STRUCTURE-FUNCTION STUDIES OF INSECTICIDAL ATRACOTOXINS

PhD Thesis SIMON GUNNING UTS 2009

ABSTRACT

Part I

The κ -atracotoxins (κ -ACTXs, previously the Janus-faced atracotoxins) are a family of five insect-selective excitatory peptide neurotoxins containing 36-37 residues with four disulfide bonds. Toxins from this family were isolated from the venom of the Blue Mountains funnel-web spider (Hadronyche versuta) and Toowooba funnel-web spider (Hadronyche infensa). The NMR solution structure and primary sequence of the prototypic member κ -ATCT-Hv1c provided few clues as to the likely molecular target. In order to characterise the site of action specificity of these toxins, phylogenetic whole-cell and patch-clamp electrophysiology was employed using isolated DUM neurons from the American cockroach (*Periplaneta americana*). κ-ACTX-Hv1c had no effect on the gating or kinetics of I_{Na} or I_{Ca} at concentrations up to 1 μ M. However, at the same concentration, κ -ATCT-Hv1c reduced K_v channel currents by 56 ± 7% (*n* = 5). Subsequent experiments in insect DUM neurons indicated that inhibition of the macroscopic I_{K} was due to a block of calcium-activated K_{v} (K_{Ca}) channels, with an IC₅₀ of 2.3 nM and 2.9 nM for peak and late $I_{K(Ca)}$ respectively (n = 5), and not 'A-type' or delayed-rectifier K_v channels. Insect selectivity was confirmed by a lack of activity on rat dorsal root ganglion (DRG) neuron global I_{K} as well as $I_{K(Ca)}$ at doses up to 1 μ M. κ -ACTX-Hv1c is a selective insect K_{Ca} (BK_{Ca}) channel poreblocker, not a gating modifier, as inhibition of insect $I_{K(Ca)}$ occurred in the absence of any voltage-dependent actions on channel activation. Specificity for the insect BK_{Ca} channel was validated by κ -ACTX-Hv1c induced inhibition of $I_{K(Ca)}$ from the cloned insect K_{Ca} channel α -subunit (*pSlo*) expressed in HEK293 cells (IC₅₀ of 240 nM). The 80-fold reduction in IC₅₀, most likely indicates that κ -ACTX-Hv1c interacts with the auxillary subunits that form part of the wild-type channel, in a manner similar to the BK_{Ca} blocker, charybdotoxin (ChTX), as previously reported. Phyletic selectivity of κ -ACTX-Hv1c was confirmed by the 9776-fold increase in IC₅₀ against *mSlo* channels. Interestingly κ -ACTX-Hv1c, like ChTX, failed to potently block the *dSlo* channel with the IC₅₀ >10 μ M.

Additional experiments on DUM neuron $I_{K(Ca)}$ using alanine mutants confirmed the pharmacophore of bioactive residues κ-ACTX-Hv1c comprises Arg⁸, Pro⁹, Val²⁹ and Tyr³¹, previously identified by acute toxicity tests in house flies (*Musca domestica*). Interestingly, the functionally critical Arg⁸ and Tyr³¹ residues align extremelyc well with the Lys-Phe/Tyr diad conserved amongst structurally dissimilar K_v channel toxins, providing a possible basis for targeting of the toxin to K^+ channels. Using a panel of 8 mutants (R8E, R8Q, R8K, R8H, Y31W, Y31F, Y31L and Y31V) the mechanism of interaction was investigated further. The Arg⁸ residue appears to interact with the channel via hydrogen bonding from the δ -guanido group to carbonyl groups on the extracellular surface of the channel, as evidenced by the high potency of the R8H mutant. The imidazole group of His is an adequate substitute for the δ -guanido group of arginine. In contrast the R8E, R8Q and R8K had reduced potency indicating that the positive charge of the amino group of Arg does not directly interact with the target nor is the alkyl group of Arg critical for binding to the target. The critically important Tyr³¹ interacts with the channel via non-specific hydrophobic interactions as substitution for an aromatic ring (Y31F & Y31W) maintains the potency of the toxin. In contrast substitution to small less hydrophobic side chains (Y31V, Y31L and Y31A) reduced potency. It appears therefore that Tyr³¹ in conjunction with IIe^2 and VaI^{29} , that lie at either side of the primary pharmacophore, appear to act as 'gasket' residues to exclude bulk solvent from disrupting the Arg⁸-channel interaction.

This study has identified κ -atracotoxins as potential lead compounds in the development of new biopesticides and validates insect BK_{Ca} channels as potential insecticide targets.

