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Abstract—The rapidly increasing population of elderly people 

has posed a big challenge to research in fall prevention and 

detection. Substantial amounts of injuries, disabilities, traumas 

and deaths among elderly people due to falls have been reported 

worldwide. There is therefore a need for a reliable, simple, and 

affordable automatic fall detection system. This paper proposes 

a reliable fall detection algorithm using minimal information 

from a single waist worn wireless tri-axial accelerometer. The 

method proposed is to approach fall detection using digital 

signal processing and neural networks. This method includes the 

application of Discrete Wavelet Transform (DWT), Regrouping 

Particle Swarm Optimization (RegPSO), a proposed method 

called Gaussian Distribution of Clustered Knowledge (GCK), 

and an Ensemble of Classifiers using two different classifiers: 

Multilayer Perceptron Neural Network (MLP) and Augmented 

Radial Basis Neural Networks (ARBF). The proposed method 

has been tested on 8 healthy individuals in a home environment 

and yields promising result of up to 100% sensitivity on ingroup, 

97.65% sensitivity on outgroup, and 99.56% specificity on 

Activities of Daily Living (ADL) data. 

 

Index Terms—Fall Detection; Discrete Wavelet Transform; 

Regrouping Particle Swarm Optimization; Gaussian 

Distribution of Clustered Knowledge; Ensemble of Classifiers; 

Augmented Radial Basis Neural Networks; 

I. INTRODUCTION 

ccording to recent report of WHO, falls has been one of 

the prominent causes of fatalities in elderly people. Rate 

of fall related injuries of people over 60 years of age in 

Western Australia and United Kingdom reaches up to 8.9 per 

10,000 population. Fall fatality rate for people of age 65 and 

above reaches up to 36.8 per 100,000 population. It is 

estimated that in 2030 fall related injuries will increase by 

100% should there be no preventive approaches taken [1]. 

Recently, a substantial amount of studies on accelerometer-

based fall detection has been conducted [2-5]. Kangas’ 

experiment shows that waist and head acceleration 

measurements provide more distinctive information regarding 

falls [2]. A popular approach to fall detection is thresholding 

approaches [2-4]. However, it is argued that these approaches 
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often result in false alarms [5]. Identifying this issue, Shi 

combined threshold techniques and SVM to determine lateral 

falls in his research [5]. 

The objective in this paper is to optimize the performance 

of fall detection system using a Neural-Network approach 

using minimal information from a waist-worn tri-axial 

accelerometer. DWT and RegPSO will be used to assist in the 

feature extraction and GCK signal generation. A newly 

proposed classifier, ARBF, will also be used alongside MLP. 

This paper is structured as follows. Section II gives a brief 

overview of the system and algorithm used in the experiment. 

Section III provides data preprocessing method. Section IV 

explains the proposed classification scheme. Section V 

explains data collection. Section VI provides the results and 

discussions. Finally Section VII concludes this paper. 

II. OVERVIEW 

A. System 

Input data for the system are sampled 3-D acceleration 

signals. The accelerometer module used in this project is RD-

3152 MMA7260Q – Zstar2 from Freescale Semiconductor. It 

provides 3-axis acceleration readings using an MMA7260Q 

accelerometer set to ±6g sensitivity range. The wireless 

communication is based on ZigBee protocol 2.4GHz band to 

communicate to the receiver board [6]. The accelerometer 

sensor is put inside the right pocket of a vest. 

Data collection is done in real time using Java2SE 

connected directly to Matlab. Each signal has a length of 5 

seconds sampled with 20Hz sampling frequency. Signals are 

divided into 2 classes: fall signals and Activities of Daily 

Living (ADL) signals. 

B. Algorithm 

The proposed algorithm can be explained briefly as follows. 

Firstly the magnitude of acceleration is observed. If the 

magnitude is greater than a specified threshold, a window is 

instantiated and signal in the window is pushed to the 

classification queue. For each signal in the queue, third order 

DWT filter is applied and N GCK signals are generated. 

These signals are queried against an ensemble of classifiers. 
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III. DATA PREPROCESSING 

Especially because there is no other source of information 

other than accelerometer, the method used in this paper relies 

greatly on quality data preprocessing. The proposed data 

preprocessing method can be divided into three major steps: 

impact detection, normalization, and data filtering. 

A. Impact Detection 

From the observation of the collected data of falls and daily 

life activities including exercises and trips, acceleration 

magnitudes of normal activities are generally lower than those 

of exercises and falls. Uncommon activities thus can be 

observed when the magnitude of acceleration is above a 

specified threshold. There is a chance that this uncommon 

activity may necessarily be an impact. 

