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 A B S T R A C T

Leakage detection at service stations with underground storage tanks containing hazardous products, such as 
fuel, is a critical task. Early detection is important to halt the spread of leaks, which can pose significant 
economic and ecological impacts on the surrounding community. Existing fuel leakage detection methods 
typically rely on statistical analysis of low-granularity inventory data, leading to delayed detection. Moreover, 
explainability, a crucial factor for practitioners to validate detection outcomes, remains unexplored in this 
domain. To address these limitations, we propose an EXplainable Fuel Leakage Detection approach called 
EXFLD, which performs online fuel leakage detection and provides intuitive explanations for detection 
validation. EXFLD incorporates a high-performance deep learning model for accurate online fuel leakage 
detection and an inherently interpretable model to generate intuitive textual explanations to assist practitioners 
in result validation. Unlike existing explainable artificial intelligence methods that often use deep learning 
models which can be hard to interpret, EXFLD is a human-centric system designed to provide clear and under-
standable insights to support decision-making. Through case studies, we demonstrate that EXFLD can provide 
intuitive and meaningful textual explanations that humans can easily understand. Additionally, we show that 
incorporating semantic constraints during training in the ANFIS model enhances the semantic interpretability of 
these explanations by improving the coverage and distinguishability of membership functions. Experimental 
evaluations using a dataset collected from real-world sites in Australia, encompassing 167 tank instances, 
demonstrate that EXFLD achieves competitive performance compared to baseline methods, with an F2-score 
of 0.7969. This dual focus on accuracy and human-centric explainability marks a significant advancement in 
fuel leakage detection, potentially facilitating broader adoption.
1. Introduction

Fuel service stations with petroleum products stored in Under-
ground Storage Tanks (USTs) must be protected against leakage. The 
timely detection of leakage is crucial for preventing the spread of 
contamination and protecting the surrounding environment and human 
health. Despite best efforts, spills and leaks from USTs are sometimes 
unavoidable. As of Sep 2023, more than 573,000 confirmed cases 
of petroleum and hazardous substance leaks from USTs have been 
reported in the USA, with 4354 of those confirmed leaks between Oct 
2022 and Sep 2023 (United States Environmental Protection Agency, 
2023). USTs containing hazardous fluids pose significant risks to the 
environment, leading to the loss of plant and animal life, as well as the 
spread of various diseases within human populations (Environmental 
Protection Agency Victoria, 2018).

∗ Corresponding author.
E-mail addresses: s3912230@student.rmit.edu.au (R. Chu), li.chik@titancloud.com (L. Chik), lia.song@adelaide.edu.au (Y. Song), jeffrey.chan@rmit.edu.au 

(J. Chan), xiaodong.li@rmit.edu.au (X. Li).

Operators of USTs are mandated to use at least one of the approved 
leak detection methods in compliance with regulations. According 
to the United States Environmental Protection Agency (United States 
Environmental Protection Agency, 2024), there are three main cate-
gories of leak detection methods: interstitial method, which conducts 
interstitial monitoring with secondary containment such as vacuum 
or liquids between walls; internal method that relies on Statistical 
Inventory Reconciliation (SIR), and external method that monitors 
external sources such as vapours and liquids. This work focuses on 
the SIR-based method (United States Environmental Protection Agency, 
2019b), which is a data-driven approach that conducts statistical anal-
ysis on inventory log data collected through Automatic Tank Gauges 
(ATGs). SIR can perform leak detection for USTs automatically and 
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remotely, which makes it a low-cost method that eliminates the need 
for technicians to travel to sites. This is especially beneficial for sites 
located in remote areas. Previous research on SIR (Alayón, Sigut, Arnay, 
& Toledo, 2020; Gorawski, Gorawska, & Pasterak, 2017; Li, Shui, Luo, 
Chen, & Li, 2011) has introduced autonomous solutions, such as using 
classifiers or trend detection methods, for fuel leakage detection.

However, existing SIR-based solutions have two main limitations: 
they cannot perform early detection or provide sufficient explanations. 
Firstly, most existing works (Gill, Keating, & Baron, 2006; Gorawski 
et al., 2017; Keating & Mason, 2000; Li et al., 2011; Sigut, Alayón, & 
Hernández, 2014) conduct offline analysis on a month of tank inventory 
data, leading to detection delays as decisions can only be made after 
collecting this amount of data. Only a few recent studies consider the 
early detection aspect and propose to analyse data over days (Alayón 
et al., 2020) or conduct real-time analysis for early detection (Chu, 
Chik, Song, Chan, & Li, 2024). The other limitation is that these works 
either use black-box models or regression methods that provide none 
or minimal explanations, i.e. the estimated leak rate. In practice, false 
alarms are unavoidable. If getting too many false alarms, practitioners 
may become desensitised and less responsive to genuine alarms. On 
the other hand, without adequate explanations, practitioners cannot 
understand what causes the model to determine if there is a leakage and 
whether they should trust the result. Thus, there is an urgent need to 
develop a method that provides explanations, enabling practitioners to 
effectively comprehend detection outcomes and validate results while 
being accurate in detection to ensure as few false alarms as possible.

In recent years, eXplainable AI (XAI) has garnered significant at-
tention. The goal is to develop explainable Machine Learning (ML) 
solutions that foster human comprehension, trust, and effective man-
agement of emerging AI systems (Arrieta et al., 2020; Gunning et al., 
2019). A potential solution to address the limitations identified in 
the previous paragraph is to use an explainable real-time Deep Learn-
ing (DL) detection model that provides both high performance and 
explainability. However, most state-of-the-art XAI DL-based methods 
applied to time series problems are too complex for humans to un-
derstand (Rojat et al., 2021). This complexity may arise from the 
inherently unintuitive nature of time series data, unlike images or 
natural language, which can be grasped easily (Siddiqui, Mercier, Mu-
nir, Dengel, & Ahmed, 2019; Theissler, Spinnato, Schlegel, & Guidotti, 
2022). While attention-based or attribute-based explanations through 
means of visualisations, shapelets or prototypes are widely used in XAI 
methods for time series analysis, these artefacts may not indeed be eas-
ily understood by users, particularly when the pure signal is not directly 
comprehensible (Rojat et al., 2021; Theissler et al., 2022). Current XAI 
solutions primarily focus on enabling explainability, e.g. allowing the 
extraction of relevant information from complex ML models. However, 
they often fall short in offering explanations that are intuitive and meet 
the needs of users, i.e. clarifying whether their explanations are suitable 
for the target users in the domain-specific context. Addressing this gap 
is crucial for enhancing the practical utility and user satisfaction of XAI 
systems in our problem.

In a nutshell, we aim to tackle two major research questions for 
data-driven fuel leak detection in USTs:

1. How can we design a fuel leak detection method that provides 
explanations effectively explaining fuel leakage phenomena to prac-
titioners? Specifically, we seek a local explanation with great 
interpretability for individual predictions, making it easily un-
derstandable for practitioners who may not be familiar with the 
internal decision-making processes of ML algorithms.

2. How can we achieve great accuracy performance for early leak 
detection while maintaining high explainability? It is acknowledged 
that accuracy/performance and explainability are often in con-
flict with ML techniques (Adadi & Berrada, 2018; Fernandez, 
Herrera, Cordon, del Jesus, & Marcelloni, 2019). Enhancing 
explainability without compromising accuracy remains a chal-
lenge.
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To address these questions, in this paper, we propose an EXplainable
Fuel Leakage Detection approach, EXFLD, which comprises two spe-
cialised modules to excel in their respective areas rather than com-
promising one property for the other with a single model. Specifically, 
EXFLD consists of an online detection module employing a sophisticated 
DL model to achieve accurate early fuel leakage detection and an
explanation module to provide intuitive explanations. The explanation 
module utilises an inherently interpretable model structured based on 
domain knowledge to ensure high interpretability. These two modules 
work together with the detection module continuously monitoring 
the input data streams to perform online leakage detection, while 
the explanation module is activated when needed—primarily upon 
a leak detection or user request. When activated, the explanation 
module references and processes historical data to construct mean-
ingful, domain-specific features, ultimately generating intuitive textual 
explanations to elucidate changes in the data properties.

For EXFLD, we employ Temporal Fusion Transformer (TFT) (Lim, 
Arık, Loeff, & Pfister, 2021), which is a high-performance attention-
based multi-horizon forecasting model, in the online detection module. 
It detects changes in data properties that indicate a leak by evaluating 
the dissimilarity score derived from the TFT’s estimated and anticipated 
results, signalling a leak when this score exceeds a set threshold. 
Additionally, TFT can provide visualised explanations to end users. 
We employ Adaptive Neuro-Fuzzy Inference System (ANFIS) (Jang, 
1993), which is a fuzzy rule-based system, in the explanation module
to provide human-understandable textual explanations. Its decision-
making process is articulated through IF-THEN rules, and linguistic 
labels are used to describe the fuzzy variables converted from input 
features, which can be used to generate textual explanations for direct 
human interpretation. Through case studies on real-world fuel data 
with simulated leakage, we demonstrate how EXFLD provides intuitive 
and effective explanations to elucidate the leakage. Additionally, exper-
imental results on the fuel leakage dataset confirm that EXFLD achieves 
competitive performance compared to baselines in terms of accuracy. 
The contributions of the paper include:

• To the best of our knowledge, no work has explored the explain-
ability of its method in the domain of fuel leakage detection. This 
is the first work to attempt to propose a method that provides 
explainability in this field.

• We propose an explainable fuel leakage detection approach, 
EXFLD, which incorporates both a DL model for its high accuracy 
performance and an inherently interpretable model to generate 
intuitive textual explanations. This addresses the challenge of 
jointly achieving a high level of explainability and accuracy, 
particularly for a time series problem.

• We demonstrate EXFLD’s explainability for the fuel leakage de-
tection problem through case studies, offering intuitive textual 
explanations that use linguistic terms to describe variations in fuel 
variances across different periods. We further show how semantic 
constraints in ANFIS training enhance the interpretability of local 
explanations by ensuring broad coverage and distinguishability of 
membership functions.

• The experimental results confirm the effectiveness of EXFLD in 
fuel leak detection, which outperforms other comparable base-
lines on our fuel leakage data in terms of detection accuracy.

