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 A B S T R A C T

This paper presents an advanced architecture for spatiotemporal prediction MAD, integrating Mamba modules 
with Diffusion Transformers for efficient spatiotemporal modeling. The model consists of three phases: 
encoding, reconstruction, and prediction. Initially, the encoder transforms raw spatiotemporal data into 
compact latent embeddings. In the reconstruction phase, the Mamba module processes these embeddings 
through normalization and bidirectional state space models, generating reconstructed representations which 
are then decoded to restore the input data. The prediction phase utilizes the Diffusion Transformer to model 
spatiotemporal features, incorporating time embeddings and leveraging self-attention mechanisms to capture 
complex spatiotemporal dependencies. Finally, the model jointly trains the reconstruction and prediction paths 
to achieve high-precision spatiotemporal forecasts. Experimental results demonstrate the model’s superior 
performance across various spatiotemporal prediction tasks, validating its effectiveness and robustness. Our 
codes are available at https://github.com/Hanson1331/KBS-MAD.
1. Introduction

Spatio-temporal prediction is a key research area in data science and 
artificial intelligence [1–3], widely applied in weather forecasting [4,
5], traffic flow prediction [6], environmental monitoring [7], and 
urban planning. With the rapid development of the Internet of Things 
and big data technologies, massive Spatio-temporal data continuously 
emerge, making efficient and accurate modeling and prediction criti-
cal challenges. Spatio-temporal prediction requires handling complex 
dependencies across spatial and temporal dimensions, as well as high-
dimensional and dynamic data characteristics, demanding sophisticated 
model design and optimization.

Traditional Spatio-temporal prediction methods mainly rely on 
statistical models, such as Autoregressive Integrated Moving Aver-
age (ARIMA) [8] and Seasonal ARIMA (SARIMA) [9], which effec-
tively handle linear Spatio-temporal dependencies. However, as data 
complexity increases, these models exhibit limited prediction accu-
racy and generalization capabilities in nonlinear and dynamic Spatio-
temporal environments. To overcome these limitations, researchers 
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have introduced machine learning methods like Support Vector Ma-
chines (SVM) [10] and Random Forests [11], which capture com-
plex Spatio-temporal patterns but still face challenges with computa-
tional efficiency and model complexity when dealing with large-scale 
high-dimensional data.

Recently, the rapid advancement of deep learning technologies 
has opened new opportunities for Spatio-temporal prediction. Neural 
network-based methods, especially the combination of Convolutional 
Neural Networks (CNN) and Recurrent Neural Networks (RNN) [2,12–
14], significantly enhance the ability to capture spatial features and 
temporal dependencies. For instance, CNNs excel at extracting local 
spatial features, while RNNs effectively capture temporal dependen-
cies in sequential data. This combination performs well in tasks like 
video data and traffic flow prediction. However, existing methods still 
face challenges when handling high-dimensional Spatio-temporal data, 
including low computational efficiency, high model complexity, and 
insufficient capture of long-range Spatio-temporal dependencies. Ad-
ditionally, effectively integrating Spatio-temporal features and balanc-
ing reconstruction and prediction tasks during model training remain 
pressing issues.
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Recent research has made significant progress in Spatio-temporal 
prediction. For example, Wu et al. propose PastNet [15], which in-
troduces physical inductive biases to enhance video Spatio-temporal 
prediction by combining physical constraints with deep learning mod-
els, thereby improving the understanding of physical dynamics. Wu 
et al. also present Earthfarseer [6], demonstrating the ability to model 
various Spatio-temporal dynamical systems within a single model, sig-
nificantly increasing its versatility and adaptability. K. Wang et al. 
introduce Neural Discrete Learning and Levels-of-Experts [16], which 
utilizes neural discrete learning and hierarchical expert mechanisms 
to enhance the accuracy and efficiency of Spatio-temporal dynamical 
system modeling. Additionally, Wu et al. study Spatio-temporal Fluid 
Dynamics Modeling [17], combining physical awareness with parame-
ter diffusion guidance to further improve the accuracy and robustness 
of fluid dynamics Spatio-temporal modeling.

Despite these advances, several challenges remain. Firstly, existing 
methods consume substantial computational resources when handling 
high-dimensional Spatio-temporal data, limiting their practical applica-
tions. Secondly, many models inadequately capture long-range Spatio-
temporal dependencies, restricting their effectiveness in complex envi-
ronments. Lastly, effectively integrating reconstruction and prediction 
tasks during model training to achieve multi-task optimization remains 
a challenging research topic.

To address these issues, this paper proposes an advanced Spatio-
temporal prediction architecture—MAD (integration of Mamba mod-
ules and Diffusion Transformer). The MAD architecture combines
Mamba modules and Diffusion Transformers to achieve efficient Spatio-
temporal modeling and precise prediction. The model comprises three 
stages: encoding, reconstruction, and prediction. In the encoding stage, 
the encoder transforms raw Spatio-temporal data into compact latent 
embeddings, effectively reducing data dimensionality and extracting 
key features. In the reconstruction stage, the Mamba module processes 
the latent embeddings through normalization and bidirectional state 
space models to generate reconstructed representations, which the 
decoder uses to restore the input data. This process enhances the 
model’s understanding of data distribution and provides robust features 
for the prediction stage.

In the prediction stage, the Diffusion Transformer models com-
plex Spatio-temporal features. This module uses time embeddings and 
self-attention mechanisms to capture long-range Spatio-temporal de-
pendencies, improving the model’s ability to recognize complex Spatio-
temporal patterns. Additionally, the MAD model jointly trains the 
reconstruction and prediction paths, achieving collaborative optimiza-
tion of both tasks, thereby maintaining data reconstruction quality and 
significantly enhancing prediction accuracy.

Experimental results show that the MAD model outperforms exist-
ing mainstream methods in various Spatio-temporal prediction tasks, 
validating its effectiveness and robustness in Spatio-temporal model-
ing and prediction. Specifically, the MAD model demonstrates supe-
rior prediction accuracy, computational efficiency, and the ability to 
capture complex Spatio-temporal dependencies, showcasing its broad 
application potential and research value.

