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as Martingales or Strict Local Martingales

Hardy Hulley and Eckhard Platen

Abstract. It is often important, in applications of stochastic calculus to fi-
nancial modelling, to know whether a given local martingale is a martingale
or a strict local martingale. We address this problem in the context of a
time-homogenous diffusion process with a finite lower boundary, presented as
the solution of a driftless stochastic differential equation. Our main theorem
demonstrates that the question of whether or not this process is a martingale
may be decided simply by examining the slope of a certain increasing func-
tion. Further results establish the connection between our theorem and other
results in the literature, while a number of examples are provided to illustrate
the use of our criterion.
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1. Introduction and main theorem

The subject of our investigation is a driftless Itô diffusion X, taking values in [l,∞)
or (l,∞), for some l ∈ R. Given x > l, we shall write Px to denote the probability
measure under which this process starts at x, and we shall specify its Px-dynamics
as follows:

Xt = x+
∫ t

0

a(Xs) dβs, (1.1)

for all t ≥ 0. Here β is a standard scalar Brownian motion, and the measurable
function a is assumed to satisfy the following two conditions: (a) a2(x) > 0, for all
x > l; and (b) the function a−2 is locally integrable. Together, these two conditions
ensure that (1.1) possesses a weak solution that is unique in law (see e.g. Karatzas
and Shreve [10], Thm. 5.5.15, p. 341). Furthermore, note that X is by construction
a Px-local martingale, for all x > l, and is therefore also a Px-supermartingale, by
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virtue of being bounded from below. Consequently, the lower boundary l must be
absorbing, if it is ever reached.

Local martingales are ubiquitous in stochastic models of financial markets.
Firstly, the process that facilitates the transformation from the reference probabil-
ity measure to a putative equivalent risk-neutral probability measure, for such a
model, is only a local martingale, in general. Such a transformation of probability
measures only works when the local martingale in question is in fact a martin-
gale. Secondly, even when that process is a martingale, the discounted prices of
risky assets are, in general, only local martingales under the associated equivalent
risk-neutral probability measure.1

A fundamental problem of long-standing importance is to identify conditions
for determining whether a given local martingale is in fact a martingale. In this
regard, noteworthy sufficient conditions for the case of continuous exponential
local martingales have been obtained by Novikov [13] and Kazamaki [11]. Another
important line of investigation (see e.g. Azema et al. [2], Galtchouk and Novikov
[8], Novikov [14], Elworthy et al. [6, 7] and Takaoka [16]) explored the weak tails
of the supremum of a local martingale. This work culminated in a necessary and
sufficient condition for classifying an arbitrary continuous local martingale as a
martingale or a strict local martingale.

So far only Delbaen and Shirakawa [4] and Kotani [12] appear to have con-
sidered explicitly the problem of identifying local martingales of the form (1.1) as
martingales or strict local martingales. The former article solves the problem by an
application of the first Ray-Knight theorem, while Kotani [12] adopts an analytic
approach. Ultimately, these two articles both prove the following theorem:2

Theorem 1.1. Given x > l, X is a Px-martingale if and only if∫ ∞ y

a2(y)
dy =∞.

Proof. See Delbaen and Shirakawa [4], Thm. 1.6 or Kotani [12], Thm. 1. �

Given x > l, we tackle the problem of determining whether or not X is a
Px-martingale differently from the approaches taken by Delbaen and Shirakawa
[4] and Kotani [12]. To start with, we derive a necessary and sufficient condition
for X to be a Px-martingale that is expressed in terms of its first-passage times.
This condition is then translated into the analytic language of diffusions, yielding
a striking characterization of martingales within the class of processes described
by (1.1).

We begin by briefly recounting some basic facts about time-homogeneous
scalar diffusions (the reader is referred to Borodin and Salminen [3], Chap. II for

1Strictly speaking, this is a simplified version of the true story, since if the asset prices are
semimartingales with unbounded jumps, then their discounted values are in general only σ-

martingales under an equivalent risk-neutral probability measure (assuming that one exists).
2It must be said, however, that the setting in Kotani [12] is more general than in Delbaen and
Shirakawa [4]. For more on this, see the discussion following Proposition 2.2.
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more details). The natural starting point is the following linear second-order ODE:
1
2
a2(x)u′′(x) = αu(x), (1.2)

for all x > l and any fixed α > 0. This equation has two non-negative linearly
independent solutions φα and ψα, which may be characterized as the unique (up
to multiplicative constant) solutions of (1.2) that are decreasing and increasing,
respectively, and which satisfy appropriate boundary conditions, determined by
the boundary behaviour of X. Both functions are obviously also convex.