The remainder of this paper is structured as follows: We review the 
related literature in Section 2. In Section 3, we present the problem 
formulation and detail the structure of EXFLD. The interpretability 
and experimental outcomes of EXFLD are shown in Section 4. Finally, 
conclusions and future work are presented in Section 5.

2. Background and related work

In this section, we first review existing SIR-based approaches for fuel 
leakage detection. Next, we review relevant techniques for fuel leakage 
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detection problems, including change point detection and forecasting 
with exogenous series. Finally, we review relevant XAI works in the 
context of our study.

2.1. Fuel leakage detection with statistical inventory reconciliation methods

One of the primary leak detection methods for USTs is SIR, which 
is a volumetric and statistical-based approach (United States Environ-
mental Protection Agency, 2019a). SIR generally utilises a month of 
inventory records for statistical analysis of discrepancies. There are two 
primary approaches in the literature for SIR methods. The first type 
typically aims to estimate leak rates using regression-based models (Gill 
et al., 2006; Keating & Mason, 2000; Li et al., 2011). For example, 
in the work of Keating and Mason (2000), regression-based models 
are constructed where intercepts denote the sizes of leaks. Due to the 
nature of regression models, these methods generally only provide an 
estimated leak rate upon detection. In the TUBE algorithm (Gorawski 
et al., 2017), a trend interpretation stage is incorporated to provide 
qualitative results such as tight, leak, inconclusive, invalid, and the es-
timated leak rate. The other group of works employs classifiers (Alayón 
et al., 2020; Sigut et al., 2014; Toledo, Arnay, Hernández, Sigut, & 
Alayón, 2024), using feature vectors extracted from daily inventory 
data (e.g. cumulative variance, variance over sales) to classify days as 
either ‘‘with leaks’’ or ‘‘without leaks’’. The early detection aspect is 
studied in Alayón et al. (2020) by formulating the problem as labelling 
feature sets of various operating days as ‘‘with leaks’’ or ‘‘without 
leaks’’. However, the study is not conducted in an online setting, 
and its accuracy performance depends on the data from a greater 
number of operating days. The experiments of Alayón et al. (2020), 
Sigut et al. (2014), Toledo et al. (2024) primarily focus on feature 
selection and determining the optimal classifier-feature combinations, 
but there is a lack of transparency in the classifier’s decision-making 
process. Recently, the authors of Chu et al. (2024) have explored online 
Change Point Detection (CPD) on real-time fuel variance sequential 
data, enabling the early detection of fuel leakage with a detection delay 
of less than 7 days.

Although a few existing works consider the aspect of early detection, 
no works so far have addressed explainability. In particular, existing 
methods provide limited or no insights into the reasoning behind 
leakage detection, posing barriers to practitioners’ validation and trust 
in these predictions. Methods with explainability or interpretability 
have the potential to overcome this issue and thus can serve as a crucial 
step towards establishing trustworthy AI in this field.

2.2. Fuel leakage detection using CPD with multi-stream inputs

Change point detection (CPD) refers to the problem of identi-
fying abrupt changes in time series data where its properties have 
changed (Kawahara & Sugiyama, 2012). As a fuel leakage would lead to 
a change in the distribution of fuel variance, which is the key variable 
that is commonly used in SIR-based methods, CPD is a suitable method 
for fuel leakage detection. CPD approaches can be categorised based on 
criteria such as offline or online deployment (some studies refer to this 
as retrospective and sequential) and univariate or multivariate. Online 
algorithms operate in real-time, inferring change points as new data 
arrives, while offline algorithms conduct the detection retrospectively 
based on the entire historical dataset (van den Burg & Williams, 2022; 
Truong, Oudre, & Vayatis, 2020). Univariate change point detection 
involves identifying change points in a single sequence of independent 
observations (Wang, Yu, & Rinaldo, 2020). While multivariate CPD 
may be more complicated with different scenarios, most works focus 
on cases where the change point affects all coordinates of the series 
(homogeneous series) (Cho, 2016; Matteson & James, 2014) or for an 
unknown subset of the coordinates (sparse/heterogeneous series) (Cho 
& Fryzlewicz, 2015; Guo, Gao, & Lu, 2022; Wang & Samworth, 2018). 
More recent works (Alanqary, Alomar, & Shah, 2021; Knoblauch & 
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Damoulas, 2018) focus on changes in spatio-temporal models, detecting 
changes in both spatial and temporal structures.

As mentioned, leakage can be detected based on the key variable, 
fuel variance. On the other hand, fuel variance can also be influ-
enced by exogenous variables such as tank temperature. Including 
these exogenous variables when analysing the fuel variance would be 
helpful, thus resulting in multi-channel inputs. However, applying the 
aforementioned mainstream multivariate CPD methods to our problem 
may lead to the detection of change points in exogenous sequences, 
which are irrelevant to leakage (e.g. leakage should not be directly 
related to changes in temperature), resulting in false alarms.

Meanwhile, time series forecasting with exogenous variables has 
received much research attention in the last two decades. The nonlinear 
autoregressive exogenous (NARX) model (Lin, Horne, Tino, & Giles, 
1996) was introduced to predict the current value of a target time series 
not only based on its previous values but also on exogenous series. 
Various approaches have been explored in this field (Gao & Er, 2005; 
Liu, Gong, Yang, & Chen, 2020; Lu, Han, Sun, & Yang, 2024; Qin et al., 
2017). However, this problem setup and its applications in anomaly 
detection or CPD remain rare. In ML-based CPD, dissimilarity scores 
can be obtained through predictive errors. This makes forecasting with 
exogenous variables algorithms a good candidate, aligning with our 
problem characteristics. Specifically, this type of algorithm considers 
the information from exogenous variables when predicting the fuel 
variances. A change point is detected when the prediction deviates from 
the ground truth, indicating a change in the data distribution in the 
target sequence of fuel variance.

Among various algorithms, we specifically consider a state-of-the-
art algorithm, TFT (Lim et al., 2021), for its compatibility with our 
problem and advantages. First, TFT enables multi-horizon forecasting 
with high performance. It can make estimations at multiple steps in the 
future and thus facilitate the detection of permanent changes rather 
than single outliers. To enhance performance, components including 
static covariate encoders, gating mechanisms and variable selection 
networks are integrated into the architecture. These constituents enable 
the model to accommodate not only exogenous series but also static 
variables, provide adaptive network complexity and choose relevant 
input variables at each time step. Finally, the model facilitates in-
terpretability through visualisation, aiding in identifying important 
variables and observing temporal patterns. Most models are not able to 
provide all the functions mentioned above. Multiple recent works have 
utilised TFT for various practical, real-world applications, such as wind 
speed forecasting (Wu, Wang, & Zeng, 2022) and load forecasting (Li, 
Tan, Zhang, Miao, & He, 2023), particularly due to the model’s ability 
to enhance interpretability, which reinforces our choice of this model.

2.3. Explainable AI

In this section, we first review current XAI approaches for time 
series and leakage issues. Next, we discuss ANFIS, a transparent rule-
based model enabling intuitive explanations, which we choose to adopt 
for our problem.

2.3.1. XAI in multivariate time series problems
In recent years, there have been an increasing number of works 

incorporating explainability into time series problems. BeatGAN (Zhou, 
Liu, Hooi, Cheng, & Ye, 2019) is a GAN-based method proposed to 
detect anomalies for multivariate time series data. It uses heatmaps 
with different colours to indicate anomalous scores for visualisation, 
allowing users to pinpoint the time ticks of anomalies. A model-agnostic 
technique of series saliency maps is proposed in Pan, Hu, and Chen 
(2021) to consider the time and feature dimensions coherently. The 
authors present the interpretability of the method by visualising the 
learned mask components and comparing them to the original time 
series data. In Deng and Hooi (2021), structure learning with GNN 
and attention weights are utilised to provide explainability for the 
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detected anomalies. They present the interpretability of the model 
through sensor embeddings to represent the similarity between the 
sensor behaviours, learned graph edges to indicate sensor relationships, 
and attention weights to highlight the importance of each node’s neigh-
bours. Actionable Forecasting Network (AFN) (Jagirdar, Talwadker, 
Pareek, Agrawal, & Mukherjee, 2024) is a deep neural network pro-
posed for multivariate time series forecasting problems while enabling 
explainability. The reasoning of forecasting is provided in the form of 
heatmaps, which support the identification of significant time steps and 
features. A recent work (Kacprzyk, Liu, & van der Schaar, 2024) intro-
duces TIMEVIEW, a transparent time series forecasting model that is 
complemented with an interactive visualisation tool for interpretability. 
This tool facilitates the examination of both high-level and low-level 
features of predicted trajectories, as well as their changes in response 
to inputs.

Throughout the review, we have observed a growing trend towards 
enhancing explainability in DL-based models. Explanations are gener-
ally presented through visualisations, shapelets or prototypes (Theissler 
et al., 2022). However, unlike images or natural language, these arte-
facts are not directly interpretable (Rojat et al., 2021) and their inter-
pretability for the target audience is not regularly assessed (Theissler 
et al., 2022). These methods are often evaluated in terms of generality 
across different problems but lack insightful analysis specific to issues, 
making it challenging for people without a strong background to un-
derstand. While general applicability is desirable, some scenarios may 
benefit more from domain-specific explanations when presented to end 
users.

In summary, while recent works have made progress in incor-
porating explainability into time series problems, many approaches 
prioritise generality over practical interpretability. This leaves a major 
gap in providing domain-specific, intuitive explanations that align with 
practitioners’ needs. Addressing this issue is essential for fostering trust 
and enabling effective use of explainable AI in real-world applications.

2.3.2. XAI in leakage problems
In this section, we review some recent applications of XAI in 

leakage-related problems. Xu et al. (2022) propose an explainable en-
semble tree model for detecting water pipe leakages based on vibration 
signals. Shapley Additive Explanation (SHAP) method is employed to 
provide interpretations of the XGBoost model, aiding in identifying 
typical features crucial for distinguishing various leakage states. In Liu 
et al. (2023), the authors introduce a transfer learning-based explain-
able diagnosis method based on two-dimensional class activation maps 
and dynamic time warping for fault diagnosis at oil-gas treatment 
stations. The method provides auxiliary tools for fault reasoning by pin-
pointing the variables that have a greater impact on the fault condition 
at specific periods. In Gemeinhardt and Sharma (2023), deep feature 
modelling is applied to perform leakage detection and localisation 
based on both distributed acoustic sensor and distributed temperature 
sensor data. The image segmentation of predicted leaks highlights the 
exact segment of data that triggered the alarm, facilitating human 
analysis.