In summary, this paper introduces the MAD architecture, which 
integrates Mamba modules and Diffusion Transformers to address key 
challenges in Spatio-temporal prediction. The main contributions in-
clude: (1) designing an efficient Spatio-temporal encoding and recon-
struction mechanism that improves the compactness and expressiveness 
of data representations; (2) introducing the Diffusion Transformer to 
enhance the modeling of complex Spatio-temporal dependencies; (3)
achieving collaborative optimization of reconstruction and prediction 
tasks through joint training, significantly improving prediction perfor-
mance. This research provides new insights and methods for the field of 
Spatio-temporal prediction and offers theoretical support and technical 
assurance for practical applications.
2 
2. Related work

Spatiotemporal prediction is a key research area that spans a wide 
range of techniques, from traditional statistical methods to advanced 
deep learning models. To provide a comprehensive understanding of 
the context of this study, we categorize related work into three core 
sections: traditional spatiotemporal prediction methods, deep learning-
based spatiotemporal models, and the application of state-space and 
diffusion models in spatiotemporal prediction.

Traditional Spatiotemporal Prediction Methods. Traditional spa-
tiotemporal prediction methods rely on statistical and classical machine 
learning algorithms, achieving significant success in early data anal-
ysis. Common methods include Auto-Regressive Integrated Moving 
Average (ARIMA) for time series modeling and Kriging for spatial 
data interpolation and prediction [18–20]. ARIMA effectively captures 
trends and periodicity in time series data but struggles with nonlinear 
and complex dependencies due to its linear assumptions [8,21]. Kriging 
leverages spatial correlations for interpolation, suitable for geospatial 
data, but faces challenges in high-dimensional and dynamic spatiotem-
poral data due to high computational complexity. Other methods, such 
as Vector Auto-Regressive (VAR) [22] and Spatial Auto-Regressive 
(SAR) models [23], handle multivariate spatiotemporal prediction by 
considering inter-variable influences. Additionally, spatial econometric 
techniques provide robust frameworks for modeling spatial dependen-
cies [24]. However, these models encounter difficulties in parameter 
estimation and complexity. Overall, traditional methods perform well 
in simple and linear scenarios but show limitations in large-scale, 
high-dimensional, and nonlinear spatiotemporal data.

Deep Learning-Based Spatiotemporal Prediction Models. The 
rapid development of deep learning has significantly improved spa-
tiotemporal prediction. Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) were among the earliest mod-
els applied in this domain. CNNs excel at capturing spatial features 
through convolution operations, while RNNs, especially Long Short-
Term Memory (LSTM) networks, effectively handle temporal depen-
dencies in time series data. However, both CNNs and RNNs face limi-
tations such as vanishing gradients and inefficiency in modeling long-
term and complex dependencies [25]. Recent advances in Transformer 
architectures, with their powerful self-attention mechanisms, have 
shown outstanding performance in spatiotemporal prediction. Trans-
formers effectively capture long-range dependencies and handle large-
scale, high-dimensional data. By integrating Graph Neural Networks 
(GNNs), such as Graph Convolutional Networks (GCNs), Transform-
ers further improve modeling of complex spatial relationships [26]. 
Cutting-edge models like Graph Transformers and Spatiotemporal 
Graph Transformers enhance spatial and temporal dependency model-
ing by incorporating graph structures. Techniques like self-supervised 
learning and multi-task learning have further enhanced the gener-
alization and robustness of deep learning-based spatiotemporal mod-
els [27].

State-Space and Diffusion Models in Spatiotemporal Prediction.
State-space models (SSMs) and Diffusion Models have shown great 
potential in spatiotemporal prediction. SSMs model system dynamics, 
capturing latent structures and temporal dynamics. Methods like the
Kalman Filter perform well in estimating system states under linear 
and Gaussian noise assumptions. However, traditional SSMs struggle 
with nonlinear and non-Gaussian noise, limiting their application in 
complex spatiotemporal data [28]. Diffusion models leverage gradual 
generation processes and reverse diffusion to produce high-quality pre-
dictions, enhancing model expressiveness and accuracy. These models 
have achieved remarkable success in generation tasks and are being 
adapted for spatiotemporal prediction [29]. Diffusion Transformers
combine the strengths of diffusion models and Transformers, capturing 
complex dependencies and offering strong generative capabilities [27,
30]. The Mamba module, an efficient state-space modeling method, 
incorporates bidirectional convolutions and self-attention mechanisms, 
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Fig. 1. The proposed spatiotemporal prediction model architecture integrating Mamba modules and Diffusion Transformers. The model consists of three stages: encoding, 
reconstruction, and prediction. The encoder extracts features from raw spatiotemporal data. In the reconstruction stage, the Mamba module processes latent representations 
using bidirectional state-space modeling to reconstruct the input data. The prediction stage leverages the Diffusion Transformer to model spatiotemporal dependencies and generate 
future predictions. The model employs collaborative training of reconstruction and prediction tasks to improve prediction accuracy and robustness.
improving the modeling of bidirectional dependencies in spatiotempo-
ral data [27]. Recent studies also explore the use of self-supervised 
learning and multi-task learning in SSMs and diffusion models. These 
approaches share feature representations and optimize tasks collabora-
tively, enhancing generalization and robustness. For example, recon-
struction tasks assist feature learning, improving prediction accuracy 
and robustness against noise and anomalies [31].

In summary, traditional spatiotemporal prediction methods per-
form well in simple scenarios but face significant limitations in han-
dling high-dimensional, nonlinear, and complex dependencies. Deep 
learning-based models, leveraging CNNs, RNNs, and Transformers, 
have significantly improved prediction performance but still face chal-
lenges in efficiency, scalability, and stability. The combination of state-
space and diffusion models offers new solutions for spatiotemporal 
prediction by enabling efficient dynamic modeling and strong gener-
ative capabilities. To address existing limitations, this study proposes 
a spatiotemporal prediction model integrating Mamba modules with
Diffusion Transformers, aiming to achieve high-accuracy spatiotem-
poral prediction through efficient state-space modeling and enhanced 
feature capturing (see Fig.  1).

3. Methodology

This section introduces the architecture and implementation of the 
proposed spatiotemporal prediction model, which integrates Mamba 
modules and Diffusion Transformers. We first define the spatiotemporal 
prediction problem and then explain each component of the model in 
detail, supported by comprehensive mathematical formulations.

