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Abstract 

Three-dimensional, micron-sized colloidal crystals comprised of gold nanospheres 

have been synthesised directly from a gold nanoparticle/methyl methacrylate (MMA) 

colloid by application of a 514 nm laser at 480 mW. An array of colloidal crystals can be 

created by translation of the glass substrate under the laser beam, after two minutes of 

irradiation at each site. Control experiments and calculations show that plasmon-induced 

localised heating of the gold nanoparticles contributes to the rapid formation of colloidal 

crystals. 

The effects of particle order and disorder on the optical response of three-dimensional 

structures containing 15 nm diameter gold nanospheres are investigated using the T-matrix 

technique. Calculations were performed on structures containing up to 163 particles. The 

ordered structures produce an additional extinction peak that is not present in the disordered 

structures. The position of this additional peak depends upon the inter-particle spacing. In 

the disordered structure this peak is therefore missing because the inter-particle spacing is 

not well-defined. 

The optical response of a simplified array of a one-dimensional chain of 15 nm 

diameter gold nanospheres in the regime where the near-fields of the particles are coupled 

is investigated using the T-matrix technique. Calculations are performed with chains up to 

150 particles in length and with an inter-particle spacing between 0.5 and 30 nm. For 

wavevectors perpendicular to the chain axis and longitudinal polarisation the extinction 

peak red-shifts as the inter-particle spacing is reduced. The magnitude of the peak-shift is 

inversely proportional to the inter-particle spacing, a result that is consistent with the Van 

der Waals attraction between two spheres at short range. For a fixed particle gap the 



 xviii  

extinction peak tends towards an asymptotic value with increasing chain length, with the 

asymptotic value determined by the inter-particle spacing. 

A nanoshell geometry that produces maximum absorption efficiency is investigated 

using a formulation of Mie theory. The calculated surface heat flux under sunlight (800 

W/m2) and laser (50 kW/m2) irradiation is used to determine the temperature of the 

nanoshell using a convective heat transfer model. For irradiation by sunlight, the resultant 

heat flux is optimised for an 80 nm diameter nanoshell with an aspect ratio of 0.8, while for 

irradiation by laser the maximum heat flux is found for 50 nm nanoshells, but with an 

aspect ratio of 0.9. 

A direct comparison between the absorption efficiencies of geometrically varying 

nanoshells and nanorods is performed using a formulation of Mie theory and the Discrete 

Dipole Approximation (DDA) technique, respectively. The absorption efficiency produced 

by nanorods far exceeds that produced by nanoshells for a constant volume of gold. 
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