Part II

The second part of this thesis was to determine the target site for the 'hybrid' toxin FW178 from the venom of the Blue Mountains funnel-web spider (*H. versuta*). FW178 is a unique toxin that shares little homology to other known atracotoxins. In order to identify the site of action of this toxin, whole-cell patchclamp electrophysiology was employed using isolated DUM neurons from the American cockroach (*Periplaneta americana*). FW178 failed to inhibit insect I_{Na} , $I_{K(DR)}$ or $I_{K(A)}$ at doses up to 1 µM. However, further studies demonstrated that η-ACTX-Hv1a blocks voltage-gated calcium (Ca_V) channel currents in DUM neurons as well as $K_{(Ca)}$ channel currents carried by *pSlo* channels with IC₅₀ values of 409 nM and 671 nM, respectively. FW178 therefore blocks cockroach Ca_V currents with approximately the same potency as ω -ACTX-Hv1a, a known insect M-LVA and HVA Ca_V channel blocker, while it blocks cockroach *pSlo* channels with about a 4-fold lower potency than κ -ACTX-Hv1c.

Interestingly FW178 has an LD₅₀ of 38 ± 3 pmol/g when injected into *M. domestica* as compared to the LD₅₀ values for ω -ACTX-Hv1a (86.5 ± 1.3 pmol/g) and κ -ACTX-Hv1c (91 ± 5 pmol/g). This makes FW178 at least two-fold more potent than any other atracotoxin isolated from Australian funnel-web spiders. Despite this, FW178 only blocks cockroach Ca_V channels with a similar potency to ω -ACTX-Hv1a, and blocks cockroach BK_(Ca) with 4-fold less potency than κ -ACTX-Hv1c. Therefore the striking potency of FW178 may result from a synergistic action to block insect Ca_V and BK_(Ca) channels. Not surprising the pharmacophore of FW178 (refer section **4**.3) contains elements of the pharmacophore of both ω -ACTX-Hv1a and κ -ACTX-Hv1c. Thus FW178 directly block insect K_(Ca) channels, but the toxin also enhances this action by indirectly reducing current through these channels by block of the transient inward flow of calcium through Ca_V channels. Therefore FW178 represents the first known dual-target, self-synergizing toxin and is an excellent lead compound for the development of a novel insecticide.

ACKNOWLEDGEMENTS

Associate Professor Graham Nicholson has been a great mentor throughout my time at UTS. His astonishing wealth of knowledge and enthusiasm for research has inspired me to undertake many difficult scientific challenges. As such I have learnt an incredible amount of information relevant to pursuing a scientific career. I would also like to thank Graham for his extraordinary patience, assistance and friendship over the years. In addition I must also thank Professor Glenn King, Dr Frank Maggio and Dr Brianna M^cFarlane-Sollod from the University of Connecticut, for the supply of toxins used throughout this project. Furthermore the 3D NMR structures determined by Glenn and his team have been an invaluable source of information in determining the key structural-functional relationships of these toxins.

I would also like to thank the members of the Neurotoxin Research Group, past and present, for their guidance, support and friendship. In particular Michelle Little, Youmie Chong, Monique Lee and Ben Blacklow.

Finally I would also like to thank my family and friends for putting up with my moody temperament and numerous late night telephone calls.

TABLE OF CONTENTS

	• DISCLAIMER	I
	• ABSTRACT	II
	• ACKNOWLEDGEMENTS	v
	LIST OF FIGURES AND TABLES	XIII
	LIST OF ABBREVIATIONS	XIX
	• PUBLICATIONS ARISING FROM THIS THESIS	XXII
CHAP	PTER 1: INTRODUCTION	1
•	1.1: BIOPESTICIDES	2
	 1.1.1 Global Pest Problem 	2
	 1.1.2 Pesticide Usage 	3
	 1.1.3 Transgenic Plants 	5
	 1.1.4 Baculoviruses 	6
	 1.1.5 Recombinant Baculoviruses 	7
•	1.2: AUSTRALIAN FUNNEL WEB SPIDERS	9
•	1.3: AUSTRALIAN FUNNEL WEB SPIDER TOXINS	13
	 1.3.1 Spider Venoms 	13
	 1.3.2 Vertebrate-Selective Atracotoxins 	13
	 1.3.3 Invertebrate-Selective Atracotoxins 	17