At any instance of uncommon activity that occurs at time 

 , a window is constructed at s5.2  and acceleration data 

in that window is copied. The data is pushed to the 

classification queue and undergoes the next steps in the 

algorithm. 

B. Relative Start Scheme 

In order to effectively supply information relative to the 

starting acceleration, a normalization scheme called the 

relative start scheme is used. The relative start scheme is a 

simple normalization method where acceleration signals are 

normalized by subtracting every sample with  0ta


. 

Essentially, raw acceleration data transferred by the 

accelerometer  ta


 have an offset due to the static force of 

gravity. This offset differs depending on orientation of the 

accelerometer. 

One of the qualities of a fall is the change of body posture 

from standing to lying. The starting accelerometer orientation 

in these cases is different to the post-fall orientation. This 

phenomenon can be observed in the drift of acceleration offset 

before and after fall. The drift of acceleration offset is one of 

the qualities to describe positive falls. 

C. Data Filtering using Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) is a technique to 

decompose discrete time signals by using a digital filter 

approach. DWT is computed by successive convolutions 

between input signal with discrete low pass and high pass 

filters [7]. The application of this filter in the system can be 

seen in Fig. 1. 

In this application DWT is used to filter the acceleration 

signal and down-sampling it up to the third order using Haar 

wavelets. The intention behind using the DWT is to reduce 

the signal complexity and thus increase generalization 

capability of the classifier. The down sampled signal should 

provide essential information required for the classifier. 

IV. CLASSIFICATION SYSTEM 

A. Data Clustering using K-Means seeded Regrouping 

Particle Swarm 

Particle Swarm Optimization (PSO) seeded with K-means 

has been used as a reliable tool for data clustering [8]. It was 

originally introduced by Kennedy and Eberhart [9]. It has two 

base models: Local Best (lbest) PSO and Global Best (gbest) 

PSO. This paper utilizes the gbest PSO. Each particle in 

contains xi: current coordinate, vi: current velocity, and pi: 

personal best coordinate. 

The Regrouping Particle Swarm Optimization (RegPSO) is 

proposed by Evers and Ghalia in 2009. RegPSO is designed to 

remedy premature convergence and stagnation due to local 

minima problems [10]. In this proposed method RegPSO is 

used to cluster N vectors z


in the dataset S (1). z


 in this case 

is the filtered acceleration signal (2). K denotes the dimension 

of the data, which in this particular application is the number 

of discrete samples of the DWT filtered acceleration signal. A 
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Fig. 1. Third order filtering of Acceleration signal using DWT with Haar Wavelets. Convolutions between the original signal A[n] and low pass filters G1, G1 and G3 

produces down-sampled signal A↓[n]. ↓2 block denotes down-sampling, which increase the sample time by two accordingly to Nyquist theorem. 

  



 

 

 
Fig.2.gbest fitness graph for the first 250 iterations, r denotes regroup 

 
Fig.3. Clustered 150 fall signals 

cluster is represented by a centroid 
jC


 (3).The goal of this 

method is to optimize 
jC


such that the fitness function in (5) 

is minimum. Each particle x therefore represents an optimum 

set of centroid candidates as seen in (4) where Nc is the 

predefined number of centroids. The fitness function is 

measured by calculating the sum of Euclidian distances 

between cluster elements zp to its specified cluster centroid for 

each cluster (5). 
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The complete algorithm can be seen in Fig. 4. K-means is 

used to initialize all the Np particles pi in the swarm (6). The 

particle initialized with the best fitness is then selected as the 

global best particle g(0) (7). The prior search space before 

regrouping 0  is initialized by taking the upper bound zU and 

lower bound zL of each dimension k of the input dataset S (8).  

Initial search space range  0range  is calculated by taking 

the minimum of the data upper and lower bound and the 

largest distance of the swarm multiplied by a regrouping 

coefficient ρ (9). ρ is set to 5/6ε, where the stagnation 

threshold ε is set to 1.1e-4 as advised in [10]. Superscript 0 

indicates that regroup count r = 0, which means no 

regrouping has occurred. The initial velocity clamp 0
maxv  is 

calculated as a proportion of λ of  0range  (10). 

Velocity and position are updated every iteration depending 

on random numbers rnd1 and rnd2, cognitive constant c1, 

social constant c2, and inertia weight w which is set to decay 

with a constant rate of γ (11-13)[8]. xi and vi are clamped 

inside r  and  rvmax
respectively (14)[10]. Each particle in the 

swarm was queried with the fitness function in (5). pi and g 

are updated as a better fitted particle is found (15-16). 

Premature convergence is detected when the normalized 

swarm radius δ is lower than ε (17) [10]. When a premature 

convergence is detected, a regroup command is issued (18). 