To make the connection between (1.1) and (1.2) explicit, let q denote the
transition density of X with respect to its speed measure m(dx) := 2a−2(x) dx. By
this we mean

Px(Xt ≤ z) = Px(Xt = l) +
∫ z

l

q(t, x, y) m(dy),

for all x, z > l. Then we have the following Laplace transform identity:3

Gα(x, y) := Lα{q(t, x, y)} =

{
w−1
α ψα(x)φα(y) if x ≤ y;

w−1
α φα(x)ψα(y) if x ≥ y,

for all x, y > l, where the Wronskian

wα := φα(x)ψ′α(x)− φ′α(x)ψα(x) (1.3)

is independent of x.
The solutions of (1.2) shed further light on (1.1) when we examine the first-

passage times of X. To be precise, consider the first-passage time

τz := inf{t > 0 |Xt = z},
for any z > l, and denote its density by pz, so that

Px(τz < t) =
∫ t

0

pz(x, s) ds,

for all t ≥ 0. We then obtain the following useful identity:

Ex
(
e−ατz

)
= Lα{pz(x, t)} =

{
ψα(x)
ψα(z) if x ≤ z;
φα(x)
φα(z) if x ≥ z,

(1.4)

for all x, z > l.
With these preliminaries attended to, we may now formulate and prove the

above-mentioned characterization of martingales within the class of processes de-
scribed by (1.1). The proof relies on the fact that X is a Px-martingale, for any
x > l, if and only if Ex(Xt) = x, for all t ≥ 0. This follows from the fact that X is
a Px-supermartingale, for all x > l:

Theorem 1.2. Given x > l, X is a Px-martingale if and only if

lim
z↑∞

ψ′α(z) =∞.

3Note that all Laplace transforms in this paper are computed by integrating over the time domain.
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Proof. Choose z > x, and note that Xτz is a (uniformly integrable) Px-martingale.
We therefore have

x = Ex
(
Xτz
t

)
= zPx(τz < t) + Ex

(
1{τz≥t}Xt

)
,

for all t ≥ 0. Since X does not explode (see e.g. Karatzas and Shreve [10], p. 332),
it follows that limz↑∞ Px(τz ≥ t) = 1, for all t ≥ 0. The dominated convergence
theorem therefore gives

x− Ex(Xt) = lim
z↑∞

zPx(τz < t),

for all t ≥ 0, from which it follows that X is a Px-martingale if and only if

lim
z↑∞

zPx(τz < t) = 0. (1.5)

Next, we observe that X∞ exists and satisfies Ex(|X∞|) <∞, by virtue of the fact
that X is a Px-supermartingale. We therefore have

0 ≤ zPx(τz < t) ≤ zPx(τz <∞) ≤ |x|+ Ex(|X∞|) <∞,
for all t ≥ 0, by an application of Doob’s maximal inequalities, and we also see
that

Lα{|x|+ Ex(|X∞|)} =
|x|+ Ex(|X∞|)

α
<∞,

where α > 0. We may therefore use the dominated convergence theorem as follows:

Lα

{
lim
z↑∞

zPx(τz < t)
}

= lim
z↑∞

zLα{Px(τz < t)}

= lim
z↑∞

zLα

{∫ t

0

pz(x, s) ds
}

= lim
z↑∞

z

α
Lα{pz(x, t)} = lim

z↑∞

z

α

ψα(x)
ψα(z)

=
ψα(x)
α

lim
z↑∞

1
ψ′α(z)

,

(1.6)

where the second-last step follows from (1.4) and the final step is an application
of L’Hôpital’s rule. The result then follows from (1.5) and (1.6), together with the
uniqueness of Laplace transforms. �

2. The connection between Theorems 1.1 and 1.2

This section formally establishes the correspondence between Theorem 1.1 and
Theorem 1.2. In particular, we demonstrate explicitly that the characterization
of martingales obtained by Delbaen and Shirakawa [4], Thm. 1.6 or Kotani [12],
Thm. 1 may be retrieved from our characterization. There are two steps in this
process, the first of which is encapsulated by the following proposition:

Proposition 2.1. Given any z > l, we have

lim
x↑∞

Ex(τz) ≤ 2
∫ ∞
z

(y − z) m(dy). (2.1)
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Proof. Fix x > z, and note that Xτz is a Px-supermartingale. It therefore follows
that the Px-a.s. limit Xτz

∞ = Xτz exists and satisfies Ex(|Xτz |) < ∞. Next, using
Tanaka’s formula, we obtain

(Xt − y)− = (X0 − y)− +
∫ t

0

1{Xs≤y} dXs︸ ︷︷ ︸
Mt

+
1
2
Lyt ,

for all t > 0 and y > l. Since the process M above is a Px-local martingale with
initial value zero, we may infer the existence of an associated localizing sequence
of stopping times (σn)n∈N. Observe that