CHAPTER 2: ION CHANNELS AND ION CHANNEL TOXINS	18
• 2.1 : Na _V CHANNELS	18
 2.1.1 Insect Na_V channels 	25
$_{\odot}$ 2.1.2 Na_v channel toxins and toxin binding sites	26
• 2.2 : K _V CHANNELS	32
\circ 2.2.1 Insect K _V channels	40
\circ 2.2.2 K _V channel toxins	41
• 2.3 Ca _V channels	44
 Insect Ca_V channels 	47
 Insect-selective Ca_V channel toxins 	48
CHAPTER 3: DORSAL UNPAIRED MEDIAN (DUM) NEURONS	50
• 3.1 : CHARACTERISTICS OF DORSAL UNPAIRED	
MEDIAN NEURONS FROM AMERICAN COCKROACHES	
PERIPLANETA AMERICANA	51
 3.1.1 Basic electrophysiological characteristics 	53
 3.1.2 Sodium currents 	55
 3.1.3 Potassium currents 	58
 3.1.4 Calcium currents 	64
CHAPTER 4: ATRACOTOXINS	69
• 4.1 : JANUS-FACED ATRACOTOXINS (J-ACTX's)	69
• 4.1.1 Toxicity of J-ACTX Family	70
 4.1.2 Structure of J-ACTX-Hv1c and 	

V	I	I	I	
-	-	-	-	

	р	harmacophore Mapping	72
	o 4.1.3 W	/hat is the target of J-ACTX-Hv1c?	75
•	4.2 : ω-ATRAC	OTOXINS	79
	• 4.2.1 S	tructure and function of the ω -ACTX-Hv1	
	F	amily	79
	o 4.2.2 In	sectophore mapping of ω-ACTX-Hv1a	82
	• 4.2.3 S	tructure and function of the ω -ACTX-Hv2	
	F	amily	83
	o 4.2.4 H	omology with ω -Agatoxin-IVA and	
	Р	ossible Mode of Action	86
•	4.3 : THE 'HYE	BRID' TOXIN FW178	88
	• 4.3.1 Te	oxicity of the 'hybrid' toxin Fw178	89
	• 4.3.2 S	tructure of the 'hybrid' toxin Fw178 and	
	р	harmacophore mapping	89
	o 4.3.3 W	/hat is the target of the 'hybrid' toxin Fw178?	91
•	4.4: THESIS A	AIMS AND OBJECTIVES	94
• CHAPTER	5: MATERIAL	S AND METHODS	98
•	5.1: INSECT E	ELECTROPHYSIOLOGICAL EXPERIMENTS	98
	o 5.1.1 R	esearch animals	98
	o 5.1.2 D	issection of DUM neurons	99
	o 5.1.3 E	nzyme treatment of DUM neurons	99
	o 5.1.4 T	rituration and tissue culture of DUM neurons	100
	o 5.1.5 P	reparation of tissue culture plates	101
	o 5.1.6 E	lectrophysiological whole-cell patch-clamp	
	S	et-up	101

	0	5.1.7 Microelectrodes and bath electrodes	102
	0	5.1.8 Electrophysiological solutions	103
	0	5.1.9 External and internal solutions for recording	
		Na ⁺ , K ⁺ and Ca ²⁺ currents from DUM neurons	103
	0	5.1.10 Voltage-clamp protocols	106
•	5.2 :	IDENTIFICATION OF DUM NEURONS	107
•	5.3 :	MAMMALIAN ELECTROPHYSIOLOGICAL	
		EXPERIMENTS	108
	0	5.3.1 Preparation of tissue culture plates	108
	0	5.3.2 Dissection and isolation of dorsal root ganglion	
		(DRG) neurons	109
	0	5.3.3 Enzyme treatment of DRG neurons	109
	0	5.3.4 Trituration and plating of DRG neurons	110
	0	5.3.5 External and internal solutions for recording	
		K ⁺ currents from DRG neurons	111
	0	5.3.6 Voltage-clamp protocols	111
•	5.4 :	SLO-CHANNEL ELECTROPHYSIOLOGICAL	
	EXPE	RIMENTS	112
	0	5.4.1 Slo channel expression in HEK293 cells	112
	0	5.4.2 External and internal solutions for recording	
		K _(Ca) currents from transfected HEK293 cells	113
	0	5.4.3 Voltage-clamp protocols	113
•	5.5 :	VERTEBRATE TOXICITY TESTING	113
•	5.6 :	DATA ANALYSIS	115

