoustic wave field [64]. 

According to this formulation, the acoustic radiation force can be is the gradient of a 

potential function 

,   (2.1) 

when the potential function can be defined by 

,   (2.2) 

when  and  are the time-averaged incident pressure and velocity field, 

respectively, and  and  are the monopole and the dipole coefficients as 

,   (2.3) 
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 for a one-dimensional planar harmonic acoustic standing wave field, the Gorkov 

formulation can be simplified to [64] 

,   (2.4) 

in which  is referred to as the acoustic contrast factor and can be expressed by  

.   (2.5) 

The acoustic contrast factor represents the directional sensitivity of acoustic radiation 

force acting on objects in a fluid medium. It quantifies how the acoustic field affects the 

movement of objects relative to the surrounding fluid.  denotes the acoustic 

energy density when  and  are relative compressibility and density, respectively [5].  

2.3. Theoretical modelling 

In this section, the theory of Gorkov potential function and its acoustic contrast factor are 

revisited considering a scenario of a harmonic excitation. The incident pressure, , due 

to a plane standing wave, acting on a solid sphere trapped in an acoustic field e.g. by an 

acoustic levitator within a lossless fluid can be written as [5] 

,  (2.6) 

when   is the pressure amplitude,  is the acoustic wave number,  is the object’s 

distance from a pressure node,  is the standing wave frequency, and  is the time. While 

it is common to reference the distance from a pressure antinode, it has instead been chosen 

to reference the distance from a pressure node in this formulation. This is consistent with 

acoustic radiation force theories, where objects tend to stabilise or be trapped near the 

pressure nodes due to the balance of forces [59,60]. Since the relationship between nodes 

and antinodes is straightforward, with the distance between them being half a wavelength, 

either reference is physically consistent. In the absence of external excitation, the steady-

state component of the radiation force acts as a nonlinear restoring force with a nonlinear 

softening spring constant of  [118], attracting the objects towards an acoustic trap. The 

trap sits either at the pressure node (PN) or the velocity node (VN) [125-127]. After 
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applying external excitation, the object can oscillate around its equilibrium position, 

with a distance denoted by within the range of , with being acoustic 

wavelength, relative to its nearest PN (Fig. 2.1). 

Fig. 2.1. A spherical object within an acoustic radiation force field with external 

sinusoidal excitation. (a) Schematic of an oscillatory object with mass oscillating 

around its equilibrium position, ; (b) mechanical model with nonlinear stiffness ( ). 

denotes the object oscillation caused by external disturbance, 

, with its (c) experimental set up; c) photo of experimental setup with 

levitated object.

The external harmonic excitation can be described by,

, (2.7)

where is the frequency of the external disturbance to apply the acoustic field, and 

denotes its amplitude. 

To exert control and manipulation over the levitated object within an acoustic radiation 

force field using an external disturbance, the existence of a relationship between the 

levitated object’s response and the external excitation is presumed. It is assumed that by 

applying a simple external harmonic excitation, the object exhibits a simple harmonic 

response around point , which means (1) the amplitude of the object, denoted by ,  

and (2) the object frequency, ,  is a function of the external excitation properties. In 

this scenario, by this assumption the object’s response, can be written as 

. (2.8)

Object

c)
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In this scenario,  affects the object, which oscillates with  around position  at a 

distance  from its nearest P.N., Since the oscillation is low-amplitude and doesn’t perturb 

the acoustic field much, the time-varying pressure field can be written, as follows, 

. (2.9) 

Expanding Eq. (2.9) using trigonometric relation of 

, the incident pressure field can be re-written as  

, 

(2.10) 

which shows the acoustic pressure acting upon the object with amplitude modulation 

inducing a dynamic  component, when  and  represent the time 

components of the acoustic pressure. When we use the linear scattering assumption, one 

may ask this question that does this pressure field presented in Eq. (2.7) satisfy the wave 

equation [59]. To answer this question, we insert the Eq. (2.7) into the wave equation 

directly to see what happens, the wave equation can be stated as 

,  (2.11) 

by expanding Eq. (2.11), we have 

 

 

 

 

(2.12) 

At the limit of   , only the first term on the right-hand side of the Eq. (2.12) 

remains, so that Eq. (2.9) can be considered a valid solution. According to the Eq. (2.10), 
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the oscillation of the object modulates the incident pressure field, and this modulation can 

be described by two ways, an amplitude modulation or a phase modulation as below 

, (2.13) 

where 

, 

. 

(2.14) 

Eq. (2.13) shows that the incident pressure can be described by two parts. Without an 

external excitation ω  or , and in this case  becomes  

and the second part in Eq. (2.13) becomes zero. It can be assumed that the first part shows 

the pressure because of the acoustic pressure field produced by the standing acoustic wave 

and the second part shows an additional term because of the external excitation. In Eq. 

(2.13)  and  shows the amplitude modulation in the incident pressure field. 

One way of observing dynamic acoustic radiation force is in amplitude-modulated mode 

when a single ultrasound beam amplitude is modulated [128-132]. Therefore, in the case 

of applying an external excitation, we anticipate seeing some dynamic components and 

dynamic behaviour, too.  

The incident pressure can be rewritten as 

ω ω

ω ω , 

 (2.15) 

where 

ω .  (2.16) 

Eq. (2.15) is derived from Eq. (2.13) by applying trigonometric product-to-sum identities 

to decompose the oscillatory terms. This reformulation explicitly separates the pressure 

field into components modulated by the phase term ω , which accounts 

for the dynamic influence of external excitation. The first term represents the primary 

acoustic pressure field, while the second term highlights the modulation introduced by 

the object's oscillatory motion.  The term  shows the phase modulation in the incident 

pressure field. It can be observed that the modulation depth in both case of amplitude or 

phase modulation can be controlled using the value of . By assuming the origin at the 
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PN (Fig. 2.1.b)), the time-dependent position of the object can be described as 

 the acoustic radiation force profile can be described by the sinusoidal function 

[118] 

                    ,             (2.17) 

by using King or Yoshioka’s formula  and  can be defined, for example, by looking 

at the King’s formula to calculate the  for a spherical object in a standing acoustic 

wave field [62]: 

, , 
  (2.18) 

where  is the magnitude of the incident wave velocity potential,  is the amplitude of 

the incident pressure field,  is the radius of the rigid sphere,  is the wave number,  is 

the wave frequency,  is the distance between the pressure node and the center of the 

sphere in the wave direction, and  is the density and 0 and 1 index denotes to the fluid 

and the spherical object, respectively,  and  can be defined by [62]  

, , 
   (2.19) 

assuming that the acoustic radiation force is time-dependent in general, Fourier series 

expansion can be applied (  being the period time of ), as follows [128,129], 

,           (2.20) 

where  and denote the amplitudes of the harmonic forces as components of the 

dynamic acoustic radiation force [32]; while  represents the time-averaged static 

component, denoted by . To calculate , Gorkov theory is used [64]. By applying 

, [5] and Eq. (2.13), the velocity field in the presence of a 

harmonic disturbance becomes  

, (2.21) 

in calculating  we perform indefinite integration over time and disregard the 

resulting constant values [5], substituting the pressure and the velocity field into the 
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Gorkov potential  and , the steady-state acoustic radiation force 

becomes 

,        (2.22) 

where  denotes the acoustic energy density,  are relative 

compressibility and density, respectively [5]. In Eq. (2.22) the contrast factor  

includes the contribution from the harmonic disturbance, which is instead expressed as 

follows,   

,       (2.23) 

where  and . In the 

absence of external excitation,  and Eq. (2.23) simplifies to 

 

.          (2.24) 

According to previous studies by Bruus [5], the directional movement of a spherical 

object in an acoustic radiation force field is typically determined by the fixed properties 

of the surrounding fluid and medium. Here, Eq. (2.22), derived using the time-averaged 

formulation of the acoustic radiation force, aligns with Bruus’s methodology and relies 

on second-order, time-averaged quantities obtained through perturbation analysis of the 

Navier-Stokes and continuity equations. However, this study introduces a novel aspect, 

as demonstrated by Eq. (2.23), the application of external excitation to the acoustic 

radiation force field. This introduces new parameters of ( ) —the oscillation 

properties—which alters the contrast factor, traditionally dependent only on the 

properties of the spherical object and the fluid. Consequently, this enables control over 

the directional movement of the spherical object, including the ability to produce 

alternating pushing, pulling, or even zero forces as desired.   

2.4. Numerical simulation 

Unlike analytical methods, which are often restricted to simple geometries, numerical 

methods are used to model and analyse the acoustic radiation force acting on arbitrarily 

shaped objects, including complex structures like biological cells or irregular objects [61]. 
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Furthermore, numerical simulations can be used to validate theoretical models and 

experimental observations. By comparing simulation results with analytical solutions or 

experimental data, the accuracy of the models can be evaluated, and their predictive 

capabilities can be enhanced. 

2.4.1. Numerical simulation based on finite element method (FEM) 

In this section, first, a 2D model utilizing the finite element method (FEM) in COMSOL 

software is introduced. This model, inspired by the work of Glynne-Jones et al. [61], and 

employing the perturbation method, conducts a numerical simulation to calculate acoustic 

radiation forces acting on geometrically symmetrical objects. Subsequently, a 3D 

COMSOL model is developed to extend the simulation and computation of acoustic 

radiation forces to objects of varying geometric shapes. Finally, the numerical results are 

validated against theoretical formulas tailored for acoustically small spherical objects. To 

implement the perturbation solution method in COMSOL Multiphysics, the second-order 

momentum fluxes as functions of first-order acoustic quantities need to be obtained. 

These fluxes can be derived from a computationally efficient, numerical, linear, first-

order acoustic scattering simulation in a finite element method (FEM) framework. Once 

these first-order quantities are determined, the radiation force on any object can be 

calculated using Eq. (1.1) [61]. In the case of an ideal fluid, the radiation stress can be 

described by the first order of the acoustic radiation force field variables, as outlined in 

Eq. (1.33). By calculating the first-order pressure and velocity using COMSOL 

Multiphysics and selecting the external surface of the spherical object as the integration 

boundary, the radiation force can be accurately calculated.  

Unlike theoretical formulations, the force expression provided in Eq. (1.1) applies to 

objects of all sizes when the radiation stress is defined by Eq. (1.33). Also, in the case of 

an oscillatory force field consist of an incident pressure of two modulated parts outlined 

in Eq. (2.13) and by using the superposition principle, the acoustic radiation force can be 

assumed to be a modulation of two fields as given by 

, 
(2.25) 

with  denoting the dyadic product and  is the surface normal unit vector. It is 

noteworthy to mention here that the force computation used in FEM is independent of the 

surface of integration due to the conservation of flux if it is located outside the spherical 
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object. For small spherical objects, selecting an integration surface at a larger distance 

can improve numerical accuracy because the integral is evaluated over a greater number 

of elements, which enhances numerical stability. This approach does not necessarily 

allow for larger element sizes in the FEM mesh but ensures that the surface is sufficiently 

discretised for accurate numerical evaluation.

In the 2D numerical simulation, the acoustic radiation force acting on a spherical object 

submerged in a fluid domain under the influence of a standing wave is examined. The 

model, depicted in Fig. 2.2, is constructed using the Acoustic-Structure Interaction 

interface in a 2D axisymmetric geometry. The model demonstrates axial symmetry, with 

the axis positioned on the left-hand boundary of Fig 2.2. The spherical object is 

represented by a semi-circular domain with its base along axis, while a rectangular 

domain depicts the surrounding fluid. Cylindrical wave radiation boundaries define the 

computational domain, enabling the introduction of an acoustic field by specifying 

pressure conditions over the boundary. Additionally, these boundaries absorb most of the 

acoustic energy incident upon them from the scatterer, and a background pressure field 

defines the standing wave.

Fig. 2.2. A 2D axisymmetric finite element.

The baseline parameters of both the object and the fluid were selected to conduct a 

parameter study and facilitate comparison with a previous study [61] (see Table 2.1).
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Table 2.1. Baseline parameters [61]. 

Parameter Value 
Speed of sound in the spherical object   
object density 

 

object radius  
Distance of object from 
pressure node 

 (Force is maximum here 
for small object) 

Speed of sound in the fluid   
Fluid density 

 

Fluid domain dimensions  
Frequency of sound  
Wavelength of sound in fluid   

The 3D model is shown in Fig. 2.3. In both 2D and 3D simulation, the exerted acoustic 

radiation force is produced by a standing wave in a frequency of  and a pressure 

amplitude of  and the model is implemented using the Acoustic-Structure 

Interaction interface. Also, in both 2D and 3D finite element simulations, the static or 

time-averaged acoustic radiation force, acting on an object oscillating at  under the 

influence of external excitation is calculated. The oscillation of the object is indirectly 

captured by modulating the incident acoustic pressure field in the simulation. 

Specifically, the transition is made from a simple sinusoidal representation of the pressure 

(Eq. 2.6) to a modulated form (Eq. 2.9). This approach effectively represents the 

interaction between the oscillating object and the external excitation without directly 

implementing a moving boundary condition on the object. Instead, the modulation 

incorporates the dynamics introduced by the external excitation, allowing us to study its 

influence on the time-averaged . This methodology is particularly relevant in the 2D 

and 3D models, where the modulation improves accuracy by capturing the complex 

interactions between the acoustic field and the object’s oscillatory behaviour. In 3D 

model, the surrounding fluid domain is shown as a cylindrical domain with the radius of 

 and the height of . 
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Fig. 2.3. The 3D model of a spherical object immersed in an acoustic fluid domain. 

In simulations, accurately identifying the point where the acoustic radiation force reaches 

its peak magnitude is important. Understanding this maximized force location aids in 

optimizing the design of acoustic manipulation devices and predicting the behaviour of 

levitated objects within an acoustic field. If the first-order pressure follows a simple 

cosine function, the corresponding velocity field will exhibit a sine function pattern 

according to Eq. (1.18). Also, according to Eq. (1.21), the acoustic radiation force, being 

proportional to the second order of the pressure, would also manifest as a sine function, 

with a wave number twice that of the velocity field. This simple example leads to two 

important conclusions: First, the maximum velocity occurs at the pressure nodes, and vice 

versa. Second, the maximum force is located at one-eighth of the wavelength, while the 

pressure nodes are at one-fourth [61]. Therefore, the distance of one-eighth of the 

wavelength corresponds to the distance between the pressure node, defined as the datum, 

and the centre of the object where the maximum radiation force occurs. In the 2D and 3D 

simulations, this distance is chosen to be one-eighth of the wavelength to ensure the object 

experiences the maximum radiation force. In the COMSOL simulation, an automatic 

meshing approach with fluid dynamics calibration was utilized. Predefined mesh settings 

were adjusted to achieve a finer mesh size. The total number of elements in the 3D model 

is 267912, while the 2D-axisymmetric model comprises 65992 elements. This indicates 

that the 3D model requires more time to run compared to the 2D-axisymmetric model. 
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Fig. 2.4 illustrates the velocity and scattered pressure around the object with a radius of 

. 

Fig. 2.4. a) Velocity field, and b) scattered pressure around the object in the fluid 

domain 

( ).

The 3D model accommodates both symmetrical and asymmetrical objects. Fig. 2.5 

shows the simulation steps in COMSOL Multiphysics for an object with a radius of 

.

Fig. 2.5. Simulation steps in COMSOL to calculate for a spherical object with a 

radius of 10 , a) Modelling, b) meshing, c) velocity field , and d) sound 

pressure level .

2.4.2. Numerical simulation based on time averaged method

To validate the numerical method described in Eq. (2.25), the fact that the time-averaged 

radiation force depends on the object’s position [60-64] is utilized. Considering a time 

step of , and for the mean distance of the spherical object from the pressure node 

is .  Further, the so-called static radiation force, reads

a) b) c)
c) d)
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, (2.26) 

with  being the analytical formulation of the time-averaged radiation force [60], 

with  and ,  where  represents the 

period time of the external sinusoidal excitation, . By substituting the Gorkov equation 

[21] into Eq. (2.22), the expression for the static radiation force changes to 

, (2.27) 

which is the discretised formulation of the time-averaged acoustic radiation force. The 

time step, , should be small enough to capture force variations across the oscillation 

period. For this study, time step,   was selected using the approach discussed 

in section 3.2.1, where time step optimization is addressed through a statistical method. 

2.5. Numerical and theoretical model validation 

To validate the 3D COMSOL model, the external excitation amplitude in Eq. (2.9) is set 

to zero, and the object and fluid properties are according to Table 2.1. In this scenario, 

the results from the presented 3D COMSOL model closely match those from the 2D-

axisymmetric model-based approach presented in [61] and analytical results, with a 

difference of less than 1 percent.  

Table 2.2. Comparison of FEM perturbation result based on the 3D model with 

2D-axisymmetric model and analytical results.  

Object’s 
radii 

 

 
(Our 3D 

model)  

 (2D 
model based 

on [61]) 
) 

 
(King’s 
formula 

[62])  

 
(Haseqawa’s 

formula [133]) 
 

Percent of 
difference 

(Hasegawa/our 
3D model) 

5 15.84 15.96 16.23 15.97 0.81 

10 127.62 127.64 129.8 127.68 0.04 

20 1017.5 1018.7 1039.2 1017.9 0.04 

40 8032.3 8033.0 8313.5 8031.6 0.009 

80 60732 60682 66450 60824 0.15 

It can be observed that there is a good agreement between the King [62] and Haseqawa 

[133] formulation and the presented simulation (2D and 3D). Fig. 2.6 shows a comparison 
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for acoustic radiation forces obtained by our 3D FEM results with Gorkov [64] and King 

formulations [62].

Fig. 2.6. A comparison of obtained acoustic radiation force (ARF) between a) King 

formulation [62], FEM (our 3D COMSOL simulation presented in section 2.4.1), and 

Gorkov formulation [64] versus the sphere radius, b) the same comparison plotted 

against the dimensionless parameter .

As expected, they compare reasonably well for small spherical object radius where the 

analytical solution considered is valid, and the acoustic radiation force starts to deviate 

considerably from the analytical solutions as the sphere become larger. Fig. 2.6 shows 

that the theoretical approach is only valid for  and from about the 

deviation between numerical simulation and theoretical approach starts [41,42]. Fig. 2.7 

illustrates the acoustic radiation force variations within the range of 0 to half wavelength 

for two different object radii using King formulation and 3D FEM.

Fig. 2.7. Acoustic radiation force (ARF) vs the distance between object centre and the 

velocity node (VN) for a) an object with , and b) .

It is observed that the maximum force occurs at 1/8 wavelength, and the force magnitude 

at the pressure node is zero. To validate the theoretical approach presented by Eqs. (2.22, 

2.23), the time-averaged method shown in Eq. (2.27) is applied to the experimental results 

outlined in [118], which study a spherical object with radius of  , and density 
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of    and drag coefficient of d , fluid density of . In this 

study, the object is levitated in air within a standing acoustic wave with wavelength of 

 mm, and the following values for   and  in 

Eq. (2.17) is considered [118]. In Fig. 2.8 and by using Eq. (2.17)  is plotted by solid 

blue line, and its mean value by dashed red line, when   and  

and  has been selected according to [118]. Here, the dimensionless value for 

the steady-state acoustic radiation force, known as the “static acoustic radiation force 

function” [41,42], is used, which is expressed as follows for a spherical object  

. (2.28) 

 
Fig. 2.8. The acoustic contrast factor for an oscillatory object trapped in an acoustic 

radiation force field using data provided in [118]. The non-zero mean value is for the 

time-averaged component of the radiation force which matches the results of Eqs. (2.22) 

and (2.23). The object’s location corresponds to different spatial positions within the 

acoustic field during its oscillation, as the force is time-averaged and evaluated under 

steady-state conditions. 

The mean value of the time-averaged force is negative, implying a pull effect on the object 

towards the closest pressure node. By applying the Fourier series expansion using Eqs. 

(9,11), one can write 

        (2.29) 

with  representing the time-averaged static component, 
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                . (2.30) 

In the case of using the proposed theoretical approach with Eqs. (2.22) and (2.23), the 

values for the contrast factor and the acoustic radiation force become , and 

,  respectively. By comparing the theoretical results obtained using 

Eqs. (2.22) and (2.23) with result derived from Eq. (2.30), as extracted through the Fourier 

series expansion in the model outlined by [118], we observe a relative error of less than 

1.3%. This finding serves to further validate the theoretical formulation. 

2.6. Effects of external excitation on acoustic radiation force sign  

Following the validation of the presented model, the analysis is extended to include the 

effects of external excitation, as described by Eq. (2.23). Here, for the object and fluid 

properties, Table 2.1 is used, and the external excitation frequency is when 

object radius is . Fig. 2.9 shows the acoustic contrast factor based on the time 

average of , for different .  

 
Fig. 2.9. The acoustic contrast factor and   with respect to the oscillation 

amplitude oscillation, , showing the variation of  from positive to negative 

value. The vertical “dot-dash line” represents the theoretical limit for the maximum 

value of the external excitation amplitude. 

The distance between a stable PN and an unstable VN is only  wavelength.   

 corresponds to  of a wavelength, for an object trapped near the pressure node it 

can be observed that at  the spherical object is nearly transitioning from one 

stable PN to another unstable VN The vertical “dot-dash line” in Fig. 2.9 indicates the 
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theoretical limit; but the figure is extended to to observe the theoretical change 

in the contrast factor by changing . 

In the absence of an external excitation, we have ω ,  , and 

. If external excitation introduces , we observe from Fig. 2.10 those areas

with larger relative to yield a negative acoustic radiation force, and vice versa. 

This suggests that external excitation amplitude at a certain frequency can influence the 

force sign and change it from positive to negative. Certain points exhibit a cancellation 

effect in which a zero acoustic radiation force is achievable. The first point of force 

cancellation occurs at . If we run the finite element simulation and plot the 

pressure and velocity field around the object with radius of we receive to Fig. 

2.10.

Fig. 2.10. The symmetry in the field variables a) acoustic pressure, and b) velocity field,

in case of acoustic radiation force cancellation when and .

In Fig. 2.10, it is evident that the field variables (acoustic pressure and fluid velocity 

around the object) exhibit symmetry. This symmetry in the field variables suggests an 

evenly distributed acoustic energy around the object, akin to the condition where the 

spherical object is positioned at a pressure node or anti-node in a standing wave field 

without external excitation. In such a scenario, the net force along the z-direction is zero. 

The finite element simulation in this instance supports the theoretical prediction regarding 

the cancellation of radiation forces.

Another advantage of the presented 3D FEM model is its versatility, as it can 

accommodate not only symmetrical objects but also those with asymmetrical geometries. 

Table 2.3 presents some 3D geometries, featuring non-spherical but simple objects 

characterized by parameters such as radius ( ), side length ( ), and height ( ). 
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Table 2.3. Dimensions for calculating the acoustic radiation force using the 

presented 3D FEM for some simple nonspherical objects.