0 ≤ (Xσn∧τz − y)− ≤ (z − y)− Px-a.s.,

for all y > l and each n ∈ N, and recall that the local-time process Ly is Px-a.s.
increasing. Consequently, using the dominated convergence theorem, followed by
the optional sampling theorem and the monotone convergence theorem, we get

Ex
(

(Xτz − y)−
)

= lim
n→∞

Ex
(

(Xσn∧τz − y)−
)

= (x− y)− + lim
n→∞

Ex

(∫ σn∧τz

0

1{Xs≤y} dXs

)
+

1
2

lim
n→∞

Ex
(
Lyσn∧τz

)
= (x− y)− +

1
2
Ex
(
Lyτz

)
,

for all y > l. Rearranging this expression, we obtain

Ex
(
Lyτz

)
≤ 2
(

(z − y)− − (x− y)−
)

= 2
(

(x− z) ∧ (y − z)+
)
,

for all y > l, since Xτz ≥ z Px-a.s. Finally, the occupation-measure formula yields

Ex(τz) = Ex

(∫ τz

0

1{Xs≥z} ds
)

= Ex

(∫ ∞
0

1{y≥z}Lyτz m(dy)
)

=
∫ ∞
z

Ex
(
Lyτz

)
m(dy) ≤ 2

∫ ∞
z

(x− z) ∧ (y − z) m(dy),

and (2.1) follows as a consequence of the monotone convergence theorem. �

We next use Proposition 2.1 to obtain the desired correspondence between
Theorem 1.1 and Theorem 1.2. In particular, the equivalence between condi-
tions (ii) and (iii) in the following proposition verifies that the criteria in those
two theorems are indeed equivalent:

Proposition 2.2. The following conditions are equivalent:

(i) φα(∞−) > 0;
(ii) ψ′α(∞−) <∞; and
(iii)

∫∞
z

(y − z) m(dy) <∞,

for all z > l and α > 0.
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Proof. (i)⇒(ii): Fix α > 0, and suppose that φα(∞−) > 0. Since φα is decreasing
and ψα is non-negative, we obtain the following inequality from (1.3):

φα(x)ψ′α(x) = wα + φ′α(x)ψα(x) < wα,

for all x > l. Taking limits, it therefore follows that ψ′α(∞−) <∞.

(ii)⇒(iii): Fix z > l and α > 0, and suppose that ψ′α(∞−) < ∞. Recalling that
ψα is non-negative, increasing and convex, we now obtain∫ ∞

z

(y − z) m(dy) ≤
∫ ∞
z

ψα(y)− ψα(z)
ψ′α(z)

m(dy) ≤ 1
ψ′α(z)

∫ ∞
z

ψα(y) m(dy)

=
2

ψ′α(z)

∫ ∞
z

ψα(y)
a2(y)

dy =
1

αψ′α(z)

∫ ∞
z

ψ′′α(y) dy =
ψ′α(∞−)− ψ′α(z)

αψ′α(z)
<∞,

from m(dx) := 2a−2(x) dx, together with the fact that ψα satisfies (1.2).

(iii)⇒(i): Fix z > l and α > 0, and suppose that
∫∞
z

(y − z) m(dy) <∞. We then
obtain

φα(∞−) = φα(z) lim
x↑∞

Ex(e−ατz ) ≥ φα(z) lim
x↑∞

e−αEx(τz)

≥ φα(z)e−2α
R∞
z

(y−z) m(dy) > 0,

from (1.4), followed by Jensen’s inequality and (2.1). �

Theorem 1.1 was first proved by Delbaen and Shirakawa [4], Thm. 1.6, where
exactly the same setting was employed as is considered here. However, the result
obtained by Kotani [12], Thm. 1 is actually more general than Theorem 1.1, since
the local martingales considered there are simply time-homogeneous diffusions
in natural scale—of which driftless Itô diffusions, such as (1.1), are particular
examples. Fortunately, Theorem 1.2 and Propositions 2.1 and 2.2 extend easily to
this more general setting (see Hulley [9], Chap. 3 for the details). We are therefore
able to recapture Kotani [12], Thm. 1 in full generality.

3. Some examples

In this section we examine a number of well-known examples of local martingales
of the form (1.1). In each case we compute the fundamental solutions φα and ψα
of the ODE (1.2), before using Theorem 1.2 to identify the process as a martingale
or a strict local martingale:

Example 3.1 (Squared Bessel process of dimension zero). In this case the state-
space is [0,∞) and a(x) := 2

√
x, for all x ≥ 0. Solving (1.2) yields

φα(x) =
√
xK1

(√
2αx

)
and ψα(x) =

√
x I1

(√
2αx

)
,

for all x ≥ 0 and α > 0 (see Figure 1). Here I1 and K1 are modified Bessel functions
of the first and second kinds, respectively (see e.g. Abramowitz and Stegun [1],
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Figure 1. The functions φα and ψα for the squared Bessel pro-
cess of dimension zero.