IX

•	5.7: SL	JPPLY OF CHEMICALS	116
CHAPTER	6: RESU	ILTS	117
•	6.1: DE	ETERMINATION OF THE TARGET SITE FOR	
	J-/	ACTX-HV1C	117
	0	6.1.1 Effect of J-ACTX-Hv1c on insect Na $_{\rm V}$ channels	118
	0	6.1.2 Effect of J-ACTX-Hv1c on insect Ca_V channels	120
	0	6.1.3 Effect of J-ACTX-Hv1c on macroscopic insect	
		K _v channels	122
	0	6.1.4 Effect of κ -ACTX-Hv1c on insect K _(DR) channels	125
	0	6.1.5 Effect of κ -ACTX-Hv1c on insect K _(A) channels	127
	0	6.1.6 Isolation of insect $K_{(Ca)}$ channels using	
		charybdotoxin (ChTX)	130
	0	6.1.7 Effect of κ -ACTX-Hv1c on insect K _(Ca) channels	133
	0	6.1.8 Effect of κ -ACTX-Hv1c on mammalian	
		K _(Ca) channels	139
	0	6.1.9 Effect of κ-ACTX-Hv1c on <i>pSlo</i> currents expressed	
		in HEK293 cells	141
	0	6.1.10 Effect of κ-ACTX-Hv1c on <i>dSlo</i> currents expressed	
		in HEK293 cells	145
	0	6.1.11 Effect of κ-ACTX-Hv1c on <i>mSlo</i> currents expressed	
		in HEK293 cells	148
	6.2 : E	FFECT OF ALANINE-SCANNING MUTANTS OF κ-ACTX-Ι	HV1C
	ON DL	JM NEURON K _{Ca} CHANNELS	150
	0	6.2.1 Preface	150
	0	6.2.2 R8A mutant	150
	0	6.2.3 Y31A mutant	152
	0	6.2.4 P9A mutant	154

Х

	0	6.2.5 V29A mutant	156
•	6.3	: DETERMING THE CHEMICAL FEATURES OF THE	
		TOXIN PHARMACOPHORE: FUNCTIONAL ROLE OF	
		ARG ⁸	158
	0	6.3.1 Preface	158
	0	6.3.2 R8E mutant	159
	0	6.3.3 R8Q mutant	159
	0	6.3.4 R8K mutant	160
	0	6.3.5 R8H mutant	163
•	6.4	: DETERMING THE CHEMICAL FEATURES OF	
		THE TOXIN PHARMACOPHORE: FUNCTIONAL	
		ROLE OF Tyr ³¹	165
	0	6.4.1 Preface	165
	0	6.4.2 Y31V mutant	165
	0	6.4.3 Y31L mutant	167
	0	6.4.4 Y31F mutant	169
	0	6.4.5 Y31W mutant	171
CHAPTER	7: R	ESULTS (Part II)	176
•	7.1	: DETERMINATION OF THE TARGET SITE FOR	
Т	HE 'ł	HYBRID' TOXIN FW178	176
	0	7.1.1 Preface	176
	0	7.1.2 Vertebrate Toxicity of the 'hybrid' toxin FW178	177
	0	7.1.3 Effect of the 'hybrid' toxin FW178 on insect Na_{V}	
		channels	179
	0	7.1.4 Effect of the 'hybrid' toxin FW178 on insect	
		Ca_V channels	181

XI

0	7.1.5 Effect of the 'hybrid' toxin FW178 on insect	
	$K_{(A)}$ and $K_{(DR)}$ channels	183
0	7.1.6 Effect of the 'hybrid' toxin FW178 on <i>pSlo</i> currents expressed in HEK293 cells	186
CHAPTER 8: DIS	SCUSION	190
0	8.1. What is the molecular target of κ -ACTX-Hv1c?	190
0	8.2 κ -ACTX-Hv1c targets insect BK _{Ca} channels	193
0	8.3 Interaction of the pharmacophore with the channel	
	target	197
0	8.3.1 The role of the critical arginine	198

