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Abstract 

Payload-based Anomaly Detection in HTTP Traffic 

Internet provides quality and convenience to human life but at the same time it provides 

a platform for network hackers and criminals. Intrusion Detection Systems (IDSs) have 

been proven to be powerful methods for detecting anomalies in the network. Traditional 

IDSs based on signatures are unable to detect new (zero days) attacks. Anomaly-based 

systems are alternative to signature based systems. However, present anomaly detection 

systems suffer from three major setbacks: 

(a) Large number of false alarms, 

(b) Very high volume of network traffic due to high data rates (Gbps), and  

(c) Inefficiency in operation. 

In this thesis, we address above issues and develop efficient intrusion detection 

frameworks and models which can be used in detecting a wide variety of attacks 

including web-based attacks. Our proposed methods are designed to have very few false 

alarms. We also address Intrusion Detection as a Pattern Recognition problem and 

discuss all aspects that are important in realizing an anomaly-based IDS. 

We present three payload-based anomaly detectors, including Geometrical Structure 

Anomaly Detection (GSAD), Two-Tier Intrusion Detection system using Linear 

Discriminant Analysis (LDA), and Real-time Payload-based Intrusion Detection System 

(RePIDS), for intrusion detection. These detectors perform deep-packet analysis and 

examine payload content using n-gram text categorization and Mahalanobis Distance 

Map (MDM) techniques. An MDM extracts hidden correlations between the features 

within each payload and among packet payloads. GSAD generates model of normal 

network payload as geometrical structure using MDMs in a fully automatic and 

unsupervised manner. We have implemented the GSAD model in HTTP environment 

for web-based applications. 
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For efficient operation of IDSs, the detection speed is a key point. Current IDSs examine 

a large number of data features to detect intrusions and misuse patterns. Hence, for 

quickly and accurately identifying anomalies of Internet traffic, feature reduction 

becomes mandatory. We have proposed two models to address this issue, namely two-

tier intrusion detection model and RePIDS.  

Two-tier intrusion detection model uses Linear Discriminant Analysis approach for 

feature reduction and optimal feature selection. It uses MDM technique to create a 

model of normal network payload using an extracted feature set. 

RePIDS uses a 3-tier Iterative Feature Selection Engine (IFSEng) to reduce 

dimensionality of the raw dataset using Principal Component Analysis (PCA) technique. 

IFSEng extracts the most significant features from the original feature set and uses 

mathematical and graphical methods for optimal feature subset selection. Like two-tier 

intrusion detection model, RePIDS then uses MDM technique to generate a model of 

normal network payload using extracted features. 

We test the proposed IDSs on two publicly available datasets of attacks and normal 

traffic. Experimental results confirm the effectiveness and validation of our proposed 

solutions in terms of detection rate, false alarm rate and computational complexity.  
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CHAPTER 1  

 

INTRODUCTION  

 

Securing a computer system has traditionally been a battle of wits: the penetrator 

tries to find the holes, and the designer tries to close them. 

Gosser 

 

The growth of Internet and local area networks provide quality and convenience to 

human life. According to the latest statistical analysis [1-3], it is estimated that Internet 

connects over 1.1 billion users worldwide, and thousands of sub-networks. Internet has 

adopted a large number of new applications, such as on line banking, online gaming, and 

Internet telephony, and social networks platforms such as facebook, twitter and 

LinkedIn. It is evident that Internet has had an enormous impact on the everyday life of 

people and on the worldwide economy as well. 

Internet technologies, on one hand, provide large number of on-line services to the 

end users. On the other hand, they attract the attention of hackers and provide a platform 

for them to attack systems in the network. The trust in the Internet and its services is 

increasingly undermined by network attacks. In 1998, the Computer Emergency 
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Response Team (CERT) at Carnegie Mellon University reported 3,734 security incidents 

worldwide. In the latest version of the Cyber Security Risks Report [3], the number of 

vulnerabilities increased approximately 10% from 7,260 in 2009 to over 7,900 in 2010. 

Thus, maintaining information security and securing computer systems and networks 

are essential. To prevent these security compromises, layers of defense, such as proxies, 

filters, anti-virus scanners and firewalls, are used. Since these traditional prevention 

mechanisms are imperfect, Intrusion Detection Systems (IDSs) are used to monitor local 

area networks, and computer systems for security compromises. The role of IDSs is to 

detect malicious activities in near real-time and raise an alert.  

In general, IDSs are classified into two broad categories. Anomaly-based systems 

compare attack-free data to network traffic where anomalous events are identified as 

deviations from the normal. Misuse-based systems match signatures or unique character 

strings to known attacks. Present anomaly intrusion detection systems suffer from a 

large number of false alarms and poor efficiency in operation, and cannot be deployed in 

high speed networks and applications. In this thesis, we address these issues and develop 

payload-based intrusion detection schemes which can be used efficiently in detecting a 

wide variety of attacks including web-based attacks.  

1.1 Motivations: Need for Information Security 

There is a continuous increase in attacks upon information security infrastructures. The 

legacy network based attacks have largely been replaced by more sophisticated web 

application attacks. According to HP DVLab 2010 Top Cyber Security Risk Report 

released on April 4 [4-6], “Web-based attacks jumped from only a tenth of all attacks at 
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the beginning of 2010 to more than 70 percent of all attacks by the end of the year”. 

Hence, securing web applications have become exceptionally important as the 

information processed by web applications has become critical to corporations, 

customers, organizations and countries. 

Although other protocols are being used for attacks on networks and computers, 

attacks against the HTTP protocol have become the most dominant. In the first quarter 

of 2010, HTTP attacks accounted for about half the total number of attacks [4-6].   

1.1.1 Reasons of Network Threats 

Based on research review, increase in network threats originates from various reasons. 

We have identified three key reasons of increase in threats and attacks on networks. In 

the following subsection, we describe these reasons of increase in network threats. 

 The proliferation of Web-based plug-ins has shifted traditional attack methods to 

web-based attacks.  

According to Dausin, manager of advanced security intelligence for HP DVLabs: 

“We’re seeing a huge explosion in Web application attacks, and the attackers are not 

just using one or two vulnerabilities, they’re sending a barrage of malicious requests, 

trying every tool they have at their disposal.” 

 Increasing automation and sophistication of network attacks [7]. 

While early computer attacks have been manually crafted for specific targets, now 

sophisticated and inexpensive attack toolkits (estimated at $2,400) are widely available 

in the market. These toolkits have amazing range of functionality, including network 
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surveillance, polymorphic shell-codes and distributed propagation. For example, the 

“Slammer worm” can infect ten thousands of hosts in a couple of minutes [8] rendering 

regular security systems defenseless in protecting network computers. Such capabilities 

make malicious software and network attacks attractive for illegal business. 

 Application developers either have very little knowledge of security or are unaware 

of complexity of the developed network application software.  

Due to the pressure of business competition, software developers put their networks 

on high risk, because developed applications are seldom tested for vulnerabilities. In 

addition, when new applications are implemented on the network, the native network 

infrastructure is seldom capable of detecting software vulnerability and attacks. This 

potentially leaves application infrastructure vulnerable and easily disrupted by an attack. 

According to the “2011 Top Cyber Security Risks Report”: 

“Web application vulnerabilities now comprise about half the total number of newly 

discovered security vulnerabilities and the organization web-sites are constantly at risk 

of being defaced and made unusable from various attacks.”   

Having said this, security of computer systems has become a major concern with 

critical public infrastructures relying on computers and the Internet. Classic security 

measures, such as encryption, authentication and policy managements, are widely 

deployed for protecting networked computers. While such preventive measures 

significantly strengthen security, they cannot generally stop the possibility of network 

attacks. As new attacks appear every day, intrusion prevention measures like firewalls 

and cryptographic protocols are not just sufficient in ensuring the security of the 



5 
 

networked systems. Thus, intrusion detection systems are needed to detect new attacks 

and defend networks from all kinds of attacks launched against either stand-alone 

computers or entire computer networks. 

An IDS can detect scanning and probing attacks by analyzing network packet headers 

or by monitoring network traffic connection attempts and session behaviors. Those 

viruses and worms that propagate at high speed on the Internet can be detected by 

analyzing the rate of scanning and probing methods. Both viruses and worms exploit 

known vulnerabilities in the computer operating systems, application software, device 

drivers and services. Furthermore, there are malicious activities which do not show 

abnormality in network connections and protocol behaviors but carry malicious contents 

and cannot be detected by using packet header analysis and traffic flow statistic 

approaches [9, 10]. In response, effective techniques based on payload analysis are 

needed to detect the presence of such malicious activities in the networks.   

A number of researchers have focused on payload-based anomaly detection. 

Approaches that have been studied including specification-based anomaly detection 

[11]. 

In our work, we use Mahalanobis Distance Map (MDM) approach, a pattern 

recognition technique used in image processing and develop payload-based IDS. We 

focus on design and learning approach to efficiently train payload-based detector models 

on the normal and attack free data for any application, service, network or host. This 

trained model can then be used to identify “abnormal” or suspicious traffic. Although 

the proposed model is useful in detecting a wide range of exploits against many, if not 
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all services and ports, our focus is mainly to identify web based attacks based on HTTP 

protocol. 

1.2 Challenges for Payload Based Anomaly Detection 

Although anomaly detection has emerged as a promising technology and appears to hold 

great future, it is extremely difficult to achieve. There are still great deals of challenges 

associated with payload-based anomaly intrusion detection systems. These challenges 

are:  

 Traffic profile is changing constantly and new applications are emerging every day, 

so it is difficult to construct a model of “normality”.  

 Nature of anomalies keeps changing over time. It is not possible to know the “a 

priori” knowledge of attack to efficiently identify new attacks and how the attacker 

is going to attack network and network resources. 

 The dilemma between detection rate and false alarms is the major problem [12]. 

Improvement in the detection rate results in increase in the false positive rate. 

 Encryption and tunnelling hide access to data contained into application layer header 

and payloads. 

 Attacks present in the encrypted payload data are considered normal from the 

network layer point of view. 

 A very high volume of network traffic due to high data rates (Gbps) and accuracy 

issues in existing algorithms performance results in bottleneck. 

 High sensitivity to packet loss data and fragmentation and segmentation issues are 

most likely to pose security concerns for IDS. 
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 Most of the IDSs perform poorly in defending themselves from attacks [12]. 

1.3 Research Objectives  

Most detection systems in use today are network- and signature-based IDSs. Due to the 

popularity of Internet, there is an increasing risk in breach of network security. In 

addition, new types of attacks are appearing continuously and attacks against network 

services can cause great harm. No signatures have been produced and deployed for these 

so called zero-day attacks, so developing flexible and adaptive security oriented 

approaches is a severe challenge. Our work addresses challenges associated with next 

generation of intrusion detection (discussed in Section 1.2). This thesis concentrates on 

the following research objectives: 

 Develop an efficient algorithm to detect zero-day attacks and the variants of existing 

attacks using network packet payload anomaly detection technique. 

 Implement and evaluate a working prototype of our proposed IDS. 

 Evaluate payload features using feature selection techniques which provide ability 

for real-time operation in payload-based intrusion detection system. 

 Achieve good accuracy in detecting truly anomalous events, with low false positive 

rates. 

1.4 Research Approach 

We compute a “normal” model of content for an available service by considering 

correlation between payloads or groups of payloads during a training phase, and then use 
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this learned “normal” model to detect abnormal, never-seen before content. These 

suspicious contents coming through network connections may or may not be attacks. 

For efficient operation of intrusion detection system, optimal feature set is computed. 

Then, this reduced feature set is used to discriminate normal and abnormal contents 

quickly and accurately. 

1.4.1 Design Objectives  

We model payload content to satisfy various challenges and research objectives of our 

anomaly detection system. We consider the following design objectives: 

• deployment of automatic “hands-free” intrusion detection system with little or no 

human intervention,  

• being applicable for broad application domain to any service or system, 

• sequential nature of data,  typically coming in a streaming fashion, 

• accuracy in detecting truly anomalous events, with low false positive rates, 

• resistance to mimicry attack,  

• ability to operate in real-time, and 

• efficiency of algorithm to operate in high bandwidth environments. 

The ideal requirements of the intrusion detection system are 100% detection of the 

attack and normal network packets, with 0% false positive rate and false negative rate, 

able to detect attacks in real-time and be adaptive to dynamic profile of network traffic. 

In this work, we aim to achieve this ideal level or near ideal level performance by 

devising efficient IDS. We conduct several experiments using DARPA 99 dataset and 
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Georgia Institute of Technology attack dataset (real network traffic) to demonstrate how 

close we may reach this ideal. 

1.4.2 Design Approach 

To meet all objectives in Subsection 1.4.1 is a very challenging task. Modeling the 

network traffic profile using payload anomaly detection approach, these objectives can 

be achieved. The modeling technique proposed in this thesis includes correlations 

between the payload features and also among the network packets, which provides some 

information about the payload structure. A geometrical structure model is created for 

application layer packet payload (n-gram window size for normal traffic content) using 

MDM. We consider “clear text” content, and do not address the issue of encrypted 

content of the network traffic. We believe that our technique can be used for encrypted 

content applied at the point of decryption and delivered to the targeted application 

software. 

We consider HTTP traffic for analysis and experimental evaluations of our model. 

Since most web traffic contents are usually public and pose fewer privacy restrictions, it 

is easy to obtain web traffic data. We believe that the algorithms and technology 

presented in this thesis can be applied to other content based traffic too. We have also 

chosen to limit our study to web traffic since the number of attacks against the known 

vulnerabilities is rising continuously in respect of severity and frequency [13], and also 

historically web services have been a common target of previous worm attacks [14-16]. 
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1.5 Contributions to Thesis 

An attacker often follows a sequence of events, which are highly correlated and the 

sequences have dependencies among them. Furthermore, the attacker can also hide 

individual events within a large number of normal events such that the events cannot be 

recognised as harmful events. Additionally, events consist of multiple features which are 

monitored continuously. These features are also highly correlated and must not be 

analysed in isolation. Existing anomaly-based intrusion detection systems consider the 

events individually, thereby, discarding any correlation between features and also 

sequential events, which results in a poor model. Hence, we introduce efficient intrusion 

detection frameworks and methods which consider a group of events and analyze 

multiple features assuming dependence among the features. 

1.5.1 Framework for Payload-based Anomaly Intrusion Detection 

In Chapter 3 of this thesis, we will introduce our novel framework for building network 

intrusion detection systems, which is known as “Geometrical Structure Anomaly 

Detection” (GSAD) model to detect anomaly in the application layer payload.  

1.5.2 Implementation and Evaluation of proposed ptototype 

In Chapter 3 of this thesis, we will experimentally demonstrate that the GSAD model 

can successfully detect inbound attack and worm packets with high accuracy rate and a 

low false positive rate, and will compare performance of GSAD against the state-of-the-

art payload-based systems. In our framework, we use geometrical structure present in 

the payload by correlation between the payload features in order to decrease the number 

of false alarms and increase the attack detection coverage.   
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1.5.3 Payload Feature Selection Using Linear Discriminant Analysis 

Technique for Network Intrusion Detection 

Network monitoring is one of the common and widely applied methods for detecting 

malicious activities in an entire network. However, GSAD model uses a large number of 

features to discriminate normal and malicious (attack) packets that are flowing in the 

network. As a result, GSAD is computationally expensive. In Chapter 4, we introduce 

the feature selection algorithm using Linear Discriminnant Analysis (LDA) technique. 

The selected features provide strong correlations between anomalous behavior and 

malicious activity. These features are used to develop normal traffic sensor profiles to 

detect anomaly in the network traffic. This simplifies computational complexity and also 

reduces training and testing time in anomaly detection.  

1.5.4 Cumulative Profile (Signature) Generation  

Frequency of new attack is increasing and so is the frequency of polymorphic attacks. In 

such situation, it is often very difficult to keep signature database up to date with all 

possible signatures. Moreover, the size of the signature database will also increase. In 

Chapter 4, we propose to generate one common signature for group of similar type of 

attacks. This will help in reducing the number of signatures for similar type of attacks. 

Additionally, this will reduce the resources and detection time.   

1.5.5 Framework for Real-time Intrusion Detection Using Principal 

Component Analysis Feature Selection Technique  

In chapter 5, we present a framework for real-time intrusion detection system (RePIDS). 

This framework integrates Principle Components Analysis (PCA) and Mahalanobis 
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Distance Map to detect normal and malicious behavior of network traffic. PCA is used 

to reduce the dimensionality (number of the features) of the dataset but retains original 

variability in the dataset. Mathematical and graphical methods are used independently 

for the selection of dominant principal components (optimal features). We further 

experimentally demonstrate that the RePIDS can successfully detect inbound attack and 

worm packets with high accuracy rate and a low false positive rate. We also compare its 

performance against the state-of-the-art payload-based systems. 

This dissertation presents evidence to show the validity of the following hypotheses: 

 It is possible and feasible to process the values associated with identified (i.e., noisy) 

attributes to extract useful features. Models built using these features exhibit reduced 

false positive rates and higher true detection rates. 

 The newly extracted features enable behavioral modeling of application traffic that is 

not possible when using packet header values. 

 It is possible to generate a common signature for similar types of attacks. 

 Models built using dominant features exhibit real-time data processing characteristic.   

1.6 Thesis Organization 

The rest of the thesis is organized as follows.  

Chapter 2 discusses taxonomy of intrusion detection system and related work in 

intrusion detection, worm detection and collaborative security. 

Chapter 3 describes the Geometrical Structure Anomaly Detection (GSAD) anomaly 

detection sensor, the framework and detection techniques employed in GSAD, and 
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demonstrate how well it can detect attacks. Furthermore, we present the importance of 

HTTP protocol and web-based attacks. We demonstrate implementation of GSAD 

model in HTTP environment, and confirm high detection rate and low false alarm rate 

through experimental results. 

Chapter 4 discusses Linear Discriminant Approach (LDA) and its use in feature 

selection and evaluation of LDA based intrusion detectors for detection of attacks. We 

also present our discussion on the generation of one common signature for a group of 

similar type of attacks. We present a preliminary work in this direction. 

In Chapter 5, we discuss various feature selection techniques used in the anomaly 

detection. We focus on selection of optimal features in a packet payload using Principal 

Component Analysis (PCA) technique, and mathematical and graphical techniques for 

real-time anomaly detection. This chapter also presents a novel real-time intrusion 

detection system and matrix to evaluate computational complexity and time complexity. 

Chapter 6 concludes the dissertation and presents future research work that extends our 

research. 
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CHAPTER 2 

 

Taxonomy of Intrusion Detection Systems 

and Related work 

 

Introduction 

 

Intrusion detection has been at the centre of research in the last decade due to rapid 

increase of sophisticated attacks on computer system. Naive attackers can launch 

powerful attacks which can bring down an entire network [5]. Hence, detecting intrusion 

in networks and applications has become one of the most critical tasks to prevent their 

misuse by attackers. Typically, intrusion detection refers to a variety of techniques for 

detecting attacks in the form of malicious and unauthorized activities. To identify the 

shortcoming of different approaches for intrusion detection, we explore the strategies 

used for dealing with security vulnerabilities and review related research in the intrusion 

detection. We view intrusion detection as a pattern recognition problem and introduce 

our proposed model. Our model uses Mahalanobis Distance Map, a pattern 

reorganization technique for building intrusion detection system. In this chapter, we 

describe taxonomy of intrusion detection systems including brief information on 
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strategies used to alleviate security problems. Then, we present intrusion detection as a 

pattern recognition problem. Finally, we present review on intrusion detection 

techniques. 

This chapter is organised as follows. In Section 2.1, we list common strategies used 

in dealing with security vulnerabilities. In Section 2.2, we present taxonomy of intrusion 

detection systems outlining their role and requirements. Then, we discuss the intrusion 

detection problem as a pattern recognition problem in Section 2.3. In Section 2.4, 

evaluation matrices for intrusion detection method are discussed. Section 2.5 covers 

literature review on the related research work. We conclude this chapter in Section 2.6.  

2.1 Strategies for Threat Mitigation  

Intrusion detection system is a software tool used to detect unauthorized access to a 

computer system or network. In 1972, Anderson [17] identified the need for intrusion 

detection and proposed a threat model. He identified various types of threats and the 

sources of these threats. He classified threats as internal penetrations, external 

penetrations and misfeasance, and developed a security monitoring system which 

detected anomalies in user behavior. Researchers have used multilayer infrastructures 

for attack detection and prevention. For example, the use of proper policies and physical 

access restriction (traditional locks and other physical security) can prevent attacks at the 

physical layer. Different strategies are used to deal with security policies. These 

strategies are classified into six categories [18]. A summary of threat mitigation 

strategies is given in Table 2.1 
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Table 2.1: Summary of attack mitigation techniques 

Strategies Purpose Actions taken 

Attack Deterrence 
Discourage attackers and 
prevent them to do 
something. 

Tag, information systems hardware and 
software with electronic IDs. 
Traces true sources of attacks. 

Attack Prevention Prevent attackers. 
Block on-line attacks before they reach 
to targets. 

Attack Deflection 
Deflect attacker to reveal 
attack. 

Create sites to trap attackers 
deliberately. 

Attack Avoidance 
Make resources 
unusable. 

Protect information using 
Cryptography.  

Attack detection Detect attacks. 
Monitor and analyse network traffic 
activities to generate alerts. 

Attack reaction and 
Recovery 

Allow systems to 
continue operating 

Regular backups of critical data. 

These strategies are discussed briefly in the following section.  

1. Attack Deterrence Several technical and legal measures have been undertaken to 

discourage mongers from tampering with computer systems. Trails built on 

computers serve incriminating evidence of contributions as measures of securing 

hosts. They refer as a fear of tracing the true source of an attack. Attackers are 

discouraged from deploying attacks on computer systems. Attackers use spoofed 

sources IP addresses to launch attacks (IP Address Spoofing allows people to log 

onto a website with a different IP address). 

2. Attack Prevention The aim of attack prevention is to prevent an attack by blocking 

it before the attack can reach the target. Attack prevention mechanism can be viewed 

roughly as an intrusion detection mechanism with a preventive response. Intrusion 

Detection and Prevention System (IDPS) is configured to automatically block 
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suspected attacks without any intervention required by an operator. IDPS has the 

advantage of providing real-time corrective action in response to an attack. An 

example of attack prevention systems is a firewall [19], which filters unwanted 

traffic at the network level based on certain rules and policies. Such traffic filtering 

is implemented at the border gateways of networks and sometimes at the network 

layer of the individual host machines.  

3. Attack Deflection This refers to tricking an attacker by making the attacker believe 

that the attack was successful. Though, in reality, the attacker was trapped by the 

system and deliberately made to reveal the attack. For example, honey pot is a trap 

that lures attackers away from production systems [20]. Honey pot runs special 

software to emulate services, applications and protocols, and contains information 

specifically created to trick the attacker.  

4. Attack Avoidance Attack avoidance strategies identify and remove vulnerabilities 

from software before they are deployed in a security-critical environment .The aim 

of attack avoidance strategies is to make the resource unusable by an attacker even 

though the attacker is able to illegitimately access that resource. For example, 

cryptography [21] is used to protect information in computer systems.  

5. Attack Detection Attack detection refers to detecting an attack while the attack is 

still in progress or to detect an attack which has already occurred in the past. 

Detecting an attack is significant for two reasons. Firstly, the system must recover 

from the damage caused by the attack. Secondly, it allows the system to take 

measures to prevent similar attacks in the future. Research in this area focuses on 

building intrusion detection systems. An intrusion detection system monitors and 
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analyses network traffic activity and alerts an operator to potential vulnerabilities 

and attacks. 

6. Attack Reaction and Recovery Once an attack is detected, the system must react to 

such attack and perform the recovery mechanisms as defined in the security policy.  

2.2 Taxonomy of Intrusion Detection Systems 

Intrusion detection is the act of detecting actions that attempt to compromise the 

confidentiality, integrity and availability of a system/network. Classifying intrusion 

detection systems help to better understand their capabilities and limitations. Debar et al. 

[22] were the first to introduce a systematic and taxonomic approach of intrusion 

detection systems (later revised in [23]). Axelsson [12] provided a comprehensive 

survey and taxonomy of intrusion detection systems, which addressed some aspects in 

more depth, namely the detection principles.  

Figure 2.1 presents taxonomy (classification) of intrusion detection systems. We 

introduce the basic definitions and discuss typical advantages and disadvantages by 

comparing different approaches used in IDSs.  

Traditionally, intrusion detection systems are classified according to two 

characteristics: data sources (protected system type) and the detection methods. Based 

on the sources of data being audited and used to design its detection model, an intrusion 

detection system can be either host-based or network-based. Whereas, based on the 

detection method, an intrusion detection system can be a signature-based detection 

system, an anomaly-based detection system or a hybrid/compound detection system. 

According to Time of Audit, a system can be classified into real-time and off-time, 
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whereas according to System Structure, an IDS can be classified as distributed system 

and centralised system. Based on the behavior of a system, an IDS can be classified as 

active IDS and passive IDS. In this section, we discuss taxonomy of intrusion detection 

systems more in Figure 2.1. 

 

Figure 2.1: Taxonomy of intrusion detection system 
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2.2.1 Intrusion Detection Systems Based on Data Sources 

Based on the sources of data being audited and used to design its detection model, 

Denning [24] classifies intrusion detection systems into host based and network based 

intrusion detection systems. A brief discussion on each of them is given below.  

Host-based Intrusion Detection System 

A Host-based Intrusion Detection System (HIDS) monitors a single host (or a single 

application) and analyses the audit pattern generated at the operating system or that of a 

particular application. An intrusion detection system protecting an individual host 

collects individual log produced by the host [25]. The audit pattern contains more 

specific information than the network level audit patterns, which can be used to detect an 

attack more reliably. However, the main drawback of HIDS is that it is difficult to 

manage a large number of host-based systems. HIDS themselves can be the victims of 

an attack. Web application firewall known as ModSecurity [26] is an example of HIDS. 

Network-based Intrusion Detection System 

Network-based Intrusion Detection System (NIDS) monitors network segment and 

collects audit patterns flowing on this segment. These collected audit patterns at the 

network level are analysed for attack patterns and these attack patterns are use to protect 

a single host or an entire network [27, 28]. NIDS can analyse different types of data, 

namely packet header data, packet payload data, or both. The main advantages of NIDS 

approach are that: it is possible to monitor data and events without affecting host 

performance, and a single NIDS can be used to monitor an entire network without the 
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need for installing dedicated IDS on each host. It can detect attacks that are not visible 

from a single host and can correlate attacks against multiple hosts. 