However, explanations through visualisations such as SHAP or 
saliency maps do not necessarily build users’ trust or help users validate 
the model’s predictions. SHAP highlights feature importance, showing 
the most typical identification features for each leakage state. While 
this can uncover new insights into the problem, it may not be useful 
for practitioners in validating results or conveying the model’s trustwor-
thiness. Class activation maps that identify critical time segments face 
the same issue: users may not trust the results because they struggle to 
understand these segments and the rationale.

Other works (Mounce, Boxall, & Machell, 2010; Silva, Veloso, & 
Gama, 2023) consider generating descriptive rules to support root cause 
analysis. For example, in Silva et al. (2023), the authors utilise a DL 
model with an explainability layer to detect failures in air produc-
tion units, including issues such as oil leaks. The explainability layer 
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involves a Chebyshev sampling strategy (Aminian, Ribeiro, & Gama, 
2021) and the Adaptive Model Rules (AMRules) (Duarte, Gama, & 
Bifet, 2016) to generate descriptive rules. While these descriptive rules 
provide a clearer rationale compared to previous methods, they often 
rely on real numbers (e.g. ‘‘If H1 sensor is at or below 8.8 bar’’). Such 
explanations remain insufficient for naive users to understand whether 
this value is abnormal. Moreover, in scenarios where the normal/ab-
normal criteria must be established based on different entity properties 
or specific contexts, this explanation becomes even less helpful. For 
example, an explanation like ‘‘If the temperature is at 25 degrees’’ 
might still leave users unsure whether this temperature is high or not, 
as the level of this temperature can vary based on different countries 
or regions.

2.3.3. Inherently interpretable models with better explainability
It is acknowledged that transparent ML models that are inherently 

interpretable, such as decision trees and (fuzzy) rule-based learning 
models, have higher interpretability compared to black-box models 
with complex structures (Arrieta et al., 2020; Gunning et al., 2019; 
Theissler et al., 2022). Among these transparent ML models, fuzzy 
rule-based systems can empower more understandable models as they 
enable textual-based explanation by using linguistic terms to represent 
variables. Traditionally, fuzzy inference systems are constructed based 
on expert knowledge; however, in most real-world situations, it is 
improbable that an expert can understand the complete behaviour 
of the data. This is also true in our case, as experts do not possess 
comprehensive knowledge of the behaviours of all the tanks or sites. 
Neuro-fuzzy modelling approaches have been introduced to address this 
limitation by utilising empirical data to derive fuzzy rules by training 
adaptive networks. Their design approximates human reasoning, al-
lows understanding of the network’s inferred outcomes and effectively 
manages imprecision and uncertainty.

In this work, we use Adaptive Network-based Fuzzy Inference Sys-
tem (ANFIS) (Jang, 1993) to generate intuitive explanations that sup-
port practitioners in validating the detection of leakage and enhancing 
trust in the system. ANFIS is a fuzzy inference system implemented in 
the framework of adaptive networks. It has been used for explainability 
in various real-world scenarios, such as elucidating decisions made by 
unmanned aerial vehicle systems (Keneni et al., 2019), explaining the 
decision for cancer diagnosis (Nguyen, Kavuri, Park, & Lee, 2022), 
real-world regression problems (Pramod & Pillai, 2021) and predicting 
performance of solar ground source heat pump systems (Hikmet Esen & 
Ozsolak, 2017). There is also work that uses ANFIS for leak detection, 
such as Cristello, Dang, Hugo, and Park (2024), but this research pri-
marily leverages the model’s transparency to facilitate analysis rather 
than providing explanations alongside the detection results. Through a 
hybrid learning procedure, ANFIS refines fuzzy IF-THEN rules to deter-
mine optimal values that best describe the input–output relationship of 
a complex system. Its fuzzification layer maps real-numbered inputs to 
degrees of membership in fuzzy sets defined by Membership Functions 
(MFs). These fuzzy sets can then be assigned with linguistic labels, 
enabling natural knowledge representation. For example, if the input 
variable is inventory height, the fuzzy sets could be ‘‘Low’’, ‘‘Medium’’ 
and ‘‘High’’ with the MFs determining the extent to which a specific 
inventory height belongs to each category. Thus, ANFIS can generate 
textual explanations that justify why a fuel leakage may be detected 
using selected linguistic terms that practitioners can easily understand.

Based on the literature discussed in the previous sections, Table  1 
summarises the current state of research and research gaps. As shown in 
the table, no existing paper addresses the combination of real-time fuel 
leakage detection with multi-stream input handling and comprehensive 
leakage result explanation, which forms the core motivation for our 
research.
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Table 1
Summary of literature review and research gaps.
 Work Fuel leakage 

detection
Handle 
multi-stream 
inputs

Model 
interpretation

Leakage result explanation  

 SIR-based with statistical methods (Gill et al., 
2006; Gorawski et al., 2017; Keating & Mason, 
2000; Li et al., 2011)

4, Offline 7 4, but limited 7  

 SIR-based with ML methods (Alayón et al., 
2020; Sigut et al., 2014; Toledo et al., 2024)

4, Offline 7 7 7  

 Fuel leakage detection via online CPD (Chu 
et al., 2024)

4, Real-time 7 7 7  

 XAI for multivariate time series problems 
(Deng & Hooi, 2021; Jagirdar et al., 2024; 
Kacprzyk et al., 2024; Pan et al., 2021; Zhou 
et al., 2019)

7 4 4 4, Mostly graph-based and 
unintuitive

 

 XAI for leakage problems (Gemeinhardt & 
Sharma, 2023; Liu et al., 2023; Silva et al., 
2023; Xu et al., 2022)

7 4 4 4, Limited and unintuitive  

 Ours 4, Real-time 4 4 4, Both graph-based and textual 
explanations

 

3. Methodology

In this section, we first formulate the problem of online fuel leakage 
detection and explanation. Next, we provide an overview of EXFLD. 
Then, we explain the structure and key components of TFT and ANFIS 
and how they are employed in EXFLD to conduct leak detection and 
provide explanations.

3.1. Problem formulation

In this paper, we aim to detect fuel leakage events as early as possi-
ble and explain this detection based on sequentially observed inventory 
data and static fuel tank information. The explanations are designed not 
for the model designer but mainly for fuel site practitioners, providing 
non-technical descriptions that help them infer why the leakage is de-
tected. No existing methods can address the detection and the required 
explanation task at the same time. We formulate this problem as a two-
step task where the fuel leakage detection is formulated as an online 
CPD problem while the explanation is a rule-based modelling process 
that outputs text-based rules. To formulate this two-step problem, we 
define that each tank entity 𝑖 has known static features 𝑠𝑖 (tank id, 
tank maximum height, tank maximum volume), sequential exogenous 
inputs 𝑥𝑖,0∶𝑇  (time of day, inventory height, inventory volume, tank 
temperature) from period 0 to 𝑇  and target series, i.e. fuel variance 
𝑦𝑖,0∶𝑇  as the input of the system. The fuel leakage detection aims to 
output the change point 𝜅 such that before 𝜅, fuel variance samples are 
i.i.d. with a distribution P, and after 𝜅, samples are i.i.d. with a different 
distribution Q. Additionally, explanations for detection results are also 
produced to explain why leakage is identified, i.e. to provide plots 
comparing prediction against anticipated results, attention weight pat-
terns that indicate important past timesteps contribute to the prediction 
decision, the importance ranking of variables and textual explanations 
in the forms of IF-THEN rules which describes the degree of meaningful 
features for the detection results.

3.2. EXFLD overview

To address the online fuel leakage detection and explanation chal-
lenges, we propose EXFLD depicted in Fig.  1. First, we preprocess the 
data and train TFT with normal inventory data to predict target future 
variances based on past reference data and exogenous variables. ANFIS 
is trained with both normal and simulated leakage data, to differentiate 
normal and leakage cases and optimise MFs. During online detection 
(Algorithm 1), the incoming data stream is preprocessed and passed to 
the trained TFT to obtain predictive future variances, which are then 
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compared to the actual variances by the discriminator to obtain the 
dissimilarity scores. A leakage is identified when the score exceeds the 
threshold. The explanation module with ANFIS (Algorithm 2) is acti-
vated primarily when a leakage is detected or when the user requests. 
The module collects and processes the past 30 days of inventory data to 
generate meaningful features such that an intuitive textual explanation 
can be produced. Finally, these textual explanations, along with the 
visualised explanations generated by TFT, are provided to end-users for 
confirmation of variance changes indicative of a leakage.