0	8.6 Design of a novel chemical insecticide	205

8.5 BK_{Ca} channels, a potential insecticide target?

CHAPTER 9: THE 'HYBRID' TOXIN FW178 207

8.3.2 The role of the critical tyrosine

8.4 Model of κ -ACTX-Hv1c binding

CHAPTER 10: REFERENCES

0

0

0

211

200

201

203

LIST OF FIGURES AND TABLES

CHAPTER 1: INTRODUCTION

Fig 1.1: Partial taxonomy of Australian funnel-web spiders.	10
Fig 1.2: Hadronyche versuta is mainly distributed throughout the Blue Mountains region of New South Wales (NSW).	11
Fig 1.3: Adult male and female Hadronyche versuta.	12
Fig 1.4: Structural characteristics of the δ -ACTX family.	16
CHAPTER 2: ION CHANNELS AND ION CHANNEL TOXINS	
Fig 2.1: Schematic representation of the molecular structure and membrane topology of Na _V channels.	24
Fig 2.2: Localization of known neurotoxin receptor sites on Na $_{\rm V}$ channels.	31
Fig 2.3: Membrane topologies and main features of Kv and Kir potassium channel subtypes.	34
Fig 2.4: Schematic representation of the molecular structure and membrane topology of the α - and β -subunits of BK _{Ca} channels.	39
Fig 2.5 : HVA Ca _V channels typically comprise a single copy of each of the α_1 , α_2 - $\delta_1\beta$ and γ subunits, whereas LVA Ca _V channels consist of	
only the pore-forming α_1 subunit.	46

CHAPTER 3: DORSAL UNPAIRED MEDIAN (DUM) NEURONS

Fig 3.1: DUM neurons of the terminal abdominal ganglia (TAG) of the	
Cockroach Periplaneta americana.	52
Fig 3.2: Intrinsic spontaneous electrical activity in DUM neuron somata	
in vitro.	54
Table 3.1: Sodium currents in cockroach DUM neurons.	57
Table 3.2: Potassium and chloride induced currents in	
cockroach DUM neurons.	62
Table 3.3: Calcium currents in cockroach DUM neurons.	68
Fig 4.1: Structural characteristics of the J-ACTX-1 family.	71
Fig 4.2: The bioactive surface of J-ACTX-Hv1c.	75
Fig 4.2: Inhibitory Cysting Knot motif (ICK)	76
	70
Table 4.1: Sources and biological activity of cystine knot peptides.	77
Fig 4.4: Comparison of the primary structures of currently available	
members of the ω-ACTX-Hv1 family.	81
Fig 4.5 : Molecular surface of ω -ACTX-Hv1a illustrating the proposed	
interaction between residues in the β -hairpin and insect Ca _V channels.	83

Fig 4.6 : Comparison of the primary structures of currently available members of the ω- ACTX-Hv2 family.	85
Fig 4.7: Structural similarities between ω -ACTX-Hv2a and ω -agatoxin-IVA.	87
Fig 4.8 : Comparison of the mature toxin sequences of ω-ACTX-Hv1a, κ-ACTX-Hv1c and FW178.	88
Fig 4.9: Ribbon representation of FW178 hybrid toxin.	90
Fig 4.10: Pharmacophore of FW178.	91
Fig 4.11: Overlay of the pharmacophore of ω -ACTX-Hv1a, κ -ACTX-Hv1c and FW178.	93
CHAPTER 5: MATERIALS AND METHODS	
Table 5.1: Composition of external and internal solutions used for electrophysiological recordings of sodium currents from DUM neurons.	104
Table 5.1: Composition of external and internal solutions used for electrophysiological recordings of potassium currents from DUM neurons.	104
Table 5.3 : Composition of external and internal solutions used for electrophysiological recordings of calcium currents from DUM neurons.	105
Fig 5.1: Light micrographs of DUM neurons stained with neutral red.	107

XV

Table 5.4: Trypsin incubation times for newborn rats.	110
Table 5.5 : Composition of external and internal solutions used for electrophysiological recordings of potassium currents from DRG neurons.	111
Table 5.6: Composition of external and internal solutions used for electrophysiological recordings of $I_{K(Ca)}$ currents from transfected HEK293 cells.	113
CHAPTER 6: RESULTS	
Fig 6.1 : Effects of J-ACTX-Hv1c on Na _V channels in cockroach DUM neurons.	119
Fig 6.2 : Effects of J-ACTX-Hv1c on Ca _v channels in cockroach DUM neurons.	121
Fig 6.3: Effects of J-ACTX-Hv1c on K_V channels in cockroach DUM neurons.	124
Fig 6.4: Effects of κ -ACTX-Hv1c on K _(DR) channels in cockroach DUM neurons.	127
Fig 6.5: Effects of κ -ACTX-Hv1c on K _(A) channels in cockroach DUM neurons.	129
Fig 6.6 : To record $I_{K(Ca)}$ in isolation from other K_V channel currents a current subtraction routine following perfusion with the $K_{(Ca)}$ channel blockers ChTX and CdCl ₂ was used.	132