0 20 40 60 80 100
x

0.1

0.2

0.3

0.4

0.5
ΦΑ!x"

20 40 60 80 100
x

2000

4000

6000

8000

10 000
ΨΑ!x"

Figure 2. The functions φα and ψα for driftless geometric Brow-
nian motion.

Chap. 9). It now follows from the recurrence relations for modified Bessel functions
in Abramowitz and Stegun [1], Eqns. (9.6.26) that

ψ′α(x) =
1

2
√
x
I1

(√
2αx

)
+
√
α

2
√

2

(
I0

(√
2αx

)
+ I2

(√
2αx

))
,

for all x ≥ 0 and α > 0, and we obtain ψ′α(∞−) = ∞. We may therefore deduce
that X is a martingale, by Theorem 1.2.

Example 3.2 (Driftless geometric Brownian motion). In this case the state-space
is (0,∞) and a(x) := x, for all x > 0. Solving (1.2) yields

φα(x) = x−
1
2

(√
8α+1−1

)
and ψα(x) = x

1
2

(√
8α+1+1

)
,

for all x > 0 and α > 0 (see Figure 2). It is easily seen that ψ′α(∞−) =∞, for all
α > 0, from which we may deduce that X is a martingale, by Theorem 1.2.
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Figure 3. The functions φα and ψα for the inverted squared
Bessel process of dimension four.

Example 3.3 (Inverted squared Bessel process of dimension four). In this case the
state-space is (0,∞) and a(x) := 2x

3
2 , for all x > 0. Solving (1.2) then yields

φα(x) =
√
xI1

(√
2α
x

)
and ψα(x) =

√
xK1

(√
2α
x

)
,

for all x > 0 and α > 0 (see Figure 3). It now follows from the recurrence relations
for modified Bessel functions in Abramowitz and Stegun [1], Eqns. (9.6.26) that

ψ′α(x) =
1

2
√
x
K1

(√
2α
x

)
+
√
α

2
√

2x

(
K0

(√
2α
x

)
+K2

(√
2α
x

))
,

for all x > 0 and α > 0, and we obtain ψ′α(∞−) = 1√
2α

. We may therefore deduce
that X is a strict local martingale, by Theorem 1.2.

Example 3.4 (Inverted Bessel process of dimension three). In this case the state-
space is (0,∞) and a(x) := x2, for all x > 0. Solving (1.2) then yields

φα(x) = x

(
e
√

2α
x − e−

√
2α
x

)
and ψα(x) = xe−

√
2α
x ,

for all x > 0 and α > 0 (see Figure 4). It is easily seen that ψ′α(∞−) = 1, for
all α > 0, from which we may deduce that X is a strict local martingale, by
Theorem 1.2.

Based on the examples above, it seems natural to speculate that X is a Px-
martingale if and only if its diffusion coefficient is asymptotically sub-linear, in the
sense that limx↑∞

a(x)
x < ∞. The following example from Ekström and Tysk [5]

(who analyze it differently) is therefore quite surprising:

Example 3.5 (Kummer’s local martingale). In this example the state-space is
(1,∞) and we set a(x) := x

√
lnx, for all x > 1. In order to solve the ODE (1.2),
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Figure 4. The functions φα and ψα for the inverted Bessel pro-
cess of dimension three.
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Figure 5. The functions φα and ψα for Kummer’s local martingale.

we first employ the transformation of variables lnx 7→ ξ, and set vα(ξ) := uα(x),
for all x > 1 and α > 0. Equation (1.2) then becomes

ξv′′α(ξ)− ξv′α(ξ)− 2αvα(ξ) = 0,

for all ξ > 0 and α > 0. This is recognizable as an instance of Kummer’s equation—
also known as a degenerate hypergeometric equation (see e.g. Polyanin and Zaitsev
[15], pp. 137–139)—whose solutions may be expressed in terms of the confluent
hypergeometric functionsM and U (see e.g. Abramowitz and Stegun [1], Chap. 13).
For our original equation (1.2), we then obtain

φα(x) = lnxU(1 + 2α, 2, lnx) and ψα(x) = lnxM(1 + 2α, 2, lnx),

for all x > 1 and α > 0 (see Figure 5). It now follows from Abramowitz and Stegun
[1], Eqn. (13.4.8) that

ψ′α(x) =
1
x
M(1 + 2α, 2, lnx) +

(1 + 2α) lnx
2x

M(2 + 2α, 3, lnx),

for all x > 1 and α > 0, and we obtain ψ′α(∞−) = ∞. We may therefore deduce
that X is a martingale, by Theorem 1.2.
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