Shape

Geometrical
properties

Ellipsoid: Cube: Truncated Cone:

Fig. 2.11 shows the contrast factor for some simple nonspherical objects with respect to 

the oscillation amplitude , which shows similar behaviour to the spherical object in 

Fig. 2.9.

Fig. 2.11. A comparison of for some non-spherical objects using the current FEM 

study which shows similar behaviour to the spherical object in Fig. 2.9.

To compare the theoretical and numerical approaches presented in Eqs. (2.22), (2.25), 

and (2.27) Fig. 2.12 shows for = 2 and = 3.5.
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Fig. 2.12. A comparison of the acoustic radiation force function obtained from 

the current study, Eq. (2.22), FEM (Eq. (2.25)), and the time-averaged radiation force, 

Eq. (2.27), with respect to  for an oscillating object, showing both (a) negative and 

(b) positive contrast factors as function of the oscillation amplitude , and deviation 

occurs at . 

Past studies [60-76] show that for an object with a certain position and geometry in an 

acoustic standing wave field, the magnitude of  is a certain value and its direction 

cannot be changed.  However, Figs. 2.9-2.12 reveal that introducing an external excitation 

allows for the alteration of  value based on the amplitude of the external excitation, 

enabling the assignment of positive, negative, and zero values to it.  Fig. 2.13a shows the 

acoustic radiation force function, , plotted against non-dimensional value of object 

oscillation,  with  being fixed and indicates that increasing the object’s oscillation 

amplitude decreases the acoustic radiation force. Also, the acoustic radiation force 

decreases as the object size decreases.  Fig. 2.13b presents the acoustic radiation force 

function, , plotted against non-dimensional value of object position, . Fig. 2.13b 

illustrates that as the object’s initial position relative to the pressure node increases, the 

acoustic radiation force also increases, effectively restoring the object to its equilibrium 

position.  

 
Fig. 2.13. a) The acoustic radiation force function, , plotted against non-dimensional 

value of object oscillation,  and b) The acoustic radiation force function, , 

plotted against non-dimensional value of object position,  [37]. 
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Behaviour observed in Fig. 2.13b is very similar to the action of a spring force. In the 

scenario of a linear spring, when an object connected to it deviates from the equilibrium 

position, the spring force exhibits a linear proportionality with the object displacement. 

However, Fig. 2.13b demonstrates that the acoustic force can be effectively modelled 

using a nonlinear spring model with softening stiffness, as previously shown in [117,118]. 

2.7. Nonlinear dynamical model of the acoustic radiation forces  

According to Eq. (2.17), for a lossless fluid, the acoustic radiation force for a spherical 

object trapped in a standing wave field and undergoing a rigid-body oscillation 

, due to the secondary excitation, can be described as a sinusoidally varying 

force [117,118] by  , in which,  and  are constants, and 

. These constants can be written using the formulation by King [62] and 

Yoshioka [63], respectively as follows 

, ,  (2.31) 

by applying Newton’s second law to an object oscillation in one degree freedom of 

motion in an acoustic radiation force field, the equation of motion becomes  

,  (2.32) 

where  is the mass of the object. From the Stokes flow theory, the drag force on a 

sphere can be written as [118] 

,  (2.33) 

where  denotes the drag coefficient that depends on the geometric shape of the object 

and the physical properties of the fluid such as Reynolds number, Froude number, Mach 

number, and usually determined experimentally. [134]. Here, it is assumed that the 

acoustic field is applied normal to the direction of gravity acceleration; hence, 

the weight force, , is excluded from the derivations without loss of generality, and 

it is assumed that the whole the system is excited using a vibration platform (e.g, an 

electrodynamic shaker). Substituting Eqs. (2.17) and (2.33) into Eq. (2.32) provides  

. 

  (2.34) 
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Eq. (2.34) is a nonlinear equation of one degree freedom system that is an acoustically 

trapped object in a plane standing wave subjected to a secondary excitation. By 

introducing , and ,  and 

, then Eq. (2.34) can be re-written as 

,   (2.35) 

where the constant coefficients are 

,   (2.36) 

using the Taylor series expansion for , Eq. (2.35) can be rewritten as 

,   (2.37) 

Eq. (2.37) shows a Duffing-like oscillator with the cubic and quintic terms.   

2.8. Asymptotic methods 

Nonlinear dynamical analysis often employs asymptotic methods to study complex 

systems. These methods are particularly useful for investigating the behaviour of systems 

near equilibrium points or in the presence of small perturbations [135]. By utilizing 

asymptotic techniques, we can derive approximate solutions to nonlinear differential 

equations, providing valuable insights into dynamical systems' long-term behaviour. 

Asymptotic methods involve expanding solutions in power series or other types of 

expansions, such as Fourier series or Bessel functions. These expansions allow for the 

approximation of solutions in terms of simpler functions, making it easier to analyse the 

behaviour of the system. Common asymptotic techniques include perturbation methods, 

multiple scales analysis, and averaging methods [135-138]. Using asymptotic methods to 

calculate natural frequencies is fundamental in studying system vibration behaviour. In 

linear systems with one degree of freedom, the vibrating system has a single natural 

frequency for varying vibration amplitudes. However, in nonlinear systems, natural 

frequencies can vary, yielding different values depending on the vibration amplitude 

[135]. 
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2.8.1. Nonlinear free undamped vibration analysis 

For the first time, two effective and convenient methods, the global residue harmonic 

balance method (GRHBM) [139-141] and homotopy perturbation with multiparameter 

expansion (HPMPE) [142-154], are employed to obtain the analytical solution of 

nonlinear free undamped vibration of a small acoustically spherical object trapped in an 

acoustic radiation force field within a carrier standing wave to obtain natural frequencies. 

Moreover, the influence of the initial condition, compressibility, and density, on the 

nonlinear natural frequency is discussed widely.  

2.8.1.1. Global residue harmonic balance method (GRHBM) 

In this section, an approximate method, namely the global residue harmonic balance 

method, is used to determine the natural frequencies of the nonlinear free vibration of an 

object trapped in an acoustic radiation force field. This method was first introduced and 

validated in [139] and is based on the harmonic balance method [155]. This method is 

widely used in analytically solving nonlinear problems. In this method, all the residual 

errors are considered in the process of every-order approximation to obtain higher-order 

analytical approximations. Unlike other harmonic balance methods, all the former 

residual errors are introduced in the present approximation to improve the accuracy. The 

basic idea of the method’s work can be found in [139-141]. The damping term and 

external force excitation are ignored to find the natural frequencies in Eq. (2.37). Then, 

Eq. (2.37) till order five can be rewritten in the following form 

,   (2.38) 

It is assumed that the initial condition are 

,   (2.39) 

in which  is the dimensionless amplitude of the object oscillation when  is the 

amplitude of the free oscillation. 

a) First-order approximation using GRHBM 

By introducing Eq. (2.38) in non-dimensional time domain, , one can write [139] 

,   (2.40) 
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in which  is the first-order of the natural frequency of the object oscillation, the simplest 

form of equation which can satisfy the initial conditions is [139] 

,    (2.41) 

it should be noted that the symbolic mathematical software, Maple 18, was employed to 

solve equations. Substituting Eq. (2.41) into Eq. (2.40), becomes 

. 

  (2.42) 

To avoid the secular terms in the next step, we must set the coefficient of  

equal to zero, resulting in 

, 
  (2.43) 

in which  is the linear frequency of oscillation. In Eq. (2.43), nonlinearity 

shows itself in the amplitude of oscillation through the introduction of a new function. 

This function, referred to as the nonlinear amplitude function, can be defined by 

,   (2.44) 

in which  represents the nonlinear approximate natural frequency. Consequently, the 

first-order expression for the nonlinear amplitude function can be expressed as 

, 
  (2.45) 

by using King model [13] for non-compressible solid objects, the first-order nonlinear 

natural frequency can be written as 

. 
  (2.46) 

       defines the resistance of an acoustic medium to the propagation of acoustic 

waves. Utilizing the definition of acoustic impedance and the King model [62], one can 

derive 

,   (2.47) 
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, 
  (2.48) 

where  represents the acoustic impedance of the medium. Using the Yoshika model 

[63], the first-order analytical approximate solution can be expressed as 

,   (2.49) 

, 
  (2.50) 

substituting  from Eq. (2.43) into Eq. (2.42), becomes the residual error for the first-

order approximation can be obtained as 

.  (2.51) 

b) Second-order approximation GRHBM 

To obtain the first-order approximation, it is considered [139-141] 

, (2.52) 

, (2.53) 

where,  is a bookkeeping parameter, and the second-order approximation can be 

assumed as 

 (2.54) 

in which  and  are two unknown constants which should be determined. 

Substituting Eq. (2.54) into Eq. (2.40) and then sorting with respect to the coefficients of 

the p, one can obtain 

. 

  (2.55) 

Eq. (2.55) is called the equation of the coefficients of cosine functions. By using Eq. 

(2.51) and Eq. (2.55) the residual error for the second-order approximation can be 

obtained as [139] 
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,   (2.56) 

by equating the coefficients of  and  to zero in Eq. (2.55), the unknown 

constants  and can be obtained. Hence, by some mathematical manipulation, the 

unknown coefficient of   can be written as 

, 
  (2.57) 

and according to Eq. (2.53) and equating , the second-order analytical 

approximation solution of nonlinear frequency can be written as 

. 

  (2.58) 

Therefore,  which is the second-order of nonlinear amplitude function can be written 

as 

, 
  (2.59) 

similar to Eq. (2.48) and Eq. (2.50) and by using King [62] or Yosioka model [63], two 

expressions for  according to solid or comprisable object can be obtained. By using the 

same procedure and constructing function  and  the third order 

analytical approximate solution is achievable.  

c) The effect of higher order terms in the Taylor series expansion on the 

approximate natural frequency  

Here, the effect of higher-order terms in the Taylor series expansion of  in 

approximate natural frequency solution is examined. By neglecting the damping term and 

the external excitation term—appropriate when deriving the natural frequency since these 

terms influence amplitude decay and forced response rather than the system’s intrinsic 

oscillatory behaviour—Eq. (2.35) can be rewritten as 

,   (2.60) 
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For simplicity, the first-order approximation solution of GRHBM is concentrated on. If 

the steps outlined in section 2.9.2 are followed, the nonlinear natural frequency can be 

determined as 

, 
  (2.61) 

in which  is the gamma function and can be defined by 

,   (2.62) 

with respect to choosing King [62] or Yoshoika model [63], the linear analytical 

approximate solution, , can be written according to Eq. (2.48) or (2.50), when the first-

order of nonlinear amplitude function can be written as 

. 
  (2.63) 

Using Eq. (2.61) and by expanding the  till order-7 and 9 the nonlinear natural 

frequency can be written as 

, 
  (2.64) 

, 
  (2.65) 

which shows that as the number of sentences in the Taylor series expansion of  

increases, the coefficients of , , decrease significantly. To validate 

this, the results obtained using the GRHBM will be compared with those obtained using 

another analytical technique known as the Homotopy Perturbation Method with Multiple 

Expanding Parameters (HPMEP) in the next section. 

2.8.1.2. Homotopy perturbation method with multiple expanding 

parameters (HPMEP) 

Homotopy perturbation method with multiple expanding parameters (HPMEP) first 

proposed and validated in [153]. The method is especially effective for a nonlinear 

equation with several nonlinear terms, which might have different effects on the solution. 
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In general, and for an equation with a linear operator  and non-linear operator  

with multiple nonlinear terms  we can write 

,     (2.66) 

the homotopy equation [135-143] can be constructed by multiple parameters expanding 

as 

,   (2.67) 

where  are homotopy parameters, and the solution can be expressed as a power series 

of  in the form [153] 

,   (2.68) 

In this section, the homotopy perturbation method with two expanding parameters is 

employed to derive an analytical approximate solution for Eq. (2.38). This method is 

particularly effective for nonlinear equations featuring two nonlinear terms, each 

potentially influencing the solution differently. An essential step in applying the standard 

homotopy perturbation method is constructing a suitable homotopy equation that 

accurately approximates solution properties. With Eq. (2.38) containing two nonlinear 

terms of order three and five, the construction of a homotopy equation with two expanding 

parameters can be achieved using two homotopy parameters as follows 

,   (2.69) 

 where  and  are homotopy parameters, when  and . Therefore, 

and according to HPMPE, solution, , and  which is the linear frequency of 

oscillation can be expanded in the forms 

,   (2.70) 

and 

,   (2.71) 

where  is the nonlinear natural frequency of oscillation and  ,  are 

arbitrary parameters that should be determined. This procedure is like modified Lindstedt 

– Poincare method with double series expansion [153-155]. Substituting Eq. (2.71) and 
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(2.70) into Eq. (2.69), collecting and rearranging the same power of , and setting 

coefficients zero, the following equations can be obtained 

, (2.72) 

, (2.73) 

, (2.74) 

, (2.75) 

, 

(2.76) 

. (2.77) 

The initial conditions for solving Eq. (2.72) are like those in (2.39), while for Eqs. (2.73) 

to (2.77), they are set to zero. Solving Eq. (2.72) yields the following result 

,   (2.78) 

substituting Eq. (2.78) into Eq. (2.73) results in 

,   (2.79) 

to avoid the secular terms in solving Eq. (2.79), the coefficient of  should be 

vanished, which leads to 

,   (2.80) 

by repeating the same procedure, ,  can be obtained as follows 

, (2.81) 
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, (2.82) 

, (2.83) 

, (2.84) 

substituting Eqs. (2.80) till (2.84) into Eq. (2.71) and equating , the nonlinear 

natural frequency can be obtained as 

, 
  

(2.85) 

in which the linear analytical approximate solution, , can be written according to Eq. 

(2.48) or (2.50). The nonlinear amplitude function can be written as 

, 
  (2.86) 

Eq. (2.86) shows the relation between nonlinear frequency and the linear analytical 

approximate solution, , representing the restoring force coefficient defined by 

Eq. (2.36) and the variable , representing the object dimensionless displacement. To 

show the pure effect of the nonlinearity, ‘‘the nonlinear frequency deviation”,  , is 

defined as follows 

. (2.87) 

2.8.2. The effect of the viscosity on the nonlinear response  

The purpose of this section is to investigate the effect of the viscosity on the nonlinear 

behaviour of an object trapped in an acoustic radiation force field in a carrier standing 

wave as presented in Eq. (2.37). In general, vibrational system with damping and without 

external force is defined as follows [156-158] 

, (2.88) 

in general, the solution to Eq. (2.88) is selected as [147] 
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, (2.89) 

when  are the constant coefficients and can be obtained by applying the 

initial conditions. The initial conditions are as below 

, (2.90) 

 the initial conditions (IC)s can be applied on the answer function Eq. (2.89) and on the 

Eq. (2.88) shown by  and on its derivatives as expressed as [156-158] 

, (2.91) 

in this method which called Akbari-Ganji Method (AGM) [156], after applying the initial 

conditions on answer function presented in Eq. (2.89), and also the function differential 

equation and on its derivatives from Eq. (2.91), a set of algebraic equations are created 

which is consisted of  equations with  unknowns. Therefore, the constants at Eq. (2.89) 

are achieved. In Eq. (2.91), we can use the derivatives of  with higher orders 

until the number of obtained equations is equal to the number of the mentioned constant 

coefficients of the assumed answer [158]. Eq. (2.37) with damping term and ignoring the 

external force excitation can be rewritten in the following form 

.   (2.92) 

Here and for simplicity the expansion of  is restricted to order five, with higher-

order terms ignored. Further, the absolute value operator is replaced with ‘ ’ which 

depends on the sign of  in the equation of motion. This allows the damping effect on the 

system’s behaviour to be examined, specifically how it influences the natural frequency. 

To solve the Eq. (2.92) by AGM, it is assumed that the answer can be written as [157] 

, (2.93) 

in this equation,  represents the power of the logarithmic decrement,  stands for the 

amplitude of the free damped vibration,  denotes the nonlinear frequency of the 

damping oscillation, and  signifies the phase difference. When the initial conditions 

stated in Eq. (2.90) are applied to the solution function, the result obtained is 
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, (2.94) 

and 

, (2.95) 

applying he initial conditions on the governing equation of motion, Eq. (2.92) results in 

, 

(2.96) 

and also applying the initial conditions on the first derivative of the differential equation, 

, results in 

. 

(2.97) 

By solving the set of nonlinear algebraic equations considering of four equations with 

four unknowns from Eq. (2.94) to Eq. (2.97), the constant coefficients of the answer 

function can be obtained 

, (2.98) 

when 

, 

and 

(2.99) 

, 

(2.100) 

and the nonlinear frequency of the damping oscillation can be written as 

, 
(2.101) 
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in which  should be replaced from Eq. (2.98), and the phase difference, , can be 

obtained as 

, (2.102) 

and the amplitude of the free damped vibration, , can be obtained as 

, (2.103) 

after obtaining all coefficients in Eq. (2.93), the analytical approximate solution for the 

nonlinear differential equation (2.92) is successfully derived.  

2.8.3. Parametric study of analytical solutions 

In this section, the advantages and the accuracy of the analytical proposed methods are 

assessed by making a comparison analytical methods with each other and with numerical 

results obtained by Runge–Kutta method of order four. The parameters of the object and 

medium properties have taken as: , , , 

, , , , .     

The nonlinear frequency deviation obtained by Eq. (2.87) for first order and second order 

of GRHBM and HPMPE is presented in Fig. 2.14. It can be observed that the difference 

between the first order and second order of GRHBM and HPMPE starts to deviate 

considerably at , which shows that at this point the significance of higher order 

terms in the trail solution is not negligible. Also, for  the difference between 

analytical solutions is less than . 
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Fig. 2.14. The nonlinear frequency deviation obtained by Eq. (2.87) for first order and 

second order of GRHBM and HPMPE. 

Fig. 2.15 shows the effect of the higher order terms in Taylor series in expanding  

in calculating natural frequency using Eq. (2.61) which shows that expanding till  the 

deviation starts at  and for  the deviation starts at , which means that 

Duffing equation with order 3  is only valid for  , and with order 5 is only valid 

for , and for bigger amplitude, higher order terms is required. 

 
Fig. 2.15. The effect of the higher order terms in Taylor series in expanding  in 

calculating natural frequency using Eq. (2.61). 

Fig. 2.16 shows the effect of the density on the linear natural frequency according to the 

King model. This figure shows that increasing the relative density, , decreases 

the natural frequency.  
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Fig. 2.16. The effect of the density on the linear natural frequency according to model 

of King. 

Fig. 2.17 shows the effect of the compressibility on the linear natural frequency. This 

figure shows more than 10% difference to less than 1% difference between the 

compressible assumption (Yoshioka model [63]) and the solid assumption (King model 

[62]) when the sound speed in the object is varying from 100 to 600 m/s. In this parameter 

study, the variation in sound speed (from 100 to 600 m/s) is modelled to explore its effects 

on the frequency. Materials with low sound speeds (e.g., near 100 m/s) are rare and 

typically correspond to specialized cases, such as high-compliance or low-density media. 

Examples include elastomeric polymers, gels, or foams, which exhibit these properties 

due to their low stiffness and density [159]. It is obvious that by increasing the sound 

speed in the object the Yoshioka model tends to the King model.  

 
Fig. 2.17. The effect of the compressibility on the linear natural frequency. 
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by numerical solution in Fig. 2.18, and a good agreement can be seen between analytical 

20 40 60 80 100 120 1400

200

400

600

800

1000

1200

1/ 0

Li
ne

ar
 a

ng
ul

ar
 fr

eq
ue

nc
y 

 0 [s
-1

] King model

Increasing the sound speed in the medium
 Air: c0=334 [m/s]

100 150 200 250 300 350 400 450 500 550 600285

290

295

300

305

310

315

c1  [m/s]

Li
ne

ar
 a

ng
ul

ar
 fr

eq
ue

nc
y 

 0 [s
-1

]

 

 

Compressible particle
Solid particle



71

solution, Eq. (2.93) and numerical solution obtained by Runge–Kutta method of order 

four. This figure has been plotted with two different initial condition and shows that after 

about , the object attract to its trap with small oscillation around its equilibrium 

point.

Fig. 2.18. A comparison study between analytical solution obtained by AGM and 

numerical simulation for two different initial condition: a) , and b) 

.

The effect of the viscosity on the nonlinear frequency deviation and phase of oscillation 

for various amplitude and constant initial velocity vs 

the drag coefficient has been depicted in Fig. 2.19. It can observe that increasing the drag 

coefficient increase the and . The same trend, also, can be observed for by 

increasing the initial amplitude, .

Fig. 2.19. The effect of the viscosity on the a) phase and the b) nonlinear frequency 

deviation of oscillation for various initial condition.

In this chapter, it has been demonstrated that acoustic pressure modulation introduces 

dynamic components, resulting in nonlinear dynamical behaviour. An equation of motion 

similar, but not identical, to the Duffing equation for the vibrational motion of the object 

has been derived. In the following, nonlinear free and damped vibrational analysis is 

conducted to determine the natural and damped frequencies of vibration. Nonlinear 

dynamic analysis, including techniques like bifurcation analysis and frequency response, 
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plays a crucial role in understanding and predicting the behaviour of complex systems 

[160-162] and will be discussed in the next Chapter. 

2.9. Conclusion 

Using the Gorkov formulation, the acoustic contrast factor of an acoustically small 

spherical object levitated in a plane standing wave under the influence of an external 

sinusoidal excitation was calculated. The results show that the time-averaged component 

of the acoustic radiation force can be positive, negative, or zero, with its direction 

influenced by the external sinusoidal excitation. Traditionally, the acoustic contrast factor 

describes the scattering properties of a particle and is determined by intrinsic material 

properties such as density and compressibility, along with the acoustic characteristics of 

the surrounding medium. However, this study reveals that vibration-induced dynamics, 

introduced by external excitation, significantly alter the overall radiation force, 

highlighting the role of oscillatory behaviour as a distinct and influential factor. This 

finding emphasises the importance of considering both intrinsic object properties and 

external dynamic effects when analysing and predicting the behaviour of acoustically 

levitated systems. This indirect way of controlling a levitated object through the external 

excitation properties of an object held within an acoustic radiation force field has never 

been attempted. To facilitate a comprehensive comparison with theoretical approaches, 

this Chapter introduced both 2D and 3D numerical models of acoustic radiation force. 

Using COMSOL Multiphysics, the 3D model was developed to extend the analysis 

beyond the limitations of traditional approaches. This model incorporates the ability to 

simulate objects with larger dimensions and non-rotational symmetry, analyse 

interactions between multiple objects, and evaluate the effects of external vibrations, 

particularly in near-wall scenarios. These capabilities are critical for capturing the 

complex behaviours of acoustic radiation forces in realistic settings, making the 3D model 

an invaluable tool for advancing both theoretical understanding and practical applications 

in acoustic levitation and manipulation. The idea that the contrast factor varies with the 

magnitude of external excitation assumes of a harmonic response. This assumption and 

its implications are explored further in the subsequent Chapters, where nonlinear 

dynamics are addressed in detail. The acoustic contrast factor is a time-averaged static 

quantity that determines the steady-state acoustic radiation force acting on levitated 

objects. However, it does not directly govern the system’s dynamic response. By applying 

Newton’s second law, a nonlinear governing equation of motion is derived, unveiling a 
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Duffing-like oscillator behaviour in the time-varying radiation force, which shows a 

restoring harmonic force as a nonlinear softening spring. The nonlinear dynamical model 

introduced in this Chapter (Eq. 2.35) provides the foundation for these analyses, offering 

key insights validated through bifurcation studies and time-series methods. Chapters 3 

and 4 thoroughly examine the dynamic effects, analysing the system’s response to 

external excitation.  