XVI

Fig 6.7 : к-АСТХ-Нv	1c blocks K _{Ca} channels in cockroach DUM neurons.	136
Fig 6.8 : к-АСТХ-Нv	1c and charybdotoxin share the same insecticidal targe	et. 138
Fig 6.9 : к-АСТХ-Нv	v1c failed to inhibit K_V channels in rat DRG neurons.	140
Fig 6.10: Inhibition of	of <i>pSlo</i> currents by TEA (10 mM) and ChTX (1 μ M)	143
Fig 6.11: Inhibition of	of <i>pSlo</i> currents by κ-ACTX-Hv1c.	144
Fig 6.12 : κ-ACTX-Η	Iv1c fails to significantly inhibit <i>dSlo</i> channels.	147
Fig 6.13 : κ-ΑСТΧ-Η	lv1c significantly inhibits <i>mSlo</i> channels.	149
Fig 6.14 : The mutar K _{Ca} chann	nt κ-ACTX-Hv1c constructs R8A & Y31A block nels in cockroach DUM neurons.	153
Fig 6.15: The mutar in cockroa	nt κ-ACTX-Hv1c construct P9A blocks K_{Ca} channels ach DUM neurons.	155
Fig 6.16: The mutar in cockroa	nt κ-ACTX-Hv1c construct V29A blocks K _{Ca} channels ach DUM neurons.	157
Fig 6.17 : The mutar K _{Ca} chann	nt κ-ACTX-Hv1c constructs R8E & R8Q block nels in cockroach DUM neurons.	160
Fig 6.18: The mutar in cockroa	nt κ-ACTX-Hv1c construct R8K blocks K _{Ca} channels ach DUM neurons.	162

Fig 6.19: The mutant $\kappa\text{-ACTX-Hv1c}$ construct R8H blocks K_{Ca} channels

in cockroach DUM neurons.	164
Fig 6.20 : The mutant κ-ACTX-Hv1c construct Y31V blocks K _{Ca} channels in cockroach DUM neurons.	166
Fig 6.21 : The mutant κ-ACTX-Hv1c construct Y31L blocks K _{Ca} channels in cockroach DUM neurons.	168
Fig 6.22 : The mutant κ-ACTX-Hv1c construct Y31F blocks K _{Ca} channels in cockroach DUM neurons.	170
Fig 6.23 : The mutant κ-ACTX-Hv1c construct Y31W blocks K _{Ca} channels in cockroach DUM neurons.	172
Fig 6.24 : Concentration-response curves for recombinant κ-ACTX-Hv1c mutants on cockroach DUM neuron <i>I</i> _{K(Ca)} .	174
Fig 6.25 : Comparison of fold-reductions in DUM neuron $I_{K(Ca)}$ IC ₅₀ and housefly LD ₅₀ .	175
CHAPTER 7: RESULTS	
Fig 7.1: Typical responses of the isolated chick biventer nerve-muscle preparation to 1 μ M FW178.	178
Fig 7.2: Effects of 'hybrid' toxin FW178 on Na∨ channels in cockroach DUM neurons.	180
Fig 7.3: The 'hybrid' toxin FW178 blocks Ca_V channels in cockroach DUM neurons.	183

XVIII

Fig 7.4 Effects of 'hybrid' toxin FW178 on macro comprising $I_{K(A)}$ and $I_{K(DR)}$ in cockroach [oscopic K _V channels DUM neurons. 180
Fig 7.5: Block of K _V channel currents by the 'hyl absence of ChTX.	brid' toxin FW178 in the 18
Fig 7.6: Inhibition of <i>pSlo</i> currents by the 'hybric	J' toxin FW178. 190
CHAPTER 8: DISSCUSION	
Figure 8.1: Alignment of the pore region of verters Slo channels.	ebrate and invertebrate 194

Table 8.1: Phyletic-selectivity of κ -ACTX-Hv1c and ChTX for K_{Ca} channels.196

LIST OF ABBREVIATIONS

ACh	Acetylcholine
ACTX	Atracotoxin
AP	Action Potential
ATP	Adenosine tri-phosphate
α-BGT	α-Bungarotoxin
α-LTx	α-Latrotoxin
α -ScTX	α -Scorpion toxin
4-AP	4-amino pyridine
BAPTA	1,2-bis-(2-aminophenoxy)ethane-N,N,N,N-tetra acetate
BK _{Ca}	Large-conductance Ca ²⁺ -activated K ⁺ channels
BTX	Batrachotoxin
β-Sctx	β-Scorpion toxin