However, the attack detection capability of NIDS is limited. This is because it is hard 

to infer the contextual information directly from the network audit patterns. 

Furthermore, the audit patterns may be encrypted rendering them unusable by the 

intrusion detector at the network level. In addition, large amount of audit patterns at the 

network level may also affect the attack detection accuracy based on two reasons. 

Firstly, a significant portion of the total incoming patterns may be allowed to pass into 

the network without any analysis. Secondly, in high speed networks, it may be practical 

to analyse only the summary statistics collected at regular time intervals.  

Due to increasing severity of attacks from the Internet, NIDSs are employed in almost 

all large-scale IT infrastructures. Snort [29] is a typical example of NIDS.  

2.2.2 Intrusion Detection System Based on Detection Method 

This classification is based on the model it uses for intrusion detection. Based on the 

detection model, an intrusion detection system can be a signature-based detection 

system, an anomaly-based detection system or a hybrid/compound detection system, 

where the strengths of one model are exploited to cover the weaknesses of another. An 

overview of these approaches is given below. 

Signature-based Systems  

Signature detection is also known as misuse detection, or detection by appearance. 

Signature-based intrusion detection technique detection depends on a predefined set of 

attack signatures. It looks for specific patterns, and signatures, present in the incoming 
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packets and/or command sequences, and uses pattern matching approaches to detect 

attacks. When a match is found, an alert is raised.  

The advantage of the signature-based detection approach is that, a system based on 

this approach can detect known attacks fairly accurately with a low false positive rate. 

They can protect computer/network immediately upon installation and are usually fast. 

The major drawback of the signature detection approaches is that they have limited 

attack detection capability, since they cannot detect new (i.e. zero-day) or polymorphic 

attacks, i.e., the variants of the attacks. They have high false negative alarm rate [30, 

31]. Signature-based intrusion detection system typically requires signatures to be 

defined for all the possible attacks that an attacker may launch against a network. 

Human interaction is required to keep signature database up-to-date and to analyse each 

attack to develop the signature. The response time for new attacks is limited to a 

timescale of hours or days, whereas attacks by self-replicating programs (viruses or 

worms) can appear and spread in seconds [32]. Hence, maintaining state information of 

signatures is an important task in the signature detection system. 

Thus, an attacker has a window of opportunity to gain control of the system or 

application under attack. It makes a signature-based detection system less suitable for 

protecting a web-based service, because of ad-hoc and dynamic nature of web traffic. 

Some examples of signature-based intrusion detection systems are Snort, anti-virus 

products such as McAfee AntiVirus plus, Kaspersky, etc. 

 

 

http://en.wikipedia.org/wiki/Kaspersky_Lab
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Anomaly-based Systems 

Anomaly-based Intrusion Detection System is also known as detection by a behavior 

system. The approach used by the anomaly-based system is entirely different than the 

approach used by the signature-based system to detect an anomaly in the 

network/system. An anomaly-based system detects behaviors on a computer or computer 

network that are not normal. An anomaly-based system first creates a base-line profile of 

the normal system/network, or program activity. It then compares the profile of an 

incoming event against the base-line profile. A significant deviation from the known 

normal behavior is identified as malicious. An anomaly-based intrusion detection system 

assumes that the intrusion attempts are rare and they have different characteristics from 

normal behavior. A statistical model of normal behavior is created from the training 

data. When an instance that does not match the created model (learned from the training 

data) appears, the system raises an alarm. 

The main strength of an anomaly detection system is that it has the capability to 

detect new (zero-day) and polymorphic attacks. Novel attacks can be detected as soon as 

they take place. Anomaly-based system does not need a-priori knowledge of the 

application/system and possesses better detection ability than a signature-based system. 

Since anomaly-based system is based on custom profiles, it is very difficult for an 

attacker to know with certainty what activity it can carry out without triggering an alarm. 

Hence, anomaly-based system is suitable for the protection of web applications. 

However, anomaly detection system also suffers from several weaknesses. For anomaly-

based systems to be effective, complete knowledge of normal behaviour of a 

system/network is required. Creating normal traffic profile is also very challenging for 
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the reason that finding a proper representation of training data, which shows the normal 

behavior of data, is a difficult task. Moreover, because of dynamic nature of network 

data, maintenance of a normal profile is difficult and time consuming. In view of the fact 

that user and network behavior are not always known beforehand and since an anomaly 

detection system is looking for anomalous events rather than attacks, it has high false 

alarms. Not all anomalous events are malicious. Furthermore, an attacker can train 

anomaly detection system gradually to accept malicious behavior as normal. A good 

review of anomaly intrusion detection systems can be found in [33] and [34]  

Signature-based network intrusion detection system is preferred choice over 

anomaly-based network intrusion detection system because it is simpler to configure and 

maintain, despite the occurrence of high false negatives. Most intrusion detection 

systems in use today are network- and signature-based systems. However, the popularity 

of the Internet and increasing risk in breach of network security, anomaly-based network 

intrusion detection system approach is becoming more popular. In our research, we 

mainly focus on anomaly-based network intrusion detection systems.  

2.2.3 Hybrid Intrusion Detection System 

A hybrid system uses the partial knowledge of both, i.e., normal and attack information 

to detect attacks. Thus, they have a better performance, resulting in fewer false alarms 

and improved attack detection rates. Hybrid systems generally use machine learning 

approaches.   

The hybrid system proposed in [35], combines misuse and anomaly detection to find 

attacks in logged HTTP request. They resolved the conflicts between signature-based 
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systems and anomaly-based systems to provide the best accuracy. They used manual 

methods to identify normal or anomaly web requests. This heavy reliance on human also 

limits the usefulness of their system. Because of many weaknesses, this system remains 

unpopular and is restricted from its commercial use.  

In [36], authors proposed a hybrid intrusion detection system, which is based on 

Conditional Random Fields (CRSs). They integrated layered framework with the 

conditional random fields to build anomaly hybrid intrusion detection system. Normal 

and abnormal traffic features are used for the training of the system and conditional 

random fields are used to label every feature in the observation.  

2.2.4 Data Audit Time 

Intrusion detection system can be divided into real-time intrusion detection system and 

off-line intrusion detection system based on whether the data analysis is done in real-

time or afterward. 

Real-time Intrusion Detection System  

A real-time intrusion detection system detects an attack as soon as an attack is 

commenced. However, in practice, it is very difficult to build such a system under the 

constraints of a low false alarm rate and high detection rate. Snort, an anomaly 

signature-based intrusion detection system, employs in real-time environment and 

detects the known attacks accurately with low false positives.  
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Off-time Intrusion Detection System 

Off-time intrusion detection system works differently from real-time intrusion detection 

system. The audit data logs are collected in a central repository and patterns are analysed 

for intrusions at a predefined time interval. Such systems cannot provide any immediate 

response to intrusion and can only perform the recovery task once an attack is detected. 

2.2.5 System Structure  

Based on the system structure, intrusion detection system can be classified into two 

categories, centralized intrusion detection system and distributed intrusion detection 

system. We present a brief description on them below. Both centralized and distributed 

intrusion detection systems may use host- or network-based data collection methods, or 

a combination of both. 

Centralised Intrusion Detection System  

Centralized intrusion detection system determines the global state of the network. 

Centralised intrusion detection system collects data either from single source or multiple 

sources for processing and analysing data centrally. The location where the actual 

analysis is carried out is independent of the location of the sensor.  

Distributed Intrusion Detection System  

A distributed intrusion detection system is one where data is collected and analysed in 

multiple hosts and decisions are made locally. The advantage of a distributed system for 

intrusion detection is that immediate response mechanism can be activated based upon 

local decisions. However, it is expensive since the number of analyser is proportional to 
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the number of monitored components. Furthermore, distributed intrusion detection 

system is less accurate due to lack of global knowledge.  

2.2.6 Action after Intrusion Detection  

Based on the actions that an intrusion detection system takes after it detects an attack, 

intrusion detection system can be classified as active intrusion detection system and 

passive intrusion detection system. 

Active Intrusion Detection System  

An active Intrusion Detection Systems (IDS) is also known as Intrusion Detection and 

Prevention System (IDPS). Intrusion Detection and Prevention System (IDPS) blocks 

suspected attacks automatically without any intervention required by an operator. 

Intrusion Detection and Prevention System (IDPS) has the advantage of providing real-

time corrective action in response to an attack. 

Passive Intrusion Detection System   

Intrusion detection system is considered to be a passive-monitoring system. It warns 

administrator of suspicious activity happening in network, and generates alarms. It does 

not take any action to stop the attack. 

2.3 Pattern Recognition Approach for Intrusion Detection 

In the following section, we describe anomaly detection as a pattern recognition 

problem. Anomaly detection approach usually consists of two phases: a training phase 

and a testing phase. In pattern recognition studies, the learning phase constructs a 

classifier from example data, which is the same as the training of the model on training 
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dataset. During the recognition phase, the classifier classifies new data patterns into 

pattern classes which are similar to testing phase, where the learned profile is applied to 

new data. Therefore, anomaly detection problem can be seen as a pattern recognition 

problem.  

The pattern recognition task can be subdivided into the following four steps. Step one 

performs data acquisition. Here, data is collected from various sources and sent to the 

first stage for pre-processing, where cleaning of data is performed and data is separated 

into groups. In the second step, the features are extracted and selected. These selected 

features represent the pattern of data. In the third step, selected features are used to 

choose the model type. Finally, the classification and analysis of the results are 

performed in the fourth step. Figure 2.2 shows a generic pattern recognition process. 

 

 

 

Figure 2.2:  Generic pattern recognition process 
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Figure 2.3 illustrates the design process for network intrusion detection using the 

pattern recognition technique. Traffic data is first processed in order to identify network 

connections between hosts. In the network, the term “connection" refers to a sequence of 

data packets related to a particular service between a pair of hosts, e.g., the transfer of a 

web page via the http protocol. Each network connection represents network data and 

can be defined as a “pattern" to be classified. Features are extracted from the collected 

data. These features are used by a pattern recognition technique to describe the patterns. 

 

  

 

 

 

 

 

 

Figure 2.3: Pattern recognition process for intrusion detection 
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a) N-grams Text Categorization Method 

Text Categorization or Text Classification (TC) [37] is a fundamental process of 

classifying content-based documents to pre-defined categories. It allows automated 

handling of enormous streams of documents in electronic form. Text categorization 

techniques are adopted to convert each process to a vector and calculate the similarity 

between two process activities. Since there is no need to learn individual process profiles 

separately, the calculation involved is largely reduced. 

Initially, Forrest et al. [38] introduced the concept of n-gram text categorization to 

build a program profile. He used the sequence of system calls to characterize the 

behavior of a program running on computer systems. It then became a popular 

alternative to build user profiles in intrusion detection [39]. 

b) N-gram Text Categorization Techniques for Intrusion Detection  

Liao and Vimuri [40] used text categorization techniques in anomaly intrusion detection. 

They used frequencies of system calls executed by a program to characterize the 

program‟s behavior. Text categorization techniques are adopted to convert each process 

to a vector. They use the k-nearest neighbor classifier to classify new program behavior 

into either normal or intrusive class. They draw an analogy between a text document and 

the sequence of all system calls issued by a process, i.e., program execution. Table 2.2 

illustrates the similarity in some respects between text categorization and intrusion 

detection. 
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Table 2.2: Analogy between text categorization and intrusion detection [39] 

Terms Text categorization 

 

Intrusion Detection 

 

N total number of documents total number of processes 

M total number of distinct words total number of distinct system calls 

n i number of times i-th word occurred number of times i-th system call issued 

f i j frequency of i-th word in document  j frequency of i-th system call in process j 

D i j j-th training document j-th training process 

X test document test document 

We use a pattern recognition technique to detect network intrusions and the n-gram 

text categorization technique to extract important features, which can discriminate 

normal and malicious patterns accurately. To improve the performance of the detection 

process, correlation between the features and correlation among the packets is used in 

the design of intrusion detection system. We propose a novel intrusion detection 

approach using geometrical structures concepts, which is used for the detection of a 

human face in the image. Detailed discussion of the framework and its mathematical 

model is presented in Chapter 3 of this thesis. 

c) Classifier Selection  

The design goal of an anomaly detection system is to generate a model that accurately 

describes normal behavior of the system. The network intrusion detection system should 

be able to classify network connections (network data) between two hosts for a required 

service, as normal or anomaly. A classifier based on a supervised pattern recognition 

technique for the training needs data labeled as normal and abnormal, and uses a two 

class classifier model. Since the number of normal samples is much bigger than the 
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number of anomaly samples, the network data (training data) is not balanced data. 

Hence, it is difficult to generate a classifier that can represent true normal behavior and 

true anomaly behavior of network data. Moreover, the classifier with low training 

samples will show weak classification ability. Under these constraints, it is not 

appropriate to select two- (or multi-) class classification model approaches and it may be 

appropriate to use a one-class classifier model approach.  

In anomaly intrusion detection, we assume that the number of normal events is much 

bigger in comparison to malicious events. Hence, we select one-class classifier model 

for the classification of samples that are mostly represented in a class. The rest of the 

samples belonging to the least represented one are left out.   

2.4 Performance Evaluation of Intrusion Detection System 

The main aims of the intrusion detection systems are to maximize the true-positive rate 

and minimize the false-positive rate of a proposed technique. Consequently, the 

performance of the intrusion detection method depends on two basic measures: the 

number of attacks detected (i.e., the true-positive rate) and the number of normal events 

classified as attacks (i.e., the false-positive rate).  Confusion matrix is given in Table 2.3, 

which presents the possible outcomes of an individual classification performed by an 

intrusion detection system.  

Table 2.3: Confusion matrix 

 Predicted Normal Predicted Attack 

True Normal True Negative (TN) False Positive (FP) 

True Attack False Negative (FN) True Positive (TP) 
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The true positive rate (TPR) and false positive rate (FPR) for intrusion detection 

system can be calculated as 

      
  

      
    (2.1) 

       
  

     
     (2.2) 

Intrusion detection system is an example of imbalanced classes, i.e., attack instances 

are not equal in number in the training and the testing datasets, and can bias the 

performance of the system [41]. Therefore, we use precision, recall and F-Value as 

measures for testing the performance of a system, which do not depend on the size of the 

test dataset and thus calculate unbiased performance of the system. Precision, Recall and 

F-Value can be evaluated using the following equations:  

          
  

     
    (2.3) 

 

       
  

     
    (2.4) 

 

                      
         

                    
    (2.5) 

here, β corresponds to the relative importance of precision versus recall and is usually 

set to 1. It is easy to see that the Detection Rate (DR) is equivalent to the “recall” rate in 

information retrieval systems, while the False-Positive (FP) rate is somehow the inverse 

of “precision”. 
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A common technique for visualization of these quantities is Receiver Operating 

Characteristic ROC curves [42], which show true-positive rate on the Y-axis and false-

positive rate on the X-axis for different value of thresholds. The concept of ROC curves 

gives single numerical measure for the performance of an intrusion detection method: 

the Area Under the ROC Curve (AUC) which integrates the true positive rate for a 

particular detection method. 

2.5 Related Research Works 

The field of intrusion detection is broad, and over the last two decades research has been 

devoted to the design and evaluation of effective intrusion detection methodologies. The 

concept for intrusion detection starts from the seminal work of Anderson [17] and 

Denning [24], which has laid the foundations for the design of numerous detection 

systems. Denning proposed a general framework for detecting attacks against computer 

systems by modelling normal behavior patterns generated by users of the system. Since 

then, a number of intrusion detection systems were designed and deployed as surveyed 

by Mukherjee et al. [43]. Later, they were evolved as Host-based Intrusion Detection 

System (HIDS).  

As discussed in Section 2.2, the standard taxonomy for intrusion detection systems 

involves classifying each system according to several distinguishing characteristics: 

detection methodology, either misuse-based or anomaly-based; detection domain, 

network, host, application or some combination; and detection models, manually 

specified or automatically generated. The use of anomaly detection techniques in the 

context of network intrusion detection (ANIDS) is considered as a promising method of 
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identifying and understanding novel attack behaviors. An anomaly detection approach 

performs detection of patterns in two steps, namely training and testing.  In the training 

process, normal (or abnormal) behavior of the system is characterised and a 

corresponding model is built. This can be performed either automatically or manually, 

depending upon the type of anomaly network intrusion detection considered. Whereas, 

in the testing phase, once the normal model for the system is available, it is compared 

with the observed traffic. If the deviation found exceeds a given threshold, an alarm will 

be triggered [44]. 

In this section, we review the detection techniques at two different levels. At the first 

level, we go over the existing intrusion detection techniques from a general perspective, 

covering host-based, network-based and some type-specific detection techniques. At the 

second level, we concentrate on work which utilizes the techniques similar to what we 

will use in our research. 

2.5.1  Review from the Perspectives of Intrusion Detection                   

Techniques  

According to Patcha and Park [45], and Garcia-Teodore et al. [46], anomaly detection 

techniques can be classified into three main categories, namely, statistical based, data-

mining based (or knowledge-based) and machine learning-based. Chandola et al. [33] 

also reviewed anomaly detection methods and discussed several application domains 

including credit card fraud, image processing and computer security. In this section, we 

present a brief review on a number of architectures and methods that have been 

proposed for anomaly detection. 
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1. Statistical-based Anomaly Network Intrusion Detection Techniques 

In the statistical-based technique, the network traffic activity is captured and a profile 

representing its behavior is created.  This profile is typically based on metrics such as 

traffic rate, number of packets for each protocol, and audit record distribution measure. 

Two datasets of network traffic are considered. One corresponds to currently observed 

profile over time, and the other is for the previously trained statistical profile. As the 

network events occur, the current profile is detected and then compared against the 

normal profile. An anomaly score is generated, which represents the degree of similarity 

for a specific event. When the score exceeds a certain threshold, an alarm is raised. 

Danning and Neumann [24] used univariate models to model the parameters as 

independent Gaussian random variables. Ye et al. [47] proposed multivariate models. 

Their model considered correlations between two or more metrics and showed a better 

level of data discrimination. 

Statistical anomaly detection systems have number of advantages. Firstly, these 

systems do not require prior knowledge of security flaws and/or the attacks themselves. 

As a result, such systems have the capability of detecting “zero-day” attacks or the very 

latest attacks. In addition, statistical approaches can provide accurate notification of 

malicious activities occurring over a long periods of time.  

However, statistical anomaly detection schemes also have many drawbacks. 

Statistical anomaly detection systems can be trained by skilled attackers to accept 

abnormal behavior as normal. It can also be difficult to determine thresholds that 

balance the likelihood of false positives with the likelihood of false negatives. In 
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addition, statistical methods need accurate statistical distributions but not all behaviors 

can be modeled using purely statistical methods. Furthermore, most of these schemes 

rely on the assumption of a quasi-stationary process, which is not always realistic. 

Haystack [48] is one of the earliest examples of a statistical anomaly-based intrusion 

detection system. In the early 1980, scientists at the Stanford Research Institute (SRI) 

developed Intrusion Detection Expert System (IDES) [49], which continuously 

monitored user behaviour and detected suspicious events as they occurred. They also 

developed an improved version of intrusion detection expert system called the Next-

generation Intrusion Detection Expert System (NIDES) [50]. NIDS can operate in real-

time for continuous monitoring of user activity or can run in a batch mode for periodic 

analysis of the audit data. Unlike intrusion detection expert system, which is an anomaly 

detection system, NIDS is a hybrid system that has an upgraded statistical analysis 

engine. By having the benefit of real-time detection ability, this system has high false 

alarm rate.  

Kruegel et al. in [51] showed that it was possible to use payload byte distribution and 

then combined this information with extracted packet header features for intrusion 

detection. In this approach, the resultant ASCII characters were sorted by frequency and 

then aggregated into six groups. However, this approach leads to a very coarse 

classification of the payload. 

Intrusion detection systems discussed in the previous section are host-based intrusion 

detection systems. In other words, they do not have ability to defend a network in a 

global term. Since then, a great amount of research has been undertaken towards the 
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design and development of network-based intrusion detection systems. Maxion et al. 

[52] proposed a network-based intrusion detection systems but they did not consider 

dynamic behavior of network traffic and the intrusion detection systems did not fit in an 

experimental environment.  

Mahoney et al. [53, 54], described several methods that addressed the problem of 

detecting anomalies in the use of network protocols by inspecting packet headers. They 

used DARPA 1999 dataset for their experiments. The main aim of these methods was to 

apply a learning technique to automatically obtain profiles of normal behavior for 

protocols at different layers. Mahoney et al. proposed PHAD (Packet Header Anomaly 

Detector) [53], LERAD (LEarning Rules for Anomaly Detection) [54] and ALAD 

(Application Layer Anomaly Detector) [55]. PHAD monitors 33 attributes as basic 

features from the Ethernet, IP and transport layer packet headers. ALAD models 

incoming server TCP requests. ALAD uses source and destination IP addresses and port 

numbers, opening and closing TCP flags, and the list of commands (the first word on 

each line) in the application payload. Depending on the attributes, ALAD builds separate 

models for each target host, port number (service), or host/port combination. LERAD 

also models TCP connections. Although the dataset is multivariate network traffic data 

containing fields extracted from the packet headers, both ALAD and LERAD methods 

break down the multivariate problem into a set of univariate problems and sum the 

weighted results from range matching along each dimension. While the advantage of this 

approach is that it makes the technique computationally efficient and effective at 

detecting network intrusions, breaking multivariate data into univariate data has 

significant drawbacks especially for detecting attacks. 
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More recently, analytical studies on anomaly detection systems have been conducted. 

Lee and Xiang [56] used several information-theoretic measures, such as entropy and 

information gain, to evaluate the quality of anomaly detection methods, determine 

system parameters, and build models. These metrics help to understand the fundamental 

properties of audit data.  

Statistical Packet Anomaly Detection Engine (SPADE) [57] is implemented as a 

Snort [29] pre-processor plug-in. In SPADE, the basic features are used to build a 

normal traffic distribution model for the monitored network. Traffic distributions are 

maintained in real-time by tracking joint probability measurements. During detection, 

packets are compared to the probability distribution to calculate an anomaly score. 

Highly anomalous packets are retained.  

2. Machine Learning-based Anomaly Detection 

Machine learning techniques are based on establishing an explicit or implicit model that 

analyses patterns and classifies them into the normal or malicious categories. A 

noteworthy characteristic of these schemes is the need for labeled data to train the 

behavioural model. This puts severe demands on resources. 

In many cases, the applicability of machine learning principles coincides with the 

statistical techniques, although the former focuses on building a model that improves its 

performance on the basis of previous results. A machine learning ANIDS has the ability 

to change its execution strategy as it acquires new information. The main drawback of 

this technique is their resource expensive nature. Many machine learning techniques are 
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used in intrusion detection research field. A brief review on these techniques is given 

here.  

System call and sequence analysis are widely used techniques for anomaly detection. 

Forrest et al. [38] established an analogy between the human immune system and an 

intrusion detection system, and proposed a methodology that involved analysing system 

call sequences of a program to build a normal profile.  

More recent research based on call sequence approach is presented in [58], [59]. In 

[58] authors proposed an anomaly detection method based on statistical inference and an 

α-stable first-order model. Whereas in [59], authors used sequences and the parameters 

of the system calls executed by a process to identify anomalous behavior of the system.   

Bayesian Network (BN) [60] is a graphical model that encodes probabilistic 

relationships among variables of interest. This is used in combination with statistical 

schemes. High computation and results depend on behavior of the target system. 

Principal Component Analysis (PCA) [61] is a technique that is used to reduce the 

complexity of a dataset. It is not a detection scheme. In mathematical terms, PCA is a 

technique where n correlated random variables are transformed into d < n uncorrelated 

variables. This makes it possible to express the data in a reduced form, thus facilitating 

the detection process [62]. Shyu et al. [63] proposed an anomaly detection scheme, 

where PCA was used as an outlier detection scheme and was applied to reduce the 

dimensionality of the audit data.  
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Markov model/A Hidden Markov model [64] is a statistical model where the system 

being modeled is assumed to be a Markov process with unknown parameters. The 

challenge is to determine the hidden parameters from the observable parameters. 

Recently Zhiling et al. [65] proposed an automated mechanism for node-level 

identification. They used Principal Component Analysis (PCA) and Independent 

Component Analysis (ICA) technique for feature extraction, and outlier detection 

technique to discriminate expected normal behavior from abnormal behavior. 

More recently, research in the field of back track attack is proposed in [66] and [67]. 

In [67], author proposed a Flexible Deterministic Packet Marking approach to find real 

source of Internet attackers. FDPM uses flexible flow based marking scheme to detect 

DDoS attacks launched on the Internet. In [66], two effective anomaly-based detection 

matrices are proposed to identify attack earlier. 

3. Data Mining Approach for Network Intrusion Detection 

Data mining is the ability to take data as input, and pull out patterns from the input data 

or deviations which may not be seen easily to the naked eye. It is also known as 

knowledge discovery. Data mining has been used for host-based and network-based 

intrusion detection as well as anomaly-based and misuse-based intrusion detection. In 

this section, we focus on the data mining applications on network-based IDS. 

Lee and Stolfo [68] explored the application of different data mining techniques in 

the area of intrusion detection. In [69], Lee and Stolfo used multiple data mining 

techniques including classification, association rules and frequent episodes to build a 

framework for intrusion detection. They also introduced a feature construction system 



42 
 

for the classification, which categorized the connection based features into low-cost and 

high-cost features in terms of their computation time. Thus, different features were 

selected by classification model. The classification methods were basically rule-based 

algorithm such as RIPPER. Lee and Stolfo further extended their previous work in [70], 

where they applied association rules and frequent episodes to network connection record 

to obtain additional features. RIPPER was applied on the labeled attack traffic to learn 

the intrusion pattern. Barbara [71] proposed ADAM, which used applied association 

rules.  

Bridges and Vaughn [72] used traditional rule-based expert system for misuse 

detection. They also contributed to anomaly detection using fuzzy logic and Genetic 

Algorithms (GA). They created fuzzy association rules from the normal dataset, and also 

built a set of fuzzy association rules from the new unknown dataset, and then compared 

the similarity between the two groups of rules. If the similarity is low, it indicates a 

possible intrusion in the new dataset. As stated by Bridges et al. [72], the concept of 

security is fuzzy in itself. In other words, the concept of fuzziness helps to smooth out 

the abrupt separation of normal behaviour from abnormal behaviour. Dickerson et al. 

[73] developed the Fuzzy Intrusion Recognition Engine (FIRE) using fuzzy sets and 

fuzzy rules. 