Based on the King and Yoshioka model, the governing equation for an object trapped in 

an acoustic radiation force field within a carrier standing wave was derived. This is an 

ordinary differential equation. Then, the Global Residue Harmonic Balance Method 

(GRHBM) and the Homotopy Perturbation Method with Multi-Parameter Expanding 

(HPMPE) were utilized to obtain analytical approximate frequencies under free vibration 

conditions. In the GRHBM approach, the aim was to enhance accuracy by determining 

the residual error at each order of approximation, which was subsequently utilized in 

subsequent orders. With the obtained analytical expressions, the influence of nonlinear 

terms on the nonlinear frequency was examined. The HPMPE method, known for its 

straightforwardness and effectiveness, proved suitable for systems involving multiple 

nonlinear terms. Comparing these analytical methods for  revealed 

discrepancies of less than , validating the use of analytical solutions within this 

interval. Moreover, it was found that considering only the cubic term in the nonlinear 

governing equation was valid for , while incorporating both cubic and quintic 

terms extended validity to . For higher amplitudes, inclusion of higher-order 

nonlinear terms became necessary. Furthermore, the influence of compressibility and 

density on the natural frequency was investigated. Subsequently, the Akbari-Ganji (AG) 

method was employed to solve nonlinear damped vibration, exploring its impact on the 

natural frequency and phase of oscillation. The findings were corroborated by numerical 

solutions obtained via the fourth-order Runge-Kutta method. The results underscored the 

role of damping effects in the absence of external excitation and demonstrated that object 

vibration decays towards its static position at its equilibrium point. It should be noted that 

although there is a novelty in deriving the solution using analytical approaches, as stated 

in this Chapter, these methods are inherently limited to simple acoustic pressure fields. 

Unlike numerical continuation methods, which allow for parameter studies in more 

complex acoustic environments, the analytical approach assumes small deviations, 

restricting its applicability to highly nonlinear or spatially varying fields. 
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CHAPTER 3: EXPERIMENTS AND STATISTICAL ANALYSIS 

 

3.1. Introduction 

In a dynamical system with specified input and output, the modelled inputs are in real-

life applications influenced by uncertainties in measurement, requiring to be considered 

in the output of the model.  Therefore, the conduct of a sensitivity analysis to identify 

sensitive parameters prone to become uncertain is one of the essential goals of research 

in this Chapter. [163-165]. Here, the Sobol method for sensitivity analysis is introduced 

and then it is applied to the equation of motion obtained in Chapter 2. With the help of 

the Sobol method the effect of changing the coefficients of the equation on the dynamic 

behaviour of the system is discussed and investigated [165-170]. In Chapter 2, the 

governing equation of motion of a small spherical object levitated in an acoustic radiation 

force field was driven by the assumption that in response to external harmonic excitation, 

the levitated object also shows a simple harmonic behaviour. Here, an experiment is 

conducted to validate this assumption and extract time series data related to the movement 

of a levitated object. The object in the first case follows the small spherical object 

(Gorkov) theory, while in the second case, a large spherical object is used for which 

Gorkov theory is no longer valid. The presented experimental analysis of the small object 

shows a clear correlation between the amplitude and frequency of the external harmonic 

excitation and the object’s response. As theoretically shown in Chapter 2, the dependence 

of the levitated object’s movement on the application of external excitation and the force 

reversal are new features that can potentially be used for non-contact control of small 

objects (subwavelength) with the help of acoustic radiation forces [116-121].  

Also, by using the theoretical formulation presented in Chapter 2 and with the help of the 

time series data extracted from the experiment presented here, the system’s analytical and 

experimental bifurcation diagrams are extracted [171-177]. By carefully comparing 

bifurcation diagrams, the aim is to understand the similarities and differences between 

bifurcation plots, especially for objects below and above the wavelength limit. This 

comparative study is a key step in the research, not only improving the understanding of 

the system’s behaviour but also laying the groundwork for practical applications in the 

acoustic manipulation of objects. 



75 
 

3.2. Statistical model and Sobol sensitivity analysis 

Recently, global sensitivity analysis methods are widely used for the analysis of nonlinear 

models [178-180]. Unlike local sensitivity analysis methods that analyse one system’s 

variable at a time, global sensitivity analysis methods change all variables simultaneously 

over their entire range and thus provide a more comprehensive approach in comparison 

with the local sensitivity analysis [180]. Among these methods, variance-based methods 

such as Sobol’s method, are considered very valuable tools due to their special 

characteristics [181]. Unlike traditional methods [182–184], global sensitivity analysis 

does not rely on model linearity or uniformity. This feature makes it applicable to many 

types of nonlinear problems, which is invaluable for gaining deeper insights into the 

influence of input parameters on the overall system behaviour [165-170]. In the 

following, Sobol’s method is applied to the nonlinear dynamical model of a spherical 

object levitated in an acoustic radiation force field (Eq. (2.35)). However, before 

employing Sobol’s method, it is essential to determine an optimal time step for the 

numerical solution of the equation of motion. 

3.2.1.  Optimizing time step selection in numerical solutions: A statistical 

approach  

The use of statistical visual representation data has a long history [185-188]. Mary 

Eleanor Spear introduced the range-bar method, also known as the range bar chart, in her 

book “Charting Statistics” [185]. This method was later more described in detail in her 

1969 book “Practical Charting Techniques” [186]. The method proposed by Mary 

Eleanor Spear used vertical bars to indicate the range between the minimum and 

maximum values in the data to provide a visual representation of the dispersion of the 

data. Inspired by this method, John Tukey introduced the “Box and Whisker plot” in his 

book entitled ‘Exploratory Data Analysis”, which became very popular and is now widely 

used in the analysis of statistical problems [187, 188]. The box plot, as it’s commonly 

known, provides a more detailed view of data distribution.  The “Box and Whisker plot,” 

usually called a box plot [189-191] is one of the most famous charts showing many 

indicators of data-related descriptive statistics. This chart can give information about the 

existence of outlier data, symmetry in the data, and skewness of the data. A box plot is a 

straightforward and clear visual representation of the distribution and variability of a 

dataset. It consists of a box that represents the interquartile range (IQR), which is the 
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middle 50% of the data. The line within the box denotes the median, or the middle value 

of the dataset. The “whiskers” extend from the box to the minimum and maximum values, 

excluding outliers which are represented as individual points beyond the whiskers. Box 

plots are easy to understand and use, making them a valuable tool for comparing 

distributions between different groups or datasets and identifying outliers or extreme 

values within the data [188]. In this study and by using the 4th order Runge-Kutta method, 

Eq. (2.35), with a different time step   varying from  to a reference time 

step at , is solved numerically. To investigate the dynamic response of the 

system, the following values of parameters are extracted from [118] which studies an 

object with radius of  , and density of    and drag coefficient of 

d , fluid density of . The object is levitated in air within a single-

axis levitator which produce standing acoustic wave with wavelength of  mm. 

During each step of the numerical simulation, the relative error can be calculated as 

.  (3.1) 

Here  represents the relative reference response solution for . The relative 

errors for these time steps are normalised by dividing to , and are plotted in the Fig. 3.1 

which shows 95% Confidence Interval (CI) for the median (notched boxplot diagram 

[192]). By using this chart,  can be chosen as an appropriate time step with  

 , 9.81] 10-4. 
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Fig. 3.1. Time step convergence study using a box plot.  The whiskers show the 

minimal and maximal values, the edges of the box indicate the 25 – and 75 – percentile 

the red line represents the median and the notches show the 95% confidence interval of 

the median. Non-overlapping notches show non-significant difference in median 

estimates of the relative error.

3.2.2. Sobol’s method of sensitivity analysis

Global sensitivity analysis methods, especially variance-based approaches, use variance 

to measure the influence of input parameters on output of a system. Variance-based 

methods rely on sampling and the statistical distribution of input data. The sensitivity 

index in these methods shows how much the change in the input parameter in the model 

affects the output of the model. The higher the value of the sensitivity index for each input 

parameter is measured, the greater the impact of the on the model’s output behaviour. 

Sobol’s method was introduced by Ilya Sobol in the late 1990s as an extension of 

variance-based sensitivity analysis [165-171]. It allows for the decomposition of the total 

variance of the model output into components attributable to individual input variables 

and their combinations. This method provides a systematic way to rank the importance 

of input variables, identify influential factors, and assess the interactions among them. In 

the Sobol sensitivity analysis method, for a model defined by where is the 

output of the system and is the vector of input parameters, , the 

variance of the system can be defined through [170]
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   (3.2) 

in which,  is the variance because of the first order effects for each parameter and  to 

 are second and higher order effects for each parameter which shows the variance 

because of the interaction between parameters. The first-order sensitivity coefficient for 

the  parameter can be defined by 

   (3.3) 

and the total sensitivity coefficient for the  parameter can be defined by 

 
  (3.4) 

where,  are the second and higher order sensitivity coefficient for each parameter. 

In summary, this analysis can be divided into five steps, which step by step will ultimately 

lead to understanding the system’s behaviour [178-180]: 

1. Parameter Selection and Distribution Assignment: Initially, parameters of 

interest are selected, and probabilities or distributions are assigned to each 

parameter. 

2. Random Input Vector Generation: A set of random input vectors is generated 

for each parameter according to the probability distribution assigned to it. 

3. Model Evaluation: The model is evaluated for each generated input vector set. 

This step involves running the model to obtain corresponding outputs. 

4. Output Distribution Uncertainty Determination: The uncertainty of the output 

distribution is analysed and understood, accounting for variations in input 

parameters. 

5. Sensitivity Ranking: Finally, sensitivity analysis ranks the input parameters 

based on their influence on the output. This ranking helps identify which 

parameters significantly impact the model’s behaviour and output variability. 

For the sensitivity analysis and according to the Eq. (2.35) the model inputs 

 are set to be uniformly distributed. The constant coefficients , , and 

 represent the damping, restoring force, and external excitation, respectively. These 

coefficients can be determined using can be obtained using Eq. (2.36) by using the object 
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and medium properties. The parameter refers to the object frequency in the acoustic 

radiation force field. Assuming the following ranges for the test variables: 6, 8

[- 1.8 [s-2 8 , 10 [s-2
o [Hz] the 

first order effects and the total effects of the parameters are shown in Fig. 3.2. 

Fig. 3.2. Results of the variance-based sensitivity analysis when and are the 

first-order and total sensitivity coefficient, respectively. Importance ranking of the 

coefficients in Eq. (2.35) by sensitivity analysis using uniformly distribution. The 

external excitation has the strongest influence on the coefficient in the equation of 

motion (Eq. (2.35)), is having a rather small influence on the dynamics.

Using result obtained by the sensitivity analysis the amplitude of the external excitation

which influences in the Eq. (2.35), can be selected as bifurcation parameters. The 

results reveal that the coefficients and are the most sensitive parameter, 

respectively. It is also observed that the total effects of are smaller than other 

parameters, i.e., there is not much interaction between and other parameters. These 

results reveal that the amplitude and frequency of the external excitation in Eq. (2.35) 

plays an important role in the dynamical behaviour of the system.

3.3. Numerical frequency response and bifurcation diagram 

One of the characteristics of dynamical systems is their frequency response curve, which 

is a measurement of the amplitude or phase of the output as a function of input frequency 

of the system [160-162]. Here, the frequency response of the system in low external 

amplitude of excitation is plotted using Eq. (2.35), then a comparison with experimental 
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results reported in [118] is conducted. Fig. 3.3 compares the peak response amplitude of 

the object, , trapped in a standing wave levitator obtained by dynamical equation of 

motion presented in Eq. (2.35) and the experimental results presented in Ref. [118] in the 

stable region. The amplitude of the external excitation, denoted as , is adjusted to 

. A good agreement can be observed between analytical formulation presented 

in this study and the previous experimental work [118].

Fig. 3.3. A comparison between the predicted frequency responses from Eq. (2.35) with 

the experimental results [118] for an object trapped in a standing wave levitator. The 

observed jump between different states indicates a softening behaviour. The theoretical 

predicted curve was generated by increasing the frequency, corresponding to the “sweep 

up” scenario in the experimental work.

Fig. 3.3 shows the jump phenomenon. In the theory of dynamical systems, the jump 

phenomenon refers to a sudden and discontinuous change in the behaviour or state of the 

system [171-177]. Jump phenomenon is usually visible at the bifurcation points of the 

system. Plotting and analysing the bifurcation diagram is also used in many physical 

applications, especially the dynamical analysis of nonlinear systems [177]. The 

bifurcation diagram shows the fact that a slight change in a parameter value of a dynamic 

system, which called the bifurcation parameter, leads to a sudden change in the dynamics 

of the system. In other words, in bifurcation point, a change in the number or stability of 

the equilibrium points of the system can be observed. In this study, the bifurcation 

diagram is investigated, and it is used to identify the behaviour of a levitated object 

trapped in an acoustic radiation force field. Here, the bifurcation parameter of the system 

is selected using sensitivity analysis and the time series obtained with the help of the 
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theoretical formula and experimental results in steady state are used to plot the bifurcation 

diagram [175]. According to the sensitivity analysis presented in section 3.2, the external 

excitation amplitude ranging from has been chosen as bifurcation 

parameter for which four distinct regions (Fig. 3.4) have been observed. 

Fig. 3.4. The bifurcation diagram for a spherical object trapped in an oscillating 

radiation force field using Eq. (2.35), . The chaotic (C) or quasi-periodic 

(QP) area from to indicates the intricate high-order periodic behaviour 

in low amplitude, the jump (J) phenomenon occurs at , period-doubling 

bifurcation (PDB) can be observed at and increasing in periodic solutions or 

period adding bifurcations (PAB) occurs at .

In the low amplitude, , the system shows chaotic (C) or quasi-periodic 

(QP) behaviour. At low amplitudes, the system’s response is highly sensitive to small 

variations in external inputs and internal parameters. This sensitivity amplifies minor 

nonlinear effects, leading to intricate periodic or chaotic dynamics. The behaviour is 

driven by the inherent nonlinearity of the system and the interaction between acoustic 

radiation forces and external excitation. These nonlinear interactions magnify small 

perturbations, resulting in unpredictable and complex motion. The bifurcation diagram 

(Fig. 3.4) illustrates this behaviour, highlighting the system’s sensitivity and the onset of 

chaos even at small amplitudes. By increasing the value of the bifurcation parameter jump 

(J) phenomenon can be observed. The discontinuity in the bifurcation diagram shows 

jumps and period-doubling bifurcation (PDB) and period adding bifurcations (PAB) are 

next different area in the bifurcation diagram. Fig. 3.4 shows that by increasing the value 

of the bifurcation parameter the period doubling bifurcation diagram is not valid anymore 

External excitation amplitude 
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as predicted in [118], and period-2 changes to period-5. This study shows that the classical 

Duffing equation with a cubic nonlinearity term [193] is insufficient to describe the full 

spectrum of nonlinear dynamical system behaviour. However, Eq. (2.35) can be 

categorized as a Duffing-like equation, and the findings suggest the possibility of more 

intricate dynamics, indicating the necessity for further investigation and experimentation. 

3.4. Experimental analysis 

In recent years, acoustic levitation has significantly advanced and used for manipulating 

objects by sound waves [110-118]. Ultrasonic transducers are the central part of an 

acoustic levitator device (Fig. 3.5a). Using ultrasonic transducers, we can create a specific 

sound pattern enveloping the object in acoustical energy [124]. When multiple 

transducers are connected and powered by strong electrical signals, they generate a 

powerful enough sound for levitation. This technology enables the levitation of small 

objects such as insects, individual cells, etc. In 2017, Marzo et al. introduced Tiny-Lev, a 

uniaxial acoustic levitator that is freely available to the public [14]. Tiny-Lev works like 

a simplified PAL [92,93]. The special Tiny-Lev geometry reduces the need for complex 

electronics and allows work with commercially available microcontroller boards. This 

affordability, cheapness and ease of assembly make Tiny-Lev a relatively simple and 

accessible device. Timing is crucial in controlling the sound from each transducer. When 

timed correctly, the sound waves converge to form a correct pattern of loud and quiet 

regions required for acoustic levitation. A crucial component of this functioning is a 

region called the “trap,” where the object remains suspended as if in a cage of sound. 

Stable traps show the pressure node in the acoustic radiation force field. Any attempt by 

the object to move is counter-acted by the sound, pushing it back into the trap. The 

strength of trap is not uniform in the radiation force field because of the Tiny-Lev setting, 

which is prohibitive in generating a plane acoustic wave so that the strongest trap can be 

found in the centre between the two transducer shells [114-127].  Fig. 3.5b illustrates the 

pattern of sound waves [125], indicating that the trap with maximum force occurs in the 

middle. This phenomenon, depicted in Fig. 3.5c, facilitates the levitation process within 

a single-axis levitator device or Tiny-Lev, as shown in Fig. 3.5d. 
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Fig. 3.5. a) A single ultrasonic transducer, b) Simulation illustrating acoustic traps 

[125]. c) Visualization of traps exhibiting maximum strength in the middle. d) Image 

showcasing the Tiny-Lev apparatus with a spherical object levitated in mid-air.

3.4.1. Tiny-Lev and levitated object properties

In the experiment, an off-the-shelf single-axis acoustic levitator (Tiny-Lev), with 72 

circularly arranged transducers at the top and bottom support plates is used to levitate 

small objects near acoustic pressure nodes [125]. All transducers are operating at 

frequency, . This frequency corresponds to an acoustic wave with a 

wavelength of at a temperature of . It is common to choose ultrasonic 

transducers with a working frequency of . In addition to producing sound waves 

with a frequency beyond the threshold of human hearing, these transducers are widely 

available in the market and have many applications. For example, in the automotive 

industry, these converters are used to make parking sensors. 

For the Tiny-Lev, the distance between the two upper and lower plates is 105 mm, and 

the ultrasonic transducers on these plates have been arranged according to the 

configuration shown in Fig. 3.6a. A simple tool, as shown in Fig. 3.6b, is also used to 

insert objects into the equilibrium point within the acoustic radiation force field. Before 

each experiment and to ensure the position of the levitated object is within the Tiny-Lev, 

a visual inspection with the help of a ruler is conducted (Fig. 3.6c). The purpose of this 

inspection is to ensure that the levitated object is correctly positioned at the most stable 

node located in the middle between the two planes of the Tiny-Lev. 

Maximum 
force

a) b) c) d)
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Fig. 3.6. a) Ultrasonic transducers arranged on one plate of the Tiny-Lev, b) the tool 

used for inserting objects into the standing wave’s node, c) visual inspection process 

employing a ruler.

Fig. 3.6c depicts two small objects trapped in the acoustic force field within the Tiny-

Lev, positioned approximately apart, vertically. This spacing 

aligns closely with the distance between pressure nodes or traps, which is half of the 

wavelength. This consistent measurement validates the effectiveness of the Tiny-Lev in 

generating the desired acoustic wave. This repeatable measurement highlights the Tiny-

Lev setup’s reliable functionality in accurately trapping objects within the acoustic force 

field along an approximate single axis, thereby confirming its suitability for further 

experimentation and comparison later with the analytical model of Chapter 2.

The spherical objects utilized in the levitation experiments conducted in the Tiny-Lev, 

consist of Expanded Polystyrene (EPS). These EPS beads were procured in bulk, each 

possessing unique radius, , and mass characteristics, . The radius of these objects 

fell within the range of to . The mass of objects was precisely measured 

using a Kern ABJ 120-4NM analytical balance, Fig. 3.7a, provided in the Lab with a 

resolution of . The measurements of mass and radius were used to calculate the 

density of the object, :

  (3.5)

In which is the object volume. The object density was determined by 

measuring 10 distinct objects, each with varying mass and radius. A statistical box plot 

(Fig. 3.7b) was generated to visualize the statistical properties of the object density. This 

result shows that with a 95% confidence level, falls within the range of to .

a) b) c)
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Fig. 3.7. a) The analytical balance device used for object mass measurement, b) 

statistical box plot illustrating object density.

3.4.2. Experimental set up

In the experiment the Tiny-Lev transducers are driven by a square-wave signal with a 

peak-to-peak voltage of from a function generator (Model: MFG-2260MFA), while 

the excitation signal is also sent to an oscilloscope for monitoring. The Tiny-Lev is 

mounted vertically on an electrodynamic shaker (Bruel & Kjaer: LDS V201), which is 

connected to an amplifier (Bruel & Kjaer: LDS LPA100), and driven by a sinusoidal 

signal of variable amplitude. The vibration of the levitated object was measured using a 

portable digital Laser Doppler Vibrometer (LDV) (Polytec: PDV-100, 

sensitivity factor). The output of the LDV and the shaker input signal are monitored 

with an oscilloscope (Keysight: InfiniiVision DSOX2004a) and recorded at 

sampling frequency. The LDV was aligned with the acoustic levitator in the vertical 

direction and the laser beam reached the levitated objects through the hole at the 

centre of the levitator head plate. To minimise off-axis motion, a reusable adhesive putty 

was used to firmly attach the Tiny-Lev to the shaker (Fig.3.8a), ensuring that the Tiny-

Lev remained stationary relative to the shaker during operation. Also, the shaker’s stroke 

length was small at the selected frequencies, preventing significant horizontal motion 

from influencing the levitation behaviour. Furthermore, the LDV was precisely aligned 

perpendicular to the Tiny-Lev to provide accurate measurements and minimise any 

contributions from off-axis motion, also, to reduce the background noise, the experiment 

was conducted in a hemi-anechoic chamber (Fig. 3.8b).
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Fig. 3.8. a) Entire Experimental setup located within the hemi-anechoic chamber. b) 

Schematic representation of the complete experimental setup.

The LDV measures target velocity in the direction of the incident laser beam, and its 

output is a voltage proportional to this velocity. In the setup, the LDV voltage is converted 

to the object velocity as the time series data. The object’s amplitude of velocity ( ) can 

be determined using the voltage measured by the LDV as follows

,   (3.6)
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and by assuming a sinusoidal motion, the object’s amplitude of displacement ( ) can be 

determined as 

.   (3.7) 

Finally, using this experimental setup, the time series data can be extracted to investigate 

the object’s dynamic response and its relationship with the frequency and amplitude of 

the external excitation applied by the shaker.  