CAMs	Cell adhesion molecules
CF-NIS	Ca ²⁺ -free normal insect saline
CICR	Ca ²⁺ -induced Ca ²⁺ -release
ChTX	Charybdotoxin
CMF-PBS	Ca ²⁺ -and Mg ²⁺ -free phosphate buffered saline
DHP	Dihydropyridine
DRG	Dorsal Root Ganglion
DUM	Dorsal Unpaired Median
ET ₅₀	Time to 50% paralysis/death
GABA	γ-aminobutyric acid
GSH	Glutathione
GST	Glutathione-S-transferase
HaTX-1	Hanatoxin-1
HEK293	Human embryonic kidney 293 cells
НрТХ	Heteropodatoxin
HoTx	Hololenatoxin
IBX	Iberiotoxin
ICK	Inhibitory cystine knot
IFM	Hydrophobic triad of isoleucine, phenylalanine and methionine
lg	Immunoglobulin
i.p	Intraperitoneal
I _{Ca(tLVA)}	Transient low voltage-activated calcium current
I _{Ca(mLVA)}	Maintained low voltage-activated calcium current
I _{Ca(HVA)}	High voltage-activated calcium current
I _{Ca(r)}	Calcium resting current
I _{Cl(Ca)}	Calcium-activated chloride current
I _{K(A)}	'A-like' potassium current
I _{K(tCa)}	Transient calcium-activated potassium current
I _{K(mCa)}	Maintained (or Late) calcium-activated potassium current
I _{K(DR)}	Delayed rectifier potassium current
I _{K(IR)}	Inward rectifier potassium current

I _{K(r)}	Potassium resting current
I _{K(t)}	Total (macroscopic) potassium current
I _{K(Na)}	Sodium-activated potassium current
I _{Na}	Sodium current
I _(mNa)	Maintained sodium current
I _(rNa)	Sodium resting (or background) current
LA	Local Anesthetics
MSG	Mushroom shaped accessory gland
NIS	Normal insect saline
NMR	Nuclear magnetic resonance
NPPB	5-nitro-2-(3-phenylpropylamino) benzoic acid
NSW	New South Wales
NVPs	Nucleopolyhedroviruses
PLTX	Plectreurys spider toxin
rp-HPLC	Reversed phase high performance liquid chromatography
SITS	4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid
SK _{Ca}	Small-conductance Ca ²⁺ -activated K ⁺ channels
dSlo	Drosophila Slo-poke potassium channel
mSlo	Murine Slo-poke potassium channel
pSlo	Periplaneta Slo-poke potassium channel
STX	Saxitoxin
TAG	Terminal abdominal ganglion
TEA-CI	Tetra ethyl ammonium chloride
ТТХ	Tetrodotoxin
VGCC	Voltage-gated calcium channels

VGKC

VGSC

VUM

Voltage-gated potassium channels Voltage-gated sodium channels

Ventral Unpaired Median

PUBLICATIONS ARISING FROM THIS THESIS

PATENTS

 King GF, Sollod McFarland B, Nicholson GM, Gunning SJ (2005) INSECTICIDAL POLYPEPTIDES AND METHODS OF USE THEREOF. United States Provisional Application Serial No. 11/267,815 filed on November 4, 2005

PUBLICATIONS IN REFEREED JOURNALS AND MONOGRAPHS

IF = 2006 Science Citation Index journal impact factor; Cites = Times Cited

- [1] Gunning SJ, Maggio FJ, Windley MJ, Valenzuela SM, King GF, Nicholson GM (2008) The Janus-faced atracotoxins are specific blockers of invertebrate K_{Ca} channels. *FEBS Journal*, 275, 4045-4059. (IF = 3.033; Cites = 0)
- [2] Birinyi-Strachan LC, Gunning SJ, Lewis RJ, Nicholson GM (2005) Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons. *Toxicology and Applied Pharmacology*, 204, 175-186. (4.722; Cites = 7)
- [3] Gunning SJ, Chong Y, Khalife AA, Hains PG, Broady KW, Nicholson GM (2003) Isolation of δ-missulenatoxin-Mb1a, the major vertebrate-active spider d-toxin from the venom of *Missulena bradleyi* (Actinopodidae). *FEBS Letters*, 554, 211-218. (3.372; Cites = 7)

PAPERS IN PREPARATION

[4] Gunning S, Sollod BL, Wen S, Quinton L, Chamot-Rooke J, Escoubas P, Nicholson GM, King GF (2008) Evolution of a dual-target, self-synergizing ion channel toxin. *Science*, in preparation.