Algorithm 1 Online Detection with TFT.
  Input: static feature 𝑠𝑖, sequential exogenous series 𝑥𝑖,0∶𝑇  and fuel 
variance series 𝑦𝑖,0∶𝑇
  Output: Change points that indicate fuel leakage
while there is a data point 𝑡 + 𝜏 to proceed do
 Preprocess incoming data (Outlier removal & Normalisation) ⊳
refer to Section 3.3
 Compute estimated fuel variance 𝑓 (𝑦𝑖,𝑡−𝑘∶𝑡, 𝑥𝑖,𝑡−𝑘∶𝑡+𝜏 , 𝑠𝑖) with 
trained TFT ⊳ refer to Eq. (8)
 Compute dissimilarity score 𝑓𝑠(𝑦̂𝑖,𝑡∶𝑡+𝜏 , 𝑦𝑖,𝑡∶𝑡+𝜏 ) ⊳ refer to Eq. (9)
 Calculate threshold 𝜓 ⊳ refer to Eq. (10)
 if Dissimilarity score > Dynamic threshold then
 Leakage detected
 end if
end while

3.3. Data pre-processing

Data preprocessing is performed to alleviate the influence of noise 
and prepare the data for analysis. For the fuel leakage problem, 
factors such as measurement errors can impact the quality of the 
data (Gorawski et al., 2017). Outlier removal is a technique to minimise 
disturbances caused by outliers. As we perform detection in an online 
manner, where full information is not available upfront, we consider 
the real-time local outlier removal strategy. Singular Spectrum Analysis 
(SSA), used in previous studies (Chu et al., 2024; Gupta, Wadhvani, 
& Rasool, 2022; Lu, Kumar, Collier, Krishna, & Langston, 2018), per-
forms data reconstruction and calculates residuals by measuring the 
difference between the original signal and its reconstruction. These 
residuals are dynamically monitored, and a dynamic threshold is estab-
lished following the three-sigma rule, where any point with a residual 
exceeding the threshold is identified as an outlier. Detected outliers 
are then replaced with an imputed value, calculated as the mean of 
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Fig. 1. Overview of EXFLD.
Algorithm 2 Explanation Module with ANFIS.
  Input: Inventory data in the last 30 days
  Output: Textual explanation
Step 1: Retrieve and preprocess inventory data
Retrieve inventory data from the past 30 days
Partition the data into periods of {Recent, Medium Term, Long Term} 
based on predefined fuzzy sets
Compute aggregated features for each period
Derive differences of fuel variance across different periods: 
𝛥
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡, 𝑦𝑚𝑒𝑑𝑖𝑢𝑚
)

, 𝛥 (𝑦𝑟𝑒𝑐𝑒𝑛𝑡, 𝑦𝑙𝑜𝑛𝑔
)

Step 2: Generate textual explanations with ANFIS
Input the features obtained from Step 1 into the trained ANFIS model
Retrieve top-firing IF-THEN rules from the ANFIS inference process
Translate the identified rule into linguistic explanations in the 
format:

‘‘IF (variable) is (linguistic term for the fuzzy set) AND ... THEN 
(class)’’.

Generate detailed feature descriptions, including membership de-
grees:

‘‘(variable) is (linguistic term 1) with a membership of (value 1) and 
(linguistic term 2) with a membership of (value 2) and ...’’.

Aggregate all explanations to provide the reasoning for leakage 
detection

the previous window of size 5. In addition to outlier removal, data 
normalisation is applied to inventory volume and height by dividing 
each by its respective maximum value, which can be known in advance, 
ensuring standardised data representation.

3.4. Online detection with TFT

In this section, we first explain some key components of TFT and 
then discuss how TFT is applied to our problem to perform leakage 
detection.

3.4.1. Temporal fusion transformers
TFT is an attention-based DL model for multi-horizon forecasting 

that can handle exogenous inputs and static metadata while also facil-
itate interpretability. The architecture of TFT is illustrated in Fig.  2. It 

is composed of the following main constituents:
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1. Gating mechanisms: There are challenges in foreseeing the 
relevance of variables due to unknown relationships between 
exogenous inputs and targets as well as in gauging the extent of 
non-linear processing. TFT alleviates these challenges by propos-
ing Gated Residual Networks (GRNS), allowing the selective 
application of non-linear processing. The GRN accepts a primary 
input 𝑎 and an optional context vector 𝑐 and performs: 
𝐺𝑅𝑁𝜔(𝑎, 𝑐) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑎 + 𝐺𝐿𝑈𝜔(𝜂1)),

𝜂1 = 𝑊1,𝜔𝜂2 + 𝑏1,𝜔,

𝜂2 = 𝐸𝐿𝑈 (𝑊2,𝜔𝑎 +𝑊3,𝜔𝑐 + 𝑏2,𝜔),

(1)

where ELU (Exponential Linear Unit) is used as an activation 
function, 𝜂1 and 𝜂2 are intermediate layers, and 𝜔 is an index 
to denote weight sharing. Gated Linear Units (GLUs) take the 
form: 
𝐺𝐿𝑈𝜔(𝛾) = 𝜙𝑠(𝑊4,𝜔𝛾 + 𝑏4,𝜔)⊙ (𝑊5,𝜔𝛾 + 𝑏5,𝜔), (2)

where 𝜙𝑠(.) is the sigmoid activation function, 𝑊 (.) and 𝑏(.)
represent the weights and biases, ⊙ denotes the element-wise 
Hadamard product.

2. Variable Selection Networks: Although there may be multiple 
available variables, not all of them are relevant to the output. To 
tackle this issue, TFT employs instance-wise variable selection 
networks for both static and time-dependent covariates, enabling 
the model to ignore unnecessary noisy inputs and offer insights 
into the importance of variables. At time t, 𝜉(𝑛)𝑡  represents the 
transformed input of the 𝑛th variable and 𝛯𝑡 = [𝜉(1)

𝑇

𝑡 ,… , 𝜉
(𝑚𝜒 )𝑇

𝑡 ]𝑇

denotes the flattened vector of previous inputs. As shown in 
Eq. (3), variable selection weights 𝑣𝜒𝑡  are derived by passing 𝛯𝑡
and context vector 𝑐𝑠 through GRN. 𝜉(𝑛)𝑡  is the feature vector for 
variable n, generated through non-linear processing via its own 
GRN. Finally, the processed features are combined after being 
weighted by their corresponding 𝑣𝜒𝑡  as depicted in Eq. (5).

𝑣𝜒𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐺𝑅𝑁𝑣𝜒 (𝛯𝑡, 𝑐𝑠)), (3)

𝜉(𝑛)𝑡 = 𝐺𝑅𝑁𝜉(𝑛)(𝜉
(𝑛)
𝑡 ), (4)

𝜉𝑡 =
𝑚𝜒
∑

𝑛=1
𝑣(𝑛)𝜒𝑡 𝜉

(𝑛)
𝑡 , (5)

3. Static Covariate Encoders: TFT integrates static features by us-
ing separate GRN encoders to generate different context vectors. 
These context vectors serve various purposes, such as selecting 
temporal variables, locally processing temporal features and 
enhancing temporal features with static information.
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Fig. 2. The architecture of TFT.
4. Temporal processing: TFT learns both short- and long-term 
temporal relationships from time-varying inputs. To capture 
long-term dependencies, an interpretable multi-head attention 
block as shown in Eq. (6) is proposed. 
𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉 ) = 𝐻̃𝑊𝐻 , (6)

𝐻̃ = 𝐴̃(𝑄,𝐾)𝑉 𝑊𝑉 ,

= 1∕𝐻
𝑚𝐻
∑

ℎ=1
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 (ℎ)

𝑄 , 𝐾𝑊 (ℎ)
𝐾 , 𝑉 𝑊𝑉 ),

(7)

where 𝑊 (ℎ)
𝑄 ,𝑊 (ℎ)

𝐾  are head-specific weights for keys 𝐾 and 
queries 𝑄, 𝑊𝑉  is the weight for value 𝑉  that is shared across 
all heads and 𝑊𝐻  is the weight for final linear mapping.
A sequence-to-sequence layer is applied for locality enhance-
ment. It takes inputs 𝜉𝑡−𝑘∶𝑡 for the encoder and 𝜉𝑡+1∶𝑡+𝜏𝑚𝑎𝑥  for the 
decoder to generate a set of uniform temporal features that are 
then used as inputs for the temporal fusion decoder.

5. Quantile forecasts: TFT uses quantile forecasts to estimate the 
spectrum of target values at each prediction horizon. In terms of 
loss function for training, it minimises the sum of quantile losses 
across all quantile output.

3.4.2. Leakage detection with TFT
To forecast fuel variances over multiple future steps, for each tank 

entity 𝑖, TFT takes inputs that include: a set of static features 𝑠𝑖 (tank id, 
tank maximum height, tank maximum volume), sequential exogenous 
inputs 𝑥  (time of day, inventory height, inventory volume, tank 
𝑖,𝑡−𝑘∶𝑡+𝜏
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temperature) and the past fuel variance 𝑦𝑖,𝑡−𝑘∶𝑡. 𝜏 is the prediction 
length and 𝑘 is the size of the lookback window. Based on these inputs, 
TFT forecasts the future variances: 
𝑦̂𝑖,𝑡∶𝑡+𝜏 = 𝑓 (𝑦𝑖,𝑡−𝑘∶𝑡, 𝑥𝑖,𝑡−𝑘∶𝑡+𝜏 , 𝑠𝑖), (8)

The dissimilarity score 𝑓𝑠(𝑦̂𝑖,𝑡∶𝑡+𝜏 , 𝑦𝑖,𝑡∶𝑡+𝜏 ) at time 𝑡 is computed using the 
dissimilarity estimator 𝑓𝑠 defined below: 

𝑓𝑠(𝑦̂𝑖,𝑡∶𝑡+𝜏 , 𝑦𝑖,𝑡∶𝑡+𝜏 ) = 𝑦̂𝑖,𝑡∶𝑡+𝜏 − 𝑦𝑖,𝑡∶𝑡+𝜏 , (9)

which computes the difference between the mean of the predicted fuel 
variances and the mean of the actual fuel variances. It detects a leakage 
at time 𝑡 if the dissimilarity scores continuously exceed the thresholds 
𝜓 for a step of 𝜍 after 𝑡, to identify those persistent changes. The 
threshold 𝜓 is adaptively updated based on the scores observed so far. 
Specifically, it is estimated as: 
𝜓 = 𝛼𝐹 (𝑆, 𝑝), (10)

where 𝑆 is the set of scores observed so far, 𝐹  represents the quantile 
function with 𝑝 denoting the probability value and 𝛼 being the scalar.

3.5. Textual explanation with ANFIS

In this section, we first explain the architecture of ANFIS and 
then discuss how to create fuzzified temporal features to ensure the 
meaningfulness of the IF-THEN rules. Finally, we introduce the seman-
tic constraints used during training to ensure good interpretability of 
ANFIS.
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Fig. 3. The architecture of ANFIS.
3.5.1. Adaptive neuro-fuzzy inference system
ANFIS is a neuro-fuzzy inference system whose architecture consists 

of five layers. Fig.  3 illustrates the structure of ANFIS. Training ANFIS 
involves optimising the premise and consequence parameters. The five 
layers include:

1. Fuzzification layer: It produces the membership degree for the 
linguistic label associated with each node based on input values 
using the chosen MF. For example, when using the Gaussian
MF: 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑧, 𝜇𝑗 , 𝜎𝑗 ) = 𝑒
− 1

2 (
𝑧−𝜇𝑗
𝜎𝑗

)2
, (11)

where 𝑧 is the input to node 𝑗, 𝜇𝑗 and 𝜎𝑗 are the centre and 
the width of the Gaussian function, which are also the premise 
parameters for the node.