3.4.3. Filtering method in experimental time series data  

Experimental time series data refers to observations or successive measurements of 

experimental values collected over time. If the underlying dynamics exhibit nonlinear 

behaviour, these collected data sets are called nonlinear time series data [194-196]. Unlike 

linear time series data, which follow a predictable and stable pattern, nonlinear time series 

data can exhibit complex and irregular patterns with relationships between variables that 

are nonlinear in nature [194]. Sometimes, the collected time series data is contaminated 

with noise. The use of filters in this case can be very beneficial. Filters are effective in 

noise reduction and effectively reduce the influence of unwanted noise in experimental 

data. Filters increase the quality of measured data by increasing the signal-to-noise ratio 

and can reduce irregularities and disturbances caused by external factors on the system. 

However, using filters to reduce noise in data also has some disadvantages. For example, 

one of these disadvantages is the possibility of losing system information due to selecting 

a wrong filter, where the filter removes essential system information along with noise. 

Also, over-filtering can lead to over-smoothing of data, blurring important features and 

obscuring tiny changes. This understanding helps us to choose the appropriate filter and 

adjust filter parameters to suit for the data analysis [197-200]. 

Various techniques have been introduced for noise filtering. Among these techniques we 

can mention the moving average filter [197], the Wiener filter [198], the Savitzky-Golay 

filter [189], and the local projection (LP) method [200]. For example, the moving average 

method is a technique more suitable for linear time series data. This method smooths the 

noise in the data by averaging the points in neighbouring data sets in a specified window. 

This technique uses simple averaging method to reduce noise and calculates the average 

of consecutive data points. It then replaces the original value with this mean, resulting in 

a smoother data set [197]. In contrast, the LP method is a non-linear approach that is 

primarily used to denoise non-linear and chaotic signals. It identifies and projects noisy 
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state vectors onto a local manifold within the reconstructed state space, where clean data 

reside. By approximating this manifold linearly and performing a Singular Value 

Decomposition (SVD) of a covariance matrix, noisy data are projected onto the local 

manifold, preserving essential signal features while minimizing noise [200].  

Grassberger et al. proposed a noise reduction method named GHKSS filter which is The 

GHKSS method is a version of LP method and can be generalized for nonlinear chaotic 

time series noisy data. Unlike traditional methods such as the extended Kalman filter 

(EKF), which operates under linear assumptions and linearizes nonlinear systems using 

Taylor series expansion, GHKSS provides a more robust approach to noise reduction. 

Instead of relying on a predefined model, GHKSS directly maps the system’s patterns to 

distinguish noise from the actual signal, which makes it particularly effective for handling 

highly nonlinear systems, short time series, and complex noise types [201]. The GHKSS 

algorithm nonlinearly filters the data by dynamically representing it on a low-dimensional 

manifold. It aims to separate the low-dimensional dynamics from the noise and reveal the 

inherent nonlinear dynamics of the system, whose effectiveness and accuracy in noise 

reduction have been shown in past research [202]. It identifies a local manifold within the 

reconstructed state space and utilizes SVD to project noisy state vectors onto it, 

effectively isolating the underlying signal from noise. In the thesis, GHKSS filter is used 

to denoise the experimental nonlinear time series data. Implementing the GHKSS filter is 

facilitated using the Tisean Package provided in the Octave software [203]. Octave is an 

open-source software package widely used for numerical computing and data analysis, 

making it accessible to researchers and practitioners in various fields. The experimental 

setup detailed in section 3.4 allowed us to extract time series data by measuring the 

velocity of the levitated object by changing the amplitude and frequency of the external 

excitation. For instance, Fig. 3.9a presents a segment of the time series data derived from 

LDV measurements for the object’s velocity. During this measurement, the object had a 

radius of , the shaker operated at a frequency of , and the 

acoustic wave frequency was . Fig. 3.9b shows the time series data after 

applying the GHKSS filter.  
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Fig. 3.9.  a) A segment of the measured time series data in the experimental work, b) the 

same time series data after applying the GHKSS filter, and c) zoomed-in area of a peak 

in the measured time series data, and d) the same peak after applying the GHKSS filter. 

Comparing the visual representations provided by Fig. 3.9c and d, it becomes apparent 

that the application of the GHKSS filter has notably enhanced the signal quality by 

effectively smoothing out fluctuations and reducing noise interference. 

3.4.4. Experimental verification 

In Chapter 2, to derive the theoretical formulation for nonlinear equation of motion, it 

was assumed that the object responds with harmonic oscillation in response to external 

sinusoidal stimulation around its equilibrium point. In this response, the small 

acoustically levitated object aligns its amplitude and frequency according to the external 

excitation. In this Chapter, an experimental study is conducted to verify this theoretical 

assumption. Throughout this study, the external excitation frequency is systematically 

varied from  to . This experimental investigation aims to confirm whether 

the levitated object exhibits the expected response to varying frequencies of external 

excitation, thereby verifying the assumptions made in the theoretical model. To 

implement this verification, A small acoustically levitated object was used with radius of  

 and mass density of  (according to Fig. 3.7b) and the 

amplitude of the external excitation was set to  (peak-to-peak) and incrementally 

increase it until it reaches its maximum. The maximum point is determined either by 

reaching the amplifier’s cut-off threshold or by the levitated object dropping due to 

excessively transmitted vibration. At each frequency, the object response was monitored 
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using the oscilloscope, and the object’s response frequency (dominant frequencies) was 

measured by applying Fast Fourier Transform (FFT) to the LDV’s output voltage. The 

harmonic response shown in Fig. 3.10a illustrates the relationship between the input 

frequency and the output frequencies. Fig. 3.10b, 3.10c, and 3.10d show the power 

spectral density (PSD) of the object’s response at the points indicated by arrows in Fig. 

3.10a, highlighting the magnitude of various frequency components. The red line 

indicates the threshold for identifying the dominant frequencies.

Fig. 3.10. Linear relationship in period-1 of oscillation and more frequencies, which 

could relate to bifurcation phenomena in some frequencies. b-d) PSD of the object’s 

response at points marked by arrows in, with the red line indicating the threshold for 

identifying dominant frequencies.

Fig. 3.10 was obtained through experimental measurements of the object’s response to 

external excitation frequencies using the setup described in section 3.4.3. For period-1 

oscillations, the object response frequency behaves linearly to the external excitation 

frequency. As the external excitation amplitude was increased, bifurcation-like 

behaviours occurred at certain frequencies, as indicated by the presence of more than one 

dot at specific frequency points in Fig. 3.10. Chapter 4 elaborates on how the frequency 

domain data supports the system’s nonlinear dynamics and validates the experimental 
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observations discussed here. For examples of the frequency components and their 

magnitudes, including PSD studies, readers are referred to Chapter 4. The difference in 

frequency of   and phase of between the external excitation and the object response 

can be defined by

.   (3.8)

This difference in frequency and phase of oscillations between the external excitation and 

the object’s response and the system linear behaviour are plotted in Fig. 3.11a, b using 20 

measurements at each frequency ranging between 10 till 100 Hz each. 

Fig. 3.11. Statistical analysis of a) frequency and b) phase difference, between external 

excitation and object response at various external excitation frequencies (

measurements). The notches indicate that phase and frequency differences are not 

significantly different anymore for frequencies greater than 20 Hz, and c) linear 

relationship between shaker input voltage and measured LDV signal on Tiny-Lev 

vibrations, and d) on object response employing excitation frequencies ranging from 10 

Hz to 100 Hz.

The frequency and phase differences (Eq. 3.8) are both less than 5% (Fig. 3.11a, b). This 

observation supports the theoretical model assumption, indicating that when the levitated 

object is subjected to a sinusoidal external excitation, , the object 

aligns its amplitude and frequency with the external excitation by oscillating about its 
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equilibrium point in an harmonic motion . Then, the relation 

between the input voltage to the shaker amplifier and the resulting amplitude of the 

shaker’s vibrations was explored. To achieve this, the amplifier gain was varied while 

maintaining a consistent output voltage from the function generator at a certain frequency. 

Simultaneously, the input voltage supplied to the shaker was measured, and the shaker 

vibration amplitude was recorded using the LDV. When plotting the input voltage to the 

shaker against the LDV-recorded voltage for Tiny-Lev vibration, a consistent linear 

relationship across frequencies was observed from 10 Hz to 100 Hz. Fig. 3.11c, d visually 

illustrates a linear response of Tiny-Lev vibrations against the shaker vibrations using 

max-normalized voltage levels (while the non-normalized figures can be found in Figs. 

3.12, 13).  MRL represents the Mean Regression Line which uses the average slope and 

intercept parameters, and which illustrates a typical relationship between independent and 

dependent variables observed across various datasets or observations. For Fig. 3.11c, the 

confidence intervals for the slopes of the regression lines fall within the interval of 

, indicating a 95% confidence level in the true slope lying within this 

interval. Correspondingly, the confidence interval for the intercepts falls within the 

interval of , with a 95% confidence level in the true intercept being 

within this range indicating strong correlation between external excitation and vibration 

response. Next, the spherical ESP object was levitated within the Tiny-Lev. The object’s 

oscillation corresponding to the shaker’s input voltage was measured via LDV. Similarly, 

for Fig. 3. 11d, the confidence intervals for the slopes of the regression lines fall within 

the interval of , and the confidence interval for the intercepts fall within 

the interval of . Fig. 3.12 shows the non-normalized correlation between 

input voltage into the shaker and LDV voltage.  
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Fig. 3.12. Linear relationship between shaker input and LDV voltage for Tiny-

Lev vibrations (10–100 Hz) with irregular x-axis intervals from manual adjustments. 

Fig. 3.13 illustrates the non-normalized correlation between the object’s oscillations 

corresponding to the shaker’s input voltage via LDV. 

Fig. 3.13. Linear relationship between shaker input and LDV voltage for object 

vibrations (10–100 Hz) with irregular x-axis intervals due to manual adjustments. 

Comparing Figs. 3.13 and 3.14 and considering the linear relation between shaker input 

voltage and LDV-measured voltage, it can be concluded that, at a specific frequency and 
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when the output voltage is measured on the Tiny-Lev, the oscillation’s amplitude is higher 

than that measured on the object. In simple words, the external excitation amplitude has 

a linear relation with the object amplitude and consistently surpasses the object’s 

amplitude.  Given that the object radius in the experiment is  and it is positioned 

near a pressure node, oscillating around its equilibrium with an amplitude much smaller 

than , the ratio of the object position to its radius is equal to or smaller 

than . Referring to Fig. 2.13 Chapter 2, which predicts linear behaviour for small non-

dimensional values of object position , the observed linearity is expected. Thus, this 

anticipated linearity reflects the behaviour of a nonlinear spring at low displacements, 

resembling that of a linear spring. Also, the observed quasi-linear behaviour is reasonable 

for the behaviour of a nonlinear spring at low displacements.  

In this section, after introducing the experimental setup and characterizing the Tiny-Lev 

device, we are ready to extract the experimental time series data which is required for 

further analysis. The next step consists of plotting and comparing the bifurcation 

diagrams with the help of theoretical formulation and experimental time series data. The 

purpose of this work is to investigate the deviation between theoretical predictions and 

real-world observations which help us to improve our understanding about system’s 

behaviour. 

3.4.5. Experimental bifurcation diagram 

Experimental bifurcation diagrams are valuable tools for understanding and classifying 

the behaviour of real-world systems. With their help, the response to changes in system 

parameters can be observed and used as a basis for validating theoretical models and 

hypotheses [160-162]. This validation process is crucial, as it helps researchers to refine 

their understanding of complex nonlinear phenomena.  

Unlike theoretical bifurcation diagrams, which are often derived from mathematical 

models (here, Eq. (2.35)), experimental bifurcation diagrams are constructed from 

experimental data obtained through experiments and observations (here, section 3.4). The 

unique value of experimental bifurcation diagrams lies in their ability to provide insights 

into the underlying dynamics of complex systems, particularly those exhibiting nonlinear 

behaviour. By systematically varying a control parameter (here the amplitude of the 

external excitation) and observing the resulting behaviour of the system (here the levitated 

object’s response), experimental bifurcation diagrams can reveal important information 

such as the presence of bifurcation points, the stability of different dynamical regimes, 
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and the emergence of complex phenomena such as chaos. In this section with the help of 

the theoretical formulation and experimental time series data, the bifurcation diagram is 

plotted, and then the deviation between the theory and the real-world is investigated. In 

the experiment, The LDV measures the levitated object response (velocity of a suspended 

polystyrene bead, Fig. 3.14a) through a hole drilled in the centre of the upper transducer 

array (Fig. 3.14b), which enables the measurement beam to reach the suspended 

polystyrene bead (Fig. 3.14c). 

By changing the amplitude of the external excitation generated by the shaker as the input 

parameter, the measured velocity of the levitated object within the field can be saved as 

time series data and used to plot corresponding bifurcation diagram experimentally. Here, 

the focus was solely on the increasing amplitude scenario. As the amplitude of the 

external excitation rises, the system either hits the amplifier’s cut-off threshold or the 

levitated object drops due to excessive vibration. Once the object drops, stability cannot 

be maintained, and the system resets to its initial state, making a controlled sweep down 

from higher amplitudes impossible to realise.

Fig. 3.14. a) Levitated object in the Tiny-Lev on a vibrating shaker, with a red 

hue from LDV laser illumination; b) drilled hole in the Tiny-Lev’s top plate 

showing the object; c) laser beam path through the hole.
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To plot the theoretical bifurcation diagram, specific parameters related to the object and 

medium properties were selected as: , , , 

, , ,  [61,115]. The velocity of the levitated 

spherical object, measured by LDV and displayed on the oscilloscope as an output 

voltage, is used as the time series data. The measured signals are denoised using the 

GHKSS filter. Then, the object displacement is calculated to generate the bifurcation 

diagram, which is plotted against the amplitude of external excitation provided by the 

shaker. Additionally, the bifurcation diagram is plotted by solving the theoretical 

nonlinear equation of motion for comparison purposes, considering two different 

spherical object radii. 

a) Acoustically small spherical objects ( ): Fig. 3.15 displays the 

bifurcation diagram for an acoustically small object ( ) at , 

derived analytically from Eq. 2.35 (solid line), alongside experimental data (dots) 

extracted using discussed experimental setup in section 3.2. This figure uses the 

original equation without utilizing the Taylor series approximation. 

 
Fig. 3.15. The bifurcation diagram for an acoustically small object ( ) 

derived analytically from Eq. (2.35) (solid line), and experimental data (dots). 

 
Both Fig. 3.10 and Fig. 3.15 depict bifurcation phenomena, but they approach it 

from distinct perspectives. Fig. 3.10 demonstrates how bifurcation begins to 

emerge in the frequency domain as the external excitation frequency increases. It 

focuses on the linear relationship between the excitation and response frequencies 

Gorkov formulation
Experimental data
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during period-1 oscillations. The appearance of multiple frequencies in the 

object’s response at certain excitation points suggests the onset of bifurcation-like 

behaviour. On the other hand, Fig. 3.15 presents a bifurcation diagram explicitly 

mapping the object’s amplitude response as a function of the external excitation 

amplitude. It provides a detailed comparison of analytical predictions and 

experimental results for an acoustically small object. This figure highlights the 

amplitude-based bifurcation behaviour, showing how the object’s response 

transitions from stable, periodic motion to more complex regimes as the excitation 

amplitude increases. Therefore, while both figures illustrate bifurcation, Fig. 3.10 

focuses on frequency-based bifurcation, whereas Fig. 3.15 captures amplitude-

based bifurcation. Together, they provide a comprehensive view of the system’s 

nonlinear behaviour. Fig. 3.15 shows that the theoretical model closely aligns with 

the experimental data, demonstrating good agreement. However, as the external 

excitation amplitude increases, deviations between theory and experiment become 

apparent. This discrepancy is expected, given the assumption in Chapter 2, 

Section 2.7, where it was stated that  should be less than 1, with  

representing a coefficient equal to double the wave number. Moreover, examining 

the frequency response in Section 3.3, it can be found that for , 

there is a strong correspondence between the theoretical model and experimental 

data presented in [118]. This alignment further validates the theory, particularly 

for small external excitation amplitudes. However, the bifurcation diagram 

reveals that deviations begin to occur at around  for the/an object with 

, equivalent to . These deviations indicate the limitations of the 

theoretical framework beyond specific excitation amplitudes and should be the 

subject of further investigation in the future. 

b) Acoustically large spherical objects ( ): Fig. 3.16 presents the 

bifurcation diagram for an acoustically large object ) at , 

derived from equation 2.35, alongside experimental data extracted using 

discussed experimental setup in section 3.2. In Fig. 3.16 depicts the original 

equation without utilizing the Taylor series approximation. 
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Fig. 3.16. The bifurcation diagram for an acoustically large object ( ) 

derived analytically from Eq. (2.35) (solid line), and experimental data (dots). It 

should be noted that the Gorkov model, which is derived for acoustically small 

particles, doesn’t match the experimental results for large particles. The 

discrepancy arises because the Gorkov formulation assumes small particle sizes 

relative to the wavelength, while larger particles exhibit more complex 

behaviour that this model cannot accurately capture. 

The bifurcation diagram in Fig. 3.16 illustrates the global dynamic behaviour of the 

system across varying external excitation amplitudes, derived from a theoretical model 

presented in Chapter 2 for acoustically large objects and real-world observations obtained 

through experimental work. In contrast, methods such as the Sparse Identification of 

Nonlinear Dynamics (SINDy), discussed in the next Chapter, focus on identifying 

governing equations tailored to specific conditions, and is excel in capturing system 

dynamics and explores data-driven techniques for analysing the system behaviour. 

3.5. Conclusion 

Changing the external excitation is an indirect way of controlling a levitated object 

through external excitation of the object held within an acoustic radiation force field has 

never been attempted before. By changing the viewpoint from the acoustic radiation force 

field to the dynamical behaviour of a levitated object, the changes in the object's 

behaviour with respect to the amplitude of external excitation and varying object size 
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were examined and questioned. To investigate the dynamics of the system, it is necessary 

to solve its equation of motion. The governing equation of motion, as presented in Eq. 

(2.35), was solved using the fourth order of Rang-Kutta method. This theoretical 

formulation is based on the Gorkov formulation, which is applicable to acoustically small 

objects (and theoretically for spherical objects). For implementing numerical solution 

method, we should choose an appropriate time step. A statistical method based on the box 

plot diagram was used to select the appropriate time step. The sensitivity analysis of the 

system was investigated by calculating the Sobol indices for different parameters of the 

coefficient in nonlinear governing equation of motion (Eq. 2.35). The sensitivity analysis 

showed the significant effect of frequency and amplitude of external stimulation on the 

dynamic behaviour of the system. The frequency response curve obtained using the 

theoretical model based on the Gorkov formulation at low external amplitudes of 

excitation shows good agreement with experimental results reported in [118]. This 

confirms the validity of the theory for acoustically small objects, especially under low 

external excitation. In bifurcation diagrams obtained from theoretical formulation for 

small object, both periodic and non-periodic behaviours were observed, shedding light on 

the intricate nature of the system’s response.  

Our theoretical study in Chapter 2 assumes that the object exhibits a harmonic response 

under the influence of external sinusoidal excitation. In Chapter 3, this assumption was 

experimentally verified by applying external excitation to the ultrasonic standing wave 

generator. The experiments demonstrated that the disturbance vibration frequency and 

amplitude are effectively transmitted to the object. Furthermore, the experimental results 

confirm a linear relationship between the object’s response and the amplitude and 

frequency of the external excitation, validating the theoretical predictions presented 

earlier. In this experimental study, the GHKSS filter was employed to enhance the quality 

of the extracted time series data by reducing noise, thereby improving the accuracy and 

reliability of the analysis and results. While the theoretical and experimental bifurcation 

diagrams align closely for a small acoustically levitated spherical object and low external 

vibration amplitudes, a significant discrepancy emerges when considering large 

acoustically levitated spherical objects. This disparity suggests a fundamentally distinct 

dynamic regime for a large spherical object, diverging markedly from theoretical 

predictions in Eq. (2.35). This means that theory predicting a Duffing-like equation needs 

to be revised to describe the behaviour of acoustically large objects accurately. While the 
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Duffing-like model may be suitable for small objects, its limitations become apparent 

when applied to larger objects, necessitating alternative approaches for accurate 

prediction and analysis. In the subsequent Chapter, nonlinear time series analysis 

techniques, such as the SINDy algorithm, recurrence plots, and network analysis, will be 

employed to analyse further and comprehensively characterize the nonlinear behaviour, 

paving the way for more accurate and efficient manipulation of objects in the future. 
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CHAPTER 4: DATA-DRIVEN MODELLING FOR LARGE OBJECT MOTION  

 

4.1. Introduction 

One of the challenges in analysing complex systems is dealing with a large amount of 

data and information. Today, with the advancement of technology and the emergence of 

computers and high-speed processors that are available to everyone, the analysis of such 

systems has become much easier than in the past. Moreover, the need to analyse complex 

systems with large amounts of data from real-world experiments has led to the popularity 

of methods based on nonlinear time series analysis (NTSA) in recent years [204-208] and 

have found various applications to fields from physics and engineering, biology and 

finance [204-211]. NTSA is a powerful approach to studying complex dynamical systems 

where traditional linear methods are not usable [212-216]. Unlike linear time series 

analysis, which assumes a linear relationship between variables, NTSA acknowledges 

and explores the inherent nonlinearities present in the data. NTSA techniques, such as 

phase space reconstruction, recurrence plots (RPs), and recurrence networks (RNs) are 

powerful tools to uncover hidden patterns, identify underlying dynamics, and predict 

future states of nonlinear systems in physics, engineering, biology, finance, and climate 

science [217-222].  

Also, with advancements in machine learning techniques and data-driven modelling, we 

can predict a system’s behaviour by analysing a segment of its time series data [223-225]. 

Data-driven models, a class of computational models, are practical tools that rely on 

historical data collected throughout a system’s or process’ lifetime to establish 

relationships between input, internal, and output variables [226]. These models, which 

have evolved from earlier statistical models, have overcome limitations posed by strict 

assumptions about probability distributions. Machine learning, a subfield of artificial 

intelligence, is closely related to data-driven modelling [227]. It also uses historical data 

to create models that can make predictions and identify patterns. Sparse Identification of 

Nonlinear Dynamical Systems (SINDy) is a data-driven method that uses machine 

learning algorithms to uncover the underlying dynamics of a system directly from 

observational nonlinear time series data. By systematically analysing the data, SINDy 

extracts sparse representations of the system's dynamics, enabling the discovery of 
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governing equations or models without relying on explicit mathematical formulations 

[228-233]. 

In this Chapter, the dynamic equation of motion for a spherical object oscillating around 

its equilibrium point in an acoustic radiation force field is derived. After briefly 

introducing the method of SINDy, it is used to derive a set of ordinary differential 

equations from both theoretical and experimental data, including clean and noisy sources. 

By employing the SINDy method, sets of ordinary differential equations are extracted 

from both clean and noise-contaminated theoretical data (bottom-up, explicit model) and 

experiments using the Tiny-Lev device. The robustness of the SINDy algorithm against 

noisy data is first evaluated, confirming its theoretical robustness under low-noise 

conditions. For high-noise data, it is recommended to filter experimental data, employing 

the GHKSS filter detailed in Chapter 3, which significantly reduces noise, enhancing the 

quality and reliability of the analysis.  