Genetic Algorithm (GA) [74] has been used for tuning the membership function of 

the fuzzy sets and to select the most relevant features. Basically, GA is used to give 

rewards to a high similarity of normal data and reference data, and penalize a high 

similarity of intrusion data and reference data. The major advantage of GA is its 

flexibility and robustness as a global search method.   
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Clustering technique was used for finding patterns in unlabeled data with many 

dimensions. It is gaining popularity in the context of intrusion detection [75]. The main 

advantage of clustering is the ability to learn from and detect intrusions in the audit data, 

without requiring the explicit descriptions of various attack classes/types. As a result, the 

amount of training data that needs to be provided to the anomaly detection system is also 

reduced. The outlier detection scheme has been widely used for anomaly detection. An 

outlier can be identified using statistic features, distance, density and clustering 

techniques.  

Mahoney and Chan extracted the features from the packet headers and clustered these 

features to build normal profiles. They classified connection which did not fall in any 

cluster as outlier. Taylor and Alves-Foss used less features. They extracted features from 

packet headers that were used to build the clusters. Each feature is treated as a variable, 

and each connection was abstracted to a point with multiple variables (features). The 

nearest neighbour algorithm was used to compute the distance for the outlier detection.  

Other data mining approaches, such as neural network [76], were also explored for 

intrusion detection. Using neural network approach for intrusion detection, the neural 

network learns to predict the behavior of various users and daemons in the system. The 

main advantage of neural networks is their tolerance to imprecise data and their ability 

to infer solutions from data without having prior knowledge of the data. However, neural 

network based solutions have several drawbacks. Firstly, they may fail to find a 

satisfactory solution. Secondly, neural networks can be slow and expensive to train. 

Ramadas et al. [77] presented the anomalous network-traffic detection with self 

organizing maps (ANDSOM). The ANDSOM module creates a two dimensional self 
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organizing map for every network service that is being monitored. Anomaly detection 

schemes also involve other data mining techniques such as Support Vector Machines 

(SVM). Because data mining techniques are data driven and do not depend on 

previously observed patterns of network/system activity, some of these techniques have 

been very successful in detecting new kinds of attacks. However, these techniques often 

have very high false positive rates, resulting in a major challenge for the data mining 

approaches when applied to the real data.  

2.5.2  Review from the Perspective of Payload-based Intrusion 

Detection System 

The use of anomaly detection techniques in the context of network intrusion detection 

(ANIDS) is considered as a promising method of identifying and understanding novel 

attack behaviours. Network intrusion detection system can extract information from the 

packet header, packet payload or both. Header information is not helpful in detecting 

attacks against vulnerable applications (since the connection that carries the attack is 

established in a normal way). On the other hand, payload information is most suitable to 

identify attacks against vulnerable applications. Symantec corporations [78] reported 

that 69% of vulnerabilities were caused by web services, and it was reported in [1-3] that 

75% of cyber attacks occurred at the application layer. Thus, organizations rely more 

heavily on payload-based anomaly intrusion detection for the protection of their 

networks. In this section, we concentrate on work which utilizes the techniques similar 

to what we will use in our research.  
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We present a brief review on the design techniques used by PAYL, SOM, 

POSEIDON and ANAGRAM intrusion detection systems. 

Kuevo Kohonen [79] produced a low-dimensional map of high-dimensional data. The 

advantage of Kohonen‟s Self Organising Map (SOM) is the ability to add new inputs 

into patterns that it has already discovered. However, its original function was to 

compress data.  

The concept of payload-based network anomaly detection was first proposed by 

Kruegel et al. [15]. They used payload to generate model and grouped 256 ASCII 

characters present in the payload into six segments that was 0, 1-3, 4-6, 7-11, 12-15 and 

16-255. Chi-square test was used to compare the model.  

In 2004, Wang and Stolfo [80] proposed PAYL (PAYLoad intrusion detection 

system), a state-of-the-art system, which used the combination of type, length and 

distribution to detect anomalous events. They developed the system using Byte 

Frequency Distribution (BFD) and 1-gram payload modelling. n-gram analysis is a 

primary means of intrusion detection system used to examine payload content. It is a 

language parser and a method to predict the next sequence in a dataset. BFD is the total 

number of n-gram occurrences, the values that are identified in sampling of payload 

data. PAYL uses the BFD and standard deviation to compute an anomaly score, which 

defines the similarity between attacks. Simplified Mahalanobis distance measure was 

used to compare new incoming traffic to the model. The system was evaluated against 

the 1999 Lincoln Lab IDEVAL dataset. The overall detection rate was close to 60% with 

a false positive rate less than 1%. PAYL uses whole payload. However, PAYL does not 
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consider relative position of different bytes inside the payload into account so that the 

structure of the payload is not modelled. 

Bolzoni et al. [81] proposed POSEIDON, a two tier payload based anomaly intrusion 

detection system. In this system, payload length and frequency distribution were 

replaced with an artificial neural network known as a SOM. In the POSEIDON 

architecture, SOMs was used for pre-processing of packet payload and PAYL was used 

as a basis for intrusion detection. The SOMs mapped high-dimensional data points onto 

a single or multi-dimensional grid. The aim of the SOM was to identify similar payloads 

for a given destination address and port. SOM improved detection accuracy. 

Unfortunately, rule-based and statistical-based systems are supervised learning 

systems. They require manual updating from network administrators. Hence, the ideal 

approach is to employ unsupervised learning, which does not require human interaction 

and to have the systems initially setup and then run autonomously. Anomaly-based 

intrusion detection systems are examples of unsupervised learning techniques. 

To model the structure of payload, Wang and Stolfo proposed ANAGRAM [82]. 

ANAGRAM uses n-grams extracted from payloads using a sliding window of length n 

to create unique signatures. Wang et al. [80] used value of n ≥ 2 to extract byte sequence 

information in a 256
n
 dimensional feature space. Due to the exponential growth in 

memory overhead and required training set size as n increases, the authors utilized 

Bloom filters to record n-grams observed from packet payloads during the training 

phase. They used supervised learning process to model normal traffic by storing n-grams 

of normal packets into one bloom filter and modeled attack traffic by storing n-grams 
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from attack traffic into a separate bloom filter. During the detection phase, packet 

payloads were scored according to the proportion of n-grams observed that were not 

contained in the Bloom filter. The major difference between binary n-gram analysis and 

1-gram analysis is that the latter has limitations and can be easily replicated using 

different forms of mimicry tactics. 

Unfortunately, due to the exponential growth in feature space as n increases, it is 

more difficult to construct an accurate model because of the curse of dimensionality and 

possible computational problem. Perdisci et al. [83] proposed McPAD (Multi classifier 

Payload-based Anomaly Detector), a state-of-the-art system. They created 2ν-grams and 

used a sliding window to cover all sets of 2 bytes, ν positions apart in a network traffic 

payload. Since each byte could have values in the range 0-255, and n=2, the 

dimensionality of the feature space was very high (256
2
=65,536). The high 

dimensionality of the feature space was then reduced using a clustering algorithm. They 

combined multiple classifiers using a simple majority voting rule to make their model 

hard against polymorphic and polymorphic blended attacks.  

Rieck and Laskov [84] also extracted language features in the form of high-order n-

grams from connection payloads. They compared high order n-grams and words in 

connection payloads using vectorial similarity measures such as kernel and distance 

functions.  

Correlating alerts is another important aspect of intrusion detection. PAYL primarily 

uses String Equality (SE), Longest Common Substring (LCS), and Longest Common 
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Subsequence (LCSeq). These techniques correlate attacks using ingress/egress signature 

matching.  

POSEIDON uses ATLANTIDES and PANACEA, to correlate alerts and to classify 

attacks. Similar to PAYL, ATLANTIDES [85] correlates alerts using ingress/egress 

technique. However, a major difference is the system correlates attacks based on user 

requests that employ higher-level applications. The system is engineered to reduce false 

positives. Whereas, PANACEA [86] correlates alerts using Repeated Incremental 

Pruning to Produce Error Reduction (RIPPER) and Support Vector Machine (SVM). 

RIPPER uses IF-THEN rules to predict a class and SVM classifies input features. 

However, all these systems have not considered correlations between the payload 

features and among the payloads. In contrast, we propose a novel approach to develop 

model for packet payload to detect anomalies in the packet payloads. Each network 

connection between a pair of hosts will be viewed as an object in an image (to be 

recognized through image processing), and each image will be viewed as a pattern to be 

classified as normal or anomalous traffic class based upon the given information about 

the connections. This model includes the correlation between various payload features 

and increases the detection accuracy. We use Mahalanobis Distance Map (MDM) 

technique to determine the hidden correlations between payload features and to calculate 

the difference between normal and anomaly traffic of network. For feature reduction, we 

propose to use Linear Discriminant Analysis (LDA) and Principle Component Analysis 

(PCA) techniques. This will reduce the computational complexity. In addition, it will 

improve time to train and test the model and improve detection accuracy as well. 
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2.6 Conclusions 

In this chapter, we have presented various security strategies used to mitigate attacks and 

protect the system from inside and outside attack as well from mis-configuration of the 

system. We have further discussed the intrusion detection problem as a pattern 

recognition problem and discussed a design process to build an intrusion detection 

system. We have then presented the taxonomy for intrusion detection systems.  We have 

shown how an intrusion detection system can be classified on the basis of the data 

source that it analyses and the detection model that employs, and their strength and 

limitations. We have discussed here the performance evaluation matrices for an intrusion 

detection method using F-Value and ROC curves. 

We have presented literature review in the perspective of techniques used for the 

design of intrusion detection system, particularly to anomaly-based network intrusion 

detection systems and also in the perspective of payload-based anomaly intrusion 

detection system, which is the main focus of this research work.  

Anomaly-based systems have been extensively researched but there are still open 

issues that limit the application of an anomaly-based intrusion detection system in real 

environments, despite its advantages over a signature-based system. Moreover, header 

based anomaly systems are unable to detect attacks against vulnerable applications 

(since the connection that carries the attack is established in a normal way). There is a 

need to design accurate payload-based intrusion detection system to protect the network 

from web-based attacks. We will address this issue in the next chapter and provide a 

frame work for payload-based intrusion detection system, which can detect attacks more 
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accurately. Chapter 3 and Chapter 4 discuss proposed solutions to these problems, 

developed through this research. 
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CHAPTER 3 

 

GSAD: Geometrical Structure Anomaly 

Detection System 

 

Introduction 

 

As mentioned in Chapter 2, several approaches have been proposed to mitigate computer 

attacks in a network. Intrusion detection system appears to be one of the most effective 

solutions for defending networks against malicious users. Sophisticated IDSs generally 

fall into two categories: misuse detection (or signature detection) and anomaly detection. 

Network based anomaly detection can be applied at a packet header level, packet 

payload level or both to process the network traffic. An IDS that simply analyses packet 

header information cannot adequately secure a network from malicious attacks. The 

alternative is to perform deep-packet analysis and explore the payload of each incoming 

packet. Examining the payload content is an important aspect of network security, 

particularly in today‟s volatile computing environment, where web applications are 

common attack targets. 
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SOM, POSEIDON, PAYL, Anagram and McPAD are examples of the payload-based 

anomaly intrusion detection systems. Most of these research except Anagram and 

McPAD use 1-gram analysis procedure in building a statistical model for certain types 

of data based on the byte frequency and do not have structural information of the 

payload features. However, all of these IDSs have high false positive rates since 

dependencies and correlations of the features are intrinsically neglected. The goal of this 

research is to develop a novel payload-based anomaly detector that improves the 

detection rate with a relatively lower false positive rate by using an image processing 

technique. We intend to use the Mahalanobis Distance Map (MDM) approach, which is 

a pattern recognition technique, to identify patterns of packet payloads. It is based on the 

idea that the geometric structures of all human beings are similar although they wear 

clothes of different colours. Our work is motivated by this idea and the MDM is used to 

discriminate normal payload from anomalous payload. MDM is promising in extracting 

the hidden correlations between features and the correlations among network packet 

payloads. It also partially captures structural information of payload. These correlations 

and structural information help improve the detection performance and reduce false 

positive rate.  

In the previous chapter, we have reported the relevant work of anomaly detection 

approach. However, this approach has many issues. We discuss these issues in the 

following section. 

High number of false alarms, especially false positive alarms, is the key issue of the 

anomaly detection system. This high false positive rate is due to the fact that an anomaly 

detector considers unseen normal behavior also as an anomaly. Anomaly detection 
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systems are highly dependent on the quality of the training data. Training data, which 

may contain attack samples, can leave an anomaly detection system non-functional 

because the attacks will be learned as normal traffic and IDS will never produce an alert 

related to them. Additionally, the lack of sufficient training samples degrades the ability 

of an anomaly detection system to correctly identify attacks. Anomaly detection 

algorithms have high overhead, preventing their deployment in high bandwidth 

environments. New attacks and services appear every day and IDS must be able to cope 

up with the new environment. Finally, anomaly detection systems have poor descriptive 

power regarding the types of attacks they detect. 

The chapter is divided in two parts. In the first part, we present detailed information 

on our proposed Geometrical Structure Anomaly Detection (GSAD) model. In the 

second part, we first discuss the implementation of the GSAD model in the HTTP 

environment. The HTTP environment is selected for implementation in our work 

because a considerable amount of Internet traffic is made up of HTTP traffic. Then, we 

compare its performance against the state-of-the-art PAYL model. We focus on 

successful HTTP requests that use the GET method and contain the query component. 

Malicious inputs can be sent to a web application using the parameter-value portion of 

the query.  

The more detailed organisation of this chapter is listed as follows. Section 3.1 

provides a description of GSAD, an IDS based on Mahalanobis Distance Map (MDM) 

approach. Experimental results and discussion are presented in Section 3.2. Section 3.3, 

provides a brief introduction of HTTP and some examples on web-attack. In Section 3.4, 

we present the implementation of GSAD in the HTTP environment. Section 3.5 
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describes the experimental setting and dataset used on which GSAD has been evaluated. 

Experimental results and analysis are given in Section 3.6. Finally, we summarize our 

work in Section 3.7.  

In contrast, we propose Geometrical Structure Anomaly Detector (GSAD), a novel 

payload-based IDS, to detect intrusion in the network. This model uses an image 

processing technique that has been used for human face recognition [87]. Each network 

connection between a pair of hosts is viewed as an object in an image (to be recognized 

through image processing), and each image is viewed as a pattern to be classified as 

normal or anomalous traffic based upon the given information about the connections. 

Similar to other anomaly detection systems, GSAD models the normal behavior of the 

network traffic rather than the malicious ones. Moreover, the most significant 

contribution of GSAD is the integration of MDM (geometrical structure) approach and 

payload-based anomaly detection systems.  

3.1 GSAD-Geometrical Structure Anomaly Detection System 

In this section, we elaborate on our new approach. Firstly, we present the framework of 

our GSAD system. Then, we discuss the modules in the framework, namely Payload 

feature classifier, Payload feature analyst, Payload geometrical structure module 

(PGSM), Attack recogniser and Alarm Acknowledgement. 

3.1.1 Framework of the Proposed Intrusion Detection System 

We present the framework of the GSAD, a payload based anomaly detector derived 

from an image processing technique. The complete framework of our proposed intrusion 
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detection system (GSAD) has three stages as shown in Figure 3.1. In this figure, solid 

arrows indicate data flows inside the GSAD model. The Payload Feature Analyst 

module and the Payload Geometrical Structure module together form the Geometrical 

Structure Payload Model (GSPM). A comprehensive description of each module is 

given below. 

The first stage of GSAD consists of payload classification and data preparation. For 

data preparation, raw data are collected from the network input, e.g., tcpdump file, 

which provides a list of connections. Incoming network traffic is filtered according to 

the type of application and payload length.  

In the second stage of the framework, payload features are analyzed using n-gram 

text categorization technique, which converts the network traffic packet payloads into a 

series of feature vectors. These feature vectors describe the patterns of the incoming 

traffic. Correlation between the payload features is calculated and an MDM is created 

for normal network traffic as a normal profile, which is used for the classification of the 

new incoming network traffic in the next stage. 

In the third stage, Mahalanobis Distance [88] criterion is used to measure the 

dissimilarity between the pre-developed normal profile and the profile of a new 

incoming network packet. Score value is calculated, which is used for classification of 

normal and malicious payloads and for the activation of the alarm. Detailed description 

of each module is given in the following subsections. 
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Figure 3.1: Framework of Geometrical Structure Anomaly Detection System 

3.1.2 Framework Modules 

In this section, we provide a step-wise description and technical details of all modules 

contained in our proposed IDS framework. 
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a) Payload Feature Classifier 

Payload feature classifier is the first stage of the framework, where different datasets are 

prepared. When a packet is received from GSAD, the payload is extracted. We group 

network traffic into various categories using Wireshark [89], which is a traffic analyzer 

and separates the network traffic based on type of services, destination address, payload 

length and direction of network traffic flow. The source of network traffic can be real 

network (for real-time operation) or collected tcpdump files. The prepared dataset is 

used by the next stage of this intrusion detection system. 

b) Payload Feature Analyst 

The payload feature analyst is the first key constituent of the Geometrical Structure 

Payload Model (GSPM). For feature extraction, text categorization technique [40] is 

used, which is responsible for payload feature analysis and feature construction. It 

extracts raw features using n-gram (i.e., the sequences of n consecutive bytes in the 

payload) text categorization technique (n=1 in our case) from the packet payload and 

converts observations into a series of feature vectors. Each payload is represented by a 

feature vector in a 256-dimensional feature space. The mathematical model for 1-gram 

feature construction is discussed as follows. 

c) 1-gram Feature Construction 

The 1-gram payload model is a payload based statistical model, which does not take 

network packet header features into account. In addition to average frequency of each 

ASCII character (0-255), it calculates the mean value and the standard deviation of each 
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feature‟s frequency and correlations between these features. Each payload is represented 

by a feature vector in a 256-dimensional feature space using  

   
  

   
   
   

 ,   (3.1) 

where Oi is the occurrence of i-th n-gram. The overall value of the relative frequencies is 

given by  

   
   
     . (3.2) 

Thus, a packet payload is then denoted by a relative frequency vector   

            
   which represents a pattern in the network payload in a 256-dimensional 

feature space. Here, T stands for „transpose‟ of a matrix. We assume that there is a 

network traffic dataset with n network packets. The mean value and standard deviation 

of each byte‟s frequency are described in Equations 3.3 and 3.4 respectively. 

                    
   (3.3) 

                    
   (3.4) 

where     and     are the mean value and the standard deviation of each feature‟s frequency 

and given by  

    
 

 
     

 
                 (3.5) 

      
 

 
           

               (3.6) 

The mean value and standard deviation vectors,   and   , are stored in a model M. The 

network traffic dataset consists of traffic generated by the various network services. 

Therefore, we need to filter network traffic for a selected service based on the following 
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features: size of payload, destination address, services and direction of traffic flow. Then, 

models are developed according to types of service and extracted group of features. 

d) Payload Geometrical Structure Model 

Payload Geometrical Structure is the second key constituent of GSPM, used for payload 

analysis. It includes techniques to determine where and how to separate data input prior 

to the classification or pattern recognition processes. The Mahalanobis Distance Map 

approach [87] develops geometrical structure models of the payloads. The following 

subsection presents a practical application of geometrical structure model in payload-

based anomaly detection.   

e) Geometrical Structure Model 

The Geometrical Structure Model (GSM) is a new concept in intrusion detection system. 

Network traffic profile is generated using Mahalanobis Distance Map (MDM) which 

captures complex non-linear correlations of the data. By using MDM, the hidden 

correlations between the features (256 ASCII characters) present in the payload of 

length L and the correlations among packets are obtained as follows. 

                         , (3.7) 
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, (3.9) 
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Where    represents the i-th feature in the feature vector     denotes the average of 

each feature,        defines the Mahalanobis distance between the i-th feature and the j-th 

feature,    is the covariance value of each feature, and finally D is the MDM, the image 

of a network packet (the pattern of a network packet payload). D is a 256×256 image that 

represents the distance from one block to another block. Distance map D is used to 

generate the network traffic profiles (normal and attack) of the training and test data. 

These profiles are used for the classification of incoming network traffic.  

The above basic formulas are used in the GSM model to process a large amount of 

sample network traffic with normal behaviors. To include the variations in different 

normal payloads, we consider all normal traffic as a group. The distance maps of normal 

behaviors for all traffic in the groups are calculated using Equations 3.7 and 3.8 and 

shown in Equation 3.9.  We assume that the group has m normal packets inside. Then, the 

distance maps of individual normal packets are:   
   , … ,   

   , and the averages and 

variances for all elements of the distance maps are computed by Equations 3.10 and 3.11.  

  
         

 

 
            

 
    , (3.10) 

         
  

 

 
                

         
 
 

 

   
 (3.11) 

Where 1 ≤ i,j ≤ 256 and             is the (i,j) element of distance map   
   . 

  
         and          

  are all kept in a model Mnor for further evaluation. 

In the attack recognition phase, an incoming packet follows the same preprocessing 

procedure (as discussed in Equations 3.7 to 3.11) to construct its Mahalanobis Distance 

Map: 
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  (3.12) 

f) Attack Recogniser 

Ideally, the attack recognition phase is to identify the difference between the normal and 

abnormal patterns. In this study, GSAD uses Mahalanobis distance criterion to measure 

the dissimilarity between the developed profile and new incoming traffic profile and 

recognize the attacks. It compares each incoming packet payload profile against the pre-

developed base-line normal payload profile to calculate weight factor score. Weight w is 

calculated using Equation 3.13 to detect an intrusive activity 

   
                      

 

         
 

       
     , (3.13) 

If the weight factor w exceeds the threshold, the incoming packet is considered as an 

intrusion. This weight factor score value is used for the payload classification and for the 

activation of the alarm. 

g) Selection of threshold value 

While setting the threshold is entirely subjective, ultimately it should be set to capture all 

attacks (ideally). Standard deviation of the observed samples is an appropriate criterion 

used to determine the threshold value. A series of experiments are conducted for 

standard deviation (δ) varying from ±δ to ±3δ to determine an appropriate value of 

threshold. We consider a threshold value between -3δ and +3δ in our experiments for 

achieving optimal detection rates and low false positive alarm rates. Assuming the 

distribution is normal, three standard deviations account for 99% of the sample 
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population are studied. The incoming request is considered as an attack or a threat if the 

weight factor is more than +3δ or less than -3δ. 

h) Alarm Acknowledgement 

In this module, the attack alarm will be generated if the score of a test packet payload is 

larger than the threshold and is then reported to the administrator. Otherwise, it will 

consider the packet as a normal.  

3.1.3 Base-line Profile Generation  

Training of the GSAD model is required to generate base-line profile of network packet 

(application) behavior and evaluate whether intrusion detection systems truly identify 

known and unknown attacks. To do this, anomaly-based IDSs will use normal data to 

learn the behavior of network packets during training and generate a normal profile. In 

the training stage, the distance maps of all sample images are constructed using Equations 

3.8 and 3.9. Let us assume that there are m normal packet images. Then, the average 

distance             of element (i,j) is computed using Equation 3.10 and the average 

covariance of m packets is calculated by Equation 3.11. This will generate a normal 

profile of network packets for an application. This profile is saved as a base-line profile 

(GSAD model) and is used for the testing purpose of each new incoming packet.  

3.1.4 Model Testing 

Testing is a critical process necessary to evaluate the capability of an IDS and to identify 

intrusions. In GSAD framework, as shown in Figure 3.1, testing is performed by the 

Attack Recognizer module. Whenever a new payload p is received, we generate a profile 
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(as described in Section 3.1.3). Then, we calculate weigh factor w and compare it with the 

pre-determined threshold value. If value of „w‟ is greater than the threshold value for 

payload p, then payload p is classified as an intrusion and an alarm will be activated.   

3.2 GSAD Evaluation 

In this section, we report experimental results. We present the results based on the 

accuracy of GSAD first. We evaluate GSAD on DARPA 1999 dataset [90]. Although the 

DARPA 1999 dataset is criticized by McHugh [7] for many of its weaknesses, it is the 

only publicly available dataset which is considered as a benchmark dataset to test 

intrusion detection systems. 

In the following subsections, we first present our experimental environment and brief 

information on the dataset, and then we discuss the training and testing in our model. 

3.2.1 Experimental Setup 

GSAD is written entirely in Matlab. We conduct experiments on a computer with two 

3.33 GHz 8MB cache Quad Core Xeon CUPs and 48GB DDR3-1333 ECC memory. 

This is a shared computational environment, which is used for heavy mathematical 

calculation and modelling experimentation. However, performance of our model is 

heavily influenced by the number of processes running simultaneously. 

3.2.2 DARPA 1999 Dataset 

The DARPA 1999 IDS dataset was collected at MIT Lincoln Labs to evaluate intrusion 

detection systems. Entire network traffic was recorded in tcpdump format. The dataset 

consists of three weeks of training data and two weeks of test data. In the training data, 
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there are two weeks of attack-free data and one week of data with labeled attacks. These 

attacks are grouped into five classes as scan or probe, DoS, R2L, U2R and data. A Series 

of experiments on DARPA 1999 [90] dataset are conducted to evaluate the performance 

of our proposed model. 

For our experiments, we consider inbound TCP traffic, extracted from the week 1, 

week 2 and week 3, which was captured between routers and victims. We use Wireshark 

[89], a packet analyzer, to extract TCP traffic. First 150 bytes of packet payload are used 

for experiments and to identify various attacks coming through port 80 and port 25. 

3.2.3 Experimental Results and Analysis 

In the first part of our experiments, we represent a payload by a feature vector as 

described in Subsection 3.1.2. Then, we compute Mahalonobis distance between 

features, and generate MDM, which represents pattern in the payload (as discussed in 

Subsection 3.1.2), and generate a MDM profile as described in Subsection 3.1.3 and 

save it as a base-line model. We train our model on the DARPA dataset using week 1 

and week 3 attack-free data. The model is then evaluated using week 2 data which 

contain 43 instances of 15 different attacks. Then, we evaluate the accuracy of GSAD in 

detecting three types of attacks [90],[91] namely Crashiis attack, Back attack and 

Mailbomb attack. A brief explanation of these attacks is given in the following section.  

 For port 80, the attacks are often malformed HTTP requests and are very different 

from normal requests. For instance, Crashiis Attack is a Denial of Service attack 

against the NT IIS web server. The attacker sends a malformed GET request via 
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telnet to port 80 on the NT victim. The command "GET ../.." crashes the web server 

(and sometimes crashes the ftp and gopher daemons as well).  

 Back Attack is a DoS attack against Apache web server, where client sends an HTTP 

requests “GET ///////////….” with more than 6000 slashes, these requests will slow 

down the server and be unable to process other requests.  