3.1. Problem definition

Spatiotemporal prediction aims to forecast future spatial states 
based on historical spatiotemporal data. Formally, given a dataset  =
{𝑋𝑡}𝑇𝑡=1, where 𝑋𝑡 ∈ R𝑁×𝐹  represents spatial data at time step 𝑡, 𝑁 is 
the number of spatial nodes, and 𝐹  is the feature dimension of each 
node, the objective is to design a function 𝑓 such that: 

𝑋̂𝑇+𝛥𝑡 = 𝑓
(

𝑋𝑇−𝜏+1, 𝑋𝑇−𝜏+2,… , 𝑋𝑇
)

(1)

Here, 𝛥𝑡 denotes the prediction horizon, and 𝜏 represents the length 
of the historical window used for forecasting. The function 𝑓 encap-
sulates the model’s ability to capture and extrapolate the underlying 
spatiotemporal dependencies present in the data.
3 
3.2. Model architecture

The proposed model comprises three main stages: Encoding, Re-
construction, and Prediction. Additionally, it incorporates Parameter 
Management and Collaborative Training mechanisms to enhance sta-
bility and prediction accuracy. The overall workflow is outlined as 
follows:

1. Encoding Stage: Transforms raw spatiotemporal data into latent 
representations.

2. Reconstruction Stage: Processes the latent representations with 
Mamba modules to generate reconstructed representations and 
recover input data.

3. Prediction Stage: Models spatiotemporal dependencies in the 
latent space using Diffusion Transformers to produce predic-
tions.

4. Parameter Management: Manages model parameters to ensure 
stability and efficient training.

5. Collaborative Training: Jointly trains reconstruction and pre-
diction tasks to enhance feature learning and prediction perfor-
mance.

3.3. Encoding stage

The Encoding Stage is responsible for mapping high-dimensional 
spatiotemporal data into a lower-dimensional latent space, facilitat-
ing efficient processing and feature extraction. Let  denote the en-
coder, which can be implemented using Convolutional Neural Networks 
(CNNs) or Graph Convolutional Networks (GCNs) to effectively capture 
spatial dependencies. The encoding process is defined as: 

𝑍𝑡 = (𝑋𝑡), 𝑍𝑡 ∈ R𝑁×𝑑 (2)

Here, 𝑑 is the dimension of the latent representation. Separate 
encoders are employed for reconstruction and prediction tasks to allow 
specialized feature extraction: 

𝑍rec
𝑡 = rec(𝑋𝑡), 𝑍pred

𝑡 = pred(𝑋𝑡) (3)

This separation ensures that the features relevant to reconstructing 
the input data and those pertinent to forecasting future states are 
effectively captured and utilized.
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3.4. Reconstruction stage (Mamba module)

The Reconstruction Stage leverages Mamba modules to refine the 
latent representations and reconstruct the input data. This stage com-
prises normalization, bidirectional state-space modeling (SSM), and 
activation functions, structured as follows:

3.4.1. Normalization
Normalization standardizes the latent representations, ensuring nu-

merical stability and facilitating efficient training. The normalized 
latent representation 𝑍̃𝑡 is obtained by: 

𝑍̃𝑡 = Norm(𝑍𝑡) (4)

Here, Norm typically refers to Batch Normalization or Layer Nor-
malization, which normalizes the data across either the batch or feature 
dimensions, respectively.

3.4.2. Bidirectional State-Space Modeling (SSM)
The Mamba module, a novel architecture rooted in the framework 

of State Space Models (SSMs), leverages bidirectional convolutions to 
effectively capture temporal dependencies in sequential data. SSMs pro-
vide a powerful paradigm for modeling time series by representing the 
evolution of a latent state through a continuous-time system. Formally, 
a continuous-time SSM can be described by the following differential 
equations: 
𝑑
𝑑𝑡

ℎ(𝑡) = 𝐴ℎ(𝑡) + 𝐵𝑥(𝑡), (5)

𝑦(𝑡) = 𝐶ℎ(𝑡) +𝐷𝑥(𝑡), (6)

where ℎ(𝑡) is the hidden state, 𝑥(𝑡) is the input sequence, 𝑦(𝑡) is the 
output, and 𝐴, 𝐵, 𝐶, and 𝐷 are learnable parameter matrices.

The Mamba module builds upon this SSM foundation by introducing 
a selective mechanism that allows the model to focus on relevant parts 
of the input sequence dynamically. A key innovation in Mamba is its 
use of bidirectional convolutions to model dependencies in both the 
forward and backward temporal directions. This bidirectional approach 
enhances the model’s ability to capture contextual information from 
both past and future timesteps, making it particularly effective for tasks 
requiring a comprehensive understanding of sequence dynamics. The 
process can be expressed mathematically as follows:

ℎforward𝑡 = Conv1dforward(𝑍̃𝑡), (7)

ℎbackward𝑡 = Conv1dbackward(𝑍̃𝑡), (8)

where 𝑍̃𝑡 represents a transformed input sequence (e.g., after applying 
normalization or selective gating mechanisms inherent to Mamba), and 
Conv1dforward and Conv1dbackward denote one-dimensional convolu-
tion operations applied along the forward and backward temporal axes, 
respectively.

3.4.3. Activation function
The outputs from the forward and backward convolutions are con-

catenated and passed through a non-linear activation function to intro-
duce non-linearity into the model: 

ℎ𝑡 = Activation
(

ℎforward𝑡 ⊕ ℎbackward𝑡
)

(9)

In this equation, ⊕ denotes the concatenation operation, and
Activation typically refers to ReLU (Rectified Linear Unit) or GELU 
(Gaussian Error Linear Unit) functions, which help in learning complex 
representations by introducing non-linear transformations.
4 
3.4.4. Reconstruction and decoding
The activated features ℎ𝑡 are then linearly mapped back to the latent 

space to form the reconstructed latent representation 𝑍̃rec
𝑡 : 

𝑍̃rec
𝑡 = 𝑊recℎ𝑡 + 𝑏rec (10)

Here, 𝑊rec and 𝑏rec are learnable weight matrices and bias vectors, 
respectively. The reconstructed latent representation is subsequently 
decoded to recover the input data: 
𝑋̂rec

𝑡 = (𝑍̃rec
𝑡 ) (11)

The decoder  mirrors the architecture of the encoder, typically 
employing deconvolutional layers or other suitable mechanisms to 
transform the latent representation back to the original data space.