Moreover, NTSA, particularly the RP, is utilized in the first step to classify the presented 

model across periodic and chaotic states at various bifurcation points. The presented 

model, based on experimental time series data collected through the experimental setup 

outlined in Chapter 3. In this case, the system’s phase space must be reconstructed using 

its time series data to obtain RPs. The first minimum of the mutual information (MI) and 

false nearest neighbours (FNN) method is used to reconstruct the phase space using 

experimental nonlinear time series data [234, 235]. Using the generated adjacency matrix, 

RNs are formed to search for motifs that classify the dynamics of the system and enable 

further analysis. 

4.2. SINDy algorithm 

Several mathematical approaches have been developed in recent years to extract 

differential equations of motion describing the dynamical behaviour of nonlinear systems 

from experimental time series data [228-233]. Brunton et al. introduced the SINDy 

method to extract nonlinear governing equations of motion using time series data, and 

they showed the SINDy capability by extracting the equations of motion associated with 

some simple conventional systems such as linear and nonlinear oscillators, Lorentz 

chaotic system, and the fluid vortex shedding behind an obstacle [228]. They also showed 

that this method can be extended to systems with an external control signal or stimulation 

[229]. Moreover, this method has proven effective in recovering chaotic systems even 
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from noisy data and shows robustness [230]. The basic assumption of SINDy is that 

identifying a set of sparse terms in the nonlinear model best explains the observed 

dynamics of the system. This goal is typically done by considering a library function 

consisting of polynomial terms, trigonometric functions, or other basis functions and 

using regression techniques to identify the non-zero significant terms.  

SINDy assumes that identifying a sparse set of terms in the nonlinear model is enough to 

best explain observed system dynamics. In the context of SINDy, regression is employed 

to identify the significant terms in a mathematical model that best explain the observed 

dynamics of a system, and a technique known as sequential thresholded least squares is 

utilized to enforce sparsity in the model. An iterative process involves fitting the data to 

different combinations of functions from the library. Terms with coefficients significantly 

far from zero are kept, while others are discarded. By systematically removing less 

significant terms, SINDy efficiently reduces the complexity of the model while still 

capturing the essential dynamics of the system, resulting in a sparse representation of its 

behaviour. The SINDy algorithm is based on artificial intelligence. In other words, the 

goal is to build an algorithm that receives a set of data and outputs of an anonymous 

system and uses them to predict a model that not only optimally approximates this data 

set but also predicts the system’s future. To introduce the theoretical basis behind the 

SINDy algorithm [218], consider a general nonlinear dynamical system in the form of 

,   (4.1) 

and it can be represented by a set of first order nonlinear differential equations, using state 

space vectors: 

.   (4.2) 

where  is a time history of the state vector,   is its derivative with respect 

to the time, and  is the number of the state vector. The key observation is that for most 

of dynamical systems the functions of  consists of only a few terms, making it sparse 

in the space of linear and nonlinear possible functions.  

A time history of state space variables should be collected as a sample collection to learn 

the system and determine the functions of , the sample data at several times 

 are arranged into two matrices as: 
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. 

  

(4.3) 

Next, a library matrix of potential candidate nonlinear functions, , consisting of 

estimates of state vectors ,  and external excitation, , should be constructed. 

Using Symbolic regression which involves the determination of a function that relates 

input–output data, and it may be viewed as a form of machine learning, the relation 

between state space vectors can be obtained as: 

,   (4.4) 

where  and   are a sparse vector of coefficients and should be determined using sparse 

regression method, and  represents external excitation or noise in the dynamical system 

(Fig. 4.1) [228-230]. It should be noted that the SINDy method highly depends on the 

correct choice of measurement variables, data quality, and the appropriate selection of 

library functions to approximate the nonlinear governing equation of motion [230,231]. 

 
Fig. 4.1. Schematic of SINDy algorithm to identify governing equation from 

nonlinear time series data including a time history of the states  and derivatives .  

and  are unknown coefficients. 

In the following sections, SINDy is used to extract nonlinear differential equation of 

motion presented in Eq. (2.35) in different dynamical regime, using theoretical and 

experimental data.  
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4.3. Nonlinear time series analysis techniques – system identification  

In this section, from an applied perspective, NTSA is introduced as a tool for studying 

the dynamic regimes of a large, levitated object. 

4.3.1.  Phase space reconstruction  

Each state of a system can be represented by assigning it to a point in the phase space, 

and the system’s time evolution creates a path [234,235]. Reconstruction of phase space 

approaches rooted in nonlinear dynamics and has found widespread applications in 

various fields ranging from physics to biology and finance [236]. To reconstruct the phase 

space, we need to determine the values of the time delay of  and the embedding 

dimension of . MI, rooted in information theory, and estimates the time delay to 

reconstruct the phase space of a dynamic system using the time series associated with that 

system. This technique is based on finding the mutual information function between the 

time series data and its time-delayed versions related to the system under investigation.  

Choosing the minimum possible embedding dimension is another step to reconstructing 

the phase space using the time series data. One of the most widely used and standard 

methods to reveal the dynamics and dimensions of a system from the observed time series 

is false nearest neighbours (FNN) method. FNN aims to identify “false neighbours” in 

the reconstructed state space. False neighbours are points that appear close in the 

reconstructed phase space but are part of different paths in the original phase space. This 

helps avoid mistaking points from different trajectories as part of the same trajectory, 

which can lead to incorrect conclusions about the system’s behaviour. The reconstruction 

of phase space using MI and FNN methods is based on a prominent theorem posed by 

Takens, which says the time series of one signal of a system contains information about 

other signals in the system [234,235]. Mathematically, MI measures a statistical 

dependence between two random variables  and , Eq. (4.5), which can be defined by 

the sum (or integral in the continuous case) over all possible joint and marginal 

probability distribution function of the variables  and  

 
  (4.5) 

when  is the joint probability distribution function of the variables  and ,  

and  are the marginal probability distribution functions of  and  respectively. To 
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calculate the time delay parameter  using the mutual information method, the mutual 

information function of the signal  with its time delay version  should be 

calculated and plotted for different values of ; then, the idea is to find an appropriate 

time delay such that the mutual information between the original signal and its time-

delayed version is optimal. This optimal value can be determined by exploring a local 

first minimum value, an absolute mean for all investigated time delays, or an average of 

the mutual information function for all explored time delays [224,225]. The FNN method 

is used to determine the appropriate value of the embedded dimension using the 

determined time delay, , and the time series data related to the system to reconstruct the 

system’s phase space in a way that more accurately describes the system’s dynamics. This 

method measures the neighbourhood distance of points in a time series data 

 with its version in an -dimensional space

 when , in that may appear as neighbours in the 

reconstructed phase space. Then, this method looks for whether this neighbourhood 

remains close by increasing the system dimension, . If the answer is “no”, then the 

points become “false neighbors”, and it indicates that the embedding dimension should 

be increased; if the distance did not change significantly, then they are true neighbours 

and  is the true embedded dimension.  

4.3.2. Recurrence plot  

Ekman et al. introduced the RP [211]. This method is based on tracking the system’s state 

in the phase space and the system comeback to a neighbourhood within a specific range 

of its phase space. This neighbourhood is recognized by determining the small value of 

In most dynamical systems, the phase space has dimensions higher than two or three 

dimensions and hence cannot be drawn or imagined. However, creating an RP enables us 

to visualize certain aspects of the phase space path. RP can be mathematically expressed 

by defining an adjacency matrix as  

 , ,   (4.6) 

where  is the number of the states in the time series data,  is the state space vector,  is 

a selected threshold distance,  is the norm function and  is the Heaviside function. 

It should be noted that systems usually do not return exactly to their previous state but 

repeat approximately, so the  value must always be sufficiently greater than zero, and in 

this case, selecting an appropriate neighbourhood value is a challenge. 
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 Examining RPs and their patterns is very important. In these patterns, we can see dense 

points, vertical or diagonal lines, and scattered points. Each of which pattern expresses a 

specific behaviour in the system being investigated. For example, diagonal lines indicate 

periodic behaviour, while dense clusters indicate the existence of an attractor. Also, the 

density of points and their distribution patterns help us to understand the complexity and 

stability of the system [211-216].   

4.3.3. Recurrence networks and motifs 

Another method of analysing complex systems is plotting RNs using the system 

adjacency matrix. In the context of RNs, the adjacency matrix serves as a binary 

representation indicating the presence (1) or absence (0) of connections between state 

space pairs. For RNs, nodes depict system states, and edges signify relationships. This 

network shows the connections between different states in the phase space and plays an 

essential role in understanding the system. Motifs, recurring subpatterns within networks, 

are crucial in understanding system organization and functional characteristics. 

Observing these repeating patterns allows us to gain insight into dynamic processes and 

underlying structures and behaviours [217-222].  

4.4. Results from the application of the SINDy algorithm 

In this section, the results of applying the SINDy algorithm and NTSA techniques to 

investigate the complex dynamics of acoustically levitated objects are presented. First, 

theoretical time series data is generated using the Gorkov formulation, which is valid for 

acoustically small objects, and then the study is extended to acoustically large objects. 

4.4.1.  Application of the SINDy algorithm to time series data based on the noise 

free theoretical model  

To benchmark the SINDy algorithm for the theoretical study described in Eq. (2.35) and 

by using the Taylor series expansion for  till order 3, two different case studies are 

explored. Training data is collected over a time interval of  seconds, with a time 

step of  seconds. This enables us to construct the state space vector as follows 

,   (4.7a) 

.   (4.7b) 
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The library functions consist of polynomials and trigonometric functions, as 

 

 (4.8) 

Here the main goal is that finding  and coefficients. In the below theoretical case 

studies, the following parameters were utilized for both the object and medium properties: 

object radius, , sound wave frequency, , medium density, 

, object density, , speed of sound in the medium, , speed 

of sound in the object , and drag coefficient,   

The study is continued by assuming three theoretical case studies, as presented in Table 

4.3: Case 1 with  and , Case 2 with  and 

, and case 3 with  and . In all three cases, the nonlinear 

differential equation described in Eq. (4.7) is solved using the fourth-order Runge-Kutta 

method. The resulting two-dimensional phase space is plotted using displacement versus 

velocity (Table 4.1). 
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Table 4.1. Application of the SINDy algorithm to a time series model based on theoretical 

model taken from Chapter 2: Case studies, their coefficients extracted and phase portraits. 

Case Coff. Theory SINDy Phase space (Theory) Phase space (SINDy) 

 

1 

 0.0149 0.0149 

  

 78941 78943 

 15571 15578 

 

2 

 0.0149 0.0149 

  

 78941 78947 

 98617 98622 

 

3 

 0.0149 0.0149 

  

 78941 78947 

 25952 25958 

The resulting phase portrait, depicted in case1, and 2 illustrates a harmonic oscillation 

pattern around a stable point. In case 3, the phase space shows a torus structure. In this 

structure, we see paths in the phase space that show themselves as a torus in the phase 

space without converging to a fixed point or a simple limit cycle. After comparing the 

coefficients of the nonlinear equation of motion obtained theoretically with those derived 

from SINDy, presented in Table 4.1, we observed a maximum difference of 0.04% for 

Case 1, 0.04%. for case 2, and 0.05%. for case 3.  

This study indicates that SINDy is capable of accurately capturing and predicting the 

dynamics of the system based on the noise free theoretical model. However, before 

applying SINDy to the time series data extracted from experimental studies, its robustness 

against theoretical data contaminated with noise is evaluated. 

4.4.2. Application of the SINDy algorithm to a time series model based on the 

noisy theoretical model 

To apply SINDy and assess its robustness against noise, Eq. (4.7) is deliberately 

contaminated with Gaussian noise. All parameters for the object and fluid are similar to 
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the previous section, and to create Gaussian noise, the “randn” function in MATLAB 

software is used, with a mean value of zero and a standard deviation of  between  

and . This Gaussian noise is added to the  values, which can be obtained by applying 

the Range-Kuta numerical method to Eq. (4.7), using  and noisy  values and then 

SINDy algorithm is used to reconstruct Eq. (4.7). If we define the phase vector obtained 

by SINDy algorithm applied to the noisy data by  for and the phase vector of Eq. (4.5) 

by , the error estimation function for each  value can be defined by 

     (4.9) 

In which  is the norm function. As the noise increases, the error value is calculated, 

and Fig. 4.2 is drawn to illustrate the effect.  

 

Fig. 4.2. Error estimation values according to Eq. (4.7) evaluating the resilience of the 

SINDy algorithm to theoretical noisy time series data. Here,  represents the standard 

deviation of the Gaussian noise deliberately added to the system.  

Fig. 4.2 shows the Error value against the  value and demonstrates SINDy’s resilience 

in low noise conditions while by adding the noise value the estimated error will increase 

exponentially and applying a noise filter is recommended. Another advantage of using a 

filter is that the noise-free data are always easier to analyse and model. As it discussed in 

Chapter 3, it is important to note that the selection of the filtering method depends on the 

noise characteristics and the system under investigation. Here, The GHKSS filter is used 

to process the noisy experimental data [190-192]. 
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4.4.3. SINDy for acoustically small object: Experimental time series data 

In this section, SINDy is used to obtain the nonlinear equation of motion of an object 

below the wavelength limit levitated in an acoustic radiation force field. For the 

experimental work, the properties of the object and the medium are similar to those in the 

previous section, except for the object’s radius, , and object density, 

 

The measurements were conducted with the experimental setup described in Chapter 3 

within the hemi-anechoic room (with a signal-to-noise ratio (SNR) of 50.1 dB at 55 Hz), 

ensuring that the noise level was low. The initial condition was assumed to be zero, and 

the frequency  produced by the shaker was adjusted to 30 Hz. By adjusting the system 

to its period-1 oscillation, SINDy was applied to the experimental time series data 

measured by LDV to reconstruct the nonlinear equation of motion. To implement SINDy 

[202], the library functions are chosen according to Eq. (4.10). This library consists of 

polynomial functions with order four plus trigonometric functions as indicated in the 

following 

. 

  (4.10) 

According to Eq. (4.10), the constructed library has two parts consisting of candidate 

nonlinear functions related to the coefficients contained in  which represent the 

nonlinear governing equation of motion without external excitation part, and candidate 

nonlinear functions related to coefficients contained in  which represent the external 

excitation. The output time series data is measured by an LDV and correlated to the 

object’s velocity in z-direction (Fig. 3.8, and Eq. (3.6)). To determine the coefficient 

matrices  and   from the experimental data, A time history of the vector state, 

, is collected. The data is sampled at several times  and 

inserted into SINDy. In this case and after applying the SINDy algorithm,  and  can 

be obtained as 
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 and  ’ 

 

 

 

 

 

(4.11)  

which can be further simplified to a governing equation of motion  

,          (4.12a) 

.   (4.12b) 

The coefficients in Eq. (4.12) are taken as the average of twelve experimental data sets. 

For comparison with theory, the average values of the coefficients from the SINDy results 

are used. A comparison between time series obtained from theory, experimental data, and 

SINDy can be observed in Fig. 4.3. 

 
Fig. 4.3. Nonlinear time series data a) the theoretical dynamical equation of motion and 

the b) measured by the LDV and collected by oscilloscope. This data set and a library of 

nonlinear functions of the state variables are used to determine the matrix coefficients of 

 and  and c) sparse identified model. 
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Results of period-1 dynamics, generated through the equation of motion based on Eq. 

(4.7), experimental data (see bifurcation diagram, Fig. 3.15), and the sparse identified 

model (based on Eq. (4.12)) and are displayed in Fig. 4.4 and graphically confirm with 

phase portraits that SINDy correctly identified the system dynamics.

Fig. 4.4. A comparison between a) the theoretical dynamical equation of motion and the 

b) experimental data which shows the s well-captured by sparse identified system and c) 

sparse identified model.

It should be noted that, due to the high sensitivity of the experimental setup, several 

factors, including unavoidable external influences - which can include slight signal 

offsets, signal distortion, minor electrical current fluctuations, environmental noise, initial 

conditions, trapping position, airflows, and deformation of the polystyrene bead (e.g., 

slight squashing by forceps during handling) - can affect the results and may lead to 

variations in the observed dynamics due to error. It is crucial to carefully minimise these 

effects to ensure the accuracy and reliability of the experimental outcomes.

4.4.4. SINDy for acoustically large object: Experimental time series data

In this section, the question is that whether the SINDy algorithm can adequately capture 

the dynamics of large objects using the extracted time series data. In this part, time series 

data for three different bifurcation points, as indicated in the bifurcation diagram (Fig. 

3.16), are used to approximate the nonlinear governing equation of motion. The library 

in the SINDy algorithm consists of polynomial functions up to the fifth order and 

trigonometric functions. In the following, three experimental case studies, labelled as 

Example 1, Example 2, and Example 3, will be discussed. when is the object 

displacement from its equilibrium point.
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Example 1: . By applying the SINDy algorithm as 

discussed in section 4.3., the equation of motion can be obtained as 

 

(4.13) 

For this Example, four measurements were conducted over time, and SINDy was applied 

to each set of data. Table 4.4 presents the SINDy-obtained coefficients for reconstructing 

the equation of motion according to four performed measurements. To derive Eq. (4.13), 

the average of the coefficients listed in Table 4.2 was used. In this context,  represents 

the object’s displacement from its equilibrium point in , and  is the object’s velocity 

in .  

Table 4.2. Coefficient predicted by SINDy for example 1 according to four 

measurements. 
Measurements 

Coefficient M1 M2 M3 M4 Μean (μ) Standard 
deviation ( ) 

 62104 57936 63795 59996 60985 2544.1 
      1.064 
 0 0  0  0 
 0 1.1634  0 0 0 
 0  9.4217 0 0 0 
      13884.0 
 10129.1 10437.2 10235.4 10334.1 10283.2 132.081 
      0.0854 

 0.2904 0.2879 0.2953   0.0036 
 0 0 0 0 0 0 
      5.888 
   -0.4886   0.0179 
    0.0332 0 0.0323 

  0 0.0001  0 0 
 398500 398450 398530 398520 398500 35.59 
 0 0 0 0 0 0 
 59.542 61.360 60.153 60.752 60.452 0.781 
      0.0451 
   0 0 0 0 

 0 0 -3.5388 0 0 0 
      62.30 

 9251 9336 9447 9240 9254 122.38 
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Fig. 4.5 compares the measured experimental time series data, the filtered time series 

data, and the SINDy results obtained using averaged values from Table 4.2. 

 
Fig. 4.5. Comparison of experimentally measured data and SINDy predictions using 

averaged coefficients from Table 4.2 with filtered data for example 1. The plot 

highlights the accuracy of the SINDy algorithm in predicting the system dynamics. 

To generate a formulation using SINDy that not only displays the average of the measured 

data but also includes uncertainty bounds, the mean value  for each coefficient 

should be used, which covers 95% of the data for a normal distribution. This approach 

provides a more conservative and comprehensive representation of uncertainty [186-190]. 

Below, Eq. (4.14) is presented according to this definition 

 

(4.14) 

Fig.4.6 shows the power spectral density (PSD) of measured signal by LDV before 

applying filter, after applying filter and according to the SINDy results in Eq. (4.13). 
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Fig. 4.6. PSD of original signal measured by LDV before applying filter, after applying 

filter and according to Eq. (4.13) for example 1. 

In signal processing and acoustics, harmonics are frequencies that are integer multiples 

of a fundamental frequency, the fundamental frequency is the lowest frequency of a 

periodic waveform (here 32 [Hz]). For a system with a fundamental frequency , the 

harmonics would be ,  and so on. When PSD shows multiple peaks at 

frequencies that are harmonics or subharmonics of the fundamental frequency, it indicates 

the presence of nonlinearities in the system. In a perfectly linear system, the output signal 

in response to a sinusoidal input, will have the same frequency as the input, and there 

should be no harmonics. In the system where harmonic peaks are much weaker than the 

fundamental peak, this indicates a period-1 which exhibits one primary cycle 

corresponding to the fundamental frequency. Harmonics do not change the fundamental 

period of the system but will affect the shape of the trajectory and can cause the phase 

space plot to appear more complex with potentially distorted loop, but it will still be 

fundamentally a period-1 system [171-176].  

Example 2: . By applying the SINDy algorithm, the equation 

of motion can be obtained as 

(4.15) 

Similarly, Table 4.3 presents the SINDy-obtained coefficients for reconstructing the 

equation of motion according to four performed measurements for case 2.  
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Table 4.3. Coefficient predicted by SINDy for example 2 according to four 

measurements. 
Measurement 

Coefficient M1 M2 M3 M 4 Mean 
( ) 

Standard 
deviation 

( ) 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 
 

 
 
 

 
 

 

Likewise, Fig. 4.7 presents the experimental measured data without applying the GHKSS 

filter compared to the SINDy results obtained using averaged values from Table 4.3 and 

the filtered data obtained from the experimental setup. 
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Fig.  4.7. Comparison of experimentally measured data and SINDy predictions using 

averaged coefficients from Table 4.3 with filtered data for example 2.  

Also, Fig. 4.8 shows the PSD of measured signal by LDV before applying filter, after 

applying filter and according to Eq. (4.15). 

 
Fig. 4.8. PSD of original signal measured by LDV before applying filter, after applying 

filter and according to Eq. (4.15) for example 2. 

Similarly, to generate a formulation using SINDy that not only displays the average of 

the measured data but also includes uncertainty bounds, we can use the mean . This 

approach covers 95% of the data for a normal distribution which provide a more 

comprehensive representation of the uncertainty. The results, including these uncertainty 

bounds, are presented in Table 4.3. 
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Example 3: . By applying the SINDy algorithm, the equation 

of motion can be obtained as 

 
 

(4.16) 

Similarly, Table 4.4 presents the SINDy-obtained coefficients.  

Table 4.4. Coefficient predicted by SINDy for example 3 according to four 

measurements. 
Measurement 

Coefficient M1 M2 M3 M4 Mean 
 ( ) 

Standard 
deviation 

 
 
 
 

 

 
 
 
 

 
 

 
 
 

 

 
 

 
 
 

 
 

 

In like manner, Fig. 4.9 presents the experimentally measured data in comparison with 

the SINDy results, and the filtered data obtained from the experimental setup.  
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Fig. 4.9. Comparison of experimentally measured data and SINDy predictions using 

averaged coefficients from Table 4.4 with filtered data for example 3. 

Also, Fig.4.10 shows the PSD of original signal measured by LDV before applying filter, 

after applying filter and according to Eq. (4.16). Similarly, to generate a SINDy-based 

formulation that includes uncertainty bounds, we can use the mean , covering 95% 

of the data for a normal distribution.  

 
Fig. 4.10. PSD of original signal measured by LDV before applying filter, after 

applying filter and according to Eq. (4.16) for example 3. 