 Mailbomb Attack is a simple attack where an attacker floods a user‟s mailbox with 

thousands of junk mails. 

Figures 3.2(a)-(c) show the average relative frequency of each byte for normal HTTP 

payload, Crashiis attack payload and back attack payload respectively. In Figures 3.2(a)-

(c), payload features (ASCII characters) are plotted on X-axis and relative frequency of 

each byte in the payload on Y-axis. The MDM (geometrical structure model) of normal 

HTTP payload, Crashiis attack payload and attack payload are given in Figures 3.3(a)-

(c) respectively. MDM presents the correlations between the features. The MDMs in 

Figures 3.3(a)-(c) demonstrate that the correlations between normal features are different 

from the correlations between attack features. 

 

(a) normal HTTP payload 
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(b) 

 

 

(c) 

Figure 3.2: Average relative frequency of each byte. (a) normal HTTP payload; (b) crashiis 

attack payload; (c) back attack payload 

It can be seen from Figures 3.2(a)-(c) that the average relative frequencies of bytes 

appearing in the normal payload and various attack payloads are very different. For the 

Crashiis attacks, the “.” character has the highest frequency whereas other characters 

share equal frequencies. Relatively, the statistical nature of the back attack is totally 

different and it has a perfect match with the signature. Around 98 percent of characters 

in the back attack packets are “/”. 
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(a) 

 

 

 

(b) 

 

 

(c)  

Figure 3.3: Average MDM images. (a) normal HTTP payload; (b) crashiis attack payload; 

(c) back attack payload 
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Results reported in Figures 3.3(a)-(c) demonstrate differences between the normal MDM 

image and various attack MDM images. Therefore, we have strong evidences to 

distinguish various attacks from normal packets. 

We use weight factor scores to classify normal and attack packets. Results for the 

weight factor scores for normal HTTP request packet and Back attack packets are 

presented in Figure 3.4. In the Figure 3.4, X-axis represents the number of test packets 

and Y-axis represents weight factor score values. This is clear from Figure 3.4 that the 

GSAD model is able to detect different types of attacks without any prior knowledge of 

the attacks. 

 

(a)  

 

(b)  

Figure 3.4: Weight factor scores. (a) normal HTTP request packets; (b) back attack packets 
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From Figures 3.4(a)-(b), we can conclude that the weight factor score for normal 

packets is much smaller than the weight factor scores of back attack packets.  

We use the Receiver Operating Characteristic (ROC) curve method to evaluate the 

performance of GSAD model on DARPA 1999 dataset. The ROC curve shows 

relationship between false positive rate and detection rate. ROC curve is shown in Figure 

3.5. To show more clarity of results, the X axis and Y axis values are shown in the range 

[0.8e-03, 1.5e-03] and [0.65, 1] respectively. Our model could achieve 100 percent 

detection rate with a very low false positive rate of 0.087 percent on DARPA 1999 

dataset.  

 

Figure 3.5: ROC Curve for the accuracy of the GSAD model 

Experimental results illustrate good performance of our GSAD model in detecting 

various types of attacks and discriminating normal and attack packets. This is clear from 

the geometrical structure models which explain the correlation among 256 ASCII 

characters and also correlation among the packets. 
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To further investigate the attack detection accuracy and detecting a variety of web-

based attacks, we implement our framework in HTTP environment. In the next section, 

we will discuss the implementation of GSAD model in HTTP environment to detect 

web-based attacks coming through HTTP protocol in the network. 

Part II: GSAD Model in HTTP Environment 

With the popularity of the internet, more and more systems are subject to attack by 

intruders. 23 million attacks have been reported in HPDV Lab survey report [5]. 

Specifically, web applications continue to pose one of the biggest risks to company 

networks, often due to vulnerabilities present in the systems. Thus, securing a network 

server is an important but difficult task. This has motivated us to extend our proposed 

GSAD model for anomaly detection on HTTP requests sent to web servers. In this 

section, we focus on the detection of intrusions/attacks coming in the network through 

HTTP traffic and investigate detection accuracy of our GSAD model in HTTP 

environment.  

3.3 HTTP and Examples on Attacks 

3.3.1 HTTP 

HTTP is a stateless, application-level protocol described by the Internet standard RFC 

2616 [92]. The protocol operates on a client-server mode. While a HTTP request is a 

string, it is also structured. HTTP has become the universal transport protocol for almost 

all kinds of web-server applications. HTTP passes through most of these firewalls, with 

little or no trouble at all. Hence, web application developers started using HTTP as a 
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transport protocol for their new software. Some of the examples for this include 

tunneling secure shell connections, Microsoft RPC for accessing Exchange (email) 

servers, etc. The creation of all these new services over the HTTP protocol creates 

additional opportunities for the intruders [93]. They also create a lot of variations in the 

characteristics of the HTTP requests. The vast majority of requests use GET, but other 

methods, such as HEAD and POST, exist, and extensions to the HTTP standard define 

more.  

A web application generates an output in response to a user request, which is a string 

containing a number of parameter names and their respective parameter values. RFC 

2616 [92] defines the structure and the syntax of a request with parameters (Figure 3.6). 

 

 

Figure 3.6: A Typical HTTP (GET) request with parameters 

The method used in this example is GET. The fields of our interest are: the  presence 

of a path, a number of parameter names and their respective values (in Figure 3.6, the 

parameter names are „name‟,„file‟ and „sid‟, and their respective values 

are:“New”,“Article” and “25”). The set of parameters is finite. A value can be any 

string, though not all of the strings will be accepted. Since no type is defined, the 

semantics of each parameter is implicitly defined within the context of the web 

application and such parameters are usually used in a consistent manner (i.e., their 

syntax is fixed). 

GET      /modules.php?name=New&file=Article&sid=25     HTTP/1.1 
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3.3.2 HTTP Attack Examples 

As we know that attackers introduce bugs into code, the diversity of attacks against 

HTTP is high. This diversity implies that knowing one attack provides no assistance and 

information about the structure of the next one. Here, we present some of the examples 

on HTTP attack. Indeed, most existing attacks are only one request long. HTTP is a 

stateless protocol that contains structure useful in separating high- and low-variability 

portions of the request. 

One famous attack is “Nimda worm”, as shown in Figure 3.7, which is present in the 

resource path [94]. It is capable of affecting both the clients that use any version of 

Windows as the host operating system and also the servers running Windows NT or 

2000.  

 

 

 

 

 Figure 3.7: Nimda attack 

This attack targets a collection of bugs in Microsoft systems, and uses the fact that the 

default configuration enables the attacker to exploit the vulnerability. This attack has 

several known variants, all of them exploiting the vulnerability in the Windows 

operating system. 

Another popular attack type is the Cross-site scripting attack [95]. This vulnerability 

enables the malicious user to use a web application program to inject code, most likely 

GET /scripts/root.exe?/c+dir HTTP/1.0 

Host: www 

Connection: close 
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as client (browser) side scripts, into the web pages viewed by a lot of other users, who 

then become the victims of this attack. The malicious user causes a legitimate web-

server to send a response page to a client's browser that contains malicious script or 

HTML that the attacker chooses. 

Back attack [91], an attack in a resource path, is shown in Figure 3.8. 

 

 
 

 

 

 

 Figure 3.8: Back attack, 300 /s, extra /s have been deleted to save space 

3.4 Implementation of GSAD in HTTP Environment 

The GSAD framework proposed in Section 3.2 is very general and can be easily 

customized by adding domain specific knowledge as per the specific requirements of the 

network in concern, thereby, giving flexibility in implementation. In this section, we 

implement our GSAD model in the HTTP environment.  

The analysis technique uses the particular structure of HTTP queries that contain 

parameters. GSAD uses knowledge related to the application layer protocol by mapping 

HTTP payloads into 256 features space. Each feature represents the occurrence 

frequency of ASCII character in the HTTP request payload of one of the 256 possible 

byte values. A simple model of normal HTTP traffic is then constructed using the MDM 

for these features to recognize intrusive action. 

GET 

////////////////////////////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////////////////////////////////////////////////// 
 



74 
 

In our experiments, we parse 150 bytes of HTTP GET request payload by using a 

sliding window of 1 byte length and count the occurrence frequency of each feature in 

the payload. The HTTP GET request payload is represented by a pattern vector in a 

256–dimensional feature space. A profile is created for HTTP GET request payload 

using Equations 3.1 to 3.12 as explained in Section 3.2. Then, we design a number of 

experiments based on Figure 3.1 to determine the performance of GSAD in HTTP 

environment. 

3.5 Evaluation in HTTP Environment 

In this section, we report the results of our experiments. We first present the results based 

on the accuracy of GSAD in HTTP environment and then compare it to PAYL [80] and 

McPAD [83]. We evaluate GSAD on DARPA 99 dataset [96] and Georgia Institute of 

Technology Attack Dataset (GATECH) [83, 97]. In the following subsections, we first 

present our experimental environment and brief information on the dataset. 

3.5.1 Experimental Setup 

The experimental setup used in this section is similar to that explained in Section 3.2.1. 

Code for the implementation of GSAD in HTTP environment is written using Matlab 

2009b.  

Assumptions 

Following assumptions are made to evaluate the robustness of GSAD model in HTTP 

environment.  
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 The attackers may have some information about the IDS deployed in the 

organization, but do not have access to legitimate traffic from the same network 

where the IDS is deployed. 

 Polymorphic attacks used by the attacker are not specific to normal behavior of the 

attacked network.  

 Attack events are comparatively smaller than the normal events. 

 There are no mis-configured abnormal attacks in GATECH attack dataset. 

 A targeted attack is crafted to attack specific (often custom) systems/applications 

within a network. 

3.5.2 Datasets 

The following subsection describes characteristics of two datasets that we use in our 

experiments. These two datasets are used by the state-of-the-art payload-based IDSs that 

we will compare in this paper. 

a) DARPA 1999 Dataset 

DARPA 1999 dataset is the only publicly available, large and well labeled dataset, and 

is still the most widely used public benchmark for testing intrusion detection systems. In 

Section 3.3.2, we have discussed characteristics of this dataset. 

b) GATECH Attack Dataset 

The GATECH attack dataset is also publicly available and contains traces of real attack 

traffic. This dataset is a collection of 63 attack requests. Attacks are collected from 

various online security forums and other online sources. GATECH is a labeled dataset 
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and has several non-polymorphic HTTP attacks provided by Ingham and Inoue [97] and 

several polymorphic HTTP attacks generated by Perdisci et al. [83] using both the 

polymorphic engine CELT and Polymorphic Attacks. The GATECH attack data set is 

divided into four groups of attacks used as test data, namely Generic attacks, Shell-code 

attacks, CLET attacks known as Polymorphic attacks and Polymorphic blending attacks. 

The total number of attacks and attack packets in the dataset are 6,512 and 72,539 

respectively. All 66 HTTP generic attacks and 205 total HTTP request attack packets 

from the attack dataset are used in our experimentation. 

3.5.3 Experimental Results and Analysis 

In this section, we present a detailed description of the experiments conducted using our 

GSAD model to detect various attacks coming through HTTP services. The DARPA 

1999 dataset is used for constructing a normal profile of HTTP protocol. For attack 

traffic, the HTTP-related attacks contained in DARPA 1999 dataset and GATECH 

attack dataset are used. 

 Experimental Procedures and Methodology  

A series of experiments are conducted for the training and testing of the GSAD model 

for incoming HTTP requests from client to web server(s).  

During the training phase, an average normal profile is generated using a geometrical 

distance algorithm for HTTP GET request, and then the weight factor score and 

threshold are calculated. During the test phase, similarities between the new incoming 

HTTP request and the average profile of the HTTP requests are calculated using MDM 

and a weight factor. The weight factor is used to determine whether the incoming packet 
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is an attack packet or not. We configure several model settings to optimize the 

performance of our GSAD model. We introduce a smoothing factor γ to avoid the 

weight factor becoming infinite due to possibility of the variance δ
2

nor (I,,j) being equal to 

zero. The smoothing factor γ reflects the statistical confidence of the sampled training 

data. The larger the value of γ is, the less confidence of the samples truly representing 

the actual data is. Analysis of samples during the training phase for different values of γ 

is performed. We choose 0.0000001 as the value of γ because it is small enough to cause 

very limited impact on the actual correlation among packets. 

Selection of threshold value is very important for the evaluation of IDS as this 

directly impacts the performance of the IDS. According to Bolzoni & Etalle [81], a 

lower threshold yields more alarms, significantly raising the false positive rate. In 

contrary, a higher threshold yields lower alarms and thus would lower the false 

positives. While setting the threshold is entirely subjective, ultimately it should be set to 

capture all attacks (ideally). Standard deviation of the observed samples is an 

appropriate criterion used to determine the threshold value. A series of experiments are 

conducted with different values of standard deviation (δ) to determine an appropriate 

value of threshold. We consider a threshold value between -3δ and +3δ in our 

experiments for achieving optimal detection rates and low false positive alarm rates. 

Assuming the distribution is normal, three standard deviations account for 99% of the 

sample population are studied. The incoming request is considered as an attack or a 

threat if the weight factor is more than +3δ or less than -3δ. 
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Experimental Results  

We conduct experiments on training and test dataset. In the first part of our experiments, 

we present the model generation for normal HTTP traffic to host marx and hume.  Then, 

we evaluate the accuracy of our GSAD model in detecting various attacks, namely Back 

attack, Phf attack, Crashiis attack, Generic attacks, Shell-code attacks, Polymorphic 

attacks and the Polymorphic Blending attacks coming through HTTP services.  

a) Model Training Results on DARPA 1999 Dataset 

We extract inbound HTTP request traffic of week 1 and week 5 from DARPA 1999 

dataset [90] for the training of the GSAD model. The extracted HTTP traffic packets 

correspond to normal HTTP requests destined to two different HTTP servers existing in 

DARPA 1999 data set: marx (Linux Server) and hume (NT Server). The total numbers 

of packets used for training of the model after filtering are 13,933 and 10,464 for hosts 

marx and hume respectively.  

For a specific host, HTTP GET traffic has very similar behavior. In the experiments, 

we train the GSAD models on training dataset (10 days normal HTTP GET request 

traffic) for hosts marx and hume respectively, and generate an average normal profile for 

the HTTP GET request. For normal profile, we generate character‟s relative frequency 

model. Figures 3.9(a)-(b) show the relative frequencies of each character (0-255) in the 

extracted normal packet payload for the hosts, marx and hume respectively.  
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(a) 

 
(b) 

Figure 3.9: Average relative frequency of characters for normal HTTP GET request 

payloads. (a) marx; (b) hume 

 

Then, an average geometrical structure model using Equations 3.11 to 3.12 is 

developed. Figures 3.10(a)-(b) show the MDM images of normal HTTP traffic behavior 
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for hosts marx and hume. MDM computes correlation between the packets and also 

between the features of the HTTP payloads.  

 

(a)  

 

(b)  

Figure 3.10: Average MDM images of Normal HTTP GET request, (a) marx, (b) hume 

 

In Figure 3.10, X axis and Y axis show the 256 possible features present in a packet 

payload. The cross point on the figure represents correlation between two features. 
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b) Model Testing Results on DARPA 1999 Test Dataset 

In DARPA 1999 dataset, total numbers of packets after filtering for testing are 783,443 

for marx, and 8431 for hume hosts respectively. In weeks 4 and 5 evaluation dataset, 23 

attack instances are detected by our GSAD model.  

We conducted experiments with the extracted test data from the DARPA 1999 dataset 

and evaluated the accuracy of our GSAD model in detecting various attacks coming 

through HTTP services including Apache2 attacks, Back attacks, Crashiis attacks, 

NTInfoscan attacks and Phf attacks. MDM test results for Apache2 attacks and Phf 

attacks are shown in Figure 3.11.  

The behavior of Apache2 attacks in Figure 3.11(a), the behavior of Phf attacks in 

Figure 3.11(b) and the normal profile in Figure 3.10 show clear differences in these 

profiles. Moreover, the correlations between the features of Apache2 attack and Phf 

attack packets are different from the correlations between the features of normal GET 

traffic on the hosts marx and hume. 

From the MDM images, we can infer visually the differences between the suspected 

incoming packets and the normal network traffic involving high link speed and large 

amount of everyday network traffic. However it is not an appropriate solution for 

network intrusion detection because of human involvements. Furthermore, this also 

easily overloads the capacity of a network administrator. To overcome this problem, a 

weight factor score criterion is used. 
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(a) 

 

(b) 

Figure 3.11: MDM images of attack packets. (a) apache2 attack; (b) phf attack 

To differentiate abnormal or malicious behaviors from normal behaviors, weight 

factor score and threshold value are used. We use more than 90,000 Apache 2 attack 

packets and more than 2500 phf packets to evaluate our model. For our model, we 

choose a threshold value between -3δ and +3δ as this gives the best results. According to 

our experiments, the threshold values for hosts marx and hume are [-6.6759e03, 

1.9187e04] and [-1.0440e04, 2.1655e04] respectively. 
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Figure 3.12 shows the weight factor score results for Apache2 attacks and Phf 

attacks. Here, X-axis denotes the number of packets and Y-axis represents the weight 

score values. In Figure 3.12, green color plot shows a higher value of weight factor score 

in comparison to normal threshold values. This provides a good visualization of the 

performance of our model. 

The red and blue lines in Figure 3.12 are the thresholds of hosts marx and/or hume. 

They indicate that any packets assigned with a weight factor score beyond them are 

classified as intrusions. 

In Figure 3.12(b), red line and blue line overlap with each other because of the scale 

of Y axis. In our definition of attack detection, an attack is detected as long as one of its 

attack packets is identified as abnormal. Based on the experiments, we find that all of the 

attack instances are successfully detected using the GSAD models. 

 

(a) apache2 attack 
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(b) phf attack 

Figure 3.12: Weight factor scores of attack. (a) apache2; (b) phf 

c) Evaluation of GSAD on GATECH Attack Dataset 

In this section of experiments, we use a GATECH attack dataset. All HTTP request 

attack packets from the attack dataset are used in our experiments. We conduct several 

experiments for various types of attacks using GATECH attack dataset. We evaluate the 

similarity between the MDM of attack profile with the MDM of normal profile. The 

incoming request is considered as an attack or a threat if the weight factor is more than 

+3δ or less than -3δ. Results are encouraging. Results of some attacks are discussed in 

the following section. 

Generic attacks: This dataset consists of 66 HTTP attacks, plus shell-code attacks (these 

attacks carry executable codes in the payload that exploits vulnerability (MS03-022) in 

Window Media Service (WMS)). Other attacks cause Information Leakage and Denial of 

Service (DoS). Our model could detect around 90% of these attacks. Figure 3.13(a)-(d) 

shows MDM results for some of the Generic attacks.  
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(a) Remote GET buffer overflow vulnerability 

 

 (b) Information leakage attack - ADSI path disclosure 

 

(c) Input validation error attack 
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(d) Input validation error attack - NT index server directory travel 

Figure 3.13: MDMs of generic attacks 

Shell-code Attacks: Shell-code attacks are particularly very harmful as they inject 

executable code and hijack the normal execution of the target application. The data set 

contains 11 shell-code attacks from the Generic Attack data set, such as Code-Red Worm 

and Buffer Overflow attacks. Figure 3.14(a)-(b) show MDM results for Code-Red and 

Get Buffer Overflow Attacks respectively. 

 
(a) Code red worm      
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(b) Get buffer overflow 

Figure 3.14: MDMs of shell-code attacks 

CLET Attacks: These attacks are generated from 8 shell-code attacks using 

polymorphic engine CLET. Polymorphic version of each attack using the payload 

statistics was computed on each distinct day of traffic from DARPA and GATECH 

datasets for training CLET polymorphic engine. Overall, 96 polymorphic attacks are 

present in the data set. Figure 3.15 shows the MDM result for CLET attacks. 

 

Figure 3.15: MDM of a polymorphic attack-padded attack 

Comparing results for various attacks shown in Figures 3.13-3.15, the MDM attack 

profiles of generic, shell-code and polymorphic attacks with the MDM normal HTTP 
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request profiles show clear differences in there behaviors. Also the correlations between 

the features in these attacks are different from the correlations between the features of 

normal HTTP requests on the hosts marx and hume. The X axis and Y axis show the 256 

possible features (ASCII characters) present in a packet payload. The cross points in the 

figure represents the correlation between two features.  

3.6 Analysis of Results 

The results reported in the previous section show that the Geometrical Structure 

Anomaly Detector (Mahalanobis Distance Map and Weight factor score) can detect new 

attacks without prior knowledge of the attacks with high accuracy and low false positive 

rate.  

The results obtained for our model are very encouraging. We have achieved nearly 

100% detection rates for DARPA 1999 data set with 0.087% false positive rates. For the 

comparison of GSAD model with PAYL, we use the data set used by Wang and Stolfo 

[80] for the evaluation of PAYL. The differences in the detection rates are not big but 

we have achieved very low false positive rates. Table 3.1 shows a comparison in terms 

of detection rate and false positive rate for PAYL and GSAD on DARPA 1999 dataset. 

The results for PAYL are taken from [80]. 

Table 3.1: Performance Comparison 

Algorithm Detection Rate False Positive Rate 

GSAD 100% 0.087% 

PAYL 98% 0.1% 
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Table 3.2 shows comparison of detection rates and false positive rates for PAYL, 

McPAD and GSAD on GATECH attack dataset. Researchers of these models have also 

used DARPA 1999 dataset for the training and test of their models. These datasets have 

similar types of attacks, since the attacks are coming from the same sources (web sites). 

Table 3.3 gives a summary of experimental results obtained for different algorithms. 

Table 3.2: Comparison of GSAD, McPAD and PAYL on GATECH attacks dataset 

Algorithm 

Detection Rate 

False Positive  

Rates 
Generic attack 

Shell code 

attack 

 

CLET attack 

 

GSAD 90% 100% 100% 0.087% 

McPAD 75% 96% 99% 1% 

PAYL 90% 99% 95% 1% 

Table 3.3: Summary of experimental results for Generic attacks on various datasets 

Modeling  Approaches Detection Rate 
False Positives 

Rate 
Dataset 

PAYL (1-gram) 90% 20% DARPA 99 

MarKov  chain (conditional 

probabilities, ε =10e
-10

 
95% 39.81% Arach NIDS 

MarKov chain (Syntactical 

segmentation), ε =10e
-15

 
95% 4.98% Arach NIDS 

McPAD 75% 1% GATECH 

GSAD 90% 0.087% GATECH 
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3.7 Conclusion 

In this chapter, we have presented the framework of our geometrical structure anomaly 

detection (GSAD) scheme for building an effective intrusion detection system. We have 

presented an approach to network intrusion detection that combines two different 

techniques: 1-gram text categorization technique and the Mahalanobis Distance Map 

technique. This approach is based on geometrical structures of the payload features. The 

important characteristics of our model are that: it considers co-relation between the 

features and some structural information of the payload to build the behavior profile of 

the network traffic for intrusion detection. We have compared the performance of our 

model with the state-of-the-art PAYL model. 

In addition to improving the attack detection accuracy and detecting a variety of 

attacks, we have further implemented GSAD model in the HTTP environment to detect 

web-based attacks coming through HTTP, at port 80.  

Our experiments on the DARPA dataset and GATECH attack dataset show low false 

positive and high detection rate of our model. Experimental results show better 

performance when compared against some state-of-the-art payload-based intrusion 

detection systems, namely PAYL and McPAD for HTTP attacks. 

GSAD model uses 256×256 features for profile generation and discriminating normal 

and anomalous packets and thus requires very heavy computational cost. In Chapter 4 

and Chapter 5, we will propose solutions to reduce the computational complexity of the 

GSAD model. We believe that our model can be used in real-time applications.  
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CHAPTER 4 

 

Feature Selection and Two Tier Payload 

Based Intrusion Detection using LDA  

 

Introduction 

 

In the previous chapter, we have described a GSAD (Geometrical Structure Anomaly 

Detection) detector that models the “normal” attack-free traffic as a geometrical 

structure and demonstrates its ability to detect network attacks effectively. The detector 

has been designed to be language-independent and has considered correlations among 

features and partial structural information of payload. Furthermore, GSAD is applicable 

to any network service. Various experiments have demonstrated that GSAD can achieve 

a high detection rate and low false positive rate for worms and exploits. 

However, GSAD uses a large number of features to analyse the hidden patterns of 

packet payload and uses these features to discriminate normal and attack patterns present 

in the network traffic. It creates computational complexity. It requires large storage and 

a long time for training and testing. Furthermore, the intrusion detection system has to 

deal with a huge amount of network traffic, increasing computational complexity and 
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overhead. This large feature set and voluminous dataset limits the GSAD to off-line 

applications only. Hence, feature reduction becomes mandatory for efficient operation of 

the intrusion detection system.  

Feature reduction techniques are essential to create an efficient intrusion detection 

system when taking into account the computational complexity and the classification 

performance. Selection of an appropriate method that can precisely determine relevance 

of features to intrusion detection tasks and redundancy between features is a major 

challenge. There are several methods used by researchers for the selection of header 

features and relevance analysis in intrusion detection research [98-103]. However, there 

are very few papers that have considered feature selection according to application-layer 

payload. GSAD model uses packet payload to detect normal and attack patterns. 

Although GSAD is proven to be promising in detecting network attacks, it uses 256×256 

features to identify a suspicious attack pattern in the packet payload. This is time 

consuming.  

In this thesis, we propose to use Linear Discriminant Analysis (LDA) and Principal 

Component Analysis (PCA) techniques, for payload feature selection and classification 

of normal and attack patterns. LDA [104] is a supervised technique which is used for 

selecting important features in a large set of features, whereas PCA [105, 106] is an 

unsupervised technique used for analysis of the data, which examines and weights the 

importance of various components in terms of variance that a component reserves. These 

two techniques that are used in intrusion detection domain for feature selection of a 

packet header have achieved good results. However, these techniques are not used for 

the payload feature selection. We propose to use these two techniques for payload 
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feature selection and classification of normal and attack patterns. In this chapter, we 

describe the implementation of LDA technique for the selection of payload features and 

discriminating normal and malicious patterns in network traffic. Here, we propose our 

solutions for feature reduction and identify group of features which can enable an 

efficient use of GSAD system for intrusion detection in the network. The detailed 

description of PCA technique for packet payload feature selection will be discussed in 

Chapter 5.  