INTERNATIONAL CONFERENCE PROCEEDINGS

- [1] Nicholson GM, Gunning SJ, Maggio FJ, Windley MJ, Valenzuela SM, King GF (2008) Identifying novel insecticide targets using insect-specific spider toxins. 3rd International Congress on Natural Peptides to Drugs, Zermatt, Switzerland 14-17 April, 2008.
- [2] Sollod BL, Gunning S, Wen S, Nicholson GM, King, GF (2006) A dual-target, self-synergizing toxin from spider venom. 15th World Congress on Animal, Plant and Microbial Toxins, Glasgow, Scotland, 24-28 July, 2006
- [3] Gunning SJ, Maggio F, Valenzuela S, Broady KW, King GF, Nicholson GM (2006) Pharmacophore mapping of the κ-atracotoxins: selective insect potassium channel blockers that reveal a novel insecticide target. 15th World Congress on Animal, Plant and Microbial Toxins, Glasgow, Scotland, 24-28 July, 2006.
- [4] Gunning SJ, Maggio F, Valenzuela S, Broady KW, King GF, Nicholson GM (2005) Selective actions of □κ-atracotoxins on insect KCa channels: electrophysiological validation of the insect target and pharmacophore. 7th Asia-Pacific Congress on Animal, Plant and Microbial Toxins, Cebu City, Philippines, 25-28 October, 2005.
- [5] Sollod BL, Gunning SJ, Wen S, Nicholson GM, King GF (2005) Evolution of a dual target, selfsynergizing toxin: implications for insecticide and pharmaceutical discovery. Venoms to Drugs 3, Heron Island, 28 August - 2 September, 2005.

- [6] Gunning SJ, Maggio F, Valenzuela S, Broady KW, King GF, Nicholson GM (2005) κ-Atracotoxins: Insect potassium channels blockers that reveal a novel insecticide target Venoms to Drugs 3, Heron Island, 28 August - 2 September, 2005.
- [7] Gunning SJ, Maggio F, King GF, Nicholson GM (2004) κ-Atracotoxins: Insect potassium channels blockers that reveal a novel insecticide target. 8th Symposium of the Pan-American Section of the International Society of Toxinology, Angra dos Reis, Brazil, 19-23 September 2004.
- [8] Gunning SJ, Chong Y, Khalife AA, Hains PG, Broady KW, Nicholson GM (2003) Discovery of a novel sodium channel neurotoxin δ-missulenatoxin-Mb1a from the venom of the Eastern mouse spider *Missulena bradleyi*. 14th World Congress on Animal, Plant and Microbial Toxins, Adelaide, 14-19 September 2003.
- [9] Gunning SJ, Maggio F, King GF, Nicholson GM (2003) Do insecticidal J-atracotoxins target insect potassium channels? 14th World Congress on Animal, Plant and Microbial Toxins, Adelaide, 14-19 September 2003.
- [10] Gunning S, Khalife A, Padula M, Smith R, Broady KW and Nicholson GM (2002) Modulation of sodium channel gating and kinetics by δ-missulenatoxin-Mb1a from the Australian eastern mouse spider *Missulena bradleyi*. 6th Asia-Pacific Congress on Animal, Plant and Microbial Toxins, Cairns, 8-12 July 2002

LOCAL CONFERENCE PROCEEDINGS

[1] Gunning SJ, Maggio FJ, Valenzuela SM, King GF, Nicholson GM (2007) Mapping the insectophore of κ-atracotoxins: insect-selective BKCa channel blockers that reveal a novel insecticide target. Proceedings of the Australian Physiological Society, 38, 37P. Newcastle, 2-5 December, 2007

RNSH

RNSH

- [4] GunniXXIIIg SJ, Maggio F, Valenzuela, SM, King GF, Nicholson GM (2004) κ-Atracotoxins: Insect potassium channels blockers that reveal a novel insecticide target. 21th RNSH/UTS Scientific Meeting, Sydney, November 2004
- [5] Gunning SJ, Maggio F, King GF, Nicholson GM (2003) Do insecticidal J-atracotoxins target insect potassium channels? 20th RNSH/UTS Scientific Meeting, Sydney, November 2003
- [6] Gunning SJ, Chong Y, Khalife AA, Hains PG, Broady KW, Nicholson GM (2003) Discovery of a novel sodium channel neurotoxin δ-Missulenatoxin-Mb1a from the venom of the Eastern Mouse spider Missulena bradleyi. 20th RNSH/UTS Scientific Meeting, Sydney, November 2003
- [7] Gunning SJ, Khalife AA, Padula M, Smith R, Broady KW, Nicholson GM (2002) Isolation and pharmacological characterisation of the neurotoxin δ-Missulenatoxin-Mb1a from the Eastern Mouse spider Missulena bradleyi. 19th RNSH/UTS Scientific Meeting, Sydney, November 2002