3.5. Prediction Stage (Diffusion Transformer)

The Prediction Stage utilizes Diffusion Transformers to model com-
plex spatiotemporal dependencies and generate future spatial states. 
This stage encompasses temporal embedding, the Diffusion Transformer 
architecture, parameter management, and prediction result generation.

3.5.1. Temporal embedding
Incorporating temporal information is crucial for capturing time-

dependent patterns. Temporal embedding   encodes time step infor-
mation into a format compatible with the latent representations:
𝑇𝑡 =  (𝑡) (12)

The temporal embedding 𝑇𝑡 ∈ R𝑑 is added to the latent representa-
tion 𝑍pred

𝑡  to integrate temporal context: 

𝑍̃pred
𝑡 = 𝑍pred

𝑡 + 𝑇𝑡 (13)

This addition enhances the model’s ability to discern and leverage 
temporal dependencies within the data.

3.5.2. Diffusion Transformer architecture
The core of the Prediction Stage is the Diffusion Transformer, 

which consists of multiple Transformer Blocks and Adaptive Layer 
Normalization (AdaLN).

Self-Attention Mechanism. Each Transformer Block incorporates 
a self-attention mechanism that allows the model to weigh the impor-
tance of different parts of the input sequence. This mechanism is crucial 
for capturing long-range dependencies in the data, which is especially 
important in spatiotemporal tasks where interactions between distant 
time steps need to be modeled. The self-attention operation is defined 
as: 

Self-Attention(𝐻) = Softmax
(

𝐻𝑄𝑇
√

𝑑𝑘

)

𝐾. (14)

Here, 𝐻 represents the input feature matrix, 𝑄 is the query matrix, 
𝐾 is the key matrix, and 𝑑𝑘 is the dimensionality of the key vectors. 
The self-attention mechanism allows the model to focus on the most 
relevant features in the sequence, facilitating the capture of complex 
temporal and spatial dependencies.

Transformer Block. The Transformer Block consists of the self-
attention mechanism followed by a feed-forward neural network (FFN), 
which refines the feature representations. The output of the self-
attention mechanism is passed through the FFN to produce refined fea-
ture representations. The Transformer Block is mathematically defined 
as: 
Transformer Block(𝐻) = FFN (Self-Attention(𝐻) +𝐻) . (15)

Here, the addition of 𝐻 to the output of the self-attention mechanism 
ensures residual learning, which helps in mitigating vanishing gradient 
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problems during training. The model stacks 𝐿 such Transformer Blocks 
to progressively refine the feature representations: 
𝐻 (𝑙+1) = Transformer Block(𝑙) (𝐻 (𝑙)) , 𝑙 = 1, 2,… , 𝐿. (16)

This stacking process enables the model to capture increasingly com-
plex relationships in the data, improving the quality of the learned 
spatiotemporal features.

Adaptive Layer Normalization (AdaLN). After passing through all 
Transformer Blocks, the output features are normalized using Adap-
tive Layer Normalization (AdaLN). AdaLN adjusts the normalization 
parameters dynamically based on the input features, which improves 
the model’s adaptability to different data distributions. The AdaLN 
operation is defined as: 
𝐻norm = AdaLN

(

𝐻 (𝐿)) . (17)

This dynamic adjustment helps the model generalize better across 
various datasets and tasks, enhancing its performance in spatiotemporal 
prediction tasks.

3.5.3. Parameter management
To ensure the stability and efficiency of the Diffusion Transformer, 

a parameter management strategy is employed, which includes param-
eter freezing and gradual parameter updates:
𝜃frozen = Freeze

(

𝜃frozen
)

(18)

𝜃updated = 𝜃updated − 𝜂∇𝜃 (19)

Here, 𝜃frozen represents the parameters that are kept static during 
certain training phases, while 𝜃updated are the parameters actively up-
dated using the learning rate 𝜂 and the gradient ∇𝜃. This approach 
helps in maintaining model stability by preventing drastic changes in 
critical parameters.

3.5.4. Prediction result generation
The normalized features 𝐻norm are fed into the decoder to generate 

the final prediction: 
𝑋̂pred

𝑇+𝛥𝑡 = 
(

𝐻norm
)

(20)

This prediction represents the forecasted spatial state at time 𝑇 +
𝛥𝑡, leveraging the refined spatiotemporal features captured by the 
Diffusion Transformer.

3.6. Parameter management strategy

Effective parameter management is essential for optimizing model 
performance and ensuring training stability. The proposed strategy 
includes the following components:

1. Parameter Freezing: Initially, certain layers of the model, par-
ticularly the lower layers, are frozen to prevent their parameters 
from updating. This helps in stabilizing the training process by 
preserving the foundational feature representations.

2. Gradual Unfreezing: As training progresses, the frozen lay-
ers are gradually unfrozen. This allows the model to fine-tune 
higher-level representations without disrupting the established 
lower-level features.

3. Learning Rate Scheduling: A dynamic learning rate schedule 
is employed, adjusting the learning rate based on the training 
progress. This ensures a balance between convergence speed and 
training stability, preventing oscillations or premature conver-
gence.

These strategies collectively enhance the model’s ability to learn 
effectively from complex spatiotemporal data while maintaining ro-
bustness and preventing overfitting.
5 
3.7. Collaborative training mechanism

The model employs a collaborative training mechanism that jointly 
optimizes the reconstruction and prediction tasks. This multi-task learn-
ing approach leverages the interdependencies between tasks to improve 
overall performance. The total loss function is defined as: 
 = 𝜆recrec + 𝜆predpred (21)

where rec and pred denote the reconstruction and prediction losses, 
respectively, and 𝜆rec and 𝜆pred are weight coefficients balancing the 
two losses. Typically, these coefficients are set to 𝜆rec = 𝜆pred = 1.

3.7.1. Reconstruction loss
The reconstruction loss measures the discrepancy between the orig-

inal input data and its reconstruction: 

rec =
1

𝑁 × 𝐹

𝑁
∑

𝑖=1

𝐹
∑

𝑗=1

(

𝑋̂rec
𝑡 (𝑖, 𝑗) −𝑋𝑡(𝑖, 𝑗)

)2 (22)

This is typically implemented using Mean Squared Error (MSE), 
which penalizes large deviations and encourages the model to accu-
rately reconstruct the input data.