In Figs. 4.6, 4.8, and 4.10 the alignment of the PSD peaks from the measured signal, 

filtered signal and SINDy-reconstructed data strongly suggests that the SINDy algorithm 

has successfully captured the essential dynamics of the system. This validates the 

nonlinear equation of motion and indicates that the model can be reliably used for further 

analysis, prediction, and control of the system. The distinct amplitude variations across 
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the harmonics observed in the SINDy results in Figs. 4.6, 4.8, and 4.10 may stem from 

the algorithm’s sensitivity to nonlinearities in the system. The SINDy model identifies 

sparse nonlinear terms, which can accentuate certain harmonics, particularly under 

idealized conditions where noise and damping effects are minimized. In contrast, the 

experimental data reflect a broader range of physical factors, including system damping, 

measurement noise, and other uncertainties that are present in real-world systems. These 

factors tend to smooth out the amplitude variations observed in the harmonics, leading to 

a less pronounced harmonic structure in the experimental data when compared to the 

SINDy predictions. This discrepancy highlights the idealized nature of the SINDy model 

and the influence of external factors in the experimental setup. 

SINDy is a powerful tool for identifying governing equations from data. However, it 

provides an approximation rather than an exact representation of the governing equations. 

This approximation arises because SINDy relies on a predefined library of candidate 

functions whose suitability affects the model’s accuracy. If the library we had chosen had 

been inappropriate for the problem at hand (i.e., if the dynamics could not be well-

approximated as a sparse linear combination of library functions), SINDy would have 

failed to produce a reasonable model. For example, if our problem’s nature is governed 

by exponential or logarithmic functions, and we try to solve the same problem but using 

sines and cosines as our basic functions, SINDy is unable to find a sparse model for the 

dynamics [220,221]. 

In Chapter 2, by using Gorkov formulation and expanding the Tylor series till order five 

and for a small object levitated in the air and influenced by an external excitation, the 

governing equation of motion obtained as 

,   (4.17) 

where  were non-dimensional displacement and velocity of the object, respectively, 

and  coefficient was related to the object and fluid properties,  was a coefficient 

related to viscosity and drag coefficient and  was a coefficient related to the amplitude 

of the external excitation. By using SINDy and using a library till order 5 for 3 case 

studies in period-1 of oscillation for a large spherical object we can see the governing 

equation of motion in general can be described by  

, (4.18) 

when  is a nonlinear function and can be written as 
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,

(4.19)

in which all  coefficient in Eq. (4.18) and  coefficient in Eq. (4.19) are related to the 

external excitation amplitude and  is a nonlinear function of  that can be

replaced instead of  in Eq. (4.17). Also, the right hand of the Eq. (4.17),

, has be replaced by . All coefficient in Eq.

(4.18) and (4.19) can be obtained using SINDy algorithm. Looking at Examples 1, 2, and 

3, it can be seen that  and  are very close to each other. Because of this, they can be 

treated as a single coefficient, . The interesting part is that the ratio of  to  in all 

three equations is about 25,000. This suggests a consistent relationship between  and 

, which might be an important characteristic of the system. 

Also, in comparison with Eq. (4.17), Eq. (4.18) indicate more complex behaviour of the 

viscosity and complicated interaction between object, fluid, and dynamical properties of 

the system. For comparison with the SINDy result, if Fig. 3.16 from Chapter 3 is 

presented again as Fig. 4.11a, it can be seen that the bifurcation diagram for acoustically 

large objects highlights the discrepancies and mismatches between the global dynamic 

behaviour of the system, as predicted by the theoretical model using the Gorkov 

formulation, and the real-world observations obtained from experimental data across 

varying external excitation amplitudes. This divergence arises because the Gorkov 

formulation is only valid for acoustically small spherical objects. As demonstrated in the 

experimental measurements (Examples 1, 2, and 3), the obtained coefficients in the 

governing equation of motion correspond to a specific external excitation amplitude and 

describe only localized system dynamics. When the governing equation of motion 

changes only in its coefficients due to variations in the bifurcation parameter, this can be 

described as a parametric variation within the same dynamical model. This means that 

the functional form of the equation remains unchanged, but the system exhibits different 

behaviours (e.g., transitions between periodic, quasi-periodic, or chaotic states) as the 

bifurcation parameter is varied. Additionally, it is observed that all the unknown 

coefficients vary with changes in the amplitude of the external excitation, indicating a 

dependency of the system’s governing parameters on the excitation level. To include the 

complex behaviour of the viscosity, the bifurcation diagram should be plotted by varying 

the bifurcation parameter using the equation of motion obtained through SINDy, as 

outlined in Eq. (4.18). Since all the coefficients in examples 1-3 represent local dynamics 
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rather than global behaviour, to choose unknown  coefficients, we use the coefficients 

from Example 1. To account for the effect of the amplitude of the external excitation on 

the system, the ratio discussed earlier is used, where , then the

bifurcation diagram is plotted. Fig. 11b shows the bifurcation diagram comparing the

analytical results derived from the SINDy results (red line) with experimental data (blue 

dots). The SINDy model captures the primary dynamics well at lower excitation 

amplitudes, aligning closely with experimental trends. 

Fig. 11. a) Bifurcation diagram for an acoustically large object: analytical (solid line) 

vs. experimental data (dots), showing discrepancies due to Gorkov’s small-object

assumption. b) Comparison of the SINDy results (red), and experimental data (blue),

highlighting deviations at higher excitation amplitudes due to the polynomial-based

library limitations. Some distinct regions with different dynamics are selected for 

further analysis. 

In comparison with Fig.11a, Fig11b highlights an improvement in the estimation of the 

system’s behaviour. By leveraging SINDy, the model in Fig. 11b captures the intricate 

nonlinear dynamics and the complex role of viscosity more effectively. Despite choosing 

the coefficients by using Example 1 and using a simple library consisting of polynomial

functions up to the fifth order, SINDy can accurately reconstruct the underlying 

dynamical model for an acoustically large, levitated object. However, at higher

amplitudes, significant deviations arise, especially in bifurcation regions where 

experimental data exhibit multiple branches. Although the chosen library may not fully 

capture all aspects of the bifurcation behaviour, the primary challenge lies not in selecting 

the appropriate function library, but in determining the correct coefficient values for the 

obtained model. The observed deviations at higher excitation amplitudes arise primarily 

from fluctuations in the extracted coefficients rather than limitations in the functional
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basis itself. This suggests that refining coefficient estimation through repeated 

measurements and statistical averaging is key to improving accuracy rather than 

expanding the function library. The results from Examples 1, 2, and 3 demonstrate that 

even with a minimalistic SINDy library, the essential system dynamics are well captured, 

highlighting the effectiveness of SINDy as a data-driven modelling tool. SINDy can yield 

more consistent and reliable governing equations by systematically analysing coefficient 

variability across multiple trials, further strengthening its applicability to complex 

nonlinear systems. For further analysis, by selecting three different regions denoted as 

Case 1, 2, and 3 in the bifurcation diagram, three different dynamic regimes are studied 

in the bifurcation diagram in Fig. 11b. Table 4.5 in the next section presents segments of 

these three distinct time series along with their corresponding PSD. These data were 

obtained by measuring voltage using LDV in the experimental setup, applying the 

GHKSS filter, and then processing the results. 

4.5. Results for nonlinear time series analysis - System identification 

As discussed in Chapters 2 and 3, Gorkov formulation cannot be used to predict the 

behaviour of acoustically large spherical objects. In this section, nonlinear time series 

analysis (NTSA) techniques are applied to study the behaviour of objects whose size 

exceeds the wavelength limit, with . By selecting specific case studies, the 

behaviour of an acoustically large object levitated in an acoustic radiation force field is 

examined, using experimental time series data as discussed in Chapter 3.  

Table 4.5 presents segments of three distinct time series and their corresponding power 

spectral densities (PSD), obtained by measuring voltage using LDV in the experimental 

setup and after application of GHSS filter for an object with a radius of   

and subsequently processed using the GHKSS filter. These datasets show how different 

dynamical regimes can be observed as the amplitude of the external excitation varies from 

 to  (see bifurcation diagram, Fig. 11b), when the frequency of the 

external excitation is . 
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Table 4.5. Three different filtered time series data and their PSD, obtained by measuring 

voltage by using LDV in the experimental setup, when varies from to 

for an object with a radius of , with the external excitation frequency 

of .

Time series data PSD

Case 1

Case 2

Case 3

Time series data from three bifurcation points were used to reconstruct the phase space, 

as shown in Table 4.5. Fig. 4.12 presents the MI and FNN function results for these time 

series, respectively.

Fig. 4.12. a) MI test for selecting time delay of and b) FNN functions for selecting 

embedding dimension of , according to case studies presented in Table 4.5.
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Table 4.6 displays reconstructed phase space, RP, and RN for different cases in Table 4.5. 

Table 4.6. Reconstructed phase space, RP, and RN for three cases presented in Table 4.5. 

Phase space Recurrence Plot Recurrence 
Network

Reconstructed phase space for case 1 shows a regular motion corresponding to period-1 

of oscillation which indicate an attractor which shows itself as a limit cycle in the phase 

space. A torus in the phase space in case 2 can be observed. A torus is a geometric shape 

that looks like a doughnut and occurs when a system’s dynamics can be described by 

oscillations with two or more incommensurate frequencies. Here according to the PSD 

represented for the corresponding time series data in Table 4.5 two main frequencies are 

32 Hz and 23 Hz, which shows the presence of incommensurate frequencies. These 

frequencies do not share a common multiple, leading to a trajectory that never exactly 

repeats but fills out a toroidal surface in phase space. Also, the PSD for case 2 is not 

smooth and appears noisy, indicating an irregular trajectory in the phase space. This 

irregularity suggests the presence of a chaotic torus in the phase space. A chaotic torus is 

a concept in dynamical systems where the trajectory on a torus becomes chaotic. This 

occurs when the motion, which would otherwise be quasi-periodic (regular and non-
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repeating), is disrupted and becomes chaotic [237,238]. This means the system still 

follows a path around the torus but irregularly and unpredictably.  

In the concept of RP, the parallel diagonal lines in case 1 indicate a harmonic regular 

motion. In contrast, the dashed diagonal lines, and high transitions in case 2 suggest 

intricate dynamics and unpredictable patterns which means a transition to chaotic 

behaviour. The system in its period-3 in case 3 shows more complex patterns than period-

1 presented in case 1 with regular intervals of three-time steps. The sensitivity of the 

recurrence plot to changes in the bifurcation parameter shows that the dynamics of the 

system are strongly dependent on the external excitation amplitude, and understanding 

the specific details of these changes requires a deeper analysis of the system equations, 

examination of the bifurcation diagrams, and consideration of other measures such as the 

Lyapunov exponent, fractal dimension, etc. Here, the recurrence network is proposed to 

be plotted for a deeper analysis of the system’s behaviour. The importance of plotting RP 

is that by defining a threshold of , the adjacency matrices can be derived. For these three 

case studies, the adjacency matrices have a size of , which is essential for 

plotting RN. The size 983 by 983 was chosen based on the length of the time series data 

after preprocessing after reconstructing the phase space and the threshold parameter, . 

In the network related to the regular recurrence plot for case 1, a closed loop can be 

observed in the recurrence network, which is a strong indicator of periodic behaviour. It 

indicates that the system returns to its initial state after a certain period and completes a 

motion cycle. Since the specific structure of the closed loop, including the size, shape, 

and density of connections, can provide more information about the nature of the periodic 

motion, the presence of a regular and symmetric loop indicates a simple periodic 

behaviour. However, the system’s dynamic changes with the variation of the bifurcation 

parameter, and irregularity occurs in the system’s behaviour. In the network related to 

recurrence plot in case 2, two oval-like closed loops with different densities of 

connections and irregular patterns can be seen. Closed loops in the network indicate 

quasi-periodic movement in the investigated system. The two oval-like shapes in this 

pattern indicate that the system has two distinct modes, each with different amplitude or 

frequency regimes. It should be noted that the system has two main incommensurate 

frequencies. The variation in connection density within these loops reflects the chaotic 

nature of the system, where two incommensurate frequencies interact. The network says 

that the object is sometimes on the outer loop and sometimes on the inner oval loop, but 
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the transition between these two loops is irregular. Irregular patterns and junctions 

between oval loops indicate transitions or jumps between these two states, and observed 

irregularity between these two states predict chaotic or transitional behaviour. In the 

network corresponding to the regular recurrence plot in case 3, the presence of three 

interconnected loops indicates that the system cycles through three distinct states. This 

structure is characteristic of a period-3 of oscillation. A connected graph that has many 

occurrences in a network is called a motif of the network. In other words, network motifs 

are sub-graphs that repeat themselves in a specific network or even among various 

networks. Motif discovery problem comprises two main steps: first, calculating the 

number of occurrences of a sub-graph and then, evaluating the sub-graph significance. 

Various solutions have been proposed for the challenging problem of network motif 

discovery [222]. These algorithms can be classified under various paradigms such as 

exact counting methods, sampling methods, pattern growth methods and so on [222]. 

Network and motif analysis further enhances our understanding of the system’s dynamics, 

revealing intricate relationships and patterns within the data. Before bifurcation, the 

system typically exhibits harmonic motion, characterized by simple, regular oscillations. 

In the regular network in case 1, smaller motifs of sizes 3 and 4 (Fig. 4.13a), indicate 

stable and predictable interactions. However, in Fig. 4.13b, case 2, where dynamics are 

governed by a chaotic torus, system shows more complex and intricate patterns. This 

complexity is captured by larger motifs of sizes 4 to 8 in the network (Fig. 4.2b), 

highlighting the increased interactions and two different loops. 

Fig. 4.13. Motifs for a) regular harmonic motion related to network in Table 4.2: case 1, 

and b) irregular quasi-periodic motion related to network in Table 4.2: case 2.

4.6. Conclusion

In this Chapter, and for the first time, the Sparse identification of nonlinear dynamics 

(SINDy) algorithm has been applied to reconstruct the nonlinear differential equation of 

a)
b)
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motion of a levitated object trapped in an acoustic radiation force field, using 

experimental time series input data. The results indicate a good correlation with the theory 

for objects smaller than the wavelength limit. However, when dealing with more complex 

dynamics using objects larger than the wavelength limit, the theoretical predictions 

become inadequate. In these cases, SINDy accurately predicts the object’s dynamic 

behaviour. The theoretical robustness of SINDy against noise is observed under low noise 

conditions, while filtering is recommended for highly noisy data. The application of the 

GHKSS filter effectively reduces noise in experimental data. For acoustically small 

objects, changes in the amplitude of external excitation primarily affect the external 

excitation part in the nonlinear equation of motion, while for larger objects, SINDy 

reveals complex and nonlinear relationships between the amplitude of external excitation 

and all coefficients. This evaluation showed that SINDy performs well in theoretical 

scenarios, successfully extracting equations of motion for small objects exhibiting 

complex dynamic regimes, as demonstrated in Table 4.1. For acoustically large objects, 

the results obtained using a library with polynomial functions up to the fifth order and 

simple trigonometric functions demonstrate SINDy’s ability to capture the primary 

dynamics of the system that underscores the potential of developing data-driven models 

for complex nonlinear systems. Although the chosen library may not fully capture all 

aspects of the bifurcation behaviour, it provides valuable insights into the dominant 

dynamics of the system.  

To further analyze the experimental bifurcation diagram, nonlinear time series analysis 

(NTSA) techniques such as phase space reconstruction, recurrence plots (RPs), and 

recurrence networks (RNs) were employed to examine the complex dynamics of 

acoustically levitated objects, particularly in the case of acoustically large objects where 

the traditional Gorkov formulation fails (i.e., when  is greater than 1). In the presented 

case studies, parallel diagonal lines in the RPs indicate regular motion. However, as the 

bifurcation parameter changes, by changing the bifurcation parameter, the presence of 

dashed diagonal lines and high transitions in the system’s behaviour suggests intricate 

dynamics, indicating quasi-periodic behaviour, which can signify chaos.  

Network and motif analysis further enhances our understanding of the system’s dynamics, 

revealing intricate relationships and patterns within the data. Different motif sizes before 

and after bifurcation highlight the transition from simple harmonic motion to more 

complex regime in a dynamical system.  
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CHAPTER 5: CONCLUSION 

 

Below are summarised the main contributions of this research: 

1- In this study, with the help of Gorkov’s potential function theory, a new formula 

for the acoustic contrast factor was obtained by considering a harmonic external 

excitation. This harmonic disturbance causes the spherical object immersed in an 

ideal fluid to undergo rigid body oscillations. 

2- To validate the theoretical model to obtain acoustic contrast factor, a 3D finite 

element analysis (FEA) was conducted using perturbation theory in COMSOL 

Multiphysics 5.5. The numerical model presented here not only includes spherical 

objects with dimensions larger than the wavelength limit, but it can also be applied 

on non-spherical objects that lack analytical formulation. 

3- Using Newton’s second law and assuming a small amplitude of the object’s 

oscillation compared to the wavelength, and for a spherical object with 

dimensions smaller than the wavelength limit, the nonlinear governing equation 

of motion was obtained, which has a Duffing-like oscillatory behaviour. To 

investigate the effect of cubic, fifth, and higher-order terms, as well as object and 

fluid properties and damping on the nonlinear frequency of the system, the global 

residual harmonic balance method (GRHBM), the homotopy perturbation method 

with multi-parameter expansion (HPMPE), and the Akbari-Ganji (AG) method 

were introduced. Based on this, analytical formulas for the nonlinear frequency of 

the system were obtained.  

4- The sensitivity of the dynamic behaviour of the system was investigated by 

calculating the Sobol indices using various system parameters, including 

coefficients related to the properties of the object and fluid, as well as the 

frequency and amplitude of external vibrations. The results reveal that the 

amplitude and frequency of external excitation significantly influence the 

system’s response. Utilizing these sensitivity results, a bifurcation diagram was 

plotted using amplitude of external excitation as the bifurcation parameter. This 

diagram illustrates that the rich dynamical regime is possible and highlight that an 

experimental investigation is required. 
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5- An experiment was introduced and designed to extract time series data for an 

object levitated in an acoustic radiation force field. This experimental set up 

designed to extract time series data which are required to analyse the dynamical 

behaviour of the system under varying conditions. 

6- The system’s phase space was reconstructed using time series data to obtain 

Recurrence Plots (RPs). Phase space reconstruction employed the first minimum 

of mutual information (MI) and the false nearest neighbours (FNN) method. By 

forming recurrence networks and searching for motifs, the system’s dynamics 

were classified. RPs revealed transitions from regular to intricate, chaotic patterns, 

with network and motif analysis providing deeper insights into system behaviour.  

7- For the first time, the SINDy algorithm was used to reconstruct the nonlinear 

differential equation of motion of a levitated object trapped in the acoustic 

radiation force field using experimental time series input data. In the first step, the 

robustness of the SINDy algorithm against noisy data was evaluated. This study 

confirms the theoretical robustness of SINDy against noise in low-noise 

conditions, while filtering is recommended for high-noise data. The results show 

that the SINDy algorithm is a promising method for accurately identifying data-

driven models. For acoustically small objects, as predicted by the theoretical 

formula, changes in the external excitation amplitude only affect the external 

excitation part of the governing equation of motion. In contrast, SINDy shows 

complex and nonlinear relationships between the external excitation field and all 

coefficients for larger objects. 

 
5.1. Summary 

When an object is acoustically excited with an acoustic wave some of this momentum is 

transferred to the object and acoustic radiation exerts a force on the object. Static acoustic 

radiation force is known to be steady when the incident field is continuous with constant 

amplitude, and dynamic (oscillatory) acoustic radiation force for a continuous wave-field 

whose intensity varies slowly with time.  

By changing the viewpoint from the acoustic field to the dynamics of a levitated object, 

this question arises of how external excitation changes the dynamics of the object. In this 

scenario, and for acoustically small objects, the Gorkov potential function theory and its 

acoustic contrast factor are revisited, considering a harmonic disturbance that causes a 

spherical object to undergo rigid body oscillations within an ideal fluid in a standing plane 
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ultrasonic wave field. This is interesting as it raises the question of whether it is possible, 

in principle, to make use of the potential field to control the acoustic radiation force on 

an object through external disturbance without changing the other field parameters. the 

findings show that the contrast factor not only depends on the object and fluid properties, 

but also on the external vibration amplitude. Positive, negative and zero acoustic radiation 

forces are achievable, causing the object to constantly being pushed towards the nearest 

pressure or velocity node. The dependence on disturbance amplitude and force reversal 

are the novel features that can be employed in acoustic manipulation for non-contact 

dynamic characterization of smallest objects. 

To validate the theoretical model, a finite element analysis (FEA) was conducted using 

perturbation theory in COMSOL Multiphysics 5.5. The presented 3D numerical model of 

acoustic radiation force in COMSOL has then been applied to objects (a) with larger 

dimensions than wavelength limit and (b) using non-spherical shapes that lack analytical 

formulation and shows the same qualitative behaviour in terms of the acoustic contrast 

factor over a range of wavelengths. 

By applying Newton’s second law and assuming a small amplitude of external object 

oscillation compared to the wavelength, as well as a spherical object with dimensions 

smaller than the wavelength limit, a nonlinear governing equation of motion was derived, 

unveiling a Duffing-like oscillator behaviour in the time-varying radiation force, which 

exhibited a restoring harmonic force as a nonlinear softening spring. Using the obtained 

analytical relations, the effect of cubic, quintic and higher order terms, and the object and 

fluid properties on the nonlinear frequency of the system were discussed, subsequently. 

In this case, Global residue harmonic balance method (GRHBM) and homotopy 

perturbation method with multi parameter expanding (HPMPE) employed in obtaining 

the analytical approximate frequencies of free vibration condition.  The difference 

between these analytical methods for amplitude of object oscillation less than , when 

 is the wavelength of the acoustic wave, is less than 5% which shows the validation of 

using the analytical solution for this interval. Also, the result shows that considering only 

cubic term in nonlinear governing equation of motion can only be valid for amplitude of 

object oscillation less than λ/8 considering only cubic term and considering cubic and 

quintic term can be valid, for amplitude of object oscillation less than λ/5, and for higher 

amplitude considering the higher order nonlinear terms is required. Then, the effect of the 

compressibility and density on the angular frequency was investigated. Then, AG method 
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was employed for solving nonlinear damped vibration to investigate the effect of the 

nonlinearity on the angular frequency and phase of oscillation and the results validated 

by using a numerical solution obtained by Runge-Kutta order forth. The results show that 

because of the damping effects, the vibration of the object decays to its static position on 

the pressure node.  

To solve the governing equation of motion numerically using the fourth-order Runge–

Kutta method, an appropriate time step was selected based on statistical observation and 

the box plot method. The frequency response of the system in low amplitude verified by 

comparison of results with the experimental findings from [118]. The sensitivity of the 

dynamic behaviour of the system was investigated by calculating the Sobol indices in 

relation to various system parameters, including coefficients related to object and fluid 

properties, external vibration frequency and amplitude, and the results show that the 

external vibration amplitude and frequency have a significant effect on the system 

response. Using sensitivity results, the bifurcation diagram was plotted using the external 

amplitude oscillation as the bifurcation parameter. The result shows that a rich dynamical 

regime exists, including bifurcation points and quasi-periodic behaviour. While these 

theoretical results are potentially important for practical object manipulation, only 

experiments in highly nonlinear regimes can verify our findings and their physical 

relevance; this will be the subject of future Chapters.  