2. Rule layer: It computes the product of incoming membership 
values. The result, which is also the output, represents the firing 
strength of a rule.

3. Normalisation layer: It computes normalised firing strengths 
associated with each rule 𝑟, which is the ratio of the rule 𝑟’s firing 
strength to the sum of all rules’ firing strengths.

4. Defuzzification layer: It computes the output for each rule 
based on its normalised firing strength. We use zero-order
Takagi–Sugeno fuzzy models, meaning that a singleton value is 
used here to represent the certainty degree for each output class.

5. Summation layer: It aggregates the outputs from all rules to 
produce the final classification.

ANFIS establishes a series of fuzzy IF-THEN rules using suitable MFs in 
the antecedents to produce values in the consequent parts. An example 
of a Takagi–Sugeno fuzzy rule for prediction is: 
IF (𝑧1 is 𝐴𝑟1) AND (𝑧2 is 𝐴𝑟2) THEN (𝑓1 is 𝐵1) AND (𝑓2 is 𝐵2) (12)

where 𝐴𝑟1, 𝐴𝑟2 are the fuzzy sets associated with input features 𝑧1, 𝑧2
for 𝑟th rule, 𝐵1, 𝐵2 are the degree values expressing the likelihood of 
outcome class 𝑓1, 𝑓2. The final classification in the consequent can be 
ultimately determined based on which class has the highest likelihood.

3.5.2. ANFIS for textual explanation
ANFIS is implemented to perform classification using tailored fea-

tures extracted from 30 days of data to determine whether a leakage has 
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occurred. The learnt IF-THEN rules can then be used as explanations for 
fuel leakage analysis. The inputs 𝑧 to ANFIS need to be carefully set up 
to ensure the generated rules are genuinely beneficial to practitioners.

When a user needs to confirm if a leakage has occurred at day 𝑙, data 
from the past 30 days [𝑙 − 30, 𝑙] is retrieved. We select 30 days because 
SIR methods generally analyse this amount of data. A time-based 
fuzzy set {Recent, Medium Term, Long Term} is defined following 
the approach of Bhatia and Hagras (2022), representing look-back 
periods. Recent covers the most recent 7 days, Medium Term covers 
days 5 to 19, and Long Term covers days 15 to 30, which is set up 
based on experience. Next, time-based fuzzification is performed on the 
input time series to create features representing aggregated time series 
values over a specified period. For example, 𝑦𝑟𝑒𝑐𝑒𝑛𝑡 represents the fuel 
variance value of the recent period, computed using the most recent 
7 days’ fuel variance based on the predefined time-based fuzzy set. 
The time series inputs include fuel variance, temperature and inventory 
height. Given the objective of explaining fuel leakage, which involves 
comparing fuel variance across different periods, we further derive 
𝛥
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡, 𝑦𝑚𝑒𝑑𝑖𝑢𝑚
)

, 𝛥
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡, 𝑦𝑙𝑜𝑛𝑔
)

. These values denote the difference in 
fuel variance between the recent and the medium term and between the 
recent and the long term, respectively. A large negative difference in 
fuel variance of the recent period and fuel variance of the medium or 
long term essentially indicates a fuel leakage.

For textual explanations, the input features can be described in 
linguistic terms (e.g. Low, Medium, High) with ANFIS. This is ac-
complished through the fuzzification layer, which utilises predefined 
linguistic labels and learned MFs to translate crisp input values into 
degrees of match with linguistic terms. Additionally, the top-firing IF-
THEN rules can be retrieved to provide a textual representation of the 
reasoning behind the model’s predictions.

3.5.3. Semantic constraint for interpretability improvement
During the experiments, we have observed that the obtained IF-

THEN rules might not meet our expectations in terms of interpretabil-
ity. While the interpretability of fuzzy models is often presumed to be 
inherent, this is not always the case, especially when employing adap-
tive learning techniques to optimise the fuzzy inference procedures for 
complex systems (Zhou & Gan, 2008). This is due to the contradicting 
goals of accuracy and interpretability and research has been conducted 
to improve model interpretability in data-driven fuzzy modelling. Fac-
tors such as the number, coverage, normality and distinguishability 
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of MFs should be considered when designing the system. Hence, two 
semantic constraints suggested by de Oliveira (1999) are added to the 
objective function as shown in Eq. (13). 𝐽𝐺 represents the performance 
measure function and we use the cross-entropy loss function. 𝜆1 and 𝜆2
are the penalty factors. 
𝐽 = 𝐽𝐺 + 𝜆1𝐽1 + 𝜆2𝐽2, (13)

𝐽1 represents the distinguishability constraint to ensure each MF is 
distinct enough from others: 

𝐽1 =
1
2

𝑁
∑

𝑚=1
(𝑀𝑞(𝑧𝑚) − 1)2𝐼(𝑀𝑞(𝑧𝑚) − 1), (14)

where 𝑧𝑚 is the 𝑚th sample, 𝑀𝑞(⋅) is the sigma-count measure of the 
membership degrees, defined by 

𝑀𝑞(𝑧𝑚) = 𝑞

√

√

√

√

𝑛
∑

𝑗=1
(𝜐𝑞𝑗 (𝑧𝑚)),

𝐼(𝑥) =
{

1, 𝑥 > 0
0, 𝑥 ≤ 0

,

(15)

where 𝜐𝑗 is the 𝑗th MF, and 𝑞 controls the strength of the distinguisha-
bility. When q = 1, it exhibits a strong constraint and it becomes weaker 
as q increases.

𝐽2 represents the coverage constraint to ensure that the generated 
MFs cover the entire universe of discourse of a variable:

𝐽2 =
1
2

𝑁
∑

𝑚=1
(𝑧𝑚 − 𝑧𝑚)2, (16)

𝑧𝑚 =

∑𝑛
𝑗=1 𝜐𝑗 (𝑧

𝑚)𝑑𝑗
∑𝑛
𝑗=1 𝜐𝑗 (𝑧𝑚)

, (17)

where 𝑑𝑗 is the centre of the MF of node 𝑗.

4. Experiments

In this section, we first introduce the real-world fuel data col-
lected from the service stations that we use to evaluate EXFLD and 
the configurations of the algorithms. Next, we conduct case studies 
and experiments to evaluate EXFLD by investigating the following 
questions:

1. What interpretable results does EXFLD provide regarding fuel 
leakage, and how effectively do they explain the leakage phe-
nomena?

2. How does incorporating semantic constraints during the training 
of ANFIS enhance the interpretability of the generated textual 
explanations?

3. How does EXFLD perform in terms of accuracy and detection 
delay for leak detection compared to other state-of-the-art online 
CPD baselines? Can high accuracy and short detection delay be 
achieved simultaneously?

4.1. Dataset

The dataset we used is sourced from service stations across various 
states in Australia between 2020 and 2023. Overall, we collect 167 tank 
samples from 67 different sites, most of which have more than one tank. 
This dataset comprises inventory data recorded at 30-min intervals, 
transaction data detailing sales to customers, and delivery data record-
ing restocking to tanks. We define the key variable commonly used by 
SIR methods, fuel variance, in Eq. (18). The variance at interval 𝑇 , 
Var(𝑇 ), is determined by the difference between the measured closing 
volume (𝑉close(𝑇 )) and theoretical inventory volume, which can be 
computed using the opening volume 𝑉Open(𝑇 ), sales volume over the 
interval 𝑉sales(𝑇 ) and delivery volume 𝑉delivery(𝑇 ) as follows: 

Var(𝑇 ) = 𝑉 (𝑇 ) − (𝑉 (𝑇 ) − 𝑉 (𝑇 ) + 𝑉 (𝑇 )). (18)
close Open sales delivery
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The real-world dataset contains various types of noise caused by known 
phenomena (e.g. temperature-related thermal expansion effects) or 
unexpected events (e.g. theft). To mitigate the impact of temperature-
related noise, we apply temperature compensation, which standardises 
the volume to 15 degrees Celsius. Additionally, the fuel variance data 
is segmented into idle periods (when neither transactions nor delivery 
occurred in the 30-min interval), transaction periods (with transactions 
occurring in the interval) and delivery periods (restock). We retain only 
the idle period data as it is less affected by disturbances from other 
sources of fuel errors.

We reserve the first-year data of each tank sequence for training. 
TFT is trained on preprocessed normal inventory log data from all 
tanks to learn how to predict future variances based on past variances, 
exogenous variables and static variables. For ANFIS, the training data 
are divided into 30-day segments. For each segment, a duplicated copy 
with inserted leakage is created, where the leak rate is set at 0.2 gallons 
per hour (gph) and introduced in the last 4–7 days. Input–output pairs 
are then created, where the input consists of extracted features from the 
30-day segment and the output is labelled as either normal or leakage. 
We assume that tanks within the same site share some similarities, 
and one ANFIS model is trained for each site. During training, ANFIS 
learns to differentiate between normal and leakage cases based on the 
individual site’s data characteristics.

The remaining part of the sequence is used for test evaluation. Due 
to the scarcity of real fuel leakage cases, we use datasets with induced 
leaks for experiments, which is a common practice for existing SIR-
based studies including (Alayón et al., 2020; Gorawski et al., 2017; 
Sigut et al., 2014; Toledo et al., 2024). A tank leakage is induced at an 
average of 0.2 gph in each sequence, adhering to the standard test pro-
cedure of the United States Environmental Protection Agency (United 
States Environmental Protection Agency, 2019a, 2019b). Each simu-
lated leak begins no earlier than 6 months into the test sequence and 
persists for approximately 1 month, after which tank operations are 
presumed to cease, meaning no data will be available thereafter.