3.7.2. Prediction loss
The prediction loss quantifies the error between the predicted future 

state and the actual future data: 

pred = 1
𝑁 × 𝐹

𝑁
∑

𝑖=1

𝐹
∑

𝑗=1

(

𝑋̂pred
𝑇+𝛥𝑡(𝑖, 𝑗) −𝑋𝑇+𝛥𝑡(𝑖, 𝑗)

)2
(23)

Similar to the reconstruction loss, MSE is employed to ensure that 
the predictions closely align with the ground truth.

3.7.3. Balancing reconstruction and prediction
The weighting coefficients 𝜆rec and 𝜆pred allow for flexible balancing 

between the reconstruction and prediction objectives. By appropriately 
tuning these weights, the model can prioritize one task over the other, 
depending on the specific application requirements.

3.8. Model training and optimization

The model is trained using an end-to-end approach, minimizing 
the total loss  through iterative optimization. The training process 
involves the following steps:

1. Forward Propagation: Historical spatiotemporal data is fed 
into the model, passing through the encoding, reconstruction, 
and prediction stages to generate reconstructed and predicted 
outputs.

2. Loss Calculation: The reconstruction and prediction losses are 
computed and combined using the total loss function .

3. Backward Propagation: Gradients of the loss with respect to 
model parameters are calculated using backpropagation.

4. Parameter Updates: Model parameters are updated using the 
Adam optimizer based on the computed gradients.

5. Parameter Management: The parameter management strategy 
is applied to freeze or update specific layers as per the predefined 
schedule.

3.8.1. Optimization algorithm
The Adam optimizer is employed for parameter updates due to its 

efficiency and ability to handle sparse gradients. The update rule is 
defined as: 
𝜃 ← 𝜃 − 𝜂 𝑚̂

√

𝑣̂ + 𝜖
(24)

where:
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• 𝜃 denotes the model parameters.
• 𝜂 is the learning rate.
• 𝑚̂ and 𝑣̂ are the estimates of the first and second moments of the 
gradients, respectively.

• 𝜖 is a small constant added for numerical stability.

This optimizer adapts the learning rate for each parameter individ-
ually, leading to more effective convergence.

3.9. Summary and pseudocode

To succinctly summarize the proposed spatiotemporal prediction 
model, we present a streamlined pseudocode algorithm outlining the 
key stages: encoding, reconstruction, prediction, parameter manage-
ment, and collaborative training.

Algorithm 1 Spatiotemporal Prediction Workflow
Require: Historical data  = {𝑋𝑡}𝑇𝑡=1, prediction horizon 𝛥𝑡, window 

size 𝜏
Ensure: Predicted state 𝑋̂𝑇+𝛥𝑡
1: Initialize encoders rec, pred, Mamba module, Diffusion Trans-
former, decoder 

2: for each training epoch do
3:  for each batch do
4:  Encode data: 𝑍rec

𝑡 ← rec(𝑋𝑡), 𝑍pred
𝑡 ← pred(𝑋𝑡)

5:  Reconstruct: 𝑋̂rec
𝑡 ← (Mamba(𝑍rec

𝑡 ))
6:  Predict: 𝑋̂pred

𝑇+𝛥𝑡 ← (DiffusionTransformer(𝑍pred
𝑡 +  (𝑡)))

7:  Compute loss:  = rec + pred
8:  Update parameters: 𝜃 ← 𝜃 − 𝜂∇𝜃
9:  Manage parameters: Freeze/update layers as per strategy
10:  end for
11: end for
12: Inference: 𝑋̂𝑇+𝛥𝑡 ← (DiffusionTransformer(𝑍pred

𝑡 +  (𝑡)))

Algorithm 1 provides a concise overview of the training and in-
ference processes. The model begins by initializing all necessary com-
ponents. During each training epoch, batches of historical data are 
encoded for both reconstruction and prediction. The Mamba mod-
ule refines the reconstruction latent representations, which are then 
decoded to reconstruct the input data. Simultaneously, the Diffusion 
Transformer processes the prediction latent representations, enhanced 
with temporal embeddings, to generate future predictions. The model 
computes the combined loss from both tasks and updates the pa-
rameters accordingly, applying parameter management strategies to 
maintain stability. Finally, during inference, the model produces the 
predicted spatial state by decoding the transformed features.

4. Experiments

In this section, we present comprehensive experimental results to 
evaluate the performance and robustness of the proposed MAD frame-
work. We compare it with state-of-the-art methods on four benchmark 
datasets using three standard evaluation metrics (see Figs.  3 and 4).

4.1. Experimental setups

Datasets.
We evaluate our framework on four widely used spatiotemporal 

datasets, each representing distinct prediction challenges. The Navier–
Stokes Equation [32] dataset models complex physical fluid dynam-
ics, testing a model’s ability to capture turbulent and chaotic flows.
Prometheus [7], a combustion dynamics dataset, provides a bench-
mark for predicting intricate interactions of chemical reactions and 
flow fields under extreme conditions. The Kuroshio [5] dataset centers 
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on ocean current prediction, emphasizing the need to model large-scale 
spatiotemporal dependencies in marine environments. The Sevir [33] 
dataset presents a severe weather forecasting challenge, requiring high 
precision in predicting extreme meteorological events, thereby testing 
the robustness and adaptability of spatiotemporal models.
Baselines. We compare our MAD framework against several competi-
tive baselines:

• U-Net [34]: A convolutional architecture designed for dense pre-
diction tasks, excelling at capturing local spatial features but 
lacking temporal modeling capabilities.

• ResNet [35]: A deep residual network known for its feature 
extraction efficiency, but limited in handling long-term temporal 
dependencies inherent in spatiotemporal data.

• ConvLSTM [2]: Combines convolutional operations with LSTM 
for spatiotemporal sequence learning, effectively modeling lo-
cal spatial–temporal relationships but suffering from vanishing 
gradients over long sequences.

• PredRNN-v2 [12]: An improved recurrent architecture optimized 
for predictive learning that introduces spatiotemporal memory 
flow but still struggles with computational inefficiency in longer 
horizons.

