UNIVERSITY OF TECHNOLOGY, SYDNEY

Design of a Parallel Shoulder Assistive Robot with

Pneumatic Muscle Actuators
by

Ruiyi Tang

A thesis submitted for the degree of Master by Research
in the
Faculty of Engineering and IT

Physical Human Robot Interaction Group

February 2013






Declaration of Authorship

I, Ruiyi Tang, declare that this thesis titled “Design of a Parallel Shoulder Assistive Robot with

Pneumatic Muscle Actuators” and the work presented in it are my own. I confirm that:

® this work was done wholly or mainly while in candidature for a research degree at this

University

® where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated
® where | have consulted the published work of others, this is always clearly attributed

® where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work
® | have acknowledged all main sources of help

® where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:




Abstract

Abstract

Given the increasing stroke incidence and ageing population, robotic assistance for people suffering
from physically weak upper limbs in their activities of daily life (ADL) is becoming more
promising. However, most of the current upper limb assistive robots (or upper limb exoskeletons)
are bulky and heavy when designed to meet the requirements of sufficient degrees of freedom
(DoFs), workspace and joint torques. The objective of this thesis is to develop dynamic models of
pneumatic actuators and design a new mechanism towards developing a compact and lightweight
upper limb exoskeleton, while providing proper kinematic capability to assist a human’s upper

limbs in their ADL.

This research first focused on parallel mechanisms given their advantages of compactness and high
stiffness. Multiple parallel mechanisms are reviewed in terms of their capability in delivering 3D
rotational motion and safety concerning the forces transmitted to the shoulder joint when
mechanisms are applied as a shoulder joint. Then, a 3UPU wrist mechanism is selected given its
superior kinematic capability. An alternative forward kinematics solution for the 3UPU wrist
mechanism is presented so that the upper limb’s orientation can be estimated using the universal

joint’s rotation angles on the base, rather than measuring the mechanism’s limb length.

Pneumatic muscle actuators (PMAs) are then selected for driving the robotic exoskeleton because
of their superiority of high strength-to-weight ratio and inherent elasticity. An enhanced dynamic
force model is developed to depict the PMA’s nonlinear relationship between its length, pressure
and external load. By introducing a model of Coulomb friction element, this dynamic force model
overcomes the problems related to the current over-simplified models. The improvement of this
enhanced model is evidently witnessed in situations where softer and more elastic PMAs are

pressurised to perform large contractions.

A 3UPU wrist mechanism test rig that can measure the universal joint angles is developed for
verifying the mechanism’s inverse kinematics and the proposed alternative forward kinematics.
Experimental results validated the inverse kinematics of this mechanism in most cases and verified
the solutions of platform orientation obtained from the alternative forward kinematics. A prototype

exoskeleton is developed based on the 3UPU wrist mechanism, and is used to test the performance
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of the PMAs and the 3UPU wrist mechanism. A proportional—integral (PI) controller is used for the
PMA position control. Two basic ADL movements are tested on the prototype. The experimental

results and future work are then discussed.
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Abbreviations

Abbreviations

ADL Activities of Daily Life

CVT Continuously Variable Transmission

DoF(s) Degree(s) of Freedom

EAP Electroactive Polymer

MU Inertial Measurement Unit

PI Proportional—integral (Controller)

PID Proportional—integral—derivative (Controller)

PMA/PM Actuator Pneumatic Muscle Actuator

PWM Pulse width modulation

ROM Range(s) of Motion

SMA Shape Memory Alloy

2D Two dimensional

3D Three dimensional

3UPU Three Universal-Prismatic-Universal joint limbs (Mechanism)

nSPS+S n Spherical-Prismatic-Spherical joint limbs plus one passive Spherical joint
(Mechanism)

3RRR Three Revolute-Revolute-Revolute joint limbs (Mechanism)

3RPS Three Revolute-Prismatic-Revolute joint limbs (Mechanism)

3UPS+S Three Universal-Prismatic-Spherical joint limbs plus one passive Spherical
joint (Mechanism)

3UPU wrist Three Universal-Prismatic-Universal joint limbs pure rotational (Mechanism)



Nomenclature

Nomenclature

{OA.'XAYAZA}

LI

=~

={0}

ZO]OAAi

oL, 60
06

P($)

O’ OA: OB

A[,B[(i:I,Z, 3)

0, 0,

Y4, I'B

ha, h

General Style

Coordinate frame with origin at point O, and axis X, Y4, and Z,
Differentiation and quadratic differentiation of a variable

Vector

Vector [ in coordinate frame {O}

Absolute value

Vector length and normalised vector
Angle between vector 0,0, and O,A. atpoint O,

Transpose of a matrix

Virtual displacement, virtual rotation angle

Partial derivative of variable &

Variable P as a time dependent

Specific Symbol Usage for 3UPU Wrist Mechanism
Geometric Points

The intersection point of the revolute pairs’ axes from both the platform and the
base, from the base, and from the platform in the 3UPU wrist, respectively

Rotation centre of universal joints on the base and platform connected to the i
limb, respectively

Plane centre (circular centre) of the base and platform plane, respectively
Geometric Constants and Variables
Length of |[4,0,| and |B;O|, respectively

Distance from rotation centre O to the circular centre of base O; and O,

X1



Nomenclature

platform plane, respectively

0. 06,,0. Rotation angles of the platform relative to the base at point O, around X, Y and

Z axis, respectively

Angular velocity and angular acceleration of the platform

n=(:n,,1.)

Osair Opai Rotation angles in the i universal joint on the base around axis Xj; and axis Yy,
respectively
Oxis Oyi Angular velocity in the i universal joint on the base around axis X, and axis

Y4, respectively
I; Length of the i limb
Coordinate Frames

{04}, {Op} Coordinate frame with origin at point O, and Og, attached to the immobile base

and moving platform, respectively

{4i: X4iY0iZ i} Immobile that is attached to immobile part of the ith universal joint that is

adjacent to the base.

{O4i: Xo4iYo4iZo4;} mobile that is attached to the moving part of the ith universal joint that is

adjacent to the base.
Matrices

R, R, R, R, Rotation matrix from platform to base, rotation matrix for around X, Y and Z

axis alone, respectively

Roai Rotation matrix from coordinate frame {4;} to frame {O;}

Ry Rotation matrix from coordinate frame {O,} to frame {4;}

J Jacobian matrix

Z., S The vector representing the i 1imb part and unit vector in the same direction,
respectively

D Objective function index of workspace optimisation

Specific Symbol Usage for PMA

F(x, P) PMA force determined by variable contraction length x and pressure P

Xil



Nomenclature

Foaic(x, P) Static PMAA force determined by variable contraction length x and pressure P
F..(P) Force exerted by the contractile element

Fadgjusi(x) Adjustment force added on static force to eliminate estimation error
Feoutomp(X) Coulomb friction force

Fpamp(x) Damping force

x(f), x(t), X(¢) Contraction length, linear contraction velocity and contraction acceleration

L(?) Length of the PMA

D(?) Diameter of the PMA

Ly Normal length of the PMA

P(%) Pressure in the i PMA

K(x, P) Stiffness of spring element parameterised by contraction length and pressure
K;, K> Coefficients of stiffness of spring element

S1, S5, S3 Coefficients of passive element

C; Coefficients of contractile element

N;, N>, Ny Coefficients of Coulomb friction force

D;, D, Viscous damping friction force coefficient

b Total length of the outer mesh threads of the PMA
n Turns of threads of the outer mesh of the PMA

u Viscosity of air gas

v(t) Velocity of air
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