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Abstract. The problem of human action recognition has received increasing at-
tention in recent years for its importance in many applications. Yet, the main
limitation of current approaches is that they do not capture well the spatial re-
lationships in the subject performing the action. This paper presents an initial
study which uses graphs to represent the actor’s shape and graph embedding to
then convert the graph into a suitable feature vector. In this way, we can benefit
from the wide range of statistical classifiers while retaining the strong representa-
tional power of graphs. The paper shows that, although the proposed method does
not yet achieve accuracy comparable to that of the best existing approaches, the
embedded graphs are capable of describing the deformable human shape and its
evolution along the time. This confirms the interesting rationale of the approach
and its potential for future performance.
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1 Introduction and related work

Human action recognition has been the focus of much recent research for its increas-
ing importance in applications such as video surveillance, human-computer interac-
tion, multimedia and others. Recognising human actions is challenging since actions
are complex patterns which take place along the time. Due to the nature of human
physiology and the varying environmental constraints, each person performs the same
action differently for every instance. More so, different people may perform the same
action in a pronouncedly different way in both spatial extent and temporal progression.
When translated into feature vectors, actions give place to a probing feature space with
very high intra-class variance and low inter-class distance. To mollify this issue, this pa-
per presents an initial study into the possibility of using graph embedding for obtaining
a more suitable feature set.

Many approaches have been proposed for human action recognition to date, includ-
ing bag of features [1] [2], dynamic time warping [3], hidden Markov models [4] and
conditional random fields [5]. A recent survey has offered a systematic review of these
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approaches [6]. However, the problem of a suitable feature set which can well encapsu-
late the deformable shape of the actor is still partially unresolved. Graphs offer a pow-
erful tool to represent structured objects and as such are promising for human action
recognition. Ta ef al. in [7] have recently used graphs for activity recognition. However,
to assess the similarity of two instances, they directly compare their graphs which is
prone to significant noise. An alternative to the direct comparison of action graphs is
offered by graph embedding: in each frame, the graph representing the actor’s shape can
be converted to a finite set of distances from prototype graphs, and the distance vector
then used with conventional statistical classifiers. Graph embedding has been success-
fully used in the past for fingerprint and optical character recognition [8]. To the best of
our knowledge, this is the first work proposing to employ graph embedding for human
action recognition. Such an extension is not trivial since feature vectors need to prove
action-discriminative along the additional dimension of time. In this paper, we propose
to extract spatial feature points from each frame and use them as nodes of a graph de-
scribing the actor’s shape. With an adequate prototype set, we convert the graph to a
set of distances based on the probabilistic graph edit distance (GED) of Neuhaus and
Bunke [9]. Probabilistic GED is a sophisticated edit distance capable of learning edit
costs directly from a training set and weigh each edit operation individually. The fea-
ture vectors of each frame are then composed into a sequence and analysed by means
of a conventional sequential classifier. The recognition accuracy that we obtain is not
yet comparable with that of the best methods from the literature; however, results show
unequivocally that the embedded vectors are capable of representing the human posture
as it evolves along the time and set the basis for potential future improvements.

The rest of this paper is organised as follows: Section 2 provides a brief recall of
graph embedding. Section 3 describes the methodology proposed by this paper to in-
corporate graph embedding into an action recognition approach. Section 4 presents and
discusses an experimental evaluation of the proposed approach on the challenging KTH
action dataset. Finally, we give concluding remarks and a discussion of future work in
section 5.

2 A brief recall of graph embedding

Based on various research studies, different definitions for graphs can be found in the
literature. In this work we use an attributed graph g represented by g = (V, E, a, 8)
where

-V =1{1,2,..., M} is the vertices (nodes) set, where M € NU {0},
- E C (V x V) is the set of edges,

— a:V — Ly is a vertex labeling function, and

- B : E — Lg is a edge labeling function.

Vertex and edge labels are restricted to fixed-size tuples, (Ly = R?, Ly = R9Y, p,
q € NU{0}).