In this chapter, a new method is proposed, which uses LDA technique and difference 

distance map (DDM) [87] to order the potential features for payload feature selection 

and to distinguish normal and attack patterns in the network traffic. LDA-based 

approach reduces the computational complexity dramatically while retaining the high 

detection rates and provides an elegant solution. The rest of this chapter is organised as 

follows. Section 4.1 gives brief information on feature selection algorithms. In Section 

4.2, we discuss basic concepts of LDA. In Section 4.3, we propose LDA-based intrusion 

detection system and a detailed explanation of LDA-based feature selection approach for 

intrusion detection. The experimental results and analysis are given in Section 4.4. In 

Section 4.5, we present a two-tier intrusion detection system and discuss experimental 

results and analysis in Section 4.6. We give a brief information on integrated signature 

generation in Section 4.7. Finally, Section 4.8 concludes our work.  

4.1 Feature Selection Algorithms 

In machine learning and statistics, feature selection also known as feature reduction, or 

variable subset selection is used to select a subset of relevant features for building robust 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Statistics
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learning models. Intrusion detection system employs feature selection technique for data 

processing, which reduces the number of features, removing irrelevant, redundant, or 

noisy data from the dataset. There are two types of feature selection algorithms, namely, 

filter and wrapper. Filter method is fast and uses correlation based approach for the 

selection of feature subsets [82][107], but it is not capable to minimize generalization 

error. On the other hand, wrapper method uses classification algorithm and performs 

cross validation to identify important features. Every time a feature is added, induction 

algorithm is used for cross-validation. Due to this, wrapper method is computationally 

very expensive and does not scale well to large datasets that contain many features and 

instances [107][108]. To overcome the shortcomings of these two methods, a hybrid 

approach is used, that incorporates some of the features of wrapper method into a fast 

filter method for feature selection [107]. 

In recent years, linear methods [98-99] and [104-105] have played a major role in 

finding features, that describe classes, build classifiers and assign classes to new feature 

vectors. Most problems can be formulated as an eigenvalue decomposition equation, 

which can be solved by many existing algorithms [104-105]. Many linear feature 

reduction techniques, such as Correlation-based Feature Selection (CFS), Support 

Vector Machine (SVM), Principal Component Analysis (PCA), Generalized 

Discriminant Analysis (GDA) and Linear Discriminant Analysis (LDA), are proposed in 

[100], [101], [102], [103], [105] and [109] to reduce the header features of packets. 

However, there are very few papers that have considered feature reduction according to 

application-layer payload. 
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The early feature reduction approach [51] on payload, developed by Krugel et al., 

grouped the byte frequency distributions of 256 ASCII characters into six bins, namely 

0, 1-3, 4-6, 7-11, 12-15 and 16-255. Wang et al. [82] proposed an Anagram detector, in 

which Bloom Filter (BF) was used to reduce memory overhead. Nwanze and 

Summerville proposed a lightweight payload inspection approach [110], where bit-

pattern hash functions were employed to map the bytes at the packet payload onto a set 

of counters which were the selected features used for intrusion detection. 

In this chapter, we propose to use the LDA technique for payload feature selection. It 

attempts to select the discriminating features from Difference Distance Map (DDM) 

between a normal Mahalanobis Distance Map (MDM) and the MDM of a particular type 

of attack using LDA.  

4.2 Linear Discriminant Analysis 

Discriminant Analysis is a statistical method for obtaining a reduced feature set. LDA is 

one of the commonly used dimensionality reduction and data classification techniques 

and has been applied in human detection [87], face recognition, speech recognition, 

bankruptcy prediction, network intrusion detection [111, 112] etc.  

Different from PCA, which extracts features that are the most efficient for 

representation but may not be useful for discrimination, LDA selects an optimal 

projection matrix to transform a high dimensional feature domain to a lower 

dimensional feature space while preserving the significant information for data 

classification. We assume that there are n d-dimensional samples {x1, …, xn} assigned 
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to k different classes. Each class Ci, where i = 1, …, k, has ni samples. Projection matrix 

Ar is found to maximize the between-class scatter matrix     

                      
       (4.1) 

and minimize the within-class scatter matrix    

                  
 

    

 
      (4.2) 

where μ is the sample mean vector of the whole sample set denoted by 

   
 

 
   

 
      (4.3) 

and μi is the sample mean vector for class Ci given by 

    
 

  
      

   (4.4) 

The Fisher criterion is defined as the ratio of the variance between classes to the 

variance within the classes. Thus, the ratio, J, between the between-class scatter matrix 

SB and the within-class scatter matrix SW can be easily maximized by the projection 

matrix Ar.  

  
  

     

  
     

    (4.5) 

Once the above optimization problem is solved, the classification decision can be 

easily made on the low dimensional feature space by projecting the original feature 

space onto the optimal projection matrix   .  

4.3 LDA-based Intrusion Detection System 

In this section, we elaborate our new approach. We first discuss the framework of an 

LDA-based intrusion detection system. Then, detailed discussion of each block is given 

in the following subsection.  



97 
 

4.3.1 Framework of LDA-based Intrusion Detection System 

Figure 4.1 presents the framework of proposed LDA-based intrusion detection system. It 

has four stages, namely Difference Distance Map (DDM) Generation, LDA-based 

feature selection, profile generation and classification of network traffic.  

In GSAD, each payload record is characterized by a large set of features, and 

involves large computation power and time for classification process. LDA technique is 

used to improve the computational complexity of GSAD model and visualizes the 

classification problem as two-class categorization (normal and anomaly classes). LDA is 

used to select significant features from a Mahalanobis Distance Map (MDM), which is 

generated by the Geometrical Structure Model (GSM), a key component of the GSAD 

model, described in Chapter 3. Each MDM is used to explore the correlations among 

features (ASCII characters) in the packet payload for each single network packet. Then, 

selected significant features are used in the detection process, which is conducted on a 

new low-dimensional domain.  

To extract the low-dimensional significant features, Difference Distance Maps 

(DDMs) must be generated to measure the difference between normal traffic and 

particular types of attack traffic, such as the difference between each pair of  <Normal, 

Phf attack>, <Normal, Back attack> and <Normal, Apache2 attack>. Then, LDA is 

employed to select the most significant features for each normal and attack pair based on 

the pre-generated difference distance maps. Finally, all the selected features are 

integrated into a new significant feature set used for normal profile generation and 

malicious behavior detection.  
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It sends an alert signal to administrator if the new incoming packet is identified as an 

attack packet. 

 

 

 

 

Figure 4.1: Framework of LDA-based intrusion detection system 

4.3.2 Framework Modules 

a) Difference Distance Map Generation Module 

In order to discover the difference between the normal and attack samples, distance 

maps of all samples images are constructed as discussed in Chapter 3. Let us assume that 

there are m normal sample images and n attack sample images. Then, the average 

distance of element (i,j) is computed using Equations 4.6 and 4.7, where   
     
       is the 

average of m normal samples at (i,j) and   
     
       is the average of n attack samples at 

(i,j).  

  
     
       

 

 
       

         
      (4.6) 

  
     
       

 

 
       

         
       (4.7) 

Covariance             
  of the (i,j)-th elements of normal samples and covariance 

            
  of the (i j)-th elements of attack samples are computed using Equations 4.8 
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and 4.9. The difference at each element (i,j), where i, j = 1, …, 256 between the MDMs 

of the normal samples and the attack samples is computed using Equation 4.10.   

            
  

 

 
        

           
     
       

 
  

     (4.8) 

            
  

 

 
        

         
     
       

  
        (4.9) 

           
        

                
        

            
                

     (4.10) 

In Equations 4.6-4.9,       
        

 represents the (i, j)-th element of MDM of the k-th 

normal sample, and       
        

 stands for the (i, j)-th element of MDM of the k-th attack 

sample. The difference between the normal samples and the attack samples is denoted 

by          . The difference distance map between the normal samples and the attack 

samples is defined by                         
. A difference distance map is generated 

for each pair of normal traffic and a particular type of attack traffic. Because the 

dimension of the difference distance map is large (256×256), it is very time consuming 

if the difference map is directly used to differentiate the normal traffic and the attack 

traffic. Therefore, we use Linear Discriminant method [98] to reduce the number of 

difference distance map elements (i.e., to reduce the dimension of the difference map).  

b) LDA-based Feature Selection  

This module is of prime importance. It selects most significant elements of the 

difference distance map. In the following section, we discuss iterative feature selection 

process in detail.  
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A difference distance map generated in the first stage, for each pair of normal traffic 

and particular type of attack traffic, is used for the selection of significant features. 

In the difference distance map, the larger a feature value (i.e., a matrix element 

results) is, the more important feature is used to discriminate attack traffic from normal 

traffic. Figure 4.2 shows a flow model for iterative feature selection process.  

We first select the most significant r features from the difference distance map. The 

element locations of these features in the difference distance map determine the element 

locations in every MDM of a normal or an attack sample to form a corresponding r 

dimensional distance vector represented by Dr,k = [dk(Ur,1 ,Vr,1), dk(Ur,2 ,Vr,2), …, dk(Ur,r ,Vr,r)]
T
, 

where (Ur,1, Vr,1), (Ur,2, Vr,2), …, (Ur,r, Vr,r) indicate the element locations of the largest r 

features in the difference distance map, r is ranged from 1 to  256
2
 and k indicates the k-

th sample. Let     
       and     

       represent the     of the k-th normal sample and the 

k-th attack sample respectively. Then, the projection vector Ar is computed by 

        
           

             
          

          (4.11) 

where    
       and    

       are the averages of     
       and     

       respectively, and 

    
       and     

       are the covariances of     
       and     

       respectively.  

The number of the elements of the projection matrix    is reduced iteratively by 

determining the projection matrix    and removing the lower contribution elements. The 

positions of the elements are retained. The whole process is carried out iteratively until 

the number of significant features reaches the pre-set value. Then, the final projection 

matrix    is determined. Once the projection vector is finalized, the corresponding final 
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set of features is considered as the most significant features.  The matrix    is employed 

to transform the multi-dimensional feature vector as a one dimensional score value for 

each sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Flow model for feature selection process 
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c) Normal Profile Generation 

The normal profile is utilized to detect the similarity between the normal behavior and 

new incoming packet. It is developed by using the normal training samples and the 

selected significant feature set. In this section, we explain how to perform the 

development of the normal profile.  

Mean values of the significant r features of all normal training samples and a 

detection threshold are the basic components of the normal profile. Given a set of 

normal training samples X = {  , …,  }, which have been applied in the feature 

selection phase, and the significant feature set   = [  (  ,   ),   (  ,   ), ………,    

(  ,   )]
T
, in which (  ,   ), (  ,   ), …, (  ,   ) indicate the locations of the significant 

r features and k indicates the k-th sample. The mean values are denoted by 

  
 

 
   

 
   , (4.12) 

and they are stored in the normal profile used for comparing with any new incoming 

packet. Threshold is another important component to consider. Without an appropriate 

criterion, it is hard to achieve a satisfactory detection performance. The larger the 

threshold value is, the less false positive alarm is generated. On the other hand, a smaller 

threshold will in turn create a higher detection rate.  

In this research, we select a threshold through a distribution analysis of the Euclidean 

distance between each normal training sample and the mean value  . The Euclidean 

distance from the k-th normal training sample to the mean value   is computed by  

                
          

           
   , (4.13) 
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where          
         is the (Ui,Vi)-th element of  . The standard deviation of the Euclidean 

distance from the k-th normal training sample to the mean value     of the normal 

training samples is  

   
 

   
               

    , (4.14) 

where        
 

 
    

 
   . We assume that the distance     is of normal distribution, so 

three standard deviations account for 99% of the sample population.   

d) Attack Recognition Process 

Similar to normal profile development process, for any new incoming packet, the GSM 

is applied to generate the MDM of the packet. Then, the most significant r features are 

collected from the MDM. Projection matrix   , and the r selected significant features 

are used to calculate the score value for each input network packet. The score value of 

an incoming packet is computed by 

             
        (4.15) 

where            projection matrix obtained in the training stage and   
     

  is the 

feature vector with r elements of the distance map of the input network packet. When 

the score is larger than a pre-calculated threshold, the input network packet is identified 

as an attack packet, otherwise it is identified as normal network packet.  

To calculate the classification threshold, all training data consisting of normal and attack 

data are fed into the testing procedure respectively. Corresponding scores obtained based 

on Equation 4.15 are clustered into two classes on a d dimensional data domain. A 
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threshold is selected using the LDA optimizing criterion using Equation 4.5 which finds 

out the maximum ratio of between-class difference    and within-class difference   .  

4.4 Experimental Results and Analysis 

In this section, we first present experimental results. Then, an analysis of our 

experimental results is given. We evaluate the LDA feature selection approach on the 

DARPA 1999 IDS dataset [90], which contains tcpdump network traffic recorded for 

five weeks. Week 1 and week 3 data are attack-free data, and the other three-week data 

contain both normal and attack traffic, as explained in Chapter 3. This dataset consists of 

scan or probe, DoS, R2L, U2R and data. The dataset is divided into subsets. Each subset 

comprises of data records of specific attack type and normal traffic. LDA is used on the 

training dataset to obtain the important features for the classification process. The 

experiments are performed in two steps.  

 Iterative feature selection is the first step of our experiments. We use heuristic 

search method to select the number of elements as a starting point. Then, LDA 

approach is used to determine optimal feature set.  

 In the second phase of our experiments, the obtained optimal feature set is used 

to calculate profile of normal payload, which is then used to classify new 

incoming packet payload as normal or anomaly. 

4.4.1 Experimental Results  

To verify the performance of the proposed algorithm, HTTP traffic is used. LDA-based 

IDS is trained and tested with the inbound HTTP GET request traffic carrying payload 
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extracted on week 4 and week 5. We use the same dataset which is used in Chapter 3, 

Section 3.6. The total numbers of packets after filtering are 783,443 packets for marx 

(Linux server with IP address 172.16.114.50), and 8431 packets for hume (NT server 

with IP address 172.16.114.100) hosts respectively. Then, we further filter the normal 

and attack HTTP GET request packets, and divide them into normal and attack datasets 

respectively. We randomly choose 300 normal packets and 900 attack packets for 

feature selection, and choose 4000 packets for normal model training. Finally, we 

randomly select 1000 normal packets and 3000 attack packets for testing. The types of 

attacks are Apache2 attacks, Back attacks and Phf attacks. 

To select the most significant features, we first conduct experiments to choose a step 

size for iterative feature selection. We randomly choose 2600 normal HTTP request 

packets and 2600 Phf attack packets and calculate MDM using Equations 4.6 to 4.9. The 

MDM represents the correlations between features and is symmetric along the diagonal. 

We discard upper half of MDM matrix, reducing number of features. Furthermore, we 

neglect features that have small value in the difference distance map. We assume that 

these features have little influence on traffic classification. We manually select 2700 

features as initial starting point and use LDA-based iterative feature selection technique, 

discussed in Section 4.3.2 to determine optimal feature set, detection rate, false positive 

rate and threshold values for two step sizes, namely 10 and 20 respectively. Results for 

step sizes 10 and 20 are given in Table 4.1. 
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Table 4.1: Performance of Phf attack for various selected features 

Selected 

Features 

Threshold Detection Rate (%) False Positive Rate (%) 

Step=10 Step=20 Step=10 Step=20 Step=10 Step=20 

100 8.6059 8.462 96.69 99.76 0 0 

200 8.6277 8.5289 96.23 99.57 0 0 

300 8.631 8.542 96.23 99.46 0 0 

400 8.634 8.261 96.23 99.19 0 0 

 

We randomly select 300 normal packets and 900 attack packets for each type of 

attack to select significant features using the feature selection process, discussed in 

Section 4.3.2. The normal model of LDA-based IDS is trained on the 4000 normal 

training packets. It can be observed from the results in Table 4.1 that the detection rate is 

high, and is 99.76% for step size of value 20 when 100 features are selected.  

Figures 4.3(a)-(b) show the average MDMs of normal HTTP request packet and Phf 

attack packet used in the experiments. The average difference distance map (DDM) 

between normal packets and Phf attack packets is represented in Figure 4.4. The 

difference distance map (DDM) shows a clear difference between normal packets and 

phf attack packets. 
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(a) 

 
  (b) 

Figure 4.3: Average MDMs. (a) normal HTTP request; (b) phf attack packets 

 

.  
Figure 4.4: Difference distance map between Normal HTTP and Phf attack packets 



108 
 

To validate our results, we conduct several experiments to extract the optimal number 

of significant features to best separate normal packets from attack packets for Back 

attacks, Apache 2 attacks, Phf attacks and Crashiis attacks. We use step size of value 20 

for our experiments. The optimal results are achieved with 100 features selected using 

iterative feature selection process for each of the three types of attacks except Crashiis 

attack. This is because Crashiis attack carries a small packet payload and has very few 

features. Thus, we can conclude that LDA-based feature selection technique successfully 

transforms the original 256×256 dimensional feature domain to a relatively very low 

dimensional feature space and preserves the most significant information for the final 

classification. We integrate all selected features into one feature vector, which is used 

for the normal profile generation. 

In the test stage, we evaluate the performance of LDA-based IDS on the testing 

dataset containing both the normal packets and the attack packets. The test results are 

shown in Table 4.2, which shows the performance of our one-tier model. A detailed 

analysis of the results is given in the next subsection. 

Table 4.2: Confusion Matrix for LDA-based IDS using integrated feature set 

Predicted Actual Normal Attack 

Normal 987 13 

Attack 142 2858 
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4.4.2 Analysis of Results 

We evaluate the performance of our one-tier LDA-based model. From Table 4.2, we 

further calculate detection rate and false positive rate. Our model could detect 95.3% of 

attacks correctly with low false positive rate of 1.3%. The results in Table 4.2 reveal that 

the 300 optimally selected significant features can well differentiate various attack 

packets from the normal packets except Crashiis attack. The poor detection rate for 

Crashiis attack packets is related with the size of attack payload. Crashiis attack carries a 

small packet payload and has very few features, and some relevant features are removed 

in the feature selection process.  

To overcome the problem of small packet payload and to further improve the 

performance of LDA-based intrusion detection system, we propose a two-tier intrusion 

detection system. A detailed description of two-tier IDS is given in the following 

section. 

4.5 Two-Tier Intrusion Detection System 

The LDA-based feature selection approach, discussed in Section 4.3 is proven efficient 

in reducing the computational complexity while retaining the high detection rates. 

However, we have considered only three types of attacks, namely Apache2, Back and 

Phf in the experiments. We have excluded the Crashiis attack due to the small packet 

payload size, which bias the overall detection performance and increase the false 

positive and the negative alarm rates.  

We propose a two-tier IDS, which uses payload length criterion to separate the small 

size payloads from the normal size payloads. In the two-tier model, tier one is a 
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statistical based detector responsible for the detection of the small size payload attacks, 

and tier two is LDM-based detector applied to identify the other attacks.  

We first describe the framework of two-tier IDS. Then, we evaluate the IDS on 

DARPA 99 attack dataset to detect various payload size attacks. Finally, we discuss the 

experimental results with analysis. 

4.5.1 Framework of Two-Tier System 

The framework of two-tier intrusion detection system is given in Figure 4.5. The system 

consists of four key components, namely Filter, Statistical Signature Based Detector, 

LDM Based Detector and Alert Generator. The solid arrow indicates the incoming 

network traffic, and the dotted arrow stands for the analysis decisions made by the 

detectors. 

Under the HTTP environment, we make use of the length of packet payload as the 

filtering criterion because the normal HTTP packet has a very low probability to carry a 

very short payload. Therefore, the Filter component pre-processes the non-zero 

incoming HTTP Get request packets. Then, pre-processed request packets are grouped 

together based on the length criterion. If the length of any payload is less than the length 

criterion, the packet will be forwarded to the Statistical Signature Based Detector on the 

first tier. Otherwise, the packet will be passed to the second tier detector, i.e., the LDM 

Based Detector. 

The detector analyzes the received packet and makes the final decision. Then, the 

Alert Generator will decide to raise an alarm or not based on the detection result given 

by the detector.   
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Figure 4.5: Framework of LDM based two-tier intrusion detection system 

Tier-one: Statistical Signature Based Detector 

As the first tier detector, Statistical Signature Based Detector only processes the small 

packet payloads. In this case, the observed HTTP Get request packets are highly 

suspicious, and the anomaly patterns carried by the attacks are easy to learn from the 

character relative frequencies. This is because these attacks have very high frequencies 

on some particular ASCII characters in the payloads, which is unusual and is not going 

to happen in the normal cases. Thus, we can develop the statistical signatures for these 

types of attacks. 

To develop the attack signatures, the techniques discussed in Chapter 3 are used to 

parse and to extract the character relative frequencies from the labeled training attack 

packet payloads. The patterns of the character relative frequencies are stored as the 

signatures and are applied to identify the corresponding attacks in the future. 
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In the attack recognition phase, any new incoming packet is processed using the same 

techniques mentioned above to generate character relative frequency profile. The profile 

is compared with each known statistical signature, and the attack is identified as long as 

the profile is matched with one of the known statistical signatures. 

Tier-two: LDA-based Detector 

If the length of HTTP Get request packet payload is larger than the pre-set length 

criterion, the packet will be forwarded to the LDA-based Detector. The proposed LDA-

based feature selection approach is used to extract a low-dimensional feature space for 

profile development and attack detection. The processes of normal profile development 

and attack recognition are discussed in detail in the following subsections. 

a) LDA-based Feature Selection 

The methodology used in two tier IDS to extract significant features is similar to the 

iterative feature extraction process, explained in Section 4.3.2. To extract significant 

features, difference distance maps need to be generated to measure the difference 

between normal traffic and particular types of attack traffic, such as the difference 

between each pair of <Normal, Phf attack>, <Normal, Back attack> and <Normal, 

Apache2 attack>. The difference distance map between the normal samples and the 

attack samples is defined by                         
 and is calculated using 

Equations 46 to 4.10 described in Section 4.3.2. 

Then, LDA is employed to select the most signification features for each normal and 

attack pair based on the pre-generated difference distance maps. For the selection of the 

most significant features, we randomly choose normal training samples and various 
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attack training samples from the labeled samples set. A generated difference distance 

map is used for the significant feature selection. We first select the most significant r 

features from the difference distance map. Then, the optimal value of projection vector 

   is computed. Once the projection vector is finalized, the corresponding final set of 

features is considered as the most significant features.  

b) Normal Profile Development  

To measure the similarity between any new incoming packet and normal packets, the 

characteristics of the normal packets need to be extracted to develop a normal profile, 

which has been discussed in Section 4.3.2. In this section, we briefly explain the 

generation of the normal profile.  

Mean values of the significant r features of all normal training samples and a 

detection threshold are the basic components of the normal profile. The mean values of 

the significant r features of all normal training samples are calculated by Equation 4.12. 

Each feature is represented by an index and location pair, such as (U1, V1), (U2, V2), …, 

(Ur, Vr), to indicate the locations of the significant r features.  

To achieve a satisfactory detection performance, a threshold is selected through a 

distribution analysis of the Euclidean distance between each normal training sample and 

the mean value of the significant features. The Euclidean distance from the k
th

 normal 

training sample to the mean value   is obtained by Equation 4.13.  

The standard deviation of the Euclidean distances from the k
th

 normal training sample 

to the mean value   of the normal training samples is calculated using Equation 4.14. 
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We assume that the distance     is of normal distribution, so three standard deviations 

account for 99% of the sample population.  

c) Attack Recognition 

In the attack recognition process, the values of the most significant r features are 

generated and used to form a feature vector F. An incoming packet is considered as an 

attack or a threat if and only if the Euclidean distance from F to   is greater than +3δ or 

smaller than -3δ, where δ is the standard deviation computed by Equation 4.14.  

4.6 Experimental Results and Analysis 

To evaluate the effectiveness of the proposed two-tier system, a series of experiments 

are conducted on the DARPA 1999 IDS dataset and compared with the outcomes of 

LDA-based IDS. In the following subsections, we present the experimental results and 

the analysis. 

4.6.1  Experimental Results  

DARPA 1999 IDS dataset is used for evaluation of our proposed system. We focus on 

the detection performance of the proposed IDS on HTTP traffic.   

In the experiments, we use the same conditions as discussed in Chapter 3 to filter the 

interested HTTP Get request traffic from the week 4 and week 5 data of the DARPA 

1999 dataset, and the extracted packets are grouped into normal and attack sample sets 

respectively. We randomly choose a certain number of extracted normal packets and 

attack packets from the sample sets for the training of the model, and the rest of sets are 

used for testing. The attack packets contain Crashiis attack, Phf attack Apache2 attack 
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and Back attack. The proposed two-tier system is trained and tested with the selected 

inbound HTTP Get request traffic carrying non-zero payload as discussed in Section 4.3.  

All four types of attacks are used for the LDA-based IDS to obtain the significant 

feature set. The proposed two-tier system, however, uses Phf attack, Apache2 attack and 

Back attack only, and we exclude the Crashiis attack. This is because Crashiis attack is 

the only attack carrying a small packet payload with respect to the length criterion using 

in our experiments.  

 

Figure 4.6: Character relative frequencies of crashiis attack 

 

 

Figure 4.7:  Average Mahalanobis distance map of normal HTTP Get request packets 
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Thus, in the proposed two-tier system, the pattern of the character relative frequencies 

of Crashiis is used as the statistical signature for the tier-one detector. Figure 4.6 shows 

the character relative frequencies of Crashiis attack.  

To obtain the optimal feature set for Phf and Apache2 attack, we use Figure 4.7, and 

Figures 4.8(a) and 4.9(a) to generate the difference distance maps as shown in Figures 

4.8(b) and 4.9(b) respectively. The same method is used to obtain the optimal feature 

sets for the other types of attacks.  

 

 
(a)                                                                 (b)  

Figure 4.8: Average Mahalanobis distance map. (a) phf attack packets; (b) difference 

distance map between normal HTTP and phf attack packets 

 
(a)                              (b)  

Figure 4.9: Average Mahalanobis distance map. (a) apache2 attack packets, (b) difference 

distance map between normal HTTP and apache2 attack packets 
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Experiments are conducted to extract the optimal number of significant features to 

best separate normal packets from attack packets. The optimal result is found to be 100 

features selected by LDA for each of four types of attacks. Then, the normal profiles of 

the LDA-based IDS and the proposed two-tier system are developed based on the 

integrated 381 and 300 significant features respectively. 

In the test stage, the LDA-based IDS and the proposed two-tier system are evaluated 

on the testing sample sets containing both the normal packets and the attack packets. All 

the test samples are used for the testing of LDA-based IDS. However, in the proposed 

two-tier system, the test samples are assigned to the detectors on different tiers 

according to the length. In tier-one, the detector uses the character relative frequencies of 

any assigned new incoming packet payload to compare with the pre-generated signatures 

in order to identify the suspicious intrusive activity. In tier-two, the detector evaluates 

the similarity between any new incoming packet and the normal profile using Euclidean 

distance and the decision is made by comparing the distance with the pre-set threshold 

(i.e. ±3δ).  