• E3D-LSTM [36]: Extends ConvLSTM with 3D convolutional op-
erations, enabling better temporal feature extraction, but at the 
cost of increased model complexity and computational overhead.

• PhyDNet [37]: Integrates physical dynamics constraints with 
deep learning, making it robust for tasks involving physical laws, 
though its reliance on handcrafted priors can limit generalizabil-
ity in highly dynamic environments.

• SimVP [38]: A lightweight yet powerful visual prediction frame-
work that focuses on simplicity and efficiency but faces challenges 
in capturing intricate long-range dependencies.

• Rainformer [39]: A transformer-based model specifically tailored 
for spatiotemporal precipitation prediction, effective in modeling 
localized temporal patterns but less effective in capturing broader 
spatiotemporal interactions.

• Earthformer [40]: A transformer-based architecture designed 
for diverse spatiotemporal tasks, leveraging global self-attention 
mechanisms but limited by its high computational cost and scal-
ability challenges.

• TAU [41]: A hybrid state-space model that efficiently captures 
sequential dynamics, leveraging bidirectional processing but lack-
ing the feature extraction depth of modern transformer-based 
architectures.

• SwinLSTM [42]: This method combines the power of Swin Trans-
formers for feature extraction with LSTM for temporal modeling, 
making it a robust choice for spatiotemporal prediction tasks.

• PastNet [15]: This model introduces spectral convolution opera-
tors in the Fourier domain and cleverly incorporates fundamental 
physical laws as inductive biases.

Evaluation metrics. To assess model performance, we use three widely 
adopted metrics:
Mean Squared Error (MSE): Measures the average squared differ-
ences between true and predicted values. A lower MSE indicates better 
predictions: 

MSE = 1
𝑁

𝑁
∑

𝑖=1
(𝑉true,𝑖 − 𝑉pred,𝑖)2 (25)

Structural Similarity Index (SSIM): Evaluates the structural similarity 
between two images. Higher SSIM values indicate greater similarity: 

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝑐1)(𝜎2𝑥 + 𝜎2𝑦 + 𝑐2)
(26)

Peak Signal-to-Noise Ratio (PSNR): Assesses image reconstruction 
quality by comparing the signal’s maximum power to noise. Higher 
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Table 1
Performance comparison of advanced methods and the proposed MAD framework across various datasets (Navier–Stokes, Prometheus, Kuroshio, and 
Sevir) utilizing three different evaluation metrics (MSE ↓, SSIM ↑, and PSNR ↑). The reported values are the averages of five independent runs to ensure 
statistical robustness and reliability.

Models Navier-Stokes Prometheus Kuroshio Sevir

MSE SSIM PSNR MSE x 10 SSIM PSNR MSE x 100 SSIM PSNR MSE SSIM PSNR

U-Net 0.2352 0.8231 27.25 0.2654 0.7501 31.50 0.0923 0.9052 30.50 49.321 0.6401 22.85
ResNet 0.2254 0.8532 29.10 0.2503 0.7902 33.30 0.0956 0.9151 32.40 48.789 0.6303 24.95

ConvLSTM 0.2005 0.8854 31.88 0.2455 0.8354 35.95 0.0905 0.9103 34.80 46.657 0.6202 27.25
PredRNN-v2 0.1787 0.9184 32.07 0.2121 0.8583 37.40 0.0882 0.9282 36.25 42.903 0.6154 30.75
E3D-LSTM 0.1623 0.9123 38.96 0.2382 0.8902 39.80 0.0825 0.9351 38.55 40.529 0.6553 31.15
PhyDnet 0.1459 0.9151 39.75 0.1903 0.8851 38.60 0.0858 0.9202 39.45 39.755 0.6952 29.65
SimVP 0.1382 0.9209 40.58 0.1624 0.9250 40.30 0.0899 0.9451 40.35 37.981 0.6851 30.95

Rainformer 0.1423 0.9052 39.66 0.1685 0.9001 39.50 0.0831 0.9303 40.25 39.307 0.7053 31.35
Earthformer 0.1484 0.9350 38.75 0.1726 0.9202 38.70 0.0862 0.9452 39.15 36.633 0.7152 30.65

TAU 0.1545 0.9301 38.85 0.1787 0.9351 39.85 0.0813 0.9501 41.05 37.959 0.7351 32.05
SwinLSTM 0.1653 0.9265 39.22 0.1703 0.9304 38.72 0.0861 0.9404 40.85 38.211 0.7012 30.25
PastNet 0.1304 0.9473 40.75 0.1642 0.9336 40.05 0.0792 0.9502 42.51 36.852 0.7297 32.12

MAD (Ours) 0.1161 0.9653 42.36 0.1541 0.9635 42.81 0.0724 0.9682 46.55 34.521 0.7544 33.47
PSNR indicates better quality: 

PSNR = 10 × log10

(

MAX2𝐼
MSE

)

(27)

Implementation. We implement the MAD framework using PyTorch. 
All experiments are conducted on NVIDIA A100 GPUs. The model is 
trained for 100 epochs with the Adam optimizer, a batch size of 16, 
and an initial learning rate of 1 × 10−4. To ensure fair comparisons, 
the baselines are re-implemented and fine-tuned to achieve their best 
performance.

4.2. Main results

In this study, we evaluate several advanced models and the pro-
posed MAD framework on four datasets: Navier–Stokes, Prometheus, 
Kuroshio, and Sevir. As shown in Table  1 and Fig.  2, the results show 
that MAD consistently outperforms other methods across all evalua-
tion metrics. On the Navier–Stokes dataset, MAD achieves an MSE of 
0.1161, reducing the error by 7.6% compared to ResNet (MSE=0.1254). 
It achieves the highest SSIM of 0.9653, a 4.2% improvement over 
U-Net, and a PSNR of 42.36 dB, 5.5% higher than U-Net. On the 
Prometheus dataset, MAD delivers a comparable MSE of 0.1541 to 
ResNet (MSE=0.1503) but outperforms it significantly in SSIM (0.9635 
vs. 0.9202) and PSNR (42.81 dB vs. 41.30 dB), showing its strength 
in preserving image quality. For the Kuroshio dataset, MAD achieves 
the lowest MSE of 0.0724, 4.7% lower than ResNet, and leads in 
SSIM (0.9682) and PSNR (46.55 dB), surpassing U-Net by 2.7% and 
7.0 dB, respectively. On the Sevir dataset, MAD reduces MSE to 34.521, 
12.8% lower than U-Net, and improves SSIM to 0.7544 and PSNR to 
33.47 dB, outperforming U-Net by 1.4% and 2.3 dB, respectively. Radar 
charts further validate these results, visually confirming MAD’s superior 
performance, particularly in SSIM and PSNR, across all datasets. These 
findings demonstrate MAD’s broad applicability and effectiveness in 
various spatiotemporal prediction tasks.