With a graph-based object representation, the problem of pattern recognition changes
to that of graph matching. One of the most widely used methods for error-tolerant graph
matching is the graph edit distance (GED). It measures the (dis)similarity of arbitrarily
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structured and arbitrarily labeled graphs and it is flexible thanks to its ability to cope
with any kind of structural errors [10], [11]. The main idea of the graph edit distance
is: find the dissimilarity of two graphs by the minimum amount of distortion required
to transform one graph into the other [10]. In the first step, the underlying distortion
models (or edit operations) are defined as insertion, deletion and substitution for both
nodes and edges, (e1, €2, €3, €4, €5, €5). Based on this definition, every graph can be
transformed into another by applying a sequence of edit operations (i.e. an edit path).
Then, given a set of edit operations and an edit cost function, the dissimilarity of a pair
of graphs is defined as the minimum cost edit path that transforms one graph into the
other. Let g1 = (V1, F1, 1, 51) and g2 = (Va, Ea, aa, f2) be two graphs. The graph
edit distance of such graphs is defined as:

k
d(g1,92) = min (eq,...,ex) € E(gl,gg)ZC(ei) (1)
i=1

where E(g1, g2) denotes the set of edit paths between two graphs, C' denotes the edit
cost function and e; denotes the individual edit operation. Based on (1), the problem of
evaluating the structural similarity of graphs is changed into the problem of finding a

minimum-cost edit path between two graphs.
Among different methods, the probabilistic graph edit distance (P-GED) proposed by
Neuhaus and Bunke [12, 9] was chosen to automatically find the cost function from a la-
beled sample set of graphs. To this aim, the authors represented the structural similarity
of two graphs by a learned probability p(g1, g2) and defined the dissimilarity measure

as:

d(g1,92) = —logp(g1,92) ()

The main advantage of this model is that it learns the costs of edit operations au-
tomatically and is able to cope with large sets of graphs with huge distortion between
samples of the same class [12,9].

2.1 Graph embedding

Graph embedding converts a graph into an n-dimensional real vector. Its motivation is
that of trying to take advantage of the rich space of statistical pattern recognition tech-
niques yet retaining the spatial representational power of graphs. Let G = {g1, 92, -.-, gm
be a set of graphs , P = {p1,pa, ..., pn} be a set of prototypes with m > n (detail in
subsection 2.2), and d be a (dis)similarity measure (detail in section 2). For graph em-
bedding, dissimilarity d;; of graph g; € G to prototype p; € P is computed. Then,
an n-dimensional vector (d;1, ..., d;,) can be achieved through the computation of the
n dissimilarities, dj1 = d(g;,p1),...,djn = d(g;,pn)- As a result of this, any graph
g; € G) can be transformed into a vector of real numbers.

Formally, the mapping ¢ : G — N" is defined as the following function:

t2(g) = (d(g,p1), ., d(g, ) 3)

where d(g, p;) is a dissimilarity measure between graph g and prototype p; [8].
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2.2 Prototype selector

Based on the definition in section 2.1, selecting informative prototypes from the un-
derlying graph domain plays a vital role in graph embedding. In other words, in or-
der to have meaningful vectors in the embedding space, a set of selected prototypes
P = {p1,p2,...,pn} should be uniformly distributed over the whole graph domain
while avoiding redundancies in terms of selection of similar graphs [8], [13], [14].

3 Methodology

Our approach to action recognition is based on i) using graph embedding to create a
feature vector of the actor in each frame, ii) concatenating all the feature vectors from
the first to the last frame of the action video into a vector sequence, and iii) using a
sequential classifier for action classification. As sequential classifier, we have used the
well-known hidden Markov model [15]. Moreover, prior to extracting graphs of the
actor’s shape, we have used a tracker to extract a bounding box of the actor in each
frame [16]. Due to limitation in space, we do not describe the tracker and classifier
further and focus the next paragraphs on graph construction and embedding.

