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ABSTRACT 
Part I 
 

The -atracotoxins (-ACTXs, previously the Janus-faced atracotoxins ) are a 

family of five insect-selective excitatory peptide neurotoxins containing 36-37 

residues with four disulfide bonds. Toxins from this family were isolated from the 

venom of the Blue Mountains funnel-web spider (Hadronyche versuta) and 

Toowooba funnel-web spider (Hadronyche infensa). The NMR solution structure 

and primary sequence of the prototypic member -ATCT-Hv1c provided few 

clues as to the likely molecular target. In order to characterise the site of action 

and phylogenetic specificity of these toxins, whole-cell patch-clamp 

electrophysiology was employed using isolated DUM neurons from the American 

cockroach (Periplaneta americana). -ACTX-Hv1c had no effect on the gating or 

kinetics of INa or ICa at concentrations up to 1 M. However, at the same 

concentration, -ATCT-Hv1c reduced Kv channel currents by 56 ± 7% (n = 5). 

Subsequent experiments in insect DUM neurons indicated that inhibition of the 

macroscopic IK was due to a block of calcium-activated Kv (KCa) channels, with 

an IC50 of 2.3 nM and 2.9 nM for peak and late IK(Ca) respectively (n = 5), and not 

‘A-type’ or delayed-rectifier Kv channels. Insect selectivity was confirmed by a 

lack of activity on rat dorsal root ganglion (DRG) neuron global IK as well as IK(Ca) 

at doses up to 1 µM. -ACTX-Hv1c is a selective insect KCa (BKCa) channel pore-

blocker, not a gating modifier, as inhibition of insect IK(Ca) occurred in the absence 

of any voltage-dependent actions on channel activation. Specificity for the insect 

BKCa channel was validated by -ACTX-Hv1c induced inhibition of IK(Ca) from the 

cloned insect KCa channel -subunit (pSlo) expressed in HEK293 cells (IC50 of 

240 nM). The 80-fold reduction in IC50, most likely indicates that -ACTX-Hv1c 

interacts with the auxillary subunits that form part of the wild-type channel, in a 

manner similar to the BKCa blocker, charybdotoxin (ChTX), as previously 

reported. Phyletic selectivity of -ACTX-Hv1c was confirmed by the 9776-fold 
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increase in IC50 against mSlo channels. Interestingly -ACTX-Hv1c, like ChTX, 

failed to potently block the dSlo channel with the IC50 >10 µM. 

 

Additional experiments on DUM neuron IK(Ca) using alanine mutants 

confirmed the pharmacophore of bioactive residues -ACTX-Hv1c comprises 

Arg8, Pro9, Val29 and Tyr31, previously identified by acute toxicity tests in house 

flies (Musca domestica). Interestingly, the functionally critical Arg8 and Tyr31 

residues align extremelyç well with the Lys-Phe/Tyr diad conserved amongst 

structurally dissimilar Kv channel toxins, providing a possible basis for targeting of 

the toxin to K+ channels. Using a panel of 8 mutants (R8E, R8Q, R8K, R8H, 

Y31W, Y31F, Y31L and Y31V) the mechanism of interaction was investigated 

further. The Arg8 residue appears to interact with the channel via hydrogen 

bonding from the -guanido group to carbonyl groups on the extracellular surface 

of the channel, as evidenced by the high potency of the R8H mutant. The 

imidazole group of His is an adequate substitute for the -guanido group of 

arginine. In contrast the R8E, R8Q and R8K had reduced potency indicating that 

the positive charge of the amino group of Arg does not directly interact with the 

target nor is the alkyl group of Arg critical for binding to the target. The critically 

important Tyr31 interacts with the channel via non-specific hydrophobic 

interactions as substitution for an aromatic ring (Y31F & Y31W) maintains the 

potency of the toxin. In contrast substitution to small less hydrophobic side 

chains (Y31V, Y31L and Y31A) reduced potency. It appears therefore that Tyr31 

in conjunction with IIe2 and Val29, that lie at either side of the primary 

pharmacophore, appear to act as ‘gasket’ residues to exclude bulk solvent from 

disrupting the Arg8-channel interaction.  