The presented study assumes that the object exhibits a simple harmonic response under 

the influence of external sinusoidal excitation. To validate these assumptions and extract 

nonlinear time series data for further analysis, an experimental setup was introduced and 

conducted. The validated experimental results confirm this assumption with a near linear 

relationship between the object’s response and the amplitude or frequency of external 

excitation. As verified also experimentally the object is oscillating and changes its 

amplitude and frequency with regards to the external excitation. The resulting vibration 

amplitudes are consistent across frequencies from 10 to 100 Hz which suggests a well-

characterized reproducible and controlled experimental setup. It is experimentally 

verified – through external excitation of the ultrasonic standing wave generator – that the 

disturbance vibration frequency and amplitude are transmitted to the levitated object. 

Experimental findings presented here exemplify for the first time that full non-contact 

vibration testing campaigns and modal analysis using a levitated object which is indirectly 
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excited via a shaker and measured using a laser Doppler vibrometer is possible in 

principle.  

Recently, the sparse identification of nonlinear dynamic (SINDy) approach has been 

proposed with the aim of identifying nonlinear dynamical systems from time series data, 

if the equations of motion have only a few important terms. Here, the SINDy algorithm 

was applied to reconstruct the nonlinear differential equation of motion of a levitated 

object larger than the wavelength limit trapped in an acoustic radiation force field using 

experimental time series data. In the first step, the aim was to evaluate the robustness of 

the SINDy algorithm against noisy data. The study confirmed the theoretical robustness 

of SINDy against noise in low-noise conditions, while experimental data filtering was 

recommended for high-noise data. Here, and due to the nonlinear nature of the problem, 

the GHKSS filter was used, which effectively reduced the noise in the experimental data. 

In the work, SINDy was applied by defining a library of possible functions and solving a 

sparse regression problem by eliminating terms whose coefficients were smaller than a 

threshold. The results show that the SINDy algorithm is a promising methodology to 

accurately identify interpretable data-driven models. It can be observed that for 

acoustically small objects, changes in the amplitude of external excitation primarily affect 

the external excitation part in the equation of motion. In contrast, SINDy reveals complex 

and nonlinear relationships between the external excitation part and all coefficients for 

larger objects. 

Recurrence was a fundamental property of dynamical systems, and recurrence plots (RP), 

a powerful tool for visualizing and analysing a nonlinear system’s behaviour, were used 

to study the system for large acoustically levitated objects in its phase space. In this case, 

the system’s phase space was reconstructed using its time series data to obtain RPs. The 

first minimum of the mutual information (MI) and false nearest neighbours (FNN) 

method were used to reconstruct the phase space using experimental nonlinear time series 

data. Using the generated adjacency matrix, recurrence networks were formed, and motifs 

were searched for to classify the dynamics of the system. By plotting RPs for different 

dynamical regimes using experimentally extracted time series data, a progression was 

observed from parallel diagonal lines to intricate patterns with irregularities and 

transitions. Presence of parallel diagonal lines in the RP shows a regular motion. At the 

same time, by changing the bifurcation parameter, high transitions in the system’s RP 
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suggest intricate dynamics, possibly indicating a chaos regime. Network and motif 

analysis further enhances our understanding of the system’s dynamics.  

It is hoped that this connection between nonlinear time series analysis, SINDy, and the 

acoustic radiation force community will spur new techniques for trapping, handling, and 

levitating small objects using acoustical energy. 

5.2. Recommendations for future work 

The investigation into the nonlinear dynamics of objects levitated in an acoustic radiation 

force field has opened new avenues of research for trapping, handling, and levitating 

objects using acoustical energy. A few examples of such avenues are mentioned below. 

          5.2.1. Multi-object dynamics 

When multiple objects are placed in an acoustic radiation force field, secondary acoustic 

radiation forces arise due to object-object interactions and acoustic scattering effects [29]. 

This phenomenon complicates the manipulation process and necessitates the 

development of advanced dynamic models capable of accurately capturing the motion of 

multiple objects. 

Developing these sophisticated models is crucial for several reasons. Firstly, they will 

significantly enhance our understanding of the dynamics involved in multi-object systems 

within acoustic fields. By accurately modelling the interactions between multiple objects, 

we can gain deeper insights into the complex behaviours and responses in such 

environments. This understanding is fundamental for advancing the field of acoustic 

manipulation. 

Secondly, these advanced models will improve control and manipulation techniques in 

various applications. For instance, precise manipulation of multiple particles or cells is 

often required in biomedical engineering. Advanced dynamic models can enable more 

accurate and reliable control, improving outcomes in applications such as targeted drug 

delivery, tissue engineering, and diagnostic procedures. Moreover, developing these 

models will open new research and technological innovation avenues. For example, they 

can inspire novel methodologies in object manipulation, such as designing new acoustic 

devices and systems that leverage the intricate dynamics of multiple objects. These 

methodologies could lead to breakthroughs in materials science to robotics, where precise 

control over multiple objects is often crucial. Future work should concentrate on the 

formulation and validation of these advanced dynamic models. This involves integrating 
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factors such as nonlinearities, object shapes, and material properties to create 

comprehensive and robust models. Furthermore, experimental studies should be 

conducted to validate the theoretical models and ensure their applicability in real-world 

scenarios. 

          5.2.2. More analysis for SINDy coefficients and its library functions 

To investigate the deviation between the coefficients in Gorkov’s formula and the results 

from SINDy’s algorithm, it is necessary to extend the experiment presented in Chapter 3 

to include a broader range of spherical object radii, varying from those smaller than the 

wavelength limit to larger values. This will provide insight into how changes in object 

size influence the deviation between theoretical predictions and real-world experimental 

data. Although the current experiment did not encompass such a range, the study and 

results outlined in Chapter 3 serve as a foundation for future investigations in this area. 

Future work should also focus on expanding the library of candidate functions in SINDy 

to better capture the finer details of system dynamics, particularly in complex dynamical 

regimes, as indicated by the bifurcation diagram. This will enable comparisons of 

coefficients for specific experiments under varying parameters across different dynamical 

regimes. Furthermore, it is recommended to continue refining the SINDy algorithm to 

improve its ability to capture complex dynamics in real-world data. Addressing the 

challenges posed by experimental noise and system complexity will be critical to 

extending SINDy’s application to more intricate dynamic behaviours. Integrating 

complementary methods could also enhance its robustness, providing more accurate and 

reliable predictions in complex real-world scenarios. 

         5.2.3. Nonlinear dynamics and synchronization 

The dynamical behaviour of two spherical objects in an acoustic field, including the 

coupling between them, offers an attractive area for future research. An important 

question arises: can we model this coupled system analytically and experimentally, and 

how similar is this behaviour to that of coupled Duffing-like oscillators [229] for 

acoustically small and large objects? 

Understanding whether the system exhibits chaotic dynamics or synchronized motion is 

crucial for determining the stability and achieving synchronization between objects. This 

stability analysis is important and novel because finding a chaotic attractor that absorbs 

all initial conditions is particularly interesting. Future studies can explore a deeper 
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understanding of these complex systems by focusing on the chaotic behaviour and 

synchronization of coupled objects.  

By addressing these challenges, future research can contribute significantly to advancing 

science and technology in areas where precise object manipulation is essential. This 

exploration into the chaotic behaviour and synchronization of coupled objects promises 

to open new research and technological innovation avenues. 
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APPENDIX 
 
 
MATLAB Code: SENSITIVITY ANALYSIS 
 
clc 
clear all 
n_base=35; 
X=[(10 .*rand(n_base,1)) (0.15.*rand(n_base,1)) (10.*rand(n_base,1))]; 
X1=X(:,1); 
X2=X(:,2); 
X3=X(:,3); 
  
for i=1:n_base  
     
    a=X(i,1); 
    b=X(i,2); 
    f=X(i,3); 
     
    Output(i)=SOBOL_fun(a,b,f);  
         
end 
  
  
VARY=var(Output); 
  
  
for i=1:n_base  
    a=X(i,1); 
    for j=1:n_base 
         
        b=X(j,2); 
        f=X(j,3); 
        Output(j)=SOBOL_fun(a,b,f);  
         
    end 
    Ei(i,1)=mean(Output); 
end 
  
  
S1=var(Ei)/VARY; 
         
for i=1:n_base  
    b=X(i,2); 
    for j=1:n_base 
         
        a=X(j,1); 
        f=X(j,3); 
        Output(j)=SOBOL_fun(a,b,f);  
         
    end 
    Ei(i,1)=mean(Output); 
end 
S2=var(Ei)/VARY; 
  
for i=1:n_base  
    f=X(i, 3); 
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    for j=1:n_base 
         
        a=X(j,1); 
        b=X(j,2); 
         
        Output(j)=SOBOL_fun(a,b,f);  
         
    end 
    Ei(i,1)=mean(Output); 
end 
S3=var(Ei)/VARY; 
  
  
  
S=[S1 S2 S3] 
  
for i=1:n_base  
    b=X(i,2); 
    f=X(i,3); 
     
    for j=1:n_base 
         
        a=X(j,1); 
        Output(j)=SOBOL_fun(a,b,f);  
         
    end 
    Ei(i,1)=mean(Output); 
end 
  
ST1=1-var(Ei)/VARY; 
  
for i=1:n_base  
    a=X(i,1); 
    f=X(i,3); 
     
    for j=1:n_base 
         
        b=X(j,2); 
        Output(j)=SOBOL_fun(a,b,f); 
         
    end 
    Ei(i,1)=mean(Output); 
end 
  
ST2=1-var(Ei)/VARY; 
  
  
for i=1:n_base  
    a=X(i,1); 
    b=X(i,2); 
     
    for j=1:n_base 
         
        f=X(j,3); 
        Output(j)=SOBOL_fun(a,b,f); 
         
    end 
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    Ei(i,1)=mean(Output); 
end 
  
ST3=1-var(Ei)/VARY; 
  
  
ST=[ST1 ST2 ST3] 
 
function out=SOBOL_fun(A,B,F) 
% a function that works with thfe trial Sobol Method program 
  
  
x0=0.00001; 
y0=0; 
Omega=10; 
omega=Omega*2*pi; 
  
alpha=A; 
beta=B; 
gama=F; 
T=10; 
i=0; 
h=.001; 
t1=0; 
x1=x0; 
y1=y0; 
     
while t1<=T 
    i=i+1; 
    f1=(-alpha*abs(y1)*y1^1-
beta*sin(x1)+1*gama*sin(omega*t1)*cos(x1)); 
    t2=t1+h/2; 
    x2=x1+y1*h/2; 
    y2=y1+f1*h/2; 
    f2=(-alpha*abs(y2)*y2^1-
beta*sin(x2)+1*gama*sin(omega*t2)*cos(x2)); 
    t3=t1+h/2; 
    x3=x1+y2*h/2; 
    y3=y1+f2*h/2; 
    f3=(-alpha*abs(y3)*y3^1-
beta*sin(x3)+1*gama*sin(omega*t3)*cos(x3)); 
    t4=t1+h; 
    x4=x1+y3*h; 
    y4=y1+f3*h; 
    f4=(-alpha*abs(y4)*y4^1-
beta*sin(x4)+1*gama*sin(omega*t4)*cos(x4)); 
    x=x1+(h/6)*(y1+2*y2+2*y3+y4); 
    y=y1+(h/6)*(f1+2*f2+2*f3+f4); 
    TT(i)=t1; 
    X(i)=x; 
    Y(i)=y; 
    t1=t4; 
    x1=x; 
    y1=y; 
    
end 
  
out=var(Y); 
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end 
 

MATLAB Code: PSD AND TIME SERIES DATA 
 
clc 
clear all 
close all 
fmax = 500; 
  
% Initialize variables. 
load('G:/OCTAVECSV1/data1195de.mat'); 
  
 
%Volt = noisy_s; 
Volt = denoised_s; 
  
signal = Volt; 
time = t; 
  
% Define the sampling frequency and time step 
Fs = 1 / (time(2) - time(1));  % Sampling frequency (Hz) 
dt = 1 / Fs;                   % Time step 
  
% Perform the FFT 
N = length(signal);             % Length of the signal 
freq = Fs * (0:(N/2)) / N;      % Frequency vector 
fft_signal = fft(signal); 
fft_amplitude = abs(fft_signal / N);  % FFT amplitude in volts (V) 
  
% Compute the Power Spectral Density (PSD) 
psd = (1 / (Fs * N)) * abs(fft_signal).^2;  % PSD in volts squared per 
hertz (V²/Hz) 
  
% Plot the time series data 
  
figure 
plot(time, signal, 'LineWidth', 2) 
xlabel('Time [s]', 'FontName', 'Times New Roman', 'FontSize', 24) 
ylabel('Amplitude [V]', 'FontName', 'Times New Roman', 'FontSize', 24) 
  
set(gca, 'FontName', 'Times New Roman', 'FontSize', 24) 
  
% plot 2: Power Spectral Density (PSD) with logarithmic y-axis 
figure 
semilogy(freq, psd(1:N/2+1), 'LineWidth', 2) 
xlim([0 fmax]) 
xlabel('Frequency [Hz]', 'FontName', 'Times New Roman', 'FontSize', 
24) 
ylabel('PSD [V²/Hz]', 'FontName', 'Times New Roman', 'FontSize', 24) 
  
set(gca, 'FontName', 'Times New Roman', 'FontSize', 24) 
  
% Display the maximum PSD value and its corresponding frequency 
[max_psd, max_psd_idx] = max(psd); 
disp(['Maximum PSD: ' num2str(max_psd) ' V²/Hz at frequency: ' 
num2str(freq(max_psd_idx)) ' Hz']) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
psd_dB = 10 * log10(psd); 
psd=psd_dB; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure 
plot(freq, psd(1:N/2+1), 'LineWidth', 2) 
xlim([0 250]) 
figure; 
subplot(3,1,1); 
plot(time, velocity,'k'); 
xlabel('Time'); 
ylabel('Velocity'); 
title('Velocity vs Time'); 
  
subplot(3,1,2); 
plot(time(1:end-1), acceleration_smoothed); 
xlabel('Time'); 
ylabel('Acceleration'); 
title('Acceleration vs Time'); 
  
subplot(3,1,3); 
plot(time, displacement_stationary); 
xlabel('Time'); 
ylabel('Displacement'); 
title('Displacement vs Time'); 
  
%Plot the Phase Space 
figure 
plot(displacement_stationary, velocity); 
xlabel('Displacement'); 
ylabel('Velocity'); 
title('Phase space-Moving Average'); 
hold on 
  
load('G:/OCTAVECSV/data21142DENOIS.mat'); 
denoised_s=500/4*denoised_s; 
displacement2 = cumtrapz(t, denoised_s');  
% Estimate and remove the trend 
trend = polyval(polyfit(t, displacement2, 1), t);  % Estimate the 
linear trend 
displacement_stationary2 = displacement2 - trend;  % Subtract the 
trend from the original data 
  
%Plot the Phase Space 
figure 
plot(displacement_stationary2, denoised_s'); 
xlabel('Displacement'); 
ylabel('Velocity'); 
title('Phase space-GHKSS'); 
hold on 
  
% Set default font properties 
set(0, 'DefaultAxesFontName', 'Times New Roman'); 
set(0, 'DefaultAxesFontSize', 20); 
 

MATLAB Code: RECURRENCE PLOT AND NETWORK 
 clc 

clear all 
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close all 
load('G:/OCTAVECSV/data1142de.mat'); 
  
% Allocate imported array to column variable names 
  
Volt = denoised_s; 
  
signal = Volt; 
time = t; 
ecg=500/4*Volt; 
%%%%%%%%% 
ecg = ecg + 0*randn(size(ecg));  
window_size = 4;   
velocity_smoothed = zeros(size(ecg));  vector 
  
for i = 1:numel(ecg) 
    start_idx = max(1, i - floor(window_size/2)); 
    end_idx = min(numel(ecg), i + floor(window_size/2)); 
    velocity_smoothed(i) = mean(ecg(start_idx:end_idx)); 
end 
  
%add noise 
  
velocity_smoothed = velocity_smoothed + 
0*randn(size(velocity_smoothed));  
  
% Add the noise to the original vector 
ecg=velocity_smoothed; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% mutual information test to determine the time delay 
mutual(ecg); 
  
% fnn test to determine the embedding dimension 
out=false_nearest(ecg,1,10,8); 
fnn = out(:,1:2); 
figure('Position',[100 400 460 360]); 
plt=plot(fnn(:,1),fnn(:,2),'o-','MarkerSize',4.5); 
title('False nearest neighbor 
test','FontSize',10,'FontWeight','bold'); 
xlabel('dimension','FontSize',10,'FontWeight','bold'); 
ylabel('FNN','FontSize',10,'FontWeight','bold'); 
get(gcf,'CurrentAxes'); 
set(gca,'LineWidth',2,'FontSize',10,'FontWeight','bold'); 
grid on; 
  
% phase space plot 
y = phasespace(ecg,3,8); 
figure('Position',[100 400 460 360]); 
plot3(y(:,1),y(:,2),y(:,3),'-','LineWidth',1); 
  
set(gca,'CameraPosition',[25.919 27.36 13.854]); 
xlabel('x(t)','FontSize',24,'FontWeight','normal'); 
ylabel('x(t+\tau)','FontSize',30,'FontWeight','normal'); 
zlabel('x(t+2\tau)','FontSize',30,'FontWeight','normal'); 
set(gca,'LineWidth',2,'FontSize',30,'FontWeight','normal'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Calculate the distance matrix based on Euclidean distance 
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dist_matrix = squareform(pdist(y)); 
  
%%%%%%%%%%%%%%%%%%%%%% Set a distance threshold to determine the 
adjacency % 
distance_threshold = 34; % Adjust this threshold as needed 
  
% Create the binary adjacency matrix 
adjacency_matrix = dist_matrix <= distance_threshold; 
  
  
% Specify the file path and name for the CSV file 
folderPath = 'C:\Users\Mehdi\Desktop\New folder (8)\adjmatrix\'; 
filename = 'adj_Matrix.csv'; 
filePath = fullfile(folderPath, filename); 
  
% Save the adjacency matrix as a CSV file 
%writematrix(adjacency_matrix, filePath); 
  
% Display a summary of the adjacency matrix 
disp('Summary of Adjacency Matrix:'); 
disp(['Matrix Size: ', num2str(size(adjacency_matrix, 1)), ' x ', 
num2str(size(adjacency_matrix, 2))]); 
disp(['Number of Edges: ', num2str(nnz(adjacency_matrix))]); 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Create the graph object from the adjacency matrix 
G = graph(adjacency_matrix); 
  
  
figure; 
% Remove self-connections 
G = rmedge(G, find(G.Edges.EndNodes(:,1) == G.Edges.EndNodes(:,2))); 
  
% Plot the graph without node labels and self-connections 
plot(G, 'NodeLabel', '', 'LineWidth', 1.5); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% color recurrence plot 
cerecurr_y(y); 
recurdata = cerecurr_y(y); 
  
% black-white recurrence plot 
tdrecurr_y(recurdata,distance_threshold); 
recurrpt = tdrecurr_y(recurdata,distance_threshold); 
  
%Recurrence quantification analysis 
% rqa_stat - RQA statistics - [recrate DET LMAX ENT TND LAM TT] 
rqa_stat = recurrqa_y(recurrpt); 
  
  
function buffer = cerecurr_y(signal) 
 
len = length(signal); 
N = len; 
Y = signal; 
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buffer=zeros(N); 
  
%h = waitbar(0,'Please wait...'); 
for i=1:N 
    %waitbar(i/N); 
    x0=i; 
    for j=i:N 
        y0=j; 
        % Calculate the euclidean distance 
        distance = norm(Y(i,:)-Y(j,:)); 
        % Store the minimum distance between the two points 
        buffer(x0,y0) = distance; 
        buffer(y0,x0) = distance;         
    end 
end 
%close(h); 
  
rmin=min(min(buffer)); 
rmax=max(max(buffer)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if nargout == 0 
    figure('Position',[100 100 550 400]); 
    imagesc(buffer); 
    colormap Jet; 
    colorbar; 
    axis image;     
    xlabel('Time Index','FontSize',10,'FontWeight','bold'); 
    ylabel('Time Index','FontSize',10,'FontWeight','bold'); 
    title('Recurrence Plot','FontSize',10,'FontWeight','bold'); 
    get(gcf,'CurrentAxes'); 
    set(gca,'YDir','normal') 
    set(gca,'LineWidth',2,'FontSize',10,'FontWeight','bold'); 
end 
  
  
  
function rqa_stat = recurrqa_y(recurrpt,linepara) 
  
if nargin<2 || isempty(linepara) 
    linepara = 2; 
end 
  
W=max(recurrpt(:,1)); 
matrixsize=size(recurrpt); 
if matrixsize(2)~=2 
    fprintf('Please provide the right recurrence point matrix! Thank 
you!'); 
end 
  
ptdiff = diff(recurrpt,1,2); 
indices = find(ptdiff); 
duprecurr = recurrpt(indices,:); 
recurrpt = duprecurr; 
clear duprecurr; 
  
if isempty(recurrpt) 
    rqa_stat = zeros(1,6); 
else 
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    recrate=100*length(recurrpt)/(W*(W-1)/2) 
    recurrpt = sortrows(recurrpt,1); 
    recurrpt = horzcat(recurrpt,recurrpt(:,2)-recurrpt(:,1)); 
    recurrpt = sortrows(recurrpt,3); 
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Horizorntal Line Structure Search 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    k=1; 
    j=1; 
    [row,col]=size(recurrpt); 
    for i=1:row-1 
        if recurrpt(i,3)==recurrpt(i+1,3) 
            s{k}(j)=recurrpt(i,1); 
            displace(k)=recurrpt(i,3); 
            j=j+1; 
            if i==length(recurrpt)-1 
                s{k}(j)=recurrpt(i+1,1); 
            end 
        else 
            s{k}(j)=recurrpt(i,1); 
            j=1; 
            k=k+1; 
        end 
    end 
  
    k=1; 
    diag = []; 
    len=1; 
    for i=1:length(s) 
        for j=1:length(s{i})-1 
            if s{i}(j)+1==s{i}(j+1) 
                len=len+1; 
            else 
                diag(k)=len; 
                disp(k)=displace(i); 
                k=k+1; 
                len=1; 
            end 
            if j==length(s{i})-1 
                diag(k)=len; 
                disp(k)=displace(i); 
                k=k+1; 
                len=1; 
            end 
        end 
    end 
  
