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Abstract 

In this thesis, we will present some methods used to price barrier options. We 

first price barrier options under the Black-Scholes model. Then we will discuss 

some of the shortcomings of the Black-Scholes model. Next we derive prices for 

barrier options under different classes of scalar diffusions. In particular, we 

will use eigenfunction expansions to price barrier options under the CEV model 

of price dynamics. 
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1 Introduction 

1.1 Evolution of Share Prices 

Investors are concerned with how asset prices evolve over time. Anyone who invests 

in the share market implicitly tries to predict the future behaviour of asset prices by some 

means. Some investors use emotional reactions, intuitive feelings, the analysis of financial 

statements and the seeking of trends/patterns in financial time series (i.e charting historical 

prices). However, it was realised early in the development of the modern theory of 

quantitative finance that since asset prices evolve randomly over time, the best description 

of price behaviour would be a probabilistic one. This means that to properly study pricing 

dynamics we have to use methods from stochastic analysis. Stochastic analysis 

methodology involves important concepts developed from a variety of disciplines such as 

theoretical physics, electrical engineering and pure mathematics. 

In the modern theory of quantitative finance, share prices are assumed to evolve 

according to a particular stochastic process S(t),  being the price of the share at time t, 

which is typically an Itό process.  Therefore, to model price behaviour, we require the 

mathematical apparatus of real analysis, measure theory, probability theory, elements of 

stochastic modelling, stochastic processes and differential equations.  

Definition 1.1 A continuous stochastic process can be thought of a collection of 

random variables          , where the  time parameter t belongs to an Index set   

          and X(t) is the state of the process at time t.  

 

The most important stochastic process is the Wiener Process, or Brownian motion. In 

1900, Bachelier used Brownian motion to model share prices in his PhD thesis ‘The 

Theory of Speculation’. Independently, a mathematical description of Brownian motion 

was given by Albert Einstein in 1905 in his paper ‘Investigations on the theory of 

Brownian Movement’. Einstein derived what we now call the transition probability density 

for Brownian motion by solving the heat equation. Then in 1923 Norbert Wiener produced 

a rigourous theory of Brownian motion.  In 1951 Kyosi Itô introduced more general 

stochastic processes, now called Itô processes. He also developed a type of calculus for 

studying these processes. The ordinary rules of calculus do not generally hold in a 



2010  Mahrita Harahap 

35480 Thesis: Mathematics and Finance  7 
 

stochastic environment. The stochastic processes for prices are usually taken to be Itô 

processes.  

A set of values arising from a stochastic process is a sample path. We can picture each 

random sample path (random variable) as representing every possible path a share price 

might move within a certain period. In other words the simulation of share prices can be 

thought as a possible realisation of the market price over the period (0, T). Thus to price a 

security we require the probability distribution for the Itô process.  

Definition 1.2 An Itô process, or scalar diffusion, is a stochastic process with the 

form 

                       
 

 

               
 

 

 

where X(0) is a    adapted process,             
 

 
   and               

 

 
   are 

   adapted process for      . The stochastic differential equation for the Itô process 

may be written  

                                . 

 

The most important result is Itô’s formula. Itô Lemma tells us, if we have a random walk 

model for a share price S and an option on that share, we can find the change of the option 

price with changes in the share price. 

 

Theorem  2.2 (Itô’s Lemma) Suppose that B(t) is a Brownian motion,f is a C
2,1

 

function and that X={X(t):t≥0} is an Itô process satisfying the SDE  

                                , X(0)=x. That is, 

                    
 

 

               
 

 

 

Then, 

                                   
 

 

                  
 

 
                   

 

 

 

 

 

                                    
 

 

                  
 

 
                         

 

 

 

 

 

 

In differential form this is: 
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 See [30]. 

 

The probability distribution for an Itô process can be obtained by solving a partial 

differential equation (PDE).  These equations can either be solved by separation of 

variables, integral transforms and numerical methods. We will discuss this further when 

we approach the Black-Scholes model.  

An option on a share is a contract that gives the purchaser or seller the right (not the 

obligation) to buy or sell the share for a predetermined (initiated at time 0) price at some 

time in the future time t. Entering an option contract minimises the uncertainty associated 

with asset prices. Options lets investors hedge (reduce risk), speculate, and find arbitrage 

opportunities to make riskless profits. 

 

Definition 1.3 An European call option gives the investor the right, but not the 

obligation, to buy the underlying asset for an agreed price (strike price K) at maturity t=T 

of the option contract (which was initiated at t=0). A European put option gives the seller 

the right, but not the obligation, to sell the underlying asset for an agreed price (strike 

price K) at maturity (t=T) of the option contract (which was initiated at t=0). 

 

In order to do this, the investor has to determine the value of the option at some time 

prior to maturity T, say time 0. The valuation of the option is basically the discounted 

expected cash flow calculation of the possible payoffs of the option back to time 0. The 

two things to work out in the valuation of the option, are the appropriate discount rate and 

the precise distribution to be used in calculating the expected value of the payoff. In the 

case of a European call option, we are interested in the probability that the share price at T 

(maturity) finishes above the strike price K, to value the option. It should be clear now that 

the valuation of the option requires some theory about how share prices move 

stochastically and the calculation of the expectations of payoffs with respect to their 

distributions. 
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Figure 1.1 Visualising the distribution of ST conditional on S0 .  

Taken from Carl Chiarella (2004), “An Introduction to Derivative Security Pricing”. 

Throughout the development of the modern theory of finance there have been several 

models and methods to find the value of the option. We will demonstrate a few approaches 

in this thesis. 

 

1.2 Exotic Options 

 Exotic options are a category of options which include complicated features and 

complex payoffs. The option payoff or other key values often depend on outside factors 

which vary over time. Because of their complexity, exotic options are traded over the 

counter (OTC), rather through an exchange and they have become becoming increasingly 

popular since the 1980s, because of their favourable payoffs in certain market expectations 

to some investors. 

 Path dependent options are a type of exotic option whose payoff at exercise or expiry 

date depends on the past history of the underlying asset price as well as its spot price at 

exercise or expiry. 

 A barrier option