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ABSTRACT

Financial early warning system aims to warn of the impending critical financial status
of an organization. A financial early warning system is more than a classical
prediction model and should provide an explanatory analysis to describe the reasons
behind the failure; the explanatory ability of a system is as important as its predictive
accuracy. In addition, failure prediction is intrinsically a class imbalance problem in
which the number of failed cases is much less than the number of survived cases.
Also, the vagueness in the value of predictors is an inevitable problem which has
emerged in the uncertain environment of the finance industry. Scarcity of training
data is another critical problem in finance industry; a new type of financial early
warning system, which can be transferred and modified for different domains to
transfer knowledge to new prediction domain, is highly desirable in practical
applications because it is easy to install and cheap to setup.

To achieve the aforementioned properties, this study develops algorithms, methods
and approaches in the case of bank failure prediction. First, a novel parametric
adaptive inference-based fuzzy neural network approach is devised to predict
financial status accurately and generate valuable knowledge for decision making. It
handles the imbalance problem and the vagueness in features’ value using parametric
learning and rule generation algorithms. Second, a fuzzy domain adaptation method is
developed to transfer knowledge from a related old problem to the problem under
consideration and the labels are then predicted with a high level of accuracy. This
method handles the data scarcity problem and enables the financial early warning
system to be transferrable between prediction domains which are different in data
distribution. Third, a fuzzy cross-domain adaptation approach is proposed to make
the financial early warning system transferable from different but related domains to

the current domain. This approach handles the problem in which the feature spaces of



prediction domains are different and have vague value. This approach selects the
significant fuzzy predictors in the current prediction domain by transferring
knowledge from the related prediction domains.

The proposed algorithms, methods and approaches are validated and benchmarked in
each step of development using experiments performed on real world data. The
results show that this study significantly enhances predictive accuracy at different
stages of development. Finally a case study is performed to integrate and validate the
proposed methods and approaches using Australian banking system data. The results
demonstrate that this study successfully solves the abovementioned problems and

significantly outperforms existing methods.
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