4.3. Performance of long-term prediction

Long-term prediction remains a critical challenge in spatiotempo-
ral modeling, particularly due to the accumulation of errors during 
iterative forecasting. To evaluate the robustness of the proposed MAD 
framework in this scenario, we conduct experiments on the Kuroshio 
dataset, a benchmark known for its intricate ocean current dynamics. 
Unlike traditional setups, where models are trained and evaluated 
over shorter horizons, we focus on pushing the boundaries of long-
term prediction. For training, we adopt a 10-step prediction approach, 
where the model predicts 10 future time steps given the preceding 
10 steps. During inference, we employ an autoregressive prediction 
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Table 2
Long-term prediction results on the Kuroshio dataset at different 
forecasting steps (10, 20, 30, and 40). Metrics are reported as MSE 
↓. Lower MSE indicates better performance.
Model 10 steps 20 steps 30 steps 40 steps
ConvLSTM 0.0905 0.1054 0.1286 0.1523
PredRNN-v2 0.0882 0.0985 0.1221 0.1459
TAU 0.0813 0.0908 0.1145 0.1378
MAD (Ours) 0.0724 0.0865 0.1043 0.1215

Table 3
Ablation study results with different model structures on 
the SEVIR dataset. The evaluation metrics are MSE ↓, MAE 
↓, MS-SSIM ↑.
Models MSE ↓ SSIM ↑ PSNR ↑
MAD w/o Mamba 39.023 0.7051 30.10
MAD w/o DiT 36.417 0.6879 29.15
MAD with UNet Rec 38.242 0.7232 32.25

MAD 34.521 0.7544 33.47

strategy to iteratively extend the forecast horizon to 40 steps. This 
approach ensures that the model is tested under extreme conditions, 
requiring it to generalize over extended temporal dependencies while 
maintaining spatial fidelity.

The results in Table  2 demonstrate the effectiveness of the MAD 
framework in addressing the challenges of long-term prediction. At 
10 steps, MAD achieves the lowest MSE (0.0724), outperforming 
PredRNN-v2 (0.0782) and ConvLSTM (0.0905), indicating its superior 
short-term prediction accuracy. As the horizon increases to 20 steps, 
MAD maintains a significant lead with an MSE of 0.0865, while the 
closest competitor, PredRNN-v2, records an MSE of 0.0985, reflect-
ing MAD’s stronger capacity for capturing and propagating temporal 
dependencies. At longer horizons, such as 30 and 40 steps, the advan-
tages of MAD become even more apparent. MAD achieves an MSE of
0.1043 at 30 steps and 0.1215 at 40 steps, significantly outperforming 
ConvLSTM, which exhibits higher error accumulation with MSE values 
of 0.1286 and 0.1523, respectively. Notably, TAU, which integrates 
state-space dynamics, demonstrates reasonable short-term accuracy 
but falls behind MAD at longer horizons, with an MSE of 0.1378 at 
40 steps. Fig.  5 further illustrates the advantages of MAD through 
visual comparisons of predictions at 40 steps. These results highlight 
MAD’s robustness, scalability, and superior ability to mitigate error 
accumulation in long-term predictions (see Fig.  6).

The superior performance of MAD can be attributed to several 
key factors. First, the integration of the Mamba module ensures ro-
bust feature extraction and stabilization of temporal dependencies, 
reducing error propagation during iterative forecasting. Second, the 
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Fig. 2. Comparison of multiple advanced models and the proposed MAD framework across four datasets: Navier–Stokes, Prometheus, Kuroshio, and Sevir. The chart illustrates 
the performance across three evaluation metrics (MSE, SSIM, and PSNR), normalized for visualization. The MAD framework demonstrates superior performance across all datasets, 
particularly excelling in SSIM and PSNR, highlighting its ability to preserve structural similarity and image quality..
Fig. 3. Prediction results on the Prometheus dataset.
Diffusion Transformer effectively models long-range dependencies, en-
abling MAD to maintain high spatial fidelity and temporal coherence 
even in extended prediction scenarios. Third, MAD’s joint training of 
reconstruction and prediction tasks allows the model to learn cohe-
sive latent representations, enhancing its ability to handle complex 
spatiotemporal patterns.

4.4. Ablation study

4.4.1. Basic ablation study
In this section, we perform a series of ablation studies to analyze 

the contributions of individual components within the MAD framework. 
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Table  3 summarizes the quantitative results of these studies on the Sevir 
dataset using three evaluation metrics: MSE, SSIM, and PSNR. Each 
ablation experiment evaluates the impact of a specific component by 
removing or replacing it, and the results highlight the importance of 
joint reconstruction and prediction, as well as the integration of Mamba 
modules and Diffusion Transformers. MAD w/o Mamba: This variant 
removes the Mamba module from the reconstruction stage, replacing 
it with a simpler convolutional layer to evaluate the Mamba module’s 
contribution to feature refinement and temporal stabilization. MAD 
w/o DiT: In this variant, the Diffusion Transformer is replaced with 
a recurrent network, such as ConvLSTM, to analyze the role of long-
range spatiotemporal dependencies captured by the transformer. MAD 
with UNet Rec: This variant substitutes the Mamba module with a 
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Fig. 4. Prediction results on the Kuroshio dataset.
Fig. 5. Qualitative performance of predictions at 40 steps for MAD on Kuroshio dataset.

Fig. 6. Visualization Comparison of Ablation Study.

UNet architecture for the reconstruction task, assessing the impact of 
using UNet’s spatial feature extraction capabilities instead of Mamba’s 
integrated spatiotemporal modeling.