Following the guidelines (United States Environmental Protection 
Agency, 2019a, 2019b), we conduct leakage simulation with adjust-
ments to match our data sampling rate. For each sequence, its leak rate 
𝑙𝑟 is first established by randomly sampling from a uniform distribution 
ranging between 0.2*(1%–30%) gph and 0.2*(1 + 30%) gph. It is 
assumed that the leakage occurs at the bottom of the tank and persists 
throughout the entire leakage period, which is a common assumption 
from previous works (Alayón et al., 2020; Gorawski et al., 2017; Sigut 
et al., 2014; Toledo et al., 2024). Then, for each interval 𝑇  during the 
leakage period, the fuel variance value is adjusted by subtracting the 
leakage volume computed based on the corresponding leak rate 𝑙𝑟, as 
follows:

Varadj(𝑇 ) = Var(𝑇 ) − 0.5 × 𝑙𝑟

√

ℎ𝑝𝑙
ℎ𝑚𝑎𝑥

,

where Varadj(𝑇 ) is the adjusted fuel variance value, ℎ𝑝𝑙 is the current 
product level height and ℎ𝑚𝑎𝑥 denotes the maximum inventory height. 
Finally, to ensure consistency, other relevant variables, including in-
ventory volume and inventory height, are also recalculated to account 
for the induced leakage volume.

4.2. Setup

EXFLD is implemented in Python 3.8.10, with PyTorch-forecasting 
1.0.0 (Beitner, 2020) used to implement TFT and the implementation 
of ANFIS is based on FOX (Pasquadibisceglie, Castellano, Appice, & 
Malerba, 2021). The source code can be found at: https://github.com/
ruimin-chu/EXFLD. The experiments are run in an environment of 
AMD EPYC 7502 CPU processor and NVIDIA A100 GPU. Both models 
are trained for 50 epochs with early stopping. Some parameters are 
informed by domain knowledge to align with real-world operational 
requirements (i.e. lookback window size, step size), while others are 

https://github.com/ruimin-chu/EXFLD
https://github.com/ruimin-chu/EXFLD
https://github.com/ruimin-chu/EXFLD
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Table 2
Hyperparameter setup.
 TFT hyperparameters ANFIS hyperparameters Leakage detection setup  
 Forecast horizon (𝜏): 72 
Lookback window size (𝑘): 240 
Step size (𝜍): 16 
Hidden units: 43 
# of LSTM layer: 1 
# of attention heads: 3 
Hidden continuous size: 27 
Learning rate: 0.02 
Dropout rate: 0.25 
Clipping gradient: 0.05

# of fuzzy sets: 3 
Membership function: Gaussian 
Feature set: { Δ(𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑚𝑒𝑑𝑖𝑢𝑚),
Δ(𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑙𝑜𝑛𝑔 ) }

Quantile probability (𝑝): 0.985
Threshold scalar (𝛼): 1.75

 

Fig. 4. Case study of visualised explanation. 
fine-tuned based on optimisation results. The hyperparameter setup is 
detailed in Table  2. Specifically, the TFT hyperparameters are tuned us-
ing Optuna, while the ANFIS hyperparameters are chosen based on grid 
search. Further sensitivity analysis will be discussed in Section 4.5.4.

4.3. Case studies on interpretability

In this section, we aim to answer the first question introduced at 
the start of Section 4. Through case studies, we evaluate the visualised 
explanations obtained from the detection module and the textual ex-
planations obtained from the explanation module, focusing on their 
effectiveness in explaining fuel leakage.

Graph-based Explanation:
We present the visualised interpretable results generated with TFT 

in Fig.  4. This includes the plot of the actual fuel variance trend versus 
prediction (Fig.  4(a)), instance-wise attention weight pattern (Fig.  4(b)) 
and instance-wise feature importance ranking (Fig.  4(c)). Fig.  4(a) 
provides a comparison between the actual fuel variance trend (depicted 
by the blue line) and the quantile prediction made by TFT (depicted 
by the orange lines). This visualisation is useful for understanding 
the detected change points. In the highlighted red region, where the 
10 
leakage is known to occur, the prediction deviates noticeably from 
the actual variance, signalling abnormalities. This discrepancy assists 
practitioners in validating detection results by offering a visualised 
quantitative comparison between observed and predicted behaviours.

Fig.  4(b) illustrates the attention weight pattern, showing the rel-
ative importance of past timesteps for the prediction at the timestep 
indicated by the purple dotted line in Fig.  4(a). This visualisation 
reveals which historical data points contribute most significantly to the 
model’s local forecast. Fig.  4(c) displays the feature importance ranking 
for the timestep where leakage occurs, identifying which features con-
tribute the most to the prediction at that moment. Though they enable 
interpretability that provides users with insight into how TFT processes 
data to make forecasts, their utility for validating the detection results 
is very limited. These interpretations can be used to examine TFT’s 
forecasting decisions but do not explain the detection of a change point, 
which is the key interest in our problem. Additionally, the information 
disclosed is limited. For example, the highest spike in attention weight 
pattern in Fig.  4(b) around 09/10/2021 indicates that the fuel variance 
at this point contributes the most to the future prediction for the step 
at the purple dot line. However, this information does not provide 
practitioners with a direct way to verify whether leakage occurred at 
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Fig. 5. Textual explanations by ANFIS.
that specific time point, as it does not establish a direct causal link to 
the event.

Based on the above discussion, we can summarise that although 
TFT offers visualised explanations that aid in validation to some extent, 
some of which merely present their findings rather than enabling 
sufficient validation for our study. Relying solely on these visualised 
explanations is insufficient for our problem.

Textual Explanation: In Fig.  5, we present two examples of textual 
explanations generated by ANFIS: one for a leakage case (Fig.  5(a), 
where the red region denotes the leakage period) and the other for a 
normal case (Fig.  5(b)). Each explanation consists of two main parts. 
The top firing rule is first displayed along with its firing strength, 
allowing users to gauge the confidence of the model’s prediction. This is 
followed by the input feature descriptions, where the top two matching 
linguistic terms and their respective degrees of membership are shown 
to reflect confidence and also account for uncertainty. These feature 
descriptions are derived from the trained MFs based on the input 
variable values as a result of fuzzification. We note that the sum of 
membership values for an input value 𝑥 may not equal 1, as fuzzy 
set theory, unlike traditional probability theory, does not impose the 
constraint of the summation axiom on membership values for a given 
element (Han, Kamber, & Pei, 2006).

As shown in the examples, the textual explanations are plausible. 
For the leakage case in Fig.  5(a), based on the provided top firing 
rule, a user can learn that the differences in fuel variances between 
the recent term and the medium or long terms being considered ‘‘very 
negative’’ cause the model to determine that there is a leakage. This 
explanation aligns with expert knowledge of leakage cases, thereby 
enhancing the credibility of the model’s decision. Additionally, the 
feature descriptions in the bottom half of the textual explanation reveal 
that these differences are primarily considered ‘‘very negative’’ with a 
membership value of 98%, with a slight tendency towards ‘‘moderately 
negative’’ with a membership value of 4%. These descriptions allow 
users to gain further insights into the model’s interpretation and con-
fidence levels for the input features. For the normal case, the model 
suggests that having no significant difference in fuel variance across 
different periods is normal for the tank. This again aligns with domain 
knowledge regarding the expected description of differences in fuel 
variances for a non-leakage case, where the fuel variance is expected 
to be stable.
11 
Textual explanations complement visualised explanations by trans-
forming complex data into human-understandable knowledge, which is 
especially valuable in our context. While visualised explanations, such 
as comparisons between predicted and actual fuel variances, enable 
users to spot discrepancies, they often fall short in helping practitioners 
assess the magnitude or significance of these differences. This limitation 
is particularly pronounced when dealing with data from multiple sites 
with varying baseline values, as manual analysis to determine the 
degree of difference can be time-consuming and impractical. Textual 
explanations mitigate this problem by describing the degree of differ-
ence using linguistic terms, which are intuitive and tailored to each 
site’s unique characteristics. By training an ANFIS on individual site 
data, the model can learn MFs that adapt to each site’s characteristics. 
Furthermore, during the model design process, we consulted with in-
dustry practitioners who expressed preferences for textual explanations 
as they are easier to interpret. Since these practitioners are not experts 
in DL algorithms, they find it challenging to extract meaningful insights 
from graphs or determine severity based on interpretable results from 
TFT. This feedback further reinforces our decision to incorporate an 
explanation module to generate textual explanations.

4.4. Semantic constraint on improving interpretability

As discussed in Section 3.5.3, interpretability, particularly semantic 
interpretability, may not always be preserved in an adaptive learning 
process. In this study, we also focus on enhancing the low-level in-
terpretability of ANFIS by optimising MFs based on semantic criteria 
to generate more meaningful local explanations. Figs.  6(a) and 6(b) 
show the MFs of the ANFIS trained with semantic constraints and the 
unconstrained version, respectively. These figures demonstrate that the 
ANFIS trained with semantic constraints achieves a more interpretable 
input space partitioning compared to the conventional ANFIS.

In Fig.  6(a), where ANFIS is trained with semantic constraints, the 
learnt MFs are well-distributed across the entire universe of discourse, 
ensuring full coverage. Each MF is sufficiently distinct from the others, 
ensuring that the corresponding linguistic terms carry clear semantic 
meanings. Conversely, when trained without constraints, it becomes 
challenging to assign distinct linguistic labels and meaningful semantics 
to the resulting fuzzy sets.

In Fig.  6(b), we present cases of unconstrained ANFIS for two differ-
ent sites. In the top case of Fig.  6(b), for the variable displayed in the 
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Fig. 6. MFs of two inputs for ANFIS.
left subplot, the ‘‘very negative’’ fuzzy set has the highest membership 
value in the region marked by the red dashed box, whereas the ‘‘mod-
erately negative’’ fuzzy set has the highest value between −3.5 and 
−2, despite its lower value compared to the red-boxed region. Similar 
issues can be observed in the variable displayed in the right subplot, 
particularly within the area highlighted by the red box. This misalign-
ment makes it challenging to assign appropriate linguistic terms that 
match the actual value ranges, thereby affecting the interpretability 
of the model. Although post-processing techniques, such as merging 
overlapping MFs, could be a potential solution, they are impractical in 
our case. Since one ANFIS is trained for each site to account for varying 
characteristics while there are many different sites, reassignment of 
linguistic terms would introduce inconsistency and complexity. In the 
bottom example of Fig.  6(b), while the MFs are distinguishable, certain 
input regions are not well-covered. For instance, no fuzzy set has a high 
membership value for input values between −4 and −3.5 in the left 
variable. This lack of coverage may hinder the comprehensibility of the 
system’s knowledge (Alonso, Castiello, & Mencar, 2015).