3.1 Graph building

A number of SIFT keypoints are extracted within the actor’s bounding box in each
video frame using the software of Vedaldi and Fulkerson [17]. Based on the chosen
threshold, this number typically typically varies between 5 and 8. Moreover, a Gaus-
sian outlier elimination method is applied on the selected SIFT keypoints to eliminate
points which are estimated to be far away from the actor. Example results after these
steps are illustrated in figure 1. Then, the location of the remaining SIFT keypoints
(x,y) is expressed relatively to the actor’s centroid and employed as a node label for
an attributed graph describing the actor’s shape. In a preliminary study not reported in
this paper, we found that graphs with only labelled nodes performed as well as graphs
with both labelled nodes and edges and were faster to process. We therefore decide to
employ graphs consisting only of labelled nodes.

Fig. 1. Bounding box generated by the proposed tracker in the KTH action dataset and final
selected SIFT keypoints which are used to build a graph.
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3.2 Posture selection

In order to have a semantic prototype set which could lead to meaningful feature vectors
in the embedded space, a number of different reference postures was chosen to describe
all of the human shapes in the action dataset. For the dataset at hand, (KTH [18]; details
provided in section 4.1), we chose a set of 16 different reference postures across all of
the human actions (running, walking, boxing, jogging, hand-waving, hand-clapping).
For training purposes, we manually selected a number of different frames varying in
scenario (e.g. outdoor, outdoor with different clothes, indoor), action (e.g. hand waving,
hand clapping, jogging) and actor (e.g. person01, person25, personl2) (see figure 2).

Fig. 2. Examples of selected postures which are used to describe all of the human actions in the
KTH action dataset.

3.3 Prototype selection

Among various prototype selection algorithms [8], [13], [14], the class-wise center pro-
totype selection (c-cps) method [8] was chosen in this study. With this method, a proto-
typeset P = {p1, ..., Pn, ..., pn } is found from aclass set C' = {c1, ..., ¢p, ...,cN }, N =
16 with each p,, prototype located in, or near, the centre of class c,,. For selecting the
center graph from the sample set of class ¢;, = {gn1, ..., Gnj, ---» gnn,, }» We choose g,,;
such that the sum of distances between g,,; and all other graphs in ¢;, is minimal (eq.4)

[8].

Pn = gnj = arggmin Z d(gn],gnl) (4)

nj ECn

3.4 Feature vector

The embedding of a graph leads to a 16-dimensional feature vector describing the shape
of a single actor in a frame. In order to exploit other available information, we add the
displacement between the bounding boxes of two successive frames (which is propor-
tional to the horizontal speed component) and the location of the actor’s centroid relative
to the bounding box. This leads to an overall 19-dimensional feature vector to describe
the shape, motion and location of the actor in each frame (see figure 3).
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Fig. 3. The time-sequential values of a 19-dimensional feature vector obtained from graph em-
bedding for one action (boxing) performed by one subject in the KTH action dataset.

4 Experiments

For the experimental evaluation of our approach, we have chosen a popular dataset,
KTH [18], which allows comparison of our results with other, state-of-the-art action
recognition methods.

4.1 KTH action dataset

The KTH human action dataset contains six different human actions: walking, jogging,
running, boxing, hand-waving and hand-clapping, all performed various times over ho-
mogeneous backgrounds by 25 different actors in four different scenarios: outdoors,
outdoors with zooming, outdoors with different clothing and indoors. This dataset con-
tains 2391 sequences, with each sequence down-sampled to the spatial resolution of
160 x 120 pixels and a length of four seconds on average. While this dataset consists
of simplified actions, it is challenging in terms of illumination, camera movements and
variable contrasts between the subjects and the background. KTH has been a de-facto
benchmark in the last few years and many results are available for comparison.
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4.2 Experimental set-up and results

In this section, we evaluate the recognition accuracy of the proposed method. We first
evaluate various choices of feature vectors and then compare our approach based on the
best feature vector with the state of the art. All of these experiments were performed on
a computer with an Intel(R) Core(TM)2 Duo CPU (E8500, 3.16GHz) and 4GB RAM
using Matlab R2009b.