The ablation study highlights the complementary roles of the
Mamba module and Diffusion Transformer in enabling MAD to effi-
ciently capture complex spatiotemporal patterns, while joint training 
ensures cohesive and robust feature learning. Specifically, removing 
the Mamba module (MAD w/o Mamba) results in a significant increase 
in MSE (39.023 vs. 34.521) and a drop in PSNR (30.10 vs. 33.47), 
underscoring the critical role of Mamba in refining spatiotemporal 
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representations and stabilizing temporal dependencies. Similarly, re-
placing the Diffusion Transformer with a recurrent network (MAD w/o 
DiT) leads to noticeable performance degradation, particularly in SSIM 
(0.6879 vs. 0.7544), reflecting the superiority of the transformer’s 
ability to capture long-range dependencies. Substituting the Mamba 
module with UNet (MAD w/ UNet Recon) improves spatial feature 
extraction, as evidenced by a higher SSIM (0.7232), but falls short of 
achieving the balance between spatial and temporal modeling required 
for optimal performance.

These results demonstrate the importance of each component in the 
MAD framework and how they work synergistically to deliver state-of-
the-art results. The Mamba module excels at integrating fine-grained 
spatial and temporal features, while the Diffusion Transformer provides 
robust long-range dependency modeling. Moreover, joint reconstruc-
tion and prediction training ensures that latent representations are 
optimized for both tasks, enabling the model to generalize effectively 
across various scenarios. Collectively, these components empower MAD 
to outperform its ablated variants and establish itself as a reliable and 
scalable solution for complex spatiotemporal prediction tasks.

4.4.2. Transformer component ablation experiment
We have designed the ablation study with Kuroshio dataset and 

Navier–Stokes validation, and the results as shown in Table  4. As 
observed, Our model demonstrates 18.9% lower MSE accumulation in 
40-step prediction (0.1215 vs. 0.1498) on Kuroshio. And from the visu-
alization point of view, the details of our method are more prominent.

4.5. Parameter sensitivity analysis

In this section, we perform a sensitivity analysis of key hyperpa-
rameters in the MAD framework, focusing on the impact of weight 
coefficients between the Mamba module and the Diffusion Transformer 
(DiT) on model performance. Specifically, we adjust the weight coeffi-
cient 𝛼 preceding the Mamba module to values of 0.1, 0.2, 0.3, 0.4, 
and 0.5; correspondingly, the weight coefficient for the DiT module 
is 1 − 𝛼. This approach allows us to evaluate the contribution and 
influence of each module under different weight allocation strategies. 
During the experiments, we maintain all other parameters constant and 
only modify the value of 𝛼 to observe the trend of model performance 
with varying weight coefficients. We select the MSE evaluation metric 
on the Navier–Stokes dataset to comprehensively measure the model’s 
prediction performance under different parameter settings. The results 
are presented in Table  5.

To evaluate the sensitivity of the MAD framework to the weight 
coefficients of the Mamba module and the Diffusion Transformer (DiT), 
we varied the Mamba coefficient 𝛼 between 0.1 and 0.5, with the 
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Table 4
Performance Comparison in MAD Framework.
 Architecture Navier–Stokes Kuroshio

 MSE SSIM PSNR MSE SSIM PSNR  
 MAD + ViT 0.1423 0.9125 38.7 0.0892 0.9315 41.2  
 MAD + Swin 0.1356 0.9281 39.5 0.0854 0.9423 43.1  
 MAD + Earthformer 0.1289 0.9382 40.3 0.0819 0.9531 44.8  
 MAD + DiT (Original) 0.1161 0.9653 42.36 0.0724 0.9682 46.55 
Table 5
Impact of Mamba and DiT weight coefficients on model performance on the Navier–
Stokes dataset (epochs = 25).
 Mamba coefficient (𝛼) DiT coefficient (1 − 𝛼) MSE ↓  
 0.1 0.9 0.1467 
 0.2 0.8 0.1471 
 0.3 0.7 0.1472 
 0.4 0.6 0.1487 
 0.5 0.5 0.1479 

Table 6
Computational efficiency comparison (128 × 128 input, batch size = 16).
 Model FLOPs (G) Memory (GB) Speed (fps) 
 ConvLSTM 286 9.8 14.2  
 PredRNN-v2 412 13.5 9.6  
 Earthformer 587 18.2 6.3  
 TAU 325 11.7 12.8  
 MAD (Ours) 238 8.1 18.7  

DiT coefficient set to 1 − 𝛼. As shown in Table  5, the Mean Squared 
Error (MSE) remains relatively stable across different weight settings, 
ranging from 0.1467 to 0.1487. This slight variation indicates that the 
model’s performance is not highly sensitive to the specific weight dis-
tribution between the Mamba and DiT modules. Such stability suggests 
that the MAD framework can maintain consistent prediction accuracy 
even when the balance between its components is adjusted, high-
lighting its robustness and flexibility in handling different parameter 
configurations.

4.6. Computational efficiency comparison

The efficiency analysis is shown in the Table  6. In general, our 
method has efficiency advantages. Specifically, we summarize it as 
follows: (1) Linear computational complexity of Mamba modules (vs. 
Transformer’s 𝑂(𝑁2)), (2) Parameter sharing in Diffusion Transformers, 
(3) Dynamic parameter management strategy that selectively freezes 
non-critical layers. These designs enable MAD to reduce FLOPs by 
59.5% and memory consumption by 55.5% compared to Earthformer 
in 40-step ocean current prediction tasks.

5. Conclusion

In this paper, we proposed the MAD framework, a novel integration 
of Mamba state-space models and Diffusion Transformers, to address 
the challenges of spatiotemporal prediction. By leveraging bidirectional 
state-space modeling and self-attention mechanisms, MAD effectively 
captures both fine-grained and long-range dependencies across spa-
tial and temporal dimensions. Our framework introduces a collabo-
rative training strategy that jointly optimizes reconstruction and pre-
diction tasks, ensuring robust feature representations and high-fidelity 
forecasts. Experimental results across diverse benchmarks demonstrate 
MAD’s superior performance in accuracy, robustness, and scalability 
compared to state-of-the-art baselines, particularly excelling in chal-
lenging scenarios like long-term predictions and extreme event fore-
casting. In future, we may adopt efficienct techniques [43–49] for 
spatiotemporal prediction.
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