We further compute the average similarity measure (Dubois, 1980; 
Setnes, Babuska, Kaymak, & van Nauta Lemke, 1998) and the 0.5-
completeness score (Mencar & Fanelli, 2008) across all variables and 
sites to assess the impact of constraints on the semantic interpretability 
of the system. The similarity measure quantifies the overlap between 
fuzzy sets, with lower values indicating more distinct fuzzy sets. The 
0.5-completeness score is calculated by evaluating the proportion of 
input values that are adequately covered by fuzzy sets, specifically by 
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counting the proportion of values with their highest membership value 
exceeding 0.5. A score of 1.0 indicates perfect coverage.

The results show that training with constraints significantly en-
hances semantic interpretability in terms of coverage, achieving a 
perfect coverage score of 1.0. In contrast, the unconstrained model 
obtains a coverage score of 0.7865, suggesting that some input re-
gions are inadequately represented, with maximum membership values 
below 0.5. The constrained model has a similarity score of 0.1464, 
which is higher than the score of 0.0404 for the unconstrained model, 
indicating a greater overlap between the fuzzy sets. Such a trade-off 
is anticipated. As the two measures are inherently conflicting (Alonso 
et al., 2015), achieving perfect coverage inevitably increases overlap 
between fuzzy sets. Nonetheless, this slight reduction in distinguisha-
bility is outweighed by the critical improvement in coverage, ensuring 
that the fuzzy sets effectively cover the entire input range. Supported 
by the case studies presented in Fig.  6, we can conclude that training 
with semantic constraints indeed enhances the local interpretability of 
ANFIS.

4.5. Leak detection performance

In this section, we conduct experiments to demonstrate that EXFLD 
can maintain good performance in accuracy, by comparing its perfor-
mance in leak detection to state-of-the-art online CPD baselines, while 
providing enhanced explanations given in the previous section.
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4.5.1. Baseline methods
We compare EXFLD with eight commonly used or state-of-the-art 

online CPD algorithms. For these baseline models, as they are not 
designed to handle scenarios with exogenous input series as mentioned 
in Section 2.2, we use them to analyse the fuel variance sequential data 
only, which can be considered as CPD on a univariate stream. They are:

• CUSUM (Page, 1954): a sequential analysis technique introduced 
in Page (1954) that can be applied to detect changes in mean.

• BOCD (Adams & MacKay, 2007): a model detects changepoints 
based on the estimated probability distribution of the current run 
length.

• M-Statistic (Li, Xie, Dai, & Song, 2015): an approach that uses 
computational efficiency kernel M-statistics to measure dissimi-
larities between blocks of data.

• ONNC (Hushchyn, Arzymatov, & Derkach, 2020): an online CPD 
approach based on neural networks classifier.

• ONNR (Hushchyn et al., 2020): an approach based on neural net-
work regressor that follows the idea of RuLSIF (Yamada, Suzuki, 
Kanamori, Hachiya, & Sugiyama, 2013)

• LIFEWATCH (Faber, Corizzo, Sniezynski, Baron, & Japkowicz, 
2022): a lifelong learning method that uses Wasserstein distances 
to compare data distributions and leverages memory to model the 
distributions.

• NODE (Wang, Borsoi, Richard, & Chen, 2023): A strategy based 
on neural density-ratio estimation, which conducts binary clas-
sification across two sliding windows(reference and test), and 
variational continual learning to facilitating adaptive detection.

• MOCPD (Chu et al., 2024): an online CPD framework designed for 
early fuel leakage detection that stores representative historical 
data in the memory and adaptively updates the memory and 
threshold.

The hyperparameters for the baseline models are either set to the 
default values or optimised through grid search. The window size of 
baseline methods is set to 72.

4.5.2. Evaluation metrics
We evaluate the performance of EXFLD and the baseline models in 

detecting fuel leakages using metrics relevant to fuel leakage and online 
CPD criteria, including recall, precision, F2-score and detection delay. 
A leak is considered a true positive if detected within 7 days of the 
ground truth. Recall is measured as the proportion of correctly identi-
fied leakages, while precision is calculated by dividing the number of 
accurately detected CPs by the total number of alarms triggered. F2-
score is the weighted harmonic mean of precision and recall, which is 
calculated as: 
𝐹𝛽 = (1 + 𝛽2)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
(𝛽2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙

, (19)

with 𝛽 = 2, giving more weight to recall as unrecognised leakages are 
considered worse than false alarms. Detection delay is computed by 
taking the average time differences between the detection timestamp 
and the actual change point timestamp. It is important to note that the 
F2-score for CPD is not exactly the same as in classification problems. 
The F2-score in classification evaluates performance on a fixed dataset. 
Whereas in CPD, detections are continuously performed, and the model 
must identify change points which are generally rare events, increasing 
the likelihood and impact of false positives.

4.5.3. Results
In Table  3, we present the experimental results on 0.2 gph fuel 

leakage data. The results are reported based on the average scores on 
five runs for those non-deterministic methods. The results show that 
EXFLD outperforms the baselines in terms of accuracy, achieving the 
highest F2-score by maintaining both high recall and precision rates 
compared to other methods. Among the baselines, those incorporating 
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Table 3
Results on 0.2 gph fuel leakage data.
 Method Recall Precision F2 Delay (day) 
 CUSUM 0.6946 0.2442 0.5074 1.91  
 BOCD 0.3713 0.2109 0.3222 4.19  
 M-Statistic 0.4036 0.2767 0.3691 3.56  
 ONNC 0.6257 0.3050 0.5170 3.83  
 ONNR 0.7820 0.2703 0.5639 4.25  
 LIFEWATCH 0.5928 0.3437 0.5177 3.38  
 NODE 0.4900 0.2727 0.4214 3.27  
 MOCPD 0.7844 0.4844 0.6979 4.69  
 EXFLD 0.8204 0.7153 0.7969 4.50  

continual learning strategies, which update the models online while 
retaining past knowledge (e.g. ONNC, ONNR, NODE and MOCPD), 
show competitive performances. However, some use a fixed threshold, 
leading to lower precision rates. Given a large number of tank instances 
with varied dissimilarity score ranges in our dataset, methods em-
ploying an adaptive threshold that determines the threshold based on 
the specific cases show good results. Methods specialised in detecting 
changes in the mean (e.g. CUSUM) also show good performance due 
to their alignment with the characteristics of change points in our 
problem. As the design of EXFLD covers the aforementioned aspects and 
additionally considers the impact of exogenous variables, it achieves 
the best accuracy performance. In terms of detection delay, though 
not having the shortest delay, EXFLD’s turnaround time is significantly 
shorter than the typical time of over 20 days seen with offline SIR-based 
methods used in the industry.1

We also report the efficiency of EXFLD and baseline models at 
inference by recording the time taken to make a decision at each 
step. The average runtimes in milliseconds for each method, listed 
in ascending order, are as follows: CUSUM : 0.0028, MOCPD: 1.09,
LIFEWATCH : 1.19, BOCD: 1.67, EXFLD: 2.26, M-Statistic: 4.07, ONNC: 
4.28, ONNR: 11.25, NOCD: 16.88. Although inference time is recorded, 
it is less critical to our study as these times are significantly shorter 
compared to the average detection delay.

4.5.4. Sensitivity analysis
In this section, we examine the sensitivity of EXFLD to critical 

parameters that influence its performance, including the prediction 
length (𝜏) and key configurations of the ANFIS model. The analysis 
helps evaluate how these parameters impact accuracy, detection delay 
and explainability, providing insights into their trade-offs and guiding 
the selection of the optimal configuration.

Effect of prediction length 𝜏: 
Achieving high accuracy and low detection delay simultaneously in 

fuel leak detection poses challenges due to the noisiness of real-world 
data. Single anomalies or short-term trend changes may occur unex-
pectedly. We conduct experiments to analyse EXFLD’s sensitivity to 
the prediction length 𝜏, which affects detection accuracy and detection 
delay. 𝜏 serves as a decision delay allowance, enabling the method to 
detect leaks based on a proportion of recent data to alleviate the impact 
of outliers. Fig.  7 depicts the F2-scores versus detection delays for 𝜏
values between {24, 48, 60, 72, 96}. The graph reveals that as 𝜏 increases, 
the model achieves higher accuracy by leveraging a broader temporal 
context, enabling it to better differentiate between genuine leaks and 
local trend changes. Meanwhile, this improvement in accuracy comes at 
the cost of longer detection delays, as the system requires more data for 
decision-making. The point closest to the upper-left corner of the graph 
indicates the optimal prediction length that provides the best trade-off 
between accuracy and detection delay.

1 http://www.nwglde.org/methods/sir_quantitative.html.

http://www.nwglde.org/methods/sir_quantitative.html
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Fig. 7. Trade-off between accuracy and detection delay.
Table 4
Comparative analysis of the seven top-performing ANFIS setups. NFS indicates the number of fuzzy sets, NR denotes the 
number of rules and NC denotes the number of conditions.
 Setups Accuracy Interpretability

 Feature set MF NFS F2-score NR NC  
 {Δ (

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑚𝑒𝑑𝑖𝑢𝑚
)

,Δ
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑙𝑜𝑛𝑔
)

} Gaussian 5 0.8579 25 2  
 {Δ (

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑚𝑒𝑑𝑖𝑢𝑚
)

,Δ
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑙𝑜𝑛𝑔
)

} Gaussian 3 0.8569 9 2  
 {Δ (

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑚𝑒𝑑𝑖𝑢𝑚
)

,Δ
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑙𝑜𝑛𝑔
)

} Trapezoidal 3 0.8565 9 2  
 {Δ (

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑚𝑒𝑑𝑖𝑢𝑚
)

,Δ
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑙𝑜𝑛𝑔
)

} Gaussian 2 0.8557 4 2  
 {Δ (

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑚𝑒𝑑𝑖𝑢𝑚
)

,Δ
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑙𝑜𝑛𝑔
)

, Height𝑟𝑒𝑐𝑒𝑛𝑡} Gaussian 5 0.8556 125 3  
 {Δ (

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑚𝑒𝑑𝑖𝑢𝑚
)

,Δ
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑙𝑜𝑛𝑔
)

} Trapezoidal 5 0.8536 25 2  
 {Δ (

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑚𝑒𝑑𝑖𝑢𝑚
)

,Δ
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡 , 𝑦𝑙𝑜𝑛𝑔
)

, Height𝑟𝑒𝑐𝑒𝑛𝑡} Gaussian 3 0.8526 27 3  
Effect of feature set, membership function and number of fuzzy 
sets:

For ANFIS, we explore various configurations, with 𝜆1 and 𝜆2 (in-
troduced in Section 3.5.3, which controls the contribution of semantic 
constraints) set to 0.1. The configurations include:

• Membership functions: Gaussian, Triangular and Trapezoidal. 
These are all the most common types of MFs (Ali, Ali, & Sumait, 
2015).