On regroup, the regroup count r is incremented and the search 

space r  and velocity clamp rvmax
 for the current regroup are 

recalculated (19-21). The new r is obtained by observing the 

global best’s upper and lower bound added with the newly 

calculated search space range  rrange   (19-20). The 

positions of the particles are then randomized around the 

current global best g (22) [10]. The number of centroid is 

incremented afterwards incremented (23-24). A new cluster 

centroid 
1iNcC


is chosen by selecting the data vector 

farthestz
  

which has the largest Euclidian distance to its cluster centroid 

xij(t) (23). Note that every particle xi(t) is a collection of Nc 

centroid vectors (4). 
1iNcC


 is then appended to the end of the 

specified particle (24). The clustering progress can be seen in 

Fig.2. The sample of the clustered data can be seen in Fig.3. 

 

 



 

 

 

B. Gaussian Distribution of Clustered Knowledge Signal 

Fusion 

The Gaussian Distribution of Clustered Knowledge (GCK) 

method is inspired by the Monte Carlo Experiments in which 

it relies random probabilities. GCK takes advantage of the 

clustered patterns statistical characteristics. It refers every 

incoming input signal to the cluster centroids as seen in Fig.5 

and multiplexes it based on Gaussian characteristics of the 

cluster in which the signal is a member. This method, thus, is 

highly dependent on the quality and variability of training 

data provided and ultimately the quality of clusters. 

Firstly the input signal   is queried against the cluster 

Algorithm g = RegPSO_Cluster(S,Nc,Np,γ,c1,c2,λ,ε) 
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End For 

End If 

End While 

Fig. 4. Regrouping Particle Swarm Clustering Algorithm 
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Fig. 5.a. and b.Sample knowledge signals from 2 clusters. c. denotes a fall right 

signal, d. shows an ADL signal. Both signals in c. and d. are fused with 10 

GCK signals with A = 0.8 and B = 0.2.  Straight line in c. and d. are orig inal 

input signals  , while dashed lines are fused GCK signals   . 
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Fig. 8. MLP and ARBF Ensemble of Classifier 

centroids and passed through a Radial Basis Kernel (25) to 

get the rate of membership )(i
. Cluster I with the highest 

rate of membership is selected as the GCK seed. Knowledge 

signal y  is fabricated by generating a vector of Gaussian 

random number which mean 
I and standard deviation 

I are 

the mean and standard deviation of the cluster (26).   and 

the generated GCK signal y  is fused with a significance ratio 

of A:B to create signal    (27). The result of the algorithm 

is shown in Fig. 5. 
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C. Augmented Radial Basis Neural-Network 

Augmented Radial Basis Neural-Network (ARBF) has been 

previously used in time signal classification of head 

movement patterns with promising results. ARBF consists of 

an RBF layer and an MLP-NN augmentation layer as can be 

seen in Fig. 6. ARBF is reported to have a sensitivity 

advantage over conventional RBF and a specificity advantage 

over MLP [11]. 

The radial basis kernel used is the Gaussian radial function. 

The function can be described as a K-dimensional Gaussian 

distribution, where K is the dimension of the input. The 

output of the RBF layer is a vector of cluster membership. 

n and 
n corresponds to cluster centroids and the standard 

deviation of an RBF node. 

 
The RBF centroids are optimized using RegPSO as has 

been explained in section IV.A. The standard deviation 

corresponds to the specified cluster standard deviation, set to a 

minimum bound of 5 as in Fig.7.b, which gives the best 

training result. Effect of varying standard deviation thresholds 

can be seen in the membership rate graph in Fig.7. 

The MLP layer uses sigmoid kernel in the hidden layer and 

linear kernel in the output layer. No normalization method is 

required since the RBF layer has already normalized the input 

signals from 0 to 1. The MLP layer is trained with resilient 

back-propagation. 

 

D. Ensemble of MLP and ARBF 

Two classifiers are selected: Multilayer Perceptron (MLP), 

and ARBF. The classification scheme can be seen in Fig. 8. 

The combination between MLP and ARBF is selected because 

of the different characters that the two classifiers have. MLP 

networks perform better in global generalization while RBF-

kernel based classifiers like ARBF perform better in local 

generalization [11]. It is thus proposed that the ensemble will 

be superior in both sensitivity and specificity. 

The input to the ensemble is a collection of signals that 

consists of the original signal   and N GCK-Fused signals  . 

Each Neural Network outputs 1N classifications of the input 

vectors. The outputs are then combined based on majority 

vote. 

 
Fig.6. ARBF Configuration 

 
a. 

 
b. 