This study has identified -atracotoxins as potential lead compounds in the 

development of new biopesticides and validates insect BKCa channels as 

potential insecticide targets. 
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Part II 

 

The second part of this thesis was to determine the target site for the ‘hybrid’ 

toxin FW178 from the venom of the Blue Mountains funnel-web spider (H. 

versuta). FW178 is a unique toxin that shares little homology to other known 

atracotoxins. In order to identify the site of action of this toxin, whole-cell patch-

clamp electrophysiology was employed using isolated DUM neurons from the 

American cockroach (Periplaneta americana). FW178 failed to inhibit insect INa , 

IK(DR) or IK(A) at doses up to 1 µM. However, further studies demonstrated that -

ACTX-Hv1a blocks voltage-gated calcium (CaV) channel currents in DUM 

neurons as well as K(Ca) channel currents carried by pSlo channels with IC50 

values of 409 nM and 671 nM, respectively. FW178 therefore blocks cockroach 

CaV currents with approximately the same potency as -ACTX-Hv1a, a known 

insect M-LVA and HVA CaV channel blocker, while it blocks cockroach pSlo 

channels with about a 4-fold lower potency than -ACTX-Hv1c. 

Interestingly FW178 has an LD50 of 38  3 pmol/g when injected into M. 

domestica as compared to the LD50 values for -ACTX-Hv1a (86.5  1.3 pmol/g) 

and -ACTX-Hv1c (91  5 pmol/g). This makes FW178 at least two-fold more 

potent than any other atracotoxin isolated from Australian funnel-web spiders. 

Despite this, FW178 only blocks cockroach CaV channels with a similar potency 

to -ACTX-Hv1a, and blocks cockroach BK(Ca) with 4-fold less potency than -

ACTX-Hv1c. Therefore the striking potency of FW178 may result from a 

synergistic action to block insect CaV and BK(Ca) channels. Not surprising the 

pharmacophore of FW178 (refer section 4.3) contains elements of the 

pharmacophore of both -ACTX-Hv1a and -ACTX-Hv1c. Thus FW178 directly 

block insect K(Ca) channels, but the toxin also enhances this action by indirectly 

reducing current through these channels by block of the transient inward flow of 

calcium through CaV channels. Therefore FW178 represents the first known dual-

target, self-synergizing toxin and is an excellent lead compound for the 

development of a novel insecticide.  
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IK(DR)                                                                                                            Delayed rectifier potassium current 

IK(IR)                                                                            Inward rectifier potassium current 
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IK(r)                                                                                                                                     Potassium resting current 

IK(t)                                                                           Total (macroscopic) potassium current 

IK(Na)                                                                         Sodium-activated potassium current 

INa                                                                                                                                                              Sodium current 

I(mNa)                                                                                                                                Maintained sodium current 

I(rNa)                                                                                                     Sodium resting (or background) current 

LA                                                                                                      Local Anesthetics 

MSG                                                                         Mushroom shaped accessory gland 

NIS                                                                                                 Normal insect saline 

NMR                                                                                  Nuclear magnetic resonance 

NPPB                                                         5-nitro-2-(3-phenylpropylamino) benzoic acid 

NSW                                                                                                  New South Wales 

NVPs                                                                                         Nucleopolyhedroviruses 

PLTX                                                                                          Plectreurys spider toxin 

rp-HPLC                                  Reversed phase high performance liquid chromatography 

SITS                                           4-acetamido-4’-isothiocyanostilbene-2,2’-disulfonic acid 

SKCa                                                                                   Small-conductance Ca2+-activated K+ channels 

dSlo                                                                    Drosophila Slo-poke potassium channel 

mSlo                                                                         Murine Slo-poke potassium channel 

pSlo                                                                   Periplaneta Slo-poke potassium channel  

STX                                                                                                                Saxitoxin 

TAG                                                                                  Terminal abdominal ganglion 

TEA-Cl                                                                           Tetra ethyl ammonium chloride 

TTX                                                                                                           Tetrodotoxin 

VGCC                                                                           Voltage-gated calcium channels 

VGKC                                                                        Voltage-gated potassium channels  

VGSC                                                                            Voltage-gated sodium channels 

VUM                                                                                       Ventral Unpaired Median 
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