• Feature set: In addition to the two key features {𝛥 (𝑦𝑟𝑒𝑐𝑒𝑛𝑡,
𝑦𝑚𝑒𝑑𝑖𝑢𝑚

)

, 𝛥
(

𝑦𝑟𝑒𝑐𝑒𝑛𝑡, 𝑦𝑙𝑜𝑛𝑔
)

} introduced in Section 3.5, we also
consider other potentially related features, including
Temperature𝑟𝑒𝑐𝑒𝑛𝑡 and Height𝑟𝑒𝑐𝑒𝑛𝑡, based on the expert knowl-
edge. Temperature is associated with evaporation losses which 
contributes to fuel variances, while inventory height may reflect 
tank calibration errors which also affect fuel variance.

• Number of Fuzzy Sets (NFS): 2, 3 and 5. NFS determines the 
granularity of the fuzzy partition. These values are chosen to 
maintain a manageable number of categories based on the 7 ± 2 
theory (Miller, 1956), ensuring the system remains interpretable 
while accurate (Alonso, Magdalena, & Guillaume, 2008). Two 
fuzzy sets provide binary decisions, leading to the simplest struc-
ture. Three or five fuzzy sets allow for more granularity without 
introducing excessive complexity. As odd numbers, they enable a 
middle term, which was also explored in Alonso, Ducange, Pecori, 
and Vilas (2020).
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To study and determine the optimal ANFIS setup, we consider both 
accuracy and interpretability. While ANFIS is primarily used to gener-
ate textual explanations, we check its accuracy to gauge its performance 
and determine the best setup. For accuracy, we report the F2-score 
of ANFIS on the validation set (i.e. 25% of the train set for ANFIS) 
in performing binary classification. For interpretability, we report the 
Number of Rules (NR) and the Number of Conditions (NC), where NC 
corresponds to the number of features. As highlighted in reviews of 
interpretability measures for fuzzy rule-based systems (Alonso et al., 
2015; Gacto, Alcalá, & Herrera, 2011), these metrics are widely recog-
nised in the field as key indicators of model interpretability. NR reflects 
the compactness of the rule system, while NC indicates the total rule 
length (Alonso et al., 2015). Lower values suggest simpler structures 
and thus lead to a better understanding of the model.

Table  4 presents the top seven ANFIS setups that achieve the highest 
accuracy scores alongside their respective interpretability results. The 
accuracy scores across setups are relatively close, with Gaussian and 
Trapezoidal MFs achieving higher results. Another critical observation 
is that adding more features or increasing the NFS does not always 
improve accuracy. In fact, excessive complexity can lead to overfitting, 
which limits the model’s ability to generalise on unseen data. When 
accuracy scores are close, lower complexity is preferred as it leads to 
a simpler and more intuitive system, which is critical for end-users 
who need to interpret the model’s decision-making process. While the 
top-performing setup with five fuzzy sets slightly improves accuracy, 
it generates a much higher NR, which can be overwhelming for users 
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to manage. Based on the results in Table  4, we select the second top-
performing setup with Gaussian MFs and three fuzzy sets as it achieves 
a great balance between performance and interpretability.

4.6. Discussion

In the previous sections, we have evaluated the explainability and 
detection performance of EXFLD. For explainability, we demonstrate 
that the graph of prediction versus actual fuel variances and textual 
explanations are more understandable and useful in scenarios where 
a change point needs to be explained. These explanations highlight 
the severity and persistence of the abnormal trend that relates to 
the potential of leakage, assisting practitioners in understanding the 
current situation. Textual explanations complement visualised outputs 
by describing differences in human-understandable linguistic terms, 
which is suitable for scenarios involving instances with various char-
acteristics. By leveraging semantic constraints, EXFLD achieves robust 
semantic-based interpretability, effectively partitioning the input space 
with the MFs and ensuring the meaningfulness of the generated local 
explanations.

In terms of detection performance, EXFLD outperforms baseline 
online CPD methods by integrating an adaptive threshold system and 
accommodating exogenous variables. In operational settings, the con-
sequences of false negatives where leakage goes undetected are signif-
icant, including financial losses and environmental harm. Meanwhile, 
false positives may lead to unnecessary interventions, such as opera-
tional halts. In the context of fuel leakage, the impact of a false negative 
is more severe than that of a false positive. This priority informed our 
decision to use the F2-score for performance evaluation, emphasising 
more on recall rate. As reflected in Table  3, EXFLD strikes a strong 
balance between recall and precision, offering improved reliability over 
baseline methods. EXFLD’s comprehensive design, especially with the 
explainability module, helps mitigate the risks of false positives and 
false negatives. Specifically, practitioners can adjust the threshold setup 
to prioritise recall, reducing the likelihood of false negatives. Although 
this may inevitably lead to increased false positives, the explanation 
module provides tools such as prediction-versus-actual variance graphs, 
confidence scores, and degrees of difference to aid practitioners in 
validating false alarms.

It is important to note that the noisiness of real-world data remains 
an issue, potentially leading to incorrect judgements by the system. 
The explanation module may provide explanations that are consistent 
with the decision of a false alarm. Nevertheless, practitioners can 
utilise the prediction versus actual fuel variance graph, the confidence 
score and the provided degree of difference to make a judgement. 
Ultimately, the system’s role is to assist practitioners, who retain the 
responsibility for making final judgements on whether to act upon the 
model’s recommendations. This collaborative approach ensures EXFLD 
remains a practical and trustworthy tool for fuel leakage detection.

5. Conclusion and future work

In this paper, we present EXFLD, a novel explainable fuel leakage 
detection method that provides intuitive explanations for detection val-
idation while ensuring accurate early detection of fuel leakage. EXFLD 
integrates the high-performance TFT model for online leak detection 
with the inherently interpretable model, ANFIS, to generate textual 
explanations. This combination enables EXFLD to address the critical 
challenge of explainability in fuel leakage detection, making it the 
first method in this domain to prioritise both interpretability and early 
detection.

Through several case studies, we demonstrate that EXFLD can pro-
vide explanations that sufficiently elucidate its decision, especially 
by using linguistic terms to describe the degree of deviation of fuel 
variances between different periods, which is intuitive for humans. 
15 
We also show that incorporating semantic constraints during the train-
ing of ANFIS improves the distribution of MFs, thereby enhancing 
semantic interpretability and ensuring the meaningfulness of the tex-
tual explanations. Finally, the experimental evaluation underscores 
the effectiveness of EXFLD, achieving an F2-score of 0.7969, which 
outperforms other online CPD baselines in terms of accuracy.

We demonstrate EXFLD’s superior accuracy through experiments 
using real-world data with induced leakages, where the simulation 
design adheres closely to industry-standard test procedures to ensure a 
reasonable approximation of real-world leakage behaviours. However, 
it is important to acknowledge that these simulations may not fully 
capture the complexities of actual leaks, such as irregularities in du-
ration and leak rate. Additionally, real leaks occur with much lower 
frequency than the simulated ones in our experiment. While estimating 
the relative frequency of fuel leakage, i.e. the proportion of true fuel 
leakage, remains a challenge. This disparity could make real leaks 
more difficult to distinguish in operational settings, potentially leading 
to decreased precision due to a higher rate of false positives. Given 
the rarity of real-world leakages, future work could focus on closer 
collaboration with industry stakeholders to conduct controlled physical 
experiments that simulate actual leak conditions. These experiments 
would provide valuable data sources to evaluate EXFLD’s performance 
more accurately under true operational settings.

As mentioned in the Dataset Section, an ANFIS model is trained 
separately for each site, given the variation in individual site data char-
acteristics. Due to its adaptability, ANFIS can adjust the MFs’ parame-
ters tailored to site-specific conditions. This ensures that the learned 
fuzzy sets and generated textual explanations align with the unique 
characteristics of each environment. On the contrary, the reliance on 
site-specific training data and configurations indicates EXPLS’s limited 
scalability to diverse geographies with significantly different condi-
tions. Extending EXFLD’s application to new regions requires access to 
data that reflects these varying conditions. Collaborative efforts to share 
and gather data from different regions could facilitate the method’s 
adaptation to broader contexts.

Finally, the presented EXFLD is an innovative solution to address the 
challenge of achieving explainability and performance simultaneously, 
which are desirable properties for many real-world problems. Thus, 
for future work, we would like to explore the application of EXFLD to 
other real-world problems with similar settings, e.g. anomaly detection 
in manufacturing processes and environmental monitoring application 
tasks where problems can be formulated as CPD or anomaly detection. 
However, applying EXFLD to these new domains presents certain chal-
lenges. It requires a thorough understanding of the specific problem 
context to ensure that the model’s structure is aligned with the unique 
characteristics of the problem. This adaptation includes determining an 
optimal number of MFs in the ANFIS and designing meaningful features 
that effectively clarify reasons for detected change points or anomalies, 
as well as the degree of the differences involved. Incorporating expert 
knowledge specific to each domain will be essential to tune EXFLD’s 
setup and eventually help produce meaningful explanations to human 
operators. Although this customisation process requires some expert 
input, it is limited to essential structural parameters and, therefore, 
remains manageable.
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