The experimental results of the LDM-based IDS and the proposed two-tier system are 

shown in Tables 4.3 and 4.4 respectively. Table 4.3 presents the performance of LDA-

based IDS using features extracted from four types of attacks. Table 4.3 gives a 

comparison between the results obtained for the normal profiles developed using 

different numbers of training samples, i.e., 300, 700 and 4000 samples. 
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Table 4.3: Performance of LDA-based IDS for four types of attacks 

Test samples 300 training samples 700 training samples 4000 training samples 

 Classify 
correctly 

Mis-
classify 

Classify 
correctly 

Mis-
classify 

Classify 
correctly 

Mis-
classify 

Normal 96.83% 3.17% 97.1% 2.9% 99.07% 0.93% 

Apache2 

attack 

100% 0% 86.94% 13.06% 0% 100% 

Back attack 100% 0% 100% 0% 100% 0% 

Phf attack 100% 0% 100% 0% 100% 0% 

Crashiis 

attack 

6.67% 93.33% 5.64% 94.36% 4.1% 95.9% 

As can be seen from the table, the percentage of correct classification of normal 

samples is improved as the number of training samples increases. Back attack and Phf 

attack remain constant in all cases and have 100% correct classification rates. In 

contrast, the trend of correct classification of Apache2 attack and Crashiis attack is 

reverse. In the case of 4000 training samples, the classification of Apache2 attack drops 

down to 0%. This behaviour shows that this set of training samples has some 

discrepancy in dataset and integrated iterative feature set has removed some important 

features.  

The results in Table 4.3 show the LDA-based IDS is unable to classify Crashiis attack 

correctly, and has misclassification rates higher than 93% consistently in all three 

training scenarios. 

In Table 4.4, the performance of two-tier system using features extracted from three 

types of attacks is given. It compares the results obtained for the normal profiles 
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developed using the same numbers of training samples as Table 4.3. The difference is 

that the normal profiles for tier-two detector are built up on three types of attacks 

(Apache2 attack, Back attack and Phf attack) instead of all the four types.  

Table 4.4: Performance of two-tier system using features from three types of attacks 

Test samples 300 training samples 700 training samples 4000 training samples 

 Classify 

correctly 

Mis-

classify 

Classify 

correctly 

Mis-

classify 

Classify 

correctly 

Mis-

classify 

Tier-two 

(LDM-

based 

detector) 

Normal 96.62% 3.38% 96.81% 3.19% 98.5% 1.5% 

Apache2 

Attack 
100% 0% 100% 0% 86.94% 13.06% 

Back 

Attack 
100% 0% 100% 0% 100% 0% 

Phf 

Attack 
100% 0% 100% 0% 100% 0% 

Tier-one 

(Statist-

ical 

signature

detector) 

Crashiis 

Attack 
100% 0% 100% 0% 100% 0% 

 

 

As can be seen from Table 4.4, the proposed two-tier system achieves encouraging 

performance in all the cases except the detection of Apache2 attack using the normal 

profile developed by 4000 training samples. DARPA 1999 dataset is used for the 

generation of normal profile and has variability in the dataset, which over generalizes 

trained model. Also number of Appache2 attack in DARPA 1999 dataset is very large, 

this could be one of the reasons why performance for Apache2 attack is poorer in 

comparison to other types of attacks. However, compared with the LDA-based IDS, the 

proposed two-tier system is proven more promising. It outperforms the LDA-based IDS 
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in detecting Crashiis attack. Benefiting from two-tier architecture, we are able to classify 

all the Crashiis attack samples. The detailed analysis is given in the next subsection. 

4.6.2  Analysis of Results 

The results in Tables 4.3 and 4.4 reveal that the 300 training samples can provide 

sufficient knowledge for both the LDA-based IDS and the proposed two-tier system to 

achieve good overall detection performance. In this section, the information contained in 

these two tables is further analyzed using Detection Rate (DR) and False Positive Rate 

(FPR).  

Table 4.5 shows the comparison of the number of features, the detection rates and the 

false positive rates for LDA-based IDS, two-tier IDS and GSAD model.  

Table 4.5: Comparison of IDSs 

Systems Number of features Detection rate (%) False positive rate (%) 

Two-tier system 300 100 3.38 

LDA-based IDS 381 99.8 3.17 

GSAD model 65536 100 0.087 

The results show that the proposed two-tier system has 100% detection rate and 

3.38% false positive rate, which is slightly higher than LDA-based IDS. Two-tier system 

performs less number of calculations in comparison to LDA-based system. It can 

successfully classify Crashiis attack, and it uses less number of features in comparison to 

LDA-based IDS for the attack classification. 
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Compared with the GSAD model, the two-tier system achieves 100% detection rate. 

Although it has a higher false positive rate, the system successfully transforms the 

original 65536 dimensional feature space in GSAD model to a relatively very low 

dimensional feature space. It integrates various attack signatures while preserving the 

most significant information for the final detection. It not only significantly reduces the 

computational complexity of the detection process (attack signature comparison 

operation) but also reduces computational time. 

In the following, we give two Receiver Operating Characteristic (ROC) curves for the 

LDA-based IDS and the proposed two-tier system in Figures 4.10 and 4.11, which show 

the relationships between detection rates and false positive rates to the corresponding 

systems.  

 

Figure 4.10: ROC curve of LDA-based IDS 
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Figure 4.11: ROC curve of a two-tier IDS 

As shown in Figure 4.10, the detection rate of LDA-based IDS increases significantly 

from 13.7% to 99.82% when the false positive rate is set to be around 3.38%. Then, the 

detection rate keeps going up slowly to 99.8%. Contrastively, the ROC curve of the two-

tier system in Figure 4.11 is more stable, and it always stays at 100%. 

Despite the ROC curve of LDA-based IDS finally reaches to nearly 100% detection 

rate, the detection performance of the LDA-based IDS in fact is significantly influenced 

by the number of small payload (i.e. Crashiis attack)  appearing in our test sample set. 

The test sample set used in this paper is heavily dominated by the Apache2 attack 

(97576 test samples), and the small payload attack (i.e. Crashiis attack) only contributes 

a very small portion (195 test samples) to the test sample set. 

Therefore, even around 93.33% of the Crashiis attack packets are classified 

incorrectly by the LDA-based IDS shown in Table 4.3, its overall detection rate did not 

drop dramatically. Hence, the ratio of the attacks in a test sample set bias the detection 

performance of LDA-based IDS. However, our two-tier system does not have this issue. 
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4.7 Common Profile (Signature) for Integrated Feature Set 

Signature generation commonly refers to automatic generation of signatures, once an 

attack has been detected by an anomaly-based system. Chung and Mok [113] 

demonstrated that it was possible to generate signatures that match normal traffic. We 

use the same idea and develop one common signature for the normal traffic that can 

classify three different types of attack, namely, Phf, Apache2 and Back attacks. We have 

combined optimal features extracted for three attacks, namely Phf, Apache2 and Back 

attacks. Then, we have removed all common features from the combined feature set. 

This profile is used for the traffic classification. We have evaluated new integrated 

signature in Section 4.4 and Section 4.6 on DARPA 1999 dataset and calculated 

detection rate and false positive rate.  

4.8 Conclusion   

In this chapter, we have proposed a novel LDA-based feature selection approach to 

reduce the computational time and number of discriminating features of payload based 

anomaly IDS. The approach not only extracts a set of low-dimensional features but also 

preserves most signification information for data classification.  

We have proposed a two-tier IDS to detect various attacks. The system processes the 

incoming packets based on the payload length of the packet. Tier-one uses the statistical 

signature approach for the classification of small payload attack packets, and tier-two 

uses LDA-based approach for the classification of the other attack packets.  

The proposed two-tier model has been evaluated using DARPA 1999 IDS dataset for 

the HTTP traffic. It has achieved encouraging results with 100% detection rate and 
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3.38% false positive rate, and it can classify the Crashiis attack successfully, which is 

not able to be identified by the LDA-based IDS. Compared to GSAD model, it 

transforms a high dimensional feature space to a very low dimensional feature space, 

and have efficiently reduced the training and detection time.  

Note that the amount of selected significant features may grow to a large number 

when more types of attacks are considered. This is because more sets of significant 

features will be selected with respect to the increasing number of types of attacks. 

However, this approach is able to generate one common signature for three different 

attack types, and reduces number of signatures required to classify patterns. The optimal 

feature set can be used to generate the single signature for a group of attacks. This will 

reduce the computation time for signature comparison for those selected attacks.  
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CHAPTER 5 

 

RePIDS: a Multi Tier Real Time Payload 

Based Intrusion Detection System 

 

The increase in network bandwidth has facilitated a large number of services to be 

provided over a network. In order to operate in high speed networks, intrusion detection 

systems are either signature-based or anomaly-based. Signature-based systems perform 

pattern matching and are limited to detect attacks with known signatures. On the other 

hand, anomaly intrusion detection systems can detect new attacks. Unfortunately, they 

are prone to false positives. In addition, network intrusion detection systems operate at 

the periphery of the networks, and are overloaded with large amount of network traffic. 

Thus, network intrusion detection systems have problems with handling heavy traffic 

and they lack the ability to process data in real-time as well.  

In addition, 75% of cyber attacks occur at the application layer and 69% of 

vulnerabilities are caused by web services  [78, 114]. This shows that, attackers are 

trying to exploit vulnerabilities at the application level, where sensitive data is stored. 

Header-based systems are not suitable to detect attacks intended for application level. 

On the other hand, payload-based systems can identify attacks trying to exploit 



126 
 

vulnerabilities at the application level. Thus, organisations rely heavily on payload-

based intrusion detection for the protection of their networks. This poses significant 

challenges to build efficient network intrusion detection systems to detect a wide variety 

of attacks in real-time with acceptable reliability.  

5.1 Introduction  

The literature review on Network-based Intrusion Detection Systems (NIDSs), presented 

in Chapter 2, indicates that most previous research works in anomaly detection do not 

mention about data preprocessing techniques and traffic feature selection criteria used in 

NIDS. Intrusion detection algorithms are used directly on the raw data of the network. 

For practical applications, data preprocessing is one of the most important stages in the 

development of detection algorithm, and it directly impacts the accuracy and capability 

of the classification algorithm.  

As presented in Chapter 4, current IDSs examine a large number of data features to 

detect intrusions or misused patterns. Some of the features may be redundant or have 

little contribution to the detection process. In Chapter 4, we also proposed to use the 

Linear Discriminant Analysis (LDA) technique to identify important features in building 

a payload-based anomaly intrusion detection system. We have demonstrated through 

experiments that the LDA-based system is able to reduce a large feature set to a small 

feature set [115], and discriminate normal and malicious network traffic. The LDA-

based intrusion detection system is computationally efficient and effective. However, 

LDA is a supervised technique for constructing network IDS and needs labeled dataset 

as normal traffic and malicious (attack) traffic. Moreover, it is very hard and expensive 
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to create and analyse a labeled dataset of traffic from a real network. Furthermore, 

payload attacks are computationally expensive to detect because they require deeper 

searches into network sessions and also look for large number of payload features to 

discriminate normal packets and anomalous packets in the network traffic. Such 

challenge motivates us to use unsupervised technique to construct important and suitable 

features, which characterize behavioral patterns of network traffic and build a real-time 

payload-based intrusion detection system using suitable features. The Principal 

Component Analysis (PCA) [105] approach is used to construct important and suitable 

features from network traffic data which can distinguish normal and abnormal activities 

on a network. PCA helps reduce dimensionality by providing a linear mapping of n-

dimensional feature space to a reduced m-dimensional feature space (according to 

dominant principal components) to boost the detection performance, so it is suitable for 

real-time applications. 

Although PCA has been applied on header-based intrusion detection [116]118] to 

achieve sensible feature reduction, no work has been done on the data pre-processing 

using PCA for payload feature selection. Nwanze et al. [119] discussed modelling of 

packet payload using data mining technique based on PCA. However, they ignored the 

main idea of PCA and did not use the projection of original data on a new lower 

dimensional feature space. Furthermore, they did not consider correlations between 

features. 

In this chapter, we propose a 3-tier Iterative Feature Selection Engine (IFSEng) for 

feature subset selection, which addresses the issues related to the quality of feature set. 

We also propose a Real-time Payload-based Network Intrusion Detection System 
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(RePIDS), which aims to detect payload-based attacks on a network in real-time. 3-tier 

IFSEng and Mahalanobis Distance Map (MDM) are the key components of RePIDS, 

which facilitate effective and efficient detection of attack packets in the network traffic. 

We have demonstrated through experiments in Chapter 3 that the MDM approach is 

promising in extracting the hidden correlations between features and the correlations 

among network packet payloads. MDM also partially captures structural information of 

payload which helps improve the detection performance and reduces false positive rate.  

We evaluate our model on two datasets, namely DARPA 1999 [96] and Georgia 

Institute of Technology (GATECH) [97] datasets, and compare the detection 

performance (F-Value) and computational complexity of our proposed real-time 

payload-based IDS with two state-of-the-art payload-based IDSs, namely, PAYL [80] 

and McPAD [83]. Furthermore, we compute processing speed of our proposed model 

and compare it with the processing speed of a real scenario of medium size enterprise 

network.   

This chapter is organised as follows. Section 5.2 provides an overview of two 

payload-based state-of-the-art systems. In Section 5.3, we present detail description of 

the framework of RePIDS and its mathematical model. Experimental results and their 

analysis are given in Section 5.4. Section 5.5 demonstrates the evaluation results of 

RePIDS in terms of computational complexity, and compares RePIDS with the state-of-

the-art PAYL and McPAD intrusion detection systems. We also compare processing 

speed of RePIDS with the processing speed of a real scenario of medium size enterprise 

network with a gateway speed of 1GB. We conclude this chapter in Section 5.6.  
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5.2 State-of-Art Systems 

In the following section, we review the main characteristics of PAYL and McPAD, 

which are the most relevant to our work in payload-based anomaly detection.  

a) PAYL 

PAYL is a payload-based anomaly detector proposed by Wang and Stolfo [74], which 

employs 1-gram analysis, an n-gram (n≥1) text-classification technique for clustering 

packets based on payload data length. The concept of n-gram text categorization can be 

found in Subsection 5.3.2. In PAYL, intrusions are detected by analysing the distribution 

of bytes inside the HTTP payload. The pre-processing of packet payload using 1-byte 

sliding window creates a feature vector containing the relative frequency count of each 

of the 256 possible 1-gram (byte) in the payload. Simplified Mahalanobis distance 

measure was used to compare new incoming traffic against the model. The relative 

position of different bytes inside the payload is not taken into account, so that the 

structure of the payload is not modeled. To model the structure of the payload, a value of 

n ≥ 2 should be considered.  

To include the structural information of the payload, Wang and Stolfo proposed 

ANAGRAM [76]. A value of n ≥ 2 was used to extract byte sequence information. 

Supervised learning was employed to model normal traffic and attack traffic by storing 

n-grams of normal packets and attack packets into two separate Bloom Filters (BFs). A 

new incoming payload is categorized as anomalous if a major deviation exists in the n-

grams of incoming payload with respect to n-grams of normal filter value. The 

representation of the payload by n-gram analysis generates a features space of size 
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    . It is easy to see that as the value of n increases, the size of feature space increases 

exponentially.  This is the reason why in a real scenario a value of n greater than 2 is not 

used. 

b) McPAD 

Perdisci et al. proposed a Multi classifiers Payload Anomaly Detector (McPAD) [75]. 

McPAD is a payload anomaly detector based on ensemble of one-class SVM classifier. 

McPAD measures the occurrence frequency of pair of bytes that are ν position apart and 

creates 2ν-grams by using a sliding window in a payload. When a packet is received 

from McPAD, the payload is extracted to perform feature extraction. After the extraction 

of features, the same payload results are represented in m different feature spaces by 

using a 2ν-grams sliding window. The dimensionality of each feature space is then 

reduced using a clustering algorithm. The payload is processed by m different classifiers 

each working in a different space. Finally, the outputs of the classifiers are combined in 

a fusion stage. 2ν-gram feature extraction technique may include partial structural 

information of the payload features. 

In the following section, we present detailed description of our proposed model. 

5.3 RePIDS: Real-time Payload Based Network Intrusion 

 Detection System  

In this section, we elaborate on our new approach. RePIDS is an anomaly detector based 

on payload, PCA [61] and MDM [117]. PCA selects important and suitable features 

from network traffic data, and MDM extracts the hidden correlations between features 

and the correlations among network packet payloads, which are used for the 
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classification of network traffic. Firstly, we present the framework of our real-time 

payload-based intrusion detection system. Then, we discuss the modules in the 

framework, namely data preparation module, n-gram text categorization module, 3-tier 

Iterative Feature Selection Engine (IFSEng), profile generation and traffic classification. 

5.3.1 Framework of Real-Time Intrusion Detection System 

The complete framework of our proposed intrusion detection system has four stages as 

shown in Figure 5.1. They are data preparation, data pre-processing, model generation 

and anomaly detection.  

 

 

 

 

 

 

 

 

Figure 5.1: Framework for real-time payload based intrusion detection system 

 

Network 

traffic 

 
n-gram Text 

Categorization 

Packet 

Filtering 

Network Traffic 

Classification 

Profile 

Generation Using 

MDM 

Tier 2 

Principal 

Component 

Selection 

Tier 1 
Data Analysis 

Using PCA 

Iterative Feature Selection Engine 

 Tier3 

Refinement 

of Feature 

selection 

Generation and 

Verification of 

Model 



132 
 

The first stage of this IDS consists of data preparation and n-gram text categorization 

[40]. For data preparation, the incoming network traffic is filtered according to type of 

application and payload length, and n-gram text categorization converts network traffic 

packet payloads into a series of feature vectors. These feature vectors describe the 

patterns of incoming traffic in a high dimensional feature space. 

In the second stage, a 3-tier IFSEng, detailed in Subsection 5.3.2, is used for feature 

subset selection. Each tier performs a specific task. At tier 1, PCA technique [59] is used 

to analyse network traffic. At tier 2, selection of dominant Principal Components (PCs) 

(which is a subsets of important features) is performed using various methods as shown 

in [118] and [119]. And tier 3 refines the optimal feature subset (PCs) and evaluates the 

discriminative power of the feature subset to represent packet payloads. MDM shown in 

[117] (to be further discussed in Subsection 5.3.2) is used to capture more complex non-

linear correlations among the selected features, and construct a distance map which 

represents a network traffic profile. 

In the third stage of the framework, the finally selected PCs, (i.e., output of IFSEng) 

are used to build a normal traffic profile. An MDM is created for normal network traffic 

as a normal profile, which is used for classification of new incoming network traffic in 

the next stage. 

In the last stage, Mahalanobis Distance criterion is used to measure the similarity 

between the pre-developed normal profile and the profile of a new incoming network 

packet. The packet is classified as a normal or an attack packet depending upon the 
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amount of deviation of its profile from the normal profile. Detailed description of each 

module is given in the following subsections. 

5.3.2 Framework Modules 

In this section, we provide a step-wise description and technical details of all modules 

contained in our proposed IDS framework. 

a) Data Preparation Module 

Data preparation is the first stage of the framework, where different datasets are 

prepared. We group network traffic into various categories using Wireshark [89], which 

is a traffic analyser, and separates the network traffic based on type of services, 

destination address, payload length and direction of network traffic flow. The source of 

network traffic can be real network (for real-time operation) or collected tcpdump files. 

The prepared dataset is used by next stage of intrusion detection system. 

b) N-gram Text Categorization Module 

n-gram Text Categorization is responsible for payload feature analysis and feature 

construction as discussed in Section 3.1.2 of this thesis. It extracts raw features using n-

gram text categorization technique (here n=1) from the packet payload and converts 

observations into a series of feature vectors. Each payload is represented by a feature 

vector, which represents a pattern in the network payload in a 256-dimensional feature 

space.  
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c) 3-tier Iterative Feature Selection Engine  

The 3-tier Iterative Feature Selection Engine (IFSEng) consists of “Data Analysis Using 

PCA” (tier 1), “Principal Component Selection” (tier 2), and “Refinement of Feature 

Selection, Generation and Evaluation” (tier 3) modules.  

At tier 1, PCA [61] is used to analyse the original dataset. As a linear mathematical 

system, PCA is developed based on eigenvector-based multivariate analysis. It attempts 

to efficiently represent data by converting a set of observations into a new 

orthonormalized coordinate system, where the data are maximally decorrelated. The 

axes (eigenvectors or principal components) that contain greater variations 

(eigenvalues) make more contributions to the data representation. The first few most 

contributing axes are usually used to construct a new lower dimensional feature space to 

give efficient representations for the data.  

PCA is applied on network traffic dataset,             , where m is the number 

of observations and each observation           is denoted by a 256-dimensional 

feature vector       
   

      
   . First, mean-shift is conducted on the dataset for all 

the observations to make PCA work properly. The mean shifted dataset is represented by 

     

      
      

 
      

 

 

, (5.1) 

where    
 

 
   

 
   . Then, the principal components are obtained by analysing the 

sample covariance matrix    of the data set given in Equation 5.2.  

   
 

   
      

 
. (5.2) 
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Using eigen-decomposition, the covariance matrix    can be decomposed into a 

matrix W and a diagonal matrix  . They satisfy the condition,       . The columns 

of the matrix W stand for the eigenvectors (called the principal components) of the 

covariance matrix   , and the elements along the diagonal of the matrix   are the 

ranked eigenvalues associated with the corresponding eigenvectors in the matrix W. 

PCA only demonstrates the contribution of different components of a feature space in 

terms of data representation. It does not determine the number of principal components 

that should be retained. Thus, some other supplementary techniques are applied at Tier 

2 to decide the optimal number of components to be retained based on the analysis 

results from PCA.  

At tier 2, several techniques, such as cumulative energy [61], scree test [118, 120] and 

parallel analysis criteria [119], help achieve one of the main goals of good pre-

processing principal that is to retain as much relevant information as possible. 

Cumulative energy, scree test and parallel analysis criteria are utilized independently to 

select corresponding k1, k2 and k3 principal components (the eigenvectors of matrix W) 

respectively. The selected k1, k2 and k3 principal components are three subsets of k 

(which equals to 256 in our case), principal components contained in matrix W. These 

mathematical and non-mathematical criteria are used to verify the outcomes of each 

others. The subsets of principal components represent reduced feature spaces, which 

provide the best presentations determined by the criteria for a packet payload. By 

projecting the feature vector        
   

      
   onto these selected reduced feature 

spaces, the dimension of the feature vector can be reduce significantly to smaller values, 



136 
 

namely k1, k2 and k3. At the meanwhile, the criteria guarantee that the reduced feature 

vector can correctly represent the packet payload. A brief explanation of individual 

criteria is given below. 

Cumulative Energy. An energy associated with a component is represented by the 

corresponding eigenvalue. The greater an eigenvalue is, the larger energy the 

corresponding component (eigenvector) has. Suppose                            are 

k eigenvalue-eigenvector pairs decomposed from the covariance matrix     The 

cumulative energy of the first k1 components is defined by the sum of the energies across 

the components from 1 through k1, and it is computed using Equation 5.3. 

       
  
   , (5.3) 

where            can be determined subject to the objective function given in 

  

   
 
   

      (5.4) 

In Equation 5.4,   is the ratio of variation in the subspace to the total variation in the 

original space. This objective function intends to obtain a value of    as small as 

possible while achieving a reasonably high value of CE on a percentage basis. 

Scree Test is a graphical method, first proposed by Cattell [118] in 1966. More 

explanations of scree test are given by Nelson [121]. In a scree plot all eigenvalues are 

plotted against all (k) principal components (eigenvectors) in the descending order. In 

the scree plot, we look for the k2-th point, where sharp decrease in eigenvalue levels off 

(the scree). This point is identified as an „elbow‟. After the k2-th point, the remaining 

(k−k2) principal components (eigenvectors) are ignored and not used in the model. This 

is based on the arguments that the most significant components extract a large 
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proportion of the variances from the covariance matrix, while the remaining 

insignificant (k –k2) ones are associated with similar low value variances. The criticisms 

of scree test criterion are that there is no sharp transition where the scree begins, and the 

decision is not robust and reproducible. Alternatively, parallel analysis criterion is used 

to verify the selection of principal components (feature subset). 

Parallel Analysis (PA) is a modification of Cattell‟s scree test. PA [117] alleviates the 

component indeterminacy problem and determines which variable loadings are 

significant for each component. This operation is repeated twice and the obtained 

eigenvalues for each component are used to calculate means and Standard Deviations 

(SD) in the two iterations. From the means and standard deviations, the 95 percentile 

values are obtained (95 percentile = mean + 1.65 SD). If the eigenvalue of a component 

exceeds the 95 percentile of the simulated values, then the component is retained. 

At tier 3, feature refinement and evaluation module is used. In the refinement stage, we 

extend the range of the selected principal components, obtained from tier 2, on both the 

upper and lower sides. Then, we observe the discriminative power of the subsets of 

principal components to represent packet payloads. Lastly, we select the final        

           feature principal components through iterative evaluation of normal training 

model using F-Value (as discussed in Section 2.4 of this thesis) using Equation 5.5.  

F-Value               
         

                       
 , (5.5) 

A low value of precision means a higher degree of false positives and vice versa. A 

lower value of recall represents a higher degree of false negatives and vice versa. In 

Equations 5.5, β corresponds to the relative importance of precision versus recall and is 
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usually set to 1. On one hand, when precision and recall have equal weights and close to 

1, the model can achieve F-Value close to 1, which indicates good performance meaning 

that the classifier has 0% false alarms and 100% detection of attacks. On the other hand, 

F-Value close to 0 indicates poor performance. Thus, the F-Value of a classifier is 

desired to be as high as possible. 

The selected kfinal principal components are the ones which facilitates the classifier to 

achieve the greatest F-Value among the candidates k1, k2 and k3. Then, selected kfinal 

principal components are used in the profile generation, which is briefly discussed in 

the following Subsection.  

d) Profile Generation Using Mahalanobis Distance Map  

Network traffic profile is generated using Mahalanobis Distance Map (MDM) which 

captures complex non-linear correlations of the data. By using MDM (as described in 

Section 3.1.2 of this thesis), we obtain the hidden correlations between the features of 

projected feature vector                
 , by projecting the original feature vector 

              
 onto the kfinal dimensional feature subspace               

  

(outcome of IFSEng); and the correlations among packets as follows. 