Fig. 7.a. Cluster Membership of a fall front signal with 12 ; b. Cluster 

membership of the same signal with 5  



 

 

V. DATA COLLECTION 

Data is divided into fall data and ADL. Training data is 

collected from 5 healthy volunteers, 2 females and 3 males. 

Outgroup test data is collected from 3 healthy male 

volunteers. The volunteers are aged between 19 and 28 years. 

Falls are performed on top of a mattress. A total of 293 fall 

signals were recorded. 153 signals were used for training, 140 

were used to test the system for ingroup performance, 85 fall 

signals were recorded to test outgroup performance. 

ADL training data was collected from 3 people. A total of 8 

hours of ADL is collected in a home environment. Another 

additional hour of exercise data in a gym environment is 

recorded from 2 individuals. 1831 ADL signals have been 

collected. 1000 randomly selected ADL signals were used for 

the training set while 831 were used for testing. 

VI. RESULTS AND DISCUSSIONS 

The collected data reflects the same quality mentioned in 

Chen. They reported that the recorded minimum impact of a 

fall is 3G. Acceleration magnitudes in ADL, except for heavy 

activities such as exercises rarely pass 3G [3]. 

Varying numbers of GCK signals with A = 0.8 and B = 0.2 

are generated on the experimental inputs. It is shown in Table 

I that the addition of GCK signals improves overall system 

sensitivity in expense of specificity. It is also shown that 

ARBF does not generalize outgroup data as well as MLP. 

The fall collection and testing was a highly challenging and 

time consuming task. Since most subjects are reluctant to fall, 

some of the falls are similar to sitting down or leaning. 

Another problem that is observed with the current training 

data is that the classifier works well only if the subject stays 

down after the fall. Break fall attempts are considered as 

positive falls as long as the subject falls in a specific impact 

magnitude and stays down afterwards. If the subject stands 

soon after the fall, the classifier will classify the fall as false. 

Based on this result, it is evident that collecting data of higher 

variability from more individuals would be required. 

VII. CONCLUSION 

Based on the experiment, it can be concluded that the 

proposed algorithm has so far given promising results on 

classifying falls based on a tri-axial accelerometer. DWT has 

successfully extracted essential features to characterize a fall. 

K-Means seeded RegPSO proves to be an ideal optimization 

tool for data clustering. The proposed GCK algorithm has 

shown to improve sensitivity with the expense of specificity. 

In this application, the ensemble of MLP and ARBF has 

proven to be more reliable than a standalone classifier. The 

current ensemble with GCK fusion has successfully achieved 

100% sensitivity on ingroup falls, 97.65% on outgroup falls, 

99.33% specificity on routine ADL, and 96.59% specificity on 

exercise ADL. 

In future research, additional data with higher variability 

will be required. Further analysis on fall related signals using 

other motion sensors such as gyroscope will need to be 

carried. In order to advance this research to a practical stage, 

we are currently embedding this algorithm under AndroidOS 

using the smartphone’s internal accelerometer. 
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GCK 

Signals 

ARBF MLP Ensemble MLP + ARBF 

Fall Sensitivity ADL Specificity Fall Sensitivity ADL Specificity Fall Sensitivity ADL Specificity 

Ingroup 

(N =140) 

Outgroup 

(N = 85) 

Routine 

(N = 450) 

Exercise 

(N = 381) 

Ingroup 

(N =140) 

Outgroup 

(N = 85) 

Routine 

(N = 450) 

Exercise 

(N = 381) 

Ingroup 

(N =140) 

Outgroup 

(N = 85) 

Routine 

(N = 450) 

Exercise 

(N = 381) 

0 92.59% 85.88% 100.00% 98.95% 96.43% 89.29% 99.33% 96.85% 96.43% 92.94% 100.00% 98.95% 

1 93.33% 87.94% 100.00% 98.95% 97.86% 94.12% 99.33% 95.80% 98.57% 94.12% 99.78% 98.43% 

2 95.56% 87.94% 100.00% 97.90% 97.86% 95.29% 99.33% 95.54% 98.57% 95.29% 99.78% 97.64% 

3 94.07% 91.76% 100.00% 97.90% 98.57% 95.29% 99.33% 95.54% 100.00% 95.29% 99.78% 97.38% 

4 94.07% 91.76% 99.78% 97.64% 98.57% 95.29% 99.33% 95.28% 100.00% 95.29% 99.56% 97.11% 

5 95.56% 88.24% 99.78% 97.11% 100.00% 95.29% 99.33% 95.28% 100.00% 97.65% 99.56% 96.85% 

10 96.30% 88.24% 99.78% 97.11% 100.00% 95.29% 99.33% 95.28% 100.00% 97.65% 99.33% 96.59% 

TABLE I: EXPERIMENTAL RESULTS 