    %TND=(disp')\(diag'); 
    if isempty(diag);diag = 0; end 
  
    %Entropy Calculation 
    diag=diag(find(diag>linepara)); 
    vect = diag(:); 
    region = max(vect) - min(vect) + 1; 
    freq = hist (vect, region); 
    prob = freq / sum (freq); 
    nonz = prob (find (prob)); 
    ENT = sum (nonz .* (-log2 (nonz))); 
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    DET = 100*sum(diag)/length(recurrpt); 
    LMAX = max(diag); 
  
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % Vertical Line Structure Search 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    clear s; 
    recurrpt = sortrows(recurrpt,1); 
    k=1; 
    j=1; 
    for i=1:row-1 
        if recurrpt(i,1)==recurrpt(i+1,1) 
            s{k}(j)=recurrpt(i,2); 
            j=j+1; 
            if i==length(recurrpt)-1 
                s{k}(j)=recurrpt(i+1,2); 
            end 
        else 
            s{k}(j)=recurrpt(i,2); 
            j=1; 
            k=k+1; 
        end 
    end 
  
    k=1; 
    len=1; 
    vert = []; 
    for i=1:length(s) 
        for j=1:length(s{i})-1 
            if s{i}(j)+1==s{i}(j+1) 
                len=len+1; 
            else 
                vert(k)=len; 
                k=k+1; 
                len=1; 
            end 
            if j==length(s{i})-1 
                vert(k)=len; 
                k=k+1; 
                len=1; 
            end 
        end 
    end 
    if isempty(vert); vert = 0; end 
  
    vert=vert(find(vert>linepara)); 
    LAM = 100*sum(vert)/length(recurrpt); 
    TT = mean(vert); 
  
    if isempty(DET)||isnan(DET);DET = 0; end 
    if isempty(LMAX)||isnan(LMAX);LMAX = 0; end 
    if isempty(ENT)||isnan(ENT);ENT = 0; end 
    if isempty(LAM)||isnan(LAM);LAM = 0; end 
    if isempty(TT)||isnan(TT);TT = 0; end 
  
    rqa_stat=[recrate DET LMAX ENT LAM TT]; 
    %rqa_stat=[recrate DET LMAX ENT TND LAM TT]; 
end 
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function [ Y ] = phasespace(signal,dim,tau) 
 
N = length(signal); 
% Total points on phase space  
T=N-(dim-1)*tau; 
% Initialize the phase space 
Y=zeros(T,dim); 
  
for i=1:T 
   Y(i,:)= signal(i+(dim-1)*tau-sort((0:dim-1),'descend')*tau)'; 
end 
  
sizeY=size(Y,2); 
  
if nargout == 0 
    if sizeY == 2 
        plot(Y(:,1),Y(:,2)); 
        xlabel('y1','FontSize',10,'FontWeight','bold'); 
        ylabel('y2','FontSize',10,'FontWeight','bold'); 
        get(gcf,'CurrentAxes'); 
        set(gca,'FontSize',10,'FontWeight','bold'); 
        grid on; 
    else 
        plot3(Y(:,1),Y(:,2),Y(:,3)); 
        xlabel('y1','FontSize',10,'FontWeight','bold'); 
        ylabel('y2','FontSize',10,'FontWeight','bold'); 
        zlabel('y3','FontSize',10,'FontWeight','bold'); 
        get(gcf,'CurrentAxes'); 
        set(gca,'FontSize',10,'FontWeight','bold'); 
        grid on; 
    end 
end 
 

function mi = mutual(signal,partitions,tau) 
 
av = mean(signal); 
variance = var(signal); 
minimum = min(signal); 
maximum = max(signal); 
interval = maximum-minimum; 
len = length(signal); 
  
if nargin<2 | isempty(partitions) 
  partitions = 16; 
end 
if nargin<3 | isempty(tau) 
  tau = 20; 
end 
  
for i = 1:1:len 
    signal(i) =(signal(i)- minimum)/interval; 
end 
  
for i = 1:1:len 
    if signal(i) > 0  
        array(i) = ceil(signal(i)*partitions); 
    else 
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        array(i) = 1; 
    end 
end 
  
shannon = make_cond_entropy(0,array,len,partitions); 
     
if (tau >= len) 
    tau=len-1; 
end 
  
for i = 0:1:tau 
    mi(i+1) = make_cond_entropy(i,array,len,partitions); 
end 
  
  
if nargout == 0 
    figure('Position',[100 400 460 360]); 
    plot(0:1:tau,mi,'o-','MarkerSize',5); 
    title('Mutual Information Test (first local 
minimum)','FontSize',10,'FontWeight','bold'); 
    xlabel('Delay (sampling time)','FontSize',10,'FontWeight','bold'); 
    ylabel('Mutual Information','FontSize',10,'FontWeight','bold'); 
    get(gcf,'CurrentAxes'); 
    set(gca,'FontSize',10,'FontWeight','bold'); 
    grid on; 
end 
  
  
function mi = make_cond_entropy(t,array,len,partitions) 
  
hi=0; 
hii=0; 
count=0; 
hpi=0; 
hpj=0; 
pij=0; 
cond_ent=0.0; 
  
  
h2 = zeros(partitions,partitions); 
  
for i = 1:1:partitions 
    h1(i)=0; 
    h11(i)=0; 
end 
  
for i=1:1:len 
    if i > t 
        hii = array(i); 
        hi = array(i-t); 
        h1(hi) = h1(hi)+1; 
        h11(hii) = h11(hii)+1; 
        h2(hi,hii) = h2(hi,hii)+1; 
        count = count+1; 
    end 
end 
  
norm=1.0/double(count); 
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cond_ent=0.0; 
  
for i=1:1:partitions 
    hpi = double(h1(i))*norm; 
    if hpi > 0.0 
        for j = 1:1:partitions 
            hpj = double(h11(j))*norm; 
            if hpj > 0.0 
                pij = double(h2(i,j))*norm; 
                if (pij > 0.0) 
                    cond_ent = cond_ent + pij*log(pij/hpj/hpi); 
                end 
            end 
        end 
    end 
end 
  
mi = cond_ent; 
  
 
function out = false_nearest(signal,mindim,maxdim,tau,rt,eps0) 
 
if nargin<2 | isempty(mindim) 
  mindim = 1; 
end 
if nargin<3 | isempty(maxdim) 
  maxdim = 5; 
end 
if nargin<4 | isempty(tau) 
  tau = 1; 
end 
if nargin<5 | isempty(rt) 
  rt = 10; 
end 
if nargin<6 | isempty(eps0) 
  eps0=1/1000; 
end 
  
minimum = min(signal); 
maximum = max(signal); 
interval = maximum-minimum; 
len = length(signal); 
BOX = 1024; 
ibox = BOX-1; 
theiler = 0; 
global aveps vareps variance box list toolarge 
  
for i = 1:1:len 
    signal(i) =(signal(i)- minimum)/interval; 
end 
av = mean(signal); 
variance = std(signal); 
  
  
out = zeros(maxdim,4); 
  
for dim = mindim:maxdim 
    epsilon=eps0; 
    toolarge=0; 
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    alldone=0; 
    donesofar=0; 
    aveps=0.0; 
    vareps=0.0; 
     
    for i=1:len 
      nearest(i)=0; 
    end 
     
    fprintf('Start for dimension=%d\n',dim); 
     
    while (~alldone && (epsilon < 2*variance/rt))  
        alldone=1; 
        make_box(signal,len-1,dim,tau,epsilon); 
        for i=(dim-1)*tau+1:(len-1) 
            if (~nearest(i)) 
                
nearest(i)=find_nearest(i,dim,tau,epsilon,signal,rt,theiler); 
                alldone = bitand(alldone,nearest(i)); 
                donesofar = donesofar+nearest(i); 
            end 
        end 
         
        fprintf('Found %d up to 
epsilon=%d\n',donesofar,epsilon*interval); 
         
        epsilon=epsilon*sqrt(2.0); 
        if (~donesofar) 
            eps0=epsilon; 
        end 
    end 
    if (donesofar == 0) 
      fprintf('Not enough points found!\n'); 
      fnn = 0; 
    else 
        aveps = aveps*(1/donesofar); 
        vareps = vareps*(1/donesofar); 
        fnn = toolarge/donesofar; 
    end 
  
    out(dim,:) = [dim fnn aveps vareps]; 
     
end 
   
   
function y = find_nearest(n,dim,tau,eps,signal,rt,theiler) 
global aveps vareps variance box list toolarge 
  
element=0; 
which= -1; 
dx=0; 
maxdx=0; 
mindx=1.1; 
factor=0; 
ibox=1023; 
  
x=bitand(ceil(signal(n-(dim-1)*tau)/eps),ibox); 
if x==0 
    x=1; 
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end 
y=bitand(ceil(signal(n)/eps),ibox); 
if y==0 
    y=1; 
end 
  
for x1=x-1:x+1 
    if x1==0 
        continue 
    end 
    x2= bitand(x1,ibox); 
    for y1=y-1:y+1 
        if y1==0 
            continue 
        end 
        element = box(x2,bitand(y1,ibox)); 
        while (element ~= -1) 
            if (abs(element-n) > theiler)  
                maxdx=abs(signal(n)-signal(element)); 
                for i=1:dim 
                    i1=(i-1)*tau; 
                    dx = abs(signal(n-i1)-signal(element-i1)); 
                    if (dx > maxdx) 
                        maxdx=dx; 
                    end 
                end 
                if ((maxdx < mindx) && (maxdx > 0.0)) 
                    which = element; 
                    mindx = maxdx; 
                end 
            end 
            element = list(element); 
        end 
    end 
end 
  
if ((which ~= -1) && (mindx <= eps) && (mindx <= variance/rt))  
    aveps = aveps+mindx; 
    vareps = vareps+mindx*mindx; 
    factor=abs(signal(n+1)-signal(which+1))/mindx; 
    if (factor > rt) 
      toolarge=toolarge+1; 
    end 
    y = 1; 
else 
    y = 0; 
end 
  
  
  
  
function make_box(ser,l,dim,del,eps) 
global box list 
bs=1024; 
ib=bs-1; 
  
box = -ones(bs,bs); 
   
for i=(dim-1)*del+1:l 
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    x = bitand(ceil(ser(i-(dim-1)*del)/eps),ib); 
    if x==0 
        x=1; 
    end 
    y = bitand(ceil(ser(i)/eps),ib); 
    if y==0 
        y=1; 
    end 
    list(i)=box(x,y); 
    box(x,y)=i; 
end 
  
  
MATLAB Code: SINDy 

 
clear all, close all, clc 
figpath = '../figures/'; 
addpath('./utils'); 
  
%% generate Data 
polyorder = 4;  % search space up to fifth order polynomials 
usesine = 1;    % no trig functions 
n = 2;          % 3D system 
  
  
Ain=1*0.001; 
Omega=39; 
  
Cd=1.06; 
r=0.71*.001; 
rhoa=1.19; 
Alpha=3.06*10^-6; 
Beta=1315; 
rhop=34; 
Mp=4/3*pi*r^3*rhop; 
a=1/Mp*1/Beta*pi/8*Cd*(2*r)^2*rhoa 
b=Beta*Alpha/Mp 
b/6 
f=Beta^2/Mp*Alpha*Ain 
  
  
  
  
A = [0  1; -b 0]; 
B=  [0  0; 0 -a]; 
C=  [0  0; b/6 0]; 
F=  [0  0; f   0]; 
  
  
tspan=0:.00001:2;   % time span 
x0 = [0.001; 0];        % initial conditions 
options = odeset('RelTol',1e-4,'AbsTol',1e-4*ones(1,n)); 
  
  
[t,x]=ode45(@funxyp,tspan,x0,options);  % integrate 
  
%% compute Derivative  
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eps = 0;      % noise strength 
for i=1:length(x) 
    dx(i,:) = A*(x(i,:).^1)' + B*(x(i,:).^2)'+ C*(x(i,:).^3)' + 
F*(cos(x(i,:)).*[sin(Omega*t(i)) sin(Omega*t(i))])'; 
end 
dx = dx + eps*randn(size(dx));   % add noise 
  
%% pool Data  (i.e., build library of nonlinear time series) 
Theta = poolData(x,n,polyorder,usesine); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
m = size(Theta,2); 
  
%% compute Sparse regression: sequential least squares 
lambda = .000001;      % lambda is our sparsification knob. 
Xi = sparsifyDynamics(Theta,dx,lambda,n); 
  
digits(4); 
Yi=vpa(Xi) 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
syms y1 y2 y1y1 y1y2 y2y2 y1y1y1 y1y1y2 y1y2y2 y2y2y2 y1y1y1y1 
y1y1y1y2 y1y1y2y2 y1y2y2y2 y2y2y2y2 y1Sin(Omegat) y2Sin(Omegat) 
Siny1Sin(Omegat) ... 
    Siny2Sin(Omegat) Cosy1Sin(Omegat) Cosy2Sin(Omegat)  
  
VS=[1 y1 y2 y1y1 y1y2 y2y2 y1y1y1 y1y1y2 y1y2y2 y2y2y2 y1y1y1y1 
y1y1y1y2 y1y1y2y2 y1y2y2y2 y2y2y2y2 y1Sin(Omegat) y2Sin(Omegat) 
Siny1Sin(Omegat) ... 
    Siny2Sin(Omegat) Cosy1Sin(Omegat) Cosy2Sin(Omegat)]; 
  
ydot1=VS.'.*Xi(:,1) 
  
ydot2=vpa(VS.'.*Xi(:,2)) 
 
clc 
clear all 
  
%% Initialize variables. 
filename = 'C:\Users\Mehdi\Desktop\New folder 
(2)\scop5\scope_905.csv'; 
delimiter = ','; 
startRow = 3; 
  
formatSpec = '%f%f%[^\n\r]'; 
  
%% Open the text file. 
fileID = fopen(filename,'r'); 
  
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter, 
'EmptyValue' ,NaN,'HeaderLines' ,startRow-1, 'ReturnOnError', false); 
  
%% Close the text file. 
fclose(fileID); 
second = dataArray{:, 1}; 
Volt = dataArray{:, 2}; 
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%% Clear temporary variables 
clearvars filename delimiter startRow formatSpec fileID dataArray ans; 
  
%% Laser Doppler Vibrometter Volt--->Velocity; 
% Sensitivity of LDV 
Velo=500;  % Check it from LDV   
Sen=Velo/4; 
second=second-second(1,1); 
  
second(1,:)=[]; 
Volt(1,:)=[]; 
Velocity=Sen*Volt; %  Unit : [mm/s] 
displacment=cumtrapz(second,Velocity);  %  Unit : [mm] 
figure 
plot(second,Velocity,'b') 
%% Figures: Displacment, Accelaration 
figure 
plot(second,displacment,'r') 
figure 
plot(displacment,Velocity) 
acc = diff(Velocity)./diff(second);  %  Unit : [mm/s^2] 
k1=size(second); 
kn=k1(1,1); 
second(kn,:)=[]; 
figure 
plot(second,acc,'g') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%V = diff(displacment)./diff(second); 
%L1=size(second); 
%Ln=L1(1,1); 
%second(Ln,:)=[]; 
%acc=diff(V)./diff(second); 
%second(Ln-1,:)=[]; 
%plot(second,acc,'g') 
  
  
%% generate Data  %SINDy 
polyorder = 9;  % search space up to fifth order polynomials 
usesine = 1;    % no trig functions 
n = 2;          % 2D system 
  
x=[displacment,Velocity]; 
k1=size(x); 
kn=k1(1,1); 
x(kn,:)=[]; 
x(kn-1,:)=[]; 
Velocity(kn,:)=[]; 
Velocity(kn-1,:)=[]; 
acc(kn-1,:)=[]; 
dx=[Velocity,acc]; 
Theta = poolData(x,n,polyorder,usesine); 
  
m = size(Theta,2); 
  
%% compute Sparse regression: sequential least squares 
lambda = .000001;      % lambda is our sparsification knob. 
Xi = sparsifyDynamics(Theta,dx,lambda,n); 
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digits(4); 
Yi=vpa(Xi) 
  
  
syms y1 y2 y1y1 y1y2 y2y2 y1y1y1 y1y1y2 y1y2y2 y2y2y2 y1y1y1y1 
y1y1y1y2 y1y1y2y2 y1y2y2y2 y2y2y2y2 y1Sin(Omegat) y2Sin(Omegat) 
Siny1Sin(Omegat) ... 
    Siny2Sin(Omegat) Cosy1Sin(Omegat) Cosy2Sin(Omegat)  
  
VS=[1 y1 y2 y1y1 y1y2 y2y2 y1y1y1 y1y1y2 y1y2y2 y2y2y2 y1y1y1y1 
y1y1y1y2 y1y1y2y2 y1y2y2y2 y2y2y2y2 y1Sin(Omegat) y2Sin(Omegat) 
Siny1Sin(Omegat) ... 
    Siny2Sin(Omegat) Cosy1Sin(Omegat) Cosy2Sin(Omegat)]; 
  
  
ydot1=VS.'.*Xi(:,1) 
  
ydot2=vpa(VS.'.*Xi(:,2)) 
 
 
function ydot=funxyp(t,Y) 
  
Ain=1*0.001; 
Omega=39; 
  
Cd=1.06; 
r=0.71*.001; 
rhoa=1.19; 
Alpha=3.06*10^-6; 
Beta=1315; 
rhop=34; 
Mp=4/3*pi*r^3*rhop; 
a=1/Mp*1/Beta*pi/8*Cd*(2*r)^2*rhoa; 
b=Beta*Alpha/Mp; 
f=Beta^2/Mp*Alpha*Ain; 
  
  
  
A = [0  1; -b 0]; 
B=  [0  0; 0 -a]; 
C=  [0  0; b/6 0]; 
F=  [0  0; f   0]; 
  
  
ydot=A*[Y(1);Y(2)].^1+B*[Y(1);Y(2)].^2+C*[Y(1);Y(2)].^3+F*[cos(Y(1))*s
in(Omega*t);cos(Y(2))*sin(Omega*t)]; 
function yout = poolData(yin,nVars,polyorder,usesine) 
  
Omega=30; 
t=0.0001:0.0001:0.1997; 
n = size(yin,1); 
% yout = 
zeros(n,1+nVars+(nVars*(nVars+1)/2)+(nVars*(nVars+1)*(nVars+2)/(2*3))+
11); 
  
ind = 1; 
% poly order 0 
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yout(:,ind) = ones(n,1); 
ind = ind+1; 
  
% poly order 1 
for i=1:nVars 
    yout(:,ind) = yin(:,i); 
    ind = ind+1; 
end 
  
if(polyorder>=2) 
    % poly order 2 
    for i=1:nVars 
        for j=i:nVars 
            yout(:,ind) = 1*abs(yin(:,i)).*yin(:,j); 
            ind = ind+1; 
        end 
    end 
end 
  
if(polyorder>=3) 
    % poly order 3 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                yout(:,ind) = yin(:,i).*yin(:,j).*yin(:,k); 
                ind = ind+1; 
            end 
        end 
    end 
end 
  
if(polyorder>=4) 
    % poly order 4 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    yout(:,ind) = 
0*yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l); 
                    ind = ind+1; 
                end 
            end 
        end 
    end 
end 
  
if(polyorder>=5) 
    % poly order 5 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    for m=l:nVars 
                        yout(:,ind) = 
yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l).*yin(:,m); 
                        ind = ind+1; 
                    end 
                end 
            end 
        end 
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    end 
end 
  
if(polyorder>=6) 
    % poly order 6 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    for m=l:nVars 
                        for m1=m:nVars 
                            yout(:,ind) = 
0*yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l).*yin(:,m).*yin(:,m1); 
                            ind = ind+1; 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
  
if(polyorder>=7) 
    % poly order 7 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    for m=l:nVars 
                        for m1=m:nVars 
                            for m2=m1:nVars 
                                yout(:,ind) = 
yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l).*yin(:,m).*yin(:,m1).*yin(:,m2)
; 
                                ind = ind+1; 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
  
if(polyorder>=8) 
    % poly order 8 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    for m=l:nVars 
                        for m1=m:nVars 
                            for m2=m1:nVars 
                                for m3=m2:nVars 
                                    yout(:,ind) = 
0*yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l).*yin(:,m).*yin(:,m1).*yin(:,m
2).*yin(:,m3); 
                                    ind = ind+1; 
                                end 
                            end 
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                        end 
                    end 
                end 
            end 
        end 
    end 
end 
  
if(polyorder>=9) 
    % poly order 9 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    for m=l:nVars 
                        for m1=m:nVars 
                            for m2=m1:nVars 
                                for m3=m2:nVars 
                                    for m4=m3:nVars 
                                        yout(:,ind) = 
yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l).*yin(:,m).*yin(:,m1).*yin(:,m2)
.*yin(:,m3).*yin(:,m4); 
                                        ind = ind+1; 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
  
if(polyorder>=10) 
    % poly order 10 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    for m=l:nVars 
                        for m1=m:nVars 
                            for m2=m1:nVars 
                                for m3=m2:nVars 
                                    for m4=m3:nVars 
                                        for m5=m4:nVars 
                                            yout(:,ind) = 
0*yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l).*yin(:,m).*yin(:,m1).*yin(:,m
2).*yin(:,m3).*yin(:,m4).*yin(:,m5); 
                                            ind = ind+1; 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
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if(polyorder>=11) 
    % poly order 11 
    for i=1:nVars 
        for j=i:nVars 
            for k=j:nVars 
                for l=k:nVars 
                    for m=l:nVars 
                        for m1=m:nVars 
                            for m2=m1:nVars 
                                for m3=m2:nVars 
                                    for m4=m3:nVars 
                                        for m5=m4:nVars 
                                            for m6=m5:nVars 
                                                yout(:,ind) = 
yin(:,i).*yin(:,j).*yin(:,k).*yin(:,l).*yin(:,m).*yin(:,m1).*yin(:,m2)
.*yin(:,m3).*yin(:,m4).*yin(:,m5).*yin(:,m6); 
                                                ind = ind+1; 
                                            end 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
  
if(usesine) 
    
         
           yout=[yout (yin).*[sin(Omega*t) ; sin(Omega*t)]' 
sin(yin).*[cos(Omega*t) ; cos(Omega*t)]' cos(yin).*[sin(Omega*t) ; 
sin(Omega*t)]']; 
          
        
      %end 
end 
function Xi = sparsifyDynamics(Theta,dXdt,lambda,n) 
Xi = Theta\dXdt;  % initial guess: Least-squares 
  
% lambda is our sparsification knob. 
for k=1:10 
    smallinds = (abs(Xi)<lambda);   % find small coefficients 
    Xi(smallinds)=0;                % and threshold 
    for ind = 1:n                   % n is state dimension 
        biginds = ~smallinds(:,ind); 
        % Regress dynamics onto remaining terms to find sparse Xi 
        Xi(biginds,ind) = Theta(:,biginds)\dXdt(:,ind);  
    end 
end 
 

 

function ykplus1 = sparseGalerkinDiscrete(t,y,ahat) 
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yPool = poolData1D(y',length(y)); 
ykplus1 = (yPool*ahat)'; 
 

 