Evaluation of the feature vectors The 19-dimensional feature vector described in
section 3.4 contains shape, motion and location features jointly. In order to assess the
individual contribution of these different types of features, we have conducted exper-
iments with feature vectors containing only shape, motion or location features in iso-
lation. To this aim, we have used leave one (actor) out cross validation reporting a
correct classification rate (CCR) for each feature vector. It is possible to see that none
of the individual type of features was capable of achieving high accuracy in isolation;
in all cases, recognition accuracy was below 50% (table 1). However, these features
show interesting complementarity: for instance, the motion features report good accu-
racy in recognising the Jogging class, but a rather low performance on the Boxing class
(which is mainly a stationary class). Conversely, the graph-embedded shape features
report good accuracy on the Boxing class, but cannot discriminate well between classes
such as Jogging and Running where the articulated shape is similar, yet speed of execu-
tion varies remarkably. This complementarity is at the basis of the higher performance
achieved by the joint vector which jumps to 70.00%, as shown by table 2.

Table 1. The average CCRs on the KTH action dataset based on separate feature vectors for
motion, location and shape.

validation technique| motion (location| shape
LOOCV-CCR  [49.34%|45.67%|47.63%

Comparison to the state of the art Accuracy measurements on the KTH database have
been performed with different methods by different papers in the literature. For easier
comparison, in this section we have used the test approach presented by Schuldt ez al. in
[18]. With this test approach, all sequences are divided into 3 different sets with respect
to actors: training (8 actors), validation (8 actors) and test (9 actors). The classifier is
then tuned using the first two sets (training and validation sets), and the accuracy on the
test set is measured by using the parameters selected on the validation set, without any
further tuning. The confusion matrix obtained with the proposed approach is presented
in table 3. The overall accuracy is 70.17%, slightly higher than the 70.00% obtained
with the leave one out cross validation. This result is not yet comparable with the best
accuracies reported in the literature: it is not far from the accuracy reported by Schuldt
et al. [18], but much lower than that reported by Guo et al. in [19] (table 4).
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Table 2. Action confusion matrix (%) for the proposed method based on the LOOCV test ap-
proach on the KTH action dataset. The average CCR is 70.00%.

Boxing Clapping Waving Jogging Running Walking

Boxing
Clapping
Waving
Jogging
Running
Walking

80 9
11 59
8 22
0

0

0 0

8
25
66

1
1
1
56
17
8

1
2
0
21
74
7

1

2

3
23
9
85

Table 3. Action confusion matrix (%) for the proposed method based on the Schuldt test approach
on the KTH action dataset. The average CCR is 70.17%.

Boxing Clapping Waving Jogging Running Walking

Boxing
Clapping
Waving
Jogging
Running
Walking

92
18

9
1
1
0

1
62
35

5
17
55

0
1
0
56
14
5

1
1
0
18
66
5

1

1

1
25
19
90

Table 4. Average class accuracy on the KTH action dataset.

Method

Ours

Schuldt
et al.[18]

Dollar
etal.[1]

Laptev
et al.[20]

Guo
et al.[19]

LOOCV-CCR
Schuldt-CCR

70.00%
70.19%

71.70%

80%

91.80%

98.47%
97.40%

4.3 Discussion

In section 4.2 we have showed our initial experimental results from the application
of graph building and embedding to human action recognition. Despite the good pos-
ture discrimination provided by P-GED (not reported quantitatively here for reasons of
space), the overall action recognition accuracy on the KTH dataset is not yet very high.
Based on our judgment, the main difficulty faced by the proposed approach is the extrac-
tion of a reliable set of keypoints in each frame. Due to noise and variable appearance,
the extracted set changes significantly over the frames. Another possible limitation is
the limited accuracy of the employed classifier (HMM). However, we believe that the
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work conducted to date already provides evidence that the features obtained by graph
embedding are capable of encoding the actor’s shape to a significant extent.

5 Conclusions and future work

In this paper, we have presented a novel approach for human action recognition based
on graph embedding. To this aim, an attributed graph is used to represent the actor’s
shape in each frame and then graph embedding is used to convert the graph into a fea-
ture vector so as to have access to the wide range of current classification methods.
Although our method does not yet match the accuracy of existing approaches, it gener-
ates a novel methodology for human action recognition based on graph embedding and
may outperform existing methods in the future. With reference to limitations discussed
in section 4.3, we plan to further investigate other keypoint sets to improve the stabil-
ity of the graph-based representation along the frame sequence and employ different
classification methods for the classification stage.
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