                              , (5.6) 

       
                   

      
               , (5.7) 

  

 
 
 
 
 

                           

      

 

       

                   

           

 
                                           

 
 
 
 

, (5.8) 
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where    represents the a-th projected feature in the projected feature vector,   denotes 

the average of each projected feature,        defines the Mahalanobis distance between 

the a-th projected feature and the b-th projected feature,    is the covariance value of 

each projected feature, and finally D is the MDM (the pattern of a network packet). 

Distance map D is used to generate the network traffic profiles (normal and attack) of 

the training and test data. These profiles are used for the classification of incoming 

network traffic.  

e) Traffic Classification 

Mahalanobis distance is the criterion used to measure the similarity between the 

developed profile and new incoming network traffic profile. Weight w is calculated 

using Equation 5.9 to detect an intrusive activity. 

   
                      

 

         
 

      

     , (5.9) 

where   
         and          

  are the average and variance of the (a,b)-th element in the 

distance map                              
of the normal profile, and           is the 

(a,b)-th element of the distance map                              
of the new incoming 

packet. We calculate threshold value as explained in Chapter 3 framework section. If the 

weight factor exceeds the calculated threshold, the input packet is considered as an 

intrusion.  
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5.4 Experimental Results and Analysis 

In the following subsections, we first present experimental setup and brief information 

on the dataset and types of attacks. We then discuss training and test of our model. 

Finally, we present experimental results and analysis. 

A Series of experiments on DARPA 1999 [96] dataset and GATECH attack dataset 

[97] are conducted to evaluate the performance of our proposed model. These two 

datasets are used by the state-of-the-art payload-based IDSs that we will compare in this 

paper. 

5.4.1 Experimental Setup  

The experimental setup as discussed in Chapter 3 is used to conduct experiments. We 

use Matlab 2009b for the simulation of RePIDS. 

We experiment with several different threshold (δ) values. For evaluation of our 

model, we use threshold (δ) equal to ±3ζ, where ζ represents single standard deviation 

value, because this value will give us good results for detection rate, false positive rate 

and F-Value.  

5.4.2 Datasets 

a) Training (Normal Traffic) Dataset  

We extract week 1 and week 3 inbound „HTTP request‟ traffic from DARPA 99 dataset 

for the training of our model. The extracted normal traffic corresponds to two different 

HTTP servers, as discussed in Chapter 4 of this thesis. The total numbers of packets 
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used for training of the model after filtering are 13,933 and 10,464 for hosts marx and 

hume respectively.  

b) Test (Attack + Normal Traffic) Datasets 

In order to test the performance of our proposed model in detecting known attacks and 

new attacks, we use attacks contained in DARPA 1999 dataset and GATECH attack 

dataset. The labeled test data is further pre-processed to form two test datasets, which 

contain instances that do not appear in our training dataset. For our experiments, we 

focus on attacks coming through HTTP service only.  

As explained in Chapters 3 and 4 of this thesis, HTTP-based attacks are mainly from 

the HTTP GET/POST requests to web servers. There are several HTTP-based attacks 

provided by DARPA 1999 dataset, namely Apache2 attack, Crashiis attack, back attack 

and Phf attack. The GATECH attack dataset has several non-polymorphic HTTP attacks 

provided by Ingham and Inoue [97] and several polymorphic HTTP attacks created 

using CLET engine generated by Perdisci et al. [83]. The attacks, namely Generic attack, 

Shell-code attack and CLET attack (polymorphic attack), are placed in different groups, 

and each group has attacks of the same category for the presentation of results. All 

HTTP request attack packets are used in our experiments.  

5.4.3 Model Training and Testing Process 

The experimental approach involves following procedure for training and testing of 

model: 
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1. We use 185 bytes of HTTP GET request payload for training and testing of model. 

n-gram text categorization module discussed in Subsection 5.3.2, represents HTTP 

GET request payload by a feature vector q in a 256–dimensional feature space.  

2. As discussed in Subsection 5.3.2 of this thesis, tier 1 of IFSEng uses the PCA 

technique to analyse raw data, by projecting raw data on a reduced feature space. 

Then, tier 2 of IFSEng performs selection of dominant Principal Components using 

cumulative energy, scree test and parallel analysis criteria on the outcome of PCA. 

First, cumulative energy criterion is applied for the selection, in which we consider 

93 percent of cumulative energy level for Equation 5.6.   =7 is obtained, which 

means that the first 7 principal components are selected as the best subspace to 

represent the data by cumulative energy criterion. Then, we use scree test to draw 

scree plot as a variance captured by a given principal component and to select 

another set of principal components. Figure 5.2(a) shows full scree plot, where we 

use k (k = 256 in our case) principal components (X-axis) of a particular dataset and 

the corresponding variances, namely eigenvalues (Y-axis) to draw a scree plot, and 

the PCs are sorted in descending order with respect to the values of the 

corresponding variances. In Figure 5.2(a), we look for an „elbow‟, a flattening out of 

the curve. To provide better vision, we magnify the scree plot and show the first 25 

principal components in Figure 5.2(b). It can be observed from Figure 5.2(b) that 

there is a sharp decrease of variance in the front part of the plot and then it starts 

flattening out after the 6-th principal component. In Figure 5.2(b), we can observe 

„elbow‟ somewhere in the range from 6 to 9 principal components and the first    = 

6 principal components are able to capture about 92 percent of the variance. After 
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the   -th point, the remaining (k - k2) principal components capture only around 8 

percent of the total variance and are ignored.  

 
(a) 

  
(b)  

Figure 5 2: Scree test plot. (a) full scree plot; (b) enlarged scree plot with first 

25 eigenvectors 

We use    = 6 as a dominant principal components in our case. However, from 

Figure 5.2(b), we have observed a range of principal components from 6 to 9, and it 

is not very clear that what is the most appropriate value of     To overcome this 
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ambiguity, we use parallel analysis criterion as described in the following and to 

verify the selection of   . 

We verify the outcome of scree plot by using parallel analysis criterion as discussed 

in Subsection 5.3.2 on the same dataset. The result of parallel analysis also suggests 

a selection of first 7 principal components, which is the same as what has been 

obtained using cumulative energy criterion. 

The results of three feature selection criteria are given in Table 5.1.  

Table 5.1: Principal Component (PC) selection 

 

3. Although these are the dominant principal components, further refinement of 

dominant principal components is needed to be done at tier 3 of IFSEng (as 

presented in Subsection 5.3.2) because of the ambiguity in these results. In addition, 

training model generation and evaluation at tier 3 is performed using F-Value metric 

defined in Equation 5.7. The MDM represents the correlations among the features 

obtained from the projection of the original feature vector onto the finally selected 

principal components and among packets. These principal components help 

represent normal behavior profile in the low dimensional feature space. 

4. For testing, we project the extracted feature vector of an incoming packet payload 

onto the reduced feature space (the finally selected principal components) and use 

PC Selection Method 
Cumulative Energy 

(0.93) 
Scree Test Parallel Analysis 

Number of PCs 7 6 7 
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Mahalanobis distance dissimilarity criterion to detect intrusive behaviors. The 

performance of RePIDS in detecting attacks is evaluated using F-Value. 

In the experimentation, the 10 days normal „HTTP GET request‟ traffic from 

DARPA 1999 dataset is used. The normal traffic is randomly divided into three subsets. 

One of the subsets is selected randomly and used for training the model. The remaining 

two subsets are reserved for the test of the model.  

In the testing stage, an attack is detected as long as one of its attack packets is 

identified as abnormal. We conduct our experiments using the features obtained from the 

projection of original feature vectors onto the optimal principal components determined 

by the IFSEng for various types of attacks (Apache2, Phf, Crashiis and Back attacks) 

present in DARPA 99 attack dataset. We further evaluate our model on GATECH attack 

dataset, which is comprised of Generic, Polymorphic (CLET) and Shell-code attacks.  

5.4.4 Results and Analysis 

Experimental results are explained in two steps. In the first step of the experiments, we 

obtain an optimal subset of principal components. Then, we design a number of 

experiments according to Figure 5.1, showing the RePIDS framework, to determine the 

performance of our proposed model when using various subsets of principal components 

varying from 5 components to 9 components. Experiments are also conducted for 

different values of threshold varying from 2ζ to 3.5ζ. Results are presented in Table 5.2 

for various feature subsets and using 3.5ζ as the optimal value of threshold.  

Table 5.2 shows the variation of FP, TN, TP and FN rates along the change of the 

number of principal components. 
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To obtain the optimal number of principal components, F-Value is calculated for 

each feature subspace (principal components) using Equation 5. 7.  The variation of F-

Value with the number of principal components is shown in Figure 5.3.  

Table 5.2: Performance scores corresponding to the number of Principal Components 

 
5 PCs 6 PCs 7 PCs 8 PCs 9 PCs 

False Positive (FP) Rate 1.37% 0.67% 0.85% 1.31% 1.99% 

True Negative (TN) 

Rate 
98.63% 99.33% 99.15% 98.69% 98.01% 

True Positive (TP) Rate 98.70% 99.50% 100% 100% 99.97% 

False Negative (FN) 

Rate 
1.30% 0.50% 0 0 0.03% 

The results in Figure 5.3 show that the best F-Value is achieved with 7 principal 

components. In other words, the feature subspace of 7 principal components has good 

representation, discriminative power and high accuracy. The increase and decrease of 

the eigenvectors both dilute the performance of RePIDS. 

 

Figure 5.3: Trend of F-Value 
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It can be concluded that PCA and the three selection criteria help reduce the 

dimensionality of dataset from 256 to 7. The amount of information extracted using 

IFSEng is high in the selected 7-dimensional feature space, which helps create more 

accurate normal traffic profiles using MDM that is used for traffic classification. 

To demonstrate how MDM presents the correlations between the features, the MDMs 

of normal HTTP payload and some attack payloads are generated using projected 

features on the optimal 7-dimensional feature space.  

0 0.001406625 0.001449804 0.001332988 0.001463112 0.001270879 0.001241186 

0.001406625 0 0.000289528 0.000305565 0.000268982 0.000231624 0.000208517 

0.001449804 0.000289528 0 0.000239652 0.000214287 0.000194018 0.000163789 

0.001332988 0.000305565 0.000239652 0 0.000287999 0.000198282 0.000158613 

0.001463112 0.000268982 0.000214287 0.000287999 0 0.00016282 0.000170964 

0.001270879 0.000231624 0.000194018 0.000198282 0.00016282 0 9.17989 exp-05 

0.001241186 0.000208517 0.000163789 0.000158613 0.000170964 9.17989 exp-05 0 

Figure 5.4: MDM of normal HTTP Payload. 

 
0 7.211042exp-05 3.686978 exp-06 0.00237153 0.000102354 0.00078712 0.00072289 

7.211042 exp-05 0 5.214637 exp-05 0.00163562 0.00033709 0.00132127 0.00034557 

3.686978 exp-06 5.214637 exp-05 0 0.00225582 0.00012659 0.00085651 0.00065863 

0.00237153 0.00163562 0.00225582 0 0.00344129 0.00586325 0.00048361 

0.00010235 0.00033709 0.00012659 0.00344129 0 0.00032706 0.00135888 

0.00078711 0.00132127 0.00085651 0.00586325 0.00032706 0 0.00300482 

0.00072289 0.00034557 0.00065864 0.00048362 0.00135888 0.00300482 0 

       (a)  

 

0 0.000677245 0.00081015 0.00032632 0.00019996 0.00095956 0.00014843 

0.000677245 0 0.00022798 0.00036073 0.00038006 0.00045121 0.00033855 

0.00081015 0.00022798 0 0.00029764 0.0003492 0.00030296 0.00032801 

0.00032632 0.00036073 0.00029764 0 8.31436139 0.00032254 0.00011205 

0.00019996 0.00038006 0.0003492 8.31436139 0 0.00033113 8.634902 exp-05 

0.00095956 0.000451205 0.00030296 0.00032254 0.00033113 0 0.00055453 

0.000148432 0.00033855 0.00032801 0.00011205 8.634902 exp-05 0.00055453 0 

       (b) 
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0 0.05178815 0.04735877 0.04525517 0.03765384 0.03965582 0.05104155 

0.051788147 0 0.03508168 0.05975747 0.05529712 0.05478485 0.03144298 

0.047358766 0.03508168 0 0.03686035 0.0250256 0.0571498 0.0332321 

0.045255171 0.05975747 0.03686035 0 0.05269052 0.05324839 0.05400761 

0.037653843 0.05529712 0.0250256 0.05269052 0 0.03450803 0.04522816 

0.039655825 0.05478485 0.0571498 0.05324839 0.03450803 0 0.04336399 

0.051041546 0.03144298 0.0332321 0.05400761 0.04522816 0.04336399 0 

(c) 

Figure 5.5: MDMs. (a) apache2 attack; (b) crashiis attack; (c) phf attack payloads 

Figures 5.4-5.5 shows the MDMs of normal HTTP payload and some attack 

payloads, respectively. It can be seen from Figures 5.4-5.5 that the MDM is a symmetric 

matrix and the values of the elements along its diagonal are all equal to zeros. This is 

because the correlation of a feature to itself is always zero. MDMs also demonstrate that 

the correlations between normal projected features are different from the correlations 

between attacks projected features. Besides, the 7-dimensional space is able to help 

differentiate normal payload and various attack payloads efficiently and accurately. 

Figure 5.4 shows the MDM of normal HTTP payload (normal profile), and Figures 

5.5(a)–(c) show the MDMs of the attack profiles for Apache2, Crashiis and Phf attacks. 

Although we can directly compare the normal profile (model) and attack profiles 

(MDMs) to confirm the differences between normal and various attack payloads, it is a 

time-consuming task. Having MDM profiles for training dataset and a new incoming 

packet, the weight score w is calculated. If the deviation in weight score w is greater than 

the pre-selected threshold, then the incoming packet is classified as an attack packet.  

Moreover, to evaluate the robustness of RePIDS in recognizing unknown attacks 

(Generic, Shell-code and Polymorphic (CLET) attacks), we conduct experiments on 
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GATECH attack dataset using the same setup. Table 5.3 reports the FP rate, TN rate, TP 

rate, FN rate and F-Value on optimal 7-dimensional space.  

Table 5.3: Performance score 

Performance score 7 eigenvectors 

False positive (FP) rate 0.86% 

True negative (TN) rate 99.15% 

True positive (TP) rate 96.29% 

False negative (FN) rate 3.71% 

F- value 0.976 

 It can be concluded from Table 5.3 that RePIDS has a high detection rate, a low false 

positive rate and a low false negative rate. The F-Value achieved is 0.976, which 

confirms that the model can detect attacks with high accuracy and demonstrates its good 

performance.  

In conclusion, the proposed RePIDS is able to detect novel attacks very well, with a 

high F-Value (0.976) and a low FP rate.  

5.5 Comparison of RePIDS 

In this section, comparisons between RePIDS and the state-of-the-art PAYL and 

McPAD anomaly based intrusion detection systems are presented. Then, we further 

compare throughput of our proposed model with that of real scenario of a medium sized 

enterprise network. 
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5.5.1 Detection Performance 

In order to provide a reasonable comparison for these payload-based IDSs, the detection 

performance of RePIDS, PAYL and McPAD anomaly based intrusion detection systems 

is first compared. Thus, we use the results of false positive rate and detection rate from 

[83]. From Figures 5.6-5.7 in [83], we estimate average detection rates for generic, shell-

code and polymorphic attacks. We use false positive rate of 1% to calculate F-Values for 

PAYL and McPAD on GATECH attack dataset respectively. As mentioned in [83], their 

results for DARPA 1999 dataset are similar to those for GATECH attack dataset. Table 

5.4 shows the comparison of F-Values for PAYL, McPAD and RePIDs on DARPA 

1999 dataset and GATECH attack dataset. From Table 5.4, we can conclude that 

RePIDS shows better F-Value in comparison with PAYL and McPAD on DARPA 99 

and GATECH attack datasets. 

Table 5.4: Performance comparison 

 
RePIDS PAYL*  McPAD*  

DARPA 99 0.9958 0.969* 0.953* 

GATECH 0.976 0.969 0.953 

* F-Values for DARPA 99 dataset and GATECH attack dataset for PAYL and McPAD have been 

derived from [75]. 

5.5.2 Complexity Analysis 

In this section, we provide an analysis of the computational complexities of the 

algorithms used in RePIDS, PAYL and McPAD. Only the computation involved in the 

test phase is taken into account in the analysis, due to the training of the algorithms can 

be performed off-line, which does not affect efficiency of the algorithms in detection. 
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Given a payload P of length n and a fixed value of ν, the occurrence frequencies of 1-

gram and 2ν-grams can both be computed in O(n). The numbers of extracted features in 

these algorithms are constant regardless of the actual values of n and ν (2
8
 features 

extracted by RePIDS and PAYL, and 2
16

 features extracted by McPAD).  

The feature reduction process of the RePIDS can be completed by 2
8
*2*7=3584 

simple operations including multiplications and additions. In contrast, McPAD 

algorithm reduces features by mapping the occurrence frequency distribution of 2ν-

grams to the k feature clusters using a simple look-up table and a number of sum 

operations that is always less than 2
16

 (regardless of the value of k). Therefore, the 

feature reduction processes of RePIDS and McPAD can be computed in O(1). However, 

there is no feature reduction is performed in PAYL. 

Thus, the complete computational complexities of data pre-processing of the RePIDS, 

PAYL and McPAD algorithms can be obtained by adding up the computational 

complexities of the feature extraction and reduction processes. Since RePIDS uses a 

fixed payload length (185 bytes) to extract the occurrence frequency, the complete 

computational complexities of data pre-processing is O(1). PALY has a complete 

computational complexities of data pre-processing equal to O(n), because no feature 

reduction is required. For McPAD, it has to be repeated m (representing the number of 

different one class classifiers used to make a decision about each payload P) times every 

time choosing a different value of ν. Hence, the complete computational complexities of 

data pre-processing of McPAD can be accomplished in O(nm). 



152 
 

Once the features have been extracted and the dimensionality has been reduced to k, 

each payload has to be classified according to each of the m classifiers. To classify a 

payload P, RePIDS computes the Mahalanobis distance between the payload and the 

pre-determined normal profile. Given the number of features equal to 7 as determined 

and a single classifier used in classification, the computational complexity of the 

classification process of RePIDS is O(1). Similarly, PAYL uses a single classifier to 

classify the payload P represented by 256 features. Therefore, the classification process 

of PAYL can be accomplished in O(1) as well. Compared to RePIDS and PAYL, 

McPAD has m classifiers. Each classifier computes the distance between the payload P 

represented by k feature clusters and each of the support vector s obtained during 

training. Therefore, the classification of a payload using McPAD can be computed in 

O(ks). McPAD has to repeat the classification process m times and the results are then 

combined. Thus, the overall classification process of McPAD can be computed in 

O(mks). 

The detailed break-down of the computational complexity of the algorithms is given 

in Table 5.5. 

Table 5.5: Computational complexity of RePIDS, PAYL and McPAD 

 

 RePIDS PAYL McPAD 

Complexity of data pre-

processing 
O(1) O(n) O(nm) 

Complexity of classification O(1) O(1) O(mks) 

Overall complexity O(1) O(n) O(nm+mks) 
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As shown in Table 5.5, the overall computational complexities of RePIDS, PAYL 

and McPAD are O(1), O(n) and O(nm+mks) respectively. This proves that our RePIDS 

has the lowest computational complexity in comparison with PAYL and McPAD.  

We also evaluate the efficiency of our scheme by comparing the throughput of 

RePIDS with a similar environment used within a medium size enterprise network with 

a gateway speed of 1GB. Our throughput comparison is based on number of packets 

processed through such a network against the packet processing speed of our scheme 

considering the most ideal parameters. On one hand, the throughput calculated for a 

medium size enterprise network, considering that ideal parameters is 25600 packets in 

one second. However, for real-time applications using IDS we expect the throughput to 

be much less. On the other hand, our proposed scheme could process 33146 packets per 

second, which is 1.3 times more than the packet processing speed on the enterprise 

network, indicating our scheme has potential to be implemented in real-time. However 

such consideration involving real throughput analysis with most ideal network 

parameters is beyond the scope of this thesis and we intend to extend it for our future 

work. 

Summarizing the overall performance in terms of detection accuracy and 

computational complexities of algorithms, RePIDS performs better than the state-of-the-

art PAYL and McPAD anomaly based intrusion detection systems. Furthermore, in 

terms of throughput, RePIDS can process more packets per second than the throughput 

of a medium sized enterprise network with a gateway speed of 1GB. Hence, our model, 

RePIDS, is expected to be capable of processing packets in real time operation.   
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5.6 Conclusions  

In this chapter, we have proposed an efficient payload-based intrusion detection system 

(RePIDS) to detect attacks against Web applications through the analysis of HTTP 

payloads using 3-tier Iterative Feature Selection Engine (IFSEng) and Mahalanobis 

Distance Map (MDM). Mahalanobis distance criterion is used for classification of 

network data. The proposed model uses selected, small size of feature subspace to detect 

generic, shell-code and CLET attacks.   

The proposed 3-tier IFSEng is used to select an optimal feature subspace and reduce 

the dimensionality of the data, which significantly influence the detection efficiency.  

RePIDS has been thoroughly tested on the normal traffic of DARPA dataset, and on 

two different datasets of attacks, namely DARPA 1999 and GATECH datasets. 

Experimental results indicate that the method is effective in detecting attacks with high 

detection rates and low false positive rates. RePIDS has achieved high F-Value, 0.9958 

on DARPA dataset and 0.976 on GATECH dataset respectively.  

In particular, we have demonstrated that RePIDS performs better in comparison with 

the state-of-the-art PAYL and McPAD. In addition, we have also showed that the 

computational complexity of RePIDS for the classification of new incoming traffic 

payload is lower than PAYL and much less than McPAD.  

Finally, in terms of throughput, RePIDS can process more packets per second than 

the throughput of a medium sized enterprise network with a gateway speed of 1GB. 

Hence, our model, RePIDS, is expected to be capable of processing packets in real-time 

operation. 
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CHAPTER 6 

 

Conclusion and Future work 

 

To withstand the increasing threat of network attacks, it is required to detect novel 

attacks as soon as they appear. However, current signature-based intrusion detection 

systems can only detect known attacks because they depend on the generation of 

signatures.  

In addition, with the popularity of Internet and the increase in number of attack 

incidents on the Internet, web security is one of the key challenges in computer security 

research. Moreover, web applications are generally large, complex and highly 

customized. To protect each web applications, it requires signatures written explicitly for 

the application. It is not possible to guarantee that the application is completely free of 

vulnerability and secure as unknown vulnerabilities might exist. Writing signatures is 

also difficult. Hence, an application protected only by a signature based IDS cannot be 

completely secure at all. With emerging network technologies, anomaly-based intrusion 

detection systems are believed to provide a practical solution for identifying known and 

novel attacks on the networks, and for the protection of web applications. Anomaly-

based IDS creates a statistical model of the normal behavior from a set of training data. 
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If any network activity deviates too far from the pre-developed normal model, then the 

activity generates an alarm and identifies network activity as a novel attack. 

Unfortunately, existing anomaly detection approaches suffer from several significant 

weaknesses. In this chapter, we summarize our thesis and review the contributions, and 

discuss possible future work.  

6.1 Summary  

In this thesis, we have addressed the problems of detecting unknown attacks in 

application layer of network communication. In particular, we have introduced novel 

frameworks and developed models which address three critical issues that severely 

affect large scale deployment of payload-based anomaly detection systems in high speed 

networks. These three issues are: 

 Limited attack detection coverage, 

 Large number of false alarms, and 

 Inefficiency in operation. 

This thesis described a number of novel frameworks using network payload for 

effectively detecting wide variety of payload-based attacks and zero-day attacks, in 

particular, web-based attacks. We have proposed three anomaly detectors, namely 

Geometrical Structure Anomaly Detection model (GSAD), two-tier LDA-based 

detector, and Real-time Payload-based Intrusion Detection System (RePIDS), which can 

detect novel attacks and protect networks at the application level. We have generated a 

common profile using optimal features for a group of similar types of attacks. 
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6.1.1 Geometrical Structure Anomaly Detection Detector 

The proposed GSAD anomaly detector uses pattern recognition techniques to identify 

patterns of packet payloads. GSAD models the payload of network traffic using 

geometrical structures of the payload features and correlations between the payload 

features. This approach can detect new attacks without a-priori knowledge of the attacks.  

n-grams Text Categorization and Mahalanobis Distance Map (MDM) approaches are 

used to develop payload profile. MDM technique determines the hidden correlations 

between payload features, and includes payload structural information partially, which 

helps to improve the detection rate and false positive rate. We have implemented the 

GSAD model in the HTTP environment to detect web-based attacks coming through 

HTTP service, at port 80, and evaluated it on two datasets, namely DARPA 99 and 

GATECH datasets. GATECH dataset contains real traces of various attacks coming 

through HTTP service. The MDMs compute the correlations between the payload 

features. Deviation between the average MDM profile for training dataset and MDM 

profile of a new incoming packet has been used to classify the incoming packet into 

either an attack packet or a normal packet. In Chapter 3 of this thesis, MDM images 

(geometrical patterns) shown in Figures 3.9-3.14 have confirmed the differences 

between normal and various attack payloads. In addition, they have demonstrated 

differences in the correlations between the features of various attack payloads and the 

correlations between the features of normal packet payload.    
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6.1.2 Two-tier LDA-Based Detector 

We have proposed a novel framework for a two-tier detector, which uses LDA technique 

and difference distance map (DDM) to order the potential features for payload feature 

selection and to distinguish normal and attack patterns in the network traffic. Linear 

discriminate iterative feature selection algorithm is used to select an optimal set of 

features. The two-tier detector uses the packet payload length criterion to group packets 

and forward them either to Statistical Signature Based Detector on the first tier or Linear 

Discriminate Method (LDM) Based Detector on the second tier detector for further 

analysis. Then, the detector analyzes the received packet and makes final decision to 

raise an alarm or not. The Receiver Operating Characteristic (ROC) curves for the 

proposed two-tier system are shown in Figure 4.11. The proposed two-tier system has 

showed 100% detection rate and 3.38% false positive rate. The LDA-based approach 

reduces the computational complexity dramatically while retaining the high detection 

rates and providing a novel lightweight solution for network payload-based attacks 

detection.  

6.1.3 Real-time Payload Based Intrusion Detection System 

For real-time operation of payload-based system, we have proposed a novel, efficient 

real-time payload-based detector, RePIDS, which maintains small footprints in terms of 

use of resources, computational complexity and packet processing speed. RePIDS uses 

Principal Component Analysis (PCA) approach, which is an unsupervised technique to 

construct important and suitable features and select dominant Principal Components by 

means of cumulative energy, scree test and parallel analysis criteria on the outcome of 
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PCA. We have built a real-time payload-based intrusion detection system using suitable 

features. As discussed in Chapter 5, RePIDS has two key components, which are 3-Tier 

IFSEng and MDM. 3-Tier IFSEng addresses the issues, related to the quality of feature 

set, and Mahalanobis Distance Map (MDM) extracts the hidden correlations between 

features and the correlations among network packet payloads. Together, they have 

facilitated effective and efficient detection of attack packets in the network traffic. 

RePIDS has achieved high F-Value of 0.9958 on DARPA dataset and 0.976 on 

GATECH dataset respectively. This demonstrates that RePIDS can differentiate normal 

and attack instances accurately. In particular, we have demonstrated that RePIDS 

performs better in comparison with the state-of-the-art PAYL and McPAD, and the 

computational complexity of RePIDS for the classification of new incoming traffic 

payload is lower than PAYL and much less than McPAD.  Furthermore, we have shown 

that RePIDS can process more packets per second than the throughput of a medium 

sized enterprise network with a gateway speed of 1GB. All these facts have given 

substantial evidence that the proposed model, RePIDS, is capable of processing packets 

in real-time operation. 

6.1.4 Single Profile (Signature) for a Group of Similar Types of 

Attacks  

We have also proposed a preliminary solution to create a single profile (signature) for a 

group of similar types of attacks. Based on research presented in [122], we have used 

similar concept and developed one common profile (signature) for the normal traffic that 

could classify three different types of attacks, namely, Phf, Apache2 and Back, and 

reduce the number of signatures to be compared.  
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6.2 Thesis Contributions 

We recap the thesis contributions here: 

• We have identified and addressed three critical issues that may have severely 

affected deployment of payload-based anomaly detection system in high speed 

networks. 

• We have built GSAD, a payload-based intrusion detection system, which models 

payload statically using geometrical structure of payload features and language 

independent n-gram (n = 1, in our case). We have demonstrated the effectiveness 

in detecting new and variants of known attacks using DARPA dataset and 

GATECH dataset, which contain traces of real traffic. 

• We have built a two-tier novel detector using LDA technique and Difference 

Distance Map (DDM) approach to order the potential features for payload feature 

selection and distinguish normal and attack patterns in the network traffic. 

• We have described a preliminary solution to create a single signature for a group 

of similar types of attacks that could efficiently classify these different types of 

attacks and can help to reduce the number of signatures to be compared.  

• We have built an efficient payload-based intrusion detection system (RePIDS) to 

detect attacks against Web applications through the analysis of HTTP payloads 

using 3-Tier Iterative Feature Selection Engine (IFSEng) and Mahalanobis 

Distance Map (MDM). The proposed model uses selected features from a low 

dimensional feature subspace to detect generic, shell-code and CLET attacks. 
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Furthermore, RePIDS is capable of discriminating normal patterns and attack 

patterns in real-time. 

6.3 Future Work 

We now outline some interesting avenues for future research.  

• We have evaluated the efficiency of our real-time payload-based intrusion 

detection system by comparing the throughput of RePIDS with a throughput of a 

medium size enterprise network with a gateway speed of 1GB under similar 

environment. To further test its effectiveness and real throughput analysis, we 

need to run RePIDS in real-time and choose the proper network parameters 

involving real throughput analysis. Furthermore, to improve the performance of 

RePIDS in real-time, work can be extended and regress simulation can be done 

using real network test bed.  

• We have evaluated our proposed profile (signature) generation scheme as a 

preliminary solution on DARPA 99 dataset. To further test the effectiveness of 

this scheme, we need to develop more signatures for similar types of attacks and 

evaluate those signatures on different datasets.  To create a single signature for a 

group of similar types of attacks that could efficiently classify these different 

types of attacks and can help to compress the number of signatures to be 

compared, more tests on GATECH dataset and any other datasets may be 

performed. 

• We have evaluated our two tier model on DARPA 1999 dataset. To further test 

the effectiveness and performance of this model, we need to test this model on 
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GATECH attack dataset. And also need to develop more signatures for similar 

types of attacks. 

• RePIDS has limitation in terms of encrypted text. It is used for intrusion 

detection of unencrypted (plain text) payload data only and does not look into 

encrypted data. However, it can detect attacks coming through encrypted data 

when used at the host machine using an appropriate encryption key. Hence, this 

is an important area of research for payload-based intrusion detection system. 

• RePIDS is a real-time centralised intrusion detection system. We believe our 

work can be extended to distributed network environment. Internet has opened 

venues for attackers to send malicious packets in the networks. Supervisory 

Control and Data Acquisition (SCADA) system [123] is one of them and the 

security of SCADA system is a key issue for current critical infrastructure 

environment. This is a new research area for use of intrusion detection system in 

industrial environment. RePIDS is payload-based real-time detector and can 

protect networks from web-based attacks, as we have demonstrated through 

experiments. We intend to extend our real-time payload-based intrusion 

detection system for monitoring and securing of industrial control systems. To 

secure the control process (network traffic), we will develop a prototype on 

content-based intrusion detection system integrating Modbus protocol [124], 

which is an application layer messaging protocol of OSI model.  

 

 



163 
 

References 

 

1. Allen, J.H. Cert system and network security practices. 2001. 

2. Center, C.C., CERT advisory CA-1993-17 xterm logging vulnerability. URL 

http://www. cert. org/advisories/CA-1993-17. html, 1993. 

3. Center, C.E.O.C.S.R. and C.M. CyLab, CYBERSECURITY RELATED 

INTERNET SOURCES. 

4. Caldwell, T., Ethical hackers: putting on the white hat. Network Security. 

2011(7): p. 10-13. 

5. Gourd, J. Cyber Storm: The Culmination of an Undergraduate Course in Cyber 

Security. in International Conference on Security &amp; Management, SAM 

2010. 2010. Las Vegas Nevada, USA: CSREA Press. 

6. Gragido, W., Beyond zero: analysing threat trends. Network Security. 2011(7): 

p. 7-9. 

7. McHugh, J., Testing intrusion detection systems: A critique of the 1998 and 1999 

DARPA intrusion detection system evaluations as performed by Lincoln 

Laboratory. ACM Transactions on Information and System Security, 2000. 3(4): 

p. 262-294. 

8. Moore, D., et al. Internet quarantine: Requirements for containing self-

propagating code. in INFOCOM. 2003: Ieee. 

9. Christodorescu, M. and S. Jha, Static Analysis of Executables to Detect 

Malicious Patterns. Sciences, New York, 2003. 8(3): p. 169-186. 

10. Toth, T. and C. Kruegel. Accurate buffer overflow detection via abstract pay 

load execution, pp. 274-291, RAID 2002: Springer. 

11. Sekar, R., et al. Specification-based anomaly detection: a new approach for 

detecting network intrusions. p. 265-274, 2002: ACM. 

12. Axelsson, S., Intrusion detection systems: A survey and taxonomy. 2000, 

Technical report. 

http://www/


164 
 

13. Gupta, K., et al. Attacking confidentiality: An agent based approach. in 

Intelligence and Security Informatics. LNCS 2006: Springer Verlag, London   

14. Nascimento, G.M.B.A., ANOMALY DETECTION OF WEB-BASED 

ATTACKS.2010. 

15. Kruegel, C. and G. Vigna. Anomaly detection of web-based attacks. in 10th 

ACM conference on Computer and communications security 2003. New York, 

NY, USA: ACM. 

16. http://isc.sans.org/index.php?on=toptrends. SANS Institute - Internet Storm 

Center web site. .  2011  [cited. 

17. Anderson, J.P., Computer security threat monitoring and surveillance. Technical 

Report, 1980. p. 56. 

18. Kruegel, C., F. Valeur, and G. Vigna, Intrusion detection and correlation: 

challenges and solutions. Vol. 14. 2005: Springer-Verlag New York Inc. 

19. Cheswick, W.R., S.M. Bellovin, and A.D. Rubin, Firewalls and Internet 

security: repelling the wily hacker. 2003: Addison-Wesley Longman Publishing 

Co., Inc. 

20. Mell, R., Intrusion detection systems. National Institute of Standards and 

Technology (NIST), Special Publication, 2001. 51. 

21. Schneier, B., Applied cryptography: protocols, algorithms, and source code in C. 

2007: A1bazaar. 

22. Debar, H., M. Dacier, and A. Wespi, Towards a taxonomy of intrusion-detection 

systems. Computer Networks, 1999. 31(8): p. 805-822. 

23. Debar, H., M. Dacier, and A. Wespi, A revised taxonomy for intrusion-detection 

systems. Annals of Telecommunications, 2000. 55(7): p. 361-378. 

24. Denning, D.E., An intrusion-detection model. Software Engineering, IEEE 

Transactions on Software Engineering, 1987(2): p. 222-232. 

25. Vigna, G. and C. Kruegel, Host-based intrusion detection. Handbook of 

Information Security. John Wiley and Sons, 2005. 

26. Mischel, M., Modsecurity 2.5. 2009: Packt Pub. 

http://isc.sans.org/index.php?on=toptrends


165 
 

27. Ghorbani, A.A., W. Lu, and M. Tavallaee, Network intrusion detection and 

prevention: concepts and techniques, ed. A.A.G.L. Tavallaee. Vol. 47. 2009: 

Springer-Verlag New York Inc. 

28. Vigna, G. and R.A. Kemmerer, NetSTAT: A network-based intrusion detection 

system. Journal of Computer Security, 1999. 7: p. 37-72. 

29. Roesch, M. Snort-lightweight Intrusion Detection for Networks. in 13th USENIX 

Conference on System Administration, Seattle, Washington. 1999: Seattle, 

Washington. 

30. Ptacek, T.H., Insertion, evasion, and denial of service: Eluding network intrusion 

detection. 1998, DTIC Document. 

31. Tang, Y. and S. Chen, An automated signature-based approach against 

polymorphic internet worms. IEEE Transactions on Parallel and Distributed 

Systems, 2007. 18(7): p. 879-892. 

32. Paxson, V. and M. Handley. Defending against network IDS evasion. 1999. 

33. Chandola, V., A. Banerjee, and V. Kumar, Anomaly detection: A survey. ACM 

Computing Surveys (CSUR), 2009. 41(3): p. 15. 

34. Lazarevic, A., et al. A comparative study of anomaly detection schemes, in 

network intrusion detection. in Third SIAM International Conference on Data 

Mining. 2003: SIAM. 

35. Tombini, E., et al. A serial combination of anomaly and misuse IDSes applied to 

HTTP traffic. in IEEE 20th Annual Computer Security Applications Conference. 

2004. Tucson, AZ, USA. 

36. Gupta, K.K., B. Nath, and R. Kotagiri, Layered Approach using Conditional 

Random Fields for Intrusion Detection. IEEE Transactions on Dependable and 

Secure Computing. Vol. 7(1), p. 35 - 49, 2010. 

37. Damashek, M., Gauging similarity with n-grams: Language-independent 

categorization of text. Science. 1995. 267(5199): p. 843. 

38. Forrest, S., et al. A sense of self for unix processes. in SP '96 IEEE Symposium on 

Security and Privacy 1996: IEEE Computer Society Washington, DC, USA. 

39. Hofmeyr, S.A., S. Forrest, and A. Somayaji, Intrusion detection using sequences 

of system calls. Journal of computer security, 1998. 6(3): p. 151-180. 



166 
 

40. Liao, Y. and V.R. Vemuri. Using text categorization techniques for intrusion 

detection. in Proceedings of the 11th USENIX Security. 2002: USENIX 

Association. 

41. Dokas, P., et al. Data mining for network intrusion detection. 2002. 

42. Fawcett, T., An introduction to ROC analysis. Pattern recognition letters, 2006. 

27(8): p. 861-874. 

43. Mukherjee, B., L.T. Heberlein, and K.N. Levitt, Network intrusion detection. 

Network, IEEE, 1994. 8(3): p. 26-41. 

44. Estevez-Tapiador, J.M., P. Garcia-Teodoro, and J.E. Diaz-Verdejo, Anomaly 

detection methods in wired networks: a survey and taxonomy. Computer 

communications, 2004. 27(16): p. 1569-1584. 

45. Patcha, A. and J.M. Park, An overview of anomaly detection techniques: 

Existing solutions and latest technological trends. Computer Networks, 2007. 

51(12): p. 3448-3470. 

46. Garcia-Teodoro, P., et al., Anomaly-based Network Intrusion Detection: 

Techniques, Systems and Challenges. Computers & Security, 2009. 28(1-2): p. 

18-28. 

47. Ye, N., B. Harish, and T. Farley, Attack profiles to derive data observations, 

features, and characteristics of cyber attacks. Information-Knowledge-Systems 

Management, 2005. 5(1): p. 23-47. 

48. Smaha, S.E. Haystack: An intrusion detection system. in 4th Aerospace 

Computer Security Applications Conference. 1988. Orlando, FL: IEEE. 

49. Lunt, T.F. Real-time intrusion detection. 1989:IEEE 

50. Anderson, D., T. Frivold, and A. Valdes, Next-generation intrusion detection 

expert system (NIDES): A summary. 1995: SRI International, Computer Science 

Laboratory. 

51. Kruegel, C., et al., On the detection of anomalous system call arguments. 

Computer Securityâ€“ESORICS 2003, p. 326-343.2003:IEEE. 

52. Maxion, R.A. and F.E. Feather, A case study of ethernet anomalies in a 

distributed computing environment. IEEE Transactions on Reliability, 1990. 

39(4): p. 433-443. 



167 
 

53. Mahoney, M. and P. Chan, Detecting novel attacks by identifying anomalous 

network packet headers. Florida Institute of Technology Technical Report CS-

2001-2, 2001. 

54. Mahoney, M. and P.K. Chan, Learning models of network traffic for detecting 

novel attacks. Florida Institute of Technology Technical Report CS-2002-08, 

2002. 

55. Mahoney, M.V. and P.K. Chan. Learning nonstationary models of normal 

network traffic for detecting novel attacks. in eighth ACM SIGKDD international 

conference on Knowledge discovery and data mining 2002: ACM. 

56. Lee, W. and D. Xiang. Information-theoretic measures for anomaly detection. 

2001. 

57. Biles, S., Detecting the unknown with snort and statistical packet anomaly 

detection engine (SPADE). Computer Security Online Ltd., Tech. Rep, 2003. 

58. Maggi, F., M. Matteucci, and S. Zanero, Detecting Intrusions through System 

Call Sequence and Argument Analysis. IEEE Transactions on Dependable and 

Secure Computing, 2010: p. 381-395. 

59. Wattenberg-Simmross, F., et al., Anomaly Detection in Network Traffic Based 

on Statistical Inference and Alpha-Stable Modeling, IEEE Transactions on 

Dependable and Secure Computing, July 2011: p. 494-509. 

60. Heckerman, D., A tutorial on learning with bayesian networks. Innovations in 

Bayesian Networks, 2008: p. 33-82. 

61. Jolliffe, I.T. and MyiLibrary, Principal component analysis. Vol. 2. 2002: Wiley 

Online Library. 

62. Wang, W. and R. Battiti. Identifying intrusions in computer networks with 

principal component analysis. in First International Conference on Availability, 

Reliability and Security, ARES '06 2006: IEEE Computer Society Washington, 

DC, USA. 

63. Shyu, M.L., A novel anomaly detection scheme based on principal component 

classifier. 2003, DTIC Document. 



168 
 

64. Ye, N., Y. Zhang, and C.M. Borror, Robustness of the Markov-chain model for 

cyber-attack detection. IEEE Transactions on Reliability: 2004. 53(1): p. 116-

123. 

65. Zheng, Z., Z. Lan, and Y. Li, Toward Automated Anomaly Identification in 

Large-Scale Systems, IEEE Transactions on Parallel and Distributed Systems, 

2010: p. 381-395. 

66. Xiang, Y., K. Li, and W. Zhou, Low-Rate DDoS Attacks Detection and 

Traceback by Using New Information Metrics. IEEE Transactions on 

Information Forensics and Security, 2011. 6(2): p. 426-437. 

67. Xiang, Y., W. Zhou, and M. Guo, Flexible Deterministic Packet Marking an IP 

Traceback System to Find the Real Source of Attacks. IEEE Transactions on 

Parallel and Distributed Systems, 2009. 20(4): p. 567-580. 

68. Lee, W., S.J. Stolfo, and K.W. Mok. Mining in a data-flow environment: 

experience in network intrusion detection. in Fifth International Conference on 

Knowledge Discovery and Data Mining (KDD), ACM 1999. 1999: ACM. 

69. Lee, W. and S.J. Stolfo, A framework for constructing features and models for 

intrusion detection systems. ACM Transactions on Information and System 

Security (TISSEC), 2000. 3(4): p. 227-261. 

70. Lee, W., S.J. Stolfo, and K.W. Mok, Adaptive intrusion detection: A data mining 

approach. Artificial Intelligence Review, 2000. 14(6): p. 533-567. 

71. BarbarÃ¡, D., et al., ADAM: a testbed for exploring the use of data mining in 

intrusion detection. Journal of ACM SIGMOD Record: Special Issue, 2001. 

30(4): p. 15-24. 

72. Bridges, S.M. and R.B. Vaughn. Fuzzy data mining and genetic algorithms 

applied to intrusion detection. in NISSC. 2000. 

73. Xin, J., J.E. Dickerson, and J.A. Dickerson. Fuzzy feature extraction and 

visualization for intrusion detection. 2003. 

74. Kim, D.S., H.N. Nguyen, and J.S. Park. Genetic algorithm to improve SVM 

based network intrusion detection system. 2005. 

75. Portnoy, L., E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data 

using clustering. 2001: Citeseer. 



169 
 

76. Ramadas, M., S. Ostermann, and B. Tjaden. Detecting anomalous network traffic 

with self-organizing maps. in 6th International Symposium on RAID. 2003. 

Pitsburgh, PA, USA: Springer. 

77. Ramadas, M., S. Ostermann, and B. Tjaden, eds. Detecting Anomalous Network 

Traffic with Self-organizing Maps. RAID 2003, LNCS 2820, pp. 36–54, 2003., 

ed. E.J. G. Vigna, and C. Kruegel 2003. 36–54. 

78. Fossi, M., et al., Symantec Internet Security Threat Report trends for 2010. 

Volume XVI. 

79. Kohonen, T., The self-organizing map. Proceedings of the IEEE, 1990. 78(9): p. 

1464-1480. 

80. Wang, K. and S.J. Stolfo. Anomalous payload-based network intrusion detection. 

in RAID, Lecture Notes in Computer Science. 2004: Springer. 

81. Bolzoni, D., et al., POSEIDON: A 2-Tier anomaly based intrusion detection 

system, in Proceedings of the Fourth IEEE International Workshop on 

Information Assurance. 2006. 

82. Wang, K., J. Parekh, and S. Stolfo. Anagram: A content anomaly detector 

resistant to mimicry attack. 2006: Springer. 

83. Perdisci, R., et al., McPAD: A multiple classifier system for accurate payload-

based anomaly detection. Computer Networks, 2009. 53(6): p. 864-881. 

84. Rieck, K. and P. Laskov, Language models for detection of unknown attacks in 

network traffic. Journal in Computer Virology, 2007. 2(4): p. 243-256. 

85. Bolzoni, D., B. Crispo, and S. Etalle. ATLANTIDES: An architecture for alert 

verification in network intrusion detection systems. in LISA'07 Proceedings of 

the 21st conference on Large Installation System Administration Conference 

2007: Usenix Association. 

86. Bolzoni, D. and S. Etalle, eds. Approaches in anomaly-based network intrusion 

detection systems. Intrusion Detection Systems, ed. L. Springer Verlag. Vol. 38. 

2008. 1-16. 

87. Utsumi, A. and N. Tetsutani. Human detection using geometrical pixel value 

structures. 2002: IEEE. 



170 
 

88. Theodoridis, S., et al., Introduction to pattern recognition: a matlab approach. 

2009: Academic Pr. 

89. Lamping, U. and E. Warnicke, Wireshark User's Guide. 2004, Recuperado el. 

90. Mahoney, M. and P. Chan. An analysis of the 1999 DARPA/Lincoln Laboratory 

evaluation data for network anomaly detection. in Proceedings of Recent 

Advances in Intrusion Detection (RAID). 2003: Springer. 

91. Kendall, K., A database of computer attacks for the evaluation of intrusion 

detection systems. 1999, Massachusetts Institute of Technology. 

92. Fielding, R., et al., Hypertext transfer protocol--HTTP/1.1. 1999, RFC 2616, 

June. 

93. Dhamankar, R., et al., The top cyber security risks. TippingPoint, Qualys, the 

Internet Storm Center and the SANS Institute faculty, Tech. Rep, 2009. 

94. Balthrop, J., et al., Technological networks and the spread of computer viruses. 

Science, 2004. 304(5670): p. 527-529. 

95. Di Lucca, G.A., et al. Identifying cross site scripting vulnerabilities in web 

applications. 2004: IEEE. 

96. Lippmann, R., et al., The 1999 DARPA off-line intrusion detection evaluation. 

Computer Networks, 2000. 34(4): p. 579-595. 

97. Ingham, K. and H. Inoue. Comparing anomaly detection techniques for http. in 

RAID'07, The 10th international conference on Recent advances in intrusion 

detection 2007: Springer. 

98. Chen, Y., et al., eds. Survey and taxonomy of feature selection algorithms in 

intrusion detection system. Vol. 4318. 2006, Springer. 153-167. 

99. Chen, C.M., Y.L. Chen, and H.C. Lin, An efficient network intrusion detection. 

Computer communications. 33(4): p. 477-484. 

100. Singh, S. and S. Silakari, Generalized Discriminant Analysis algorithm for 

feature reduction in Cyber Attack Detection System. Arxiv preprint 

arXiv:0911.0787, 2009: p. 173-180. 

101. Shih, H.C., et al. Detection of Network Attack and Intrusion Using PCA-ICA. in 

3rd International Conference on Innovative Computing Information and Control, 

2008. ICICIC '08. 2008. Dalian, Liaoning: IEEE. 



171 
 

102. Venkatachalam, V. and S. Selvan, Performance comparison of Intrusion 

detection system classifiers using various feature reduction techniques. 

International journal of simulation, 2008. 9(1): p. 30-39. 

103. Mahoney, M.V. Network traffic anomaly detection based on packet bytes. in 

Proceedings of the 2003 ACM symposium on Applied computing 2003. New 

York, NY, USA. 

104. McLachlan, G.J. and J. Wiley, Discriminant analysis and statistical pattern 

recognition. 1992: Wiley Online Library. 

105. Bishop, C.M. and SpringerLink, Pattern recognition and machine learning. 1st 

ed. Information Science and Statistics. Vol. 4. 2006: springer New York. 

106. Ringberg, H., et al., Sensitivity of PCA for traffic anomaly detection. ACM 

SIGMETRICS Performance Evaluation Review, 2007. 35(1): p. 109-120. 

107. Isabelle, G. and E. Andre, An introduction to variable and feature selection. 

Journal of Machine Learning Research, 2003. 3(1): p. 1157-1182. 

108. Chebrolu, S., A. Abraham, and J.P. Thomas, Feature deduction and ensemble 

design of intrusion detection systems. Computers & Security, 2005. 24(4): p. 

295-307. 

109. Suebsing, A. and N. Hiransakolwong. Euclidean-based Feature Selection for 

Network Intrusion Detection. in International Conference on Machine Learning 

and Computing, 2009: IACSIT Press. 

110. Summerville, D.H., N. Nwanze, and V.A. Skormin. Anomalous packet 

identification for network intrusion detection. 2004: IEEE. 

111. Yu, H. and J. Yang, A direct LDA algorithm for high-dimensional data-with 

application to face recognition. Pattern Recognition, 2001. 34(10): p. 2067. 

112. Sharma, S., et al. Feature extraction using non-linear transformation for robust 

speech recognition on the Aurora database. 2000: IEEE. 

113. Chung, S. and A. Mok. Allergy attack against automatic signature generation. 

2006: Springer. 

114. Düssel, P., et al., Cyber-critical infrastructure protection using real-time 

payload-based anomaly detection. Lecture Notes in Computer Science,Critical 

Information Infrastructures Security. Vol. 6027. 2010: Springer. p. 85-97. 



172 
 

115. Martinez, A.M. and A.C. Kak, PCA versus LDA. Pattern Analysis and Machine 

Intelligence, IEEE Transactions on, 2001. 23(2): p. 228-233. 

116. Bouzida, Y. and S. Gombault. Intrusion detection using principal component 

analysis. in Seventh multi-conference on Systemics, Cybernetics and 

Informatics. 2003. Orlando, Florida, USA: Citeseer. 

117. Jamdagni, A., et al. Intrusion Detection Using Geometrical Structure. in Fourth 

International Conference on Frontier of Computer Science and Technology, 

2009. FCST '09. 2009. China: IEEE Computer Society Washington, DC, USA  

118. Cattell, R.B., The scree test for the number of factors. Multivariate behavioral 

research, 1966. 1(2): p. 245-276. 

119. Franklin, S.B., et al., Parallel analysis: a method for determining significant 

principal components. Journal of Vegetation Science, 1995. 6(1): p. 99-106. 

120. Cattell, R.B. and S. Vogelmann, A comprehensive trial of the scree and KG 

criteria for determining the number of factors. Multivariate behavioral research, 

1977. 12(3): p. 289-325. 

121. Nelson, L.R., Some observations on the scree test, and on coefficient alpha. Thai 

Journal of Educational Research and Measurement. 2005. 3(1): p. 1-17. 

122. Chung, S. and A. Mok. Advanced Allergy Attacks: Does a Corpus Really Help? 

2007: Springer. 

123. Rrushi, D. and U. di Milano. SCADA Intrusion Prevention System. 2006. 

124. Xiaoxiang, Z., Modbus Protocol and Programing. Electronic Engineer, 2005. 

 

 

 

 

 

 

 

 

 

   


	Title Page
	Abstract
	Acknowledgement
	Table of Contents
	List of Tables
	Table of Figures
	Acronyms and Abbreviations
	Authors Publications for the Ph.D
	Chapter 1 Introduction
	Chapter 2 Taxonomy of Intrusion Detection Systems and Related work
	Chapter 3 GSAD: Geometrical Structure Anomaly Detection System
	Chapter 4 Feature Selection and Two Tier Payload Based Intrusion Detection using LDA
	Chapter 5 RePIDS: a Multi Tier Real Time Payload Based Intrusion Detection System
	Chapter 6 Conclusion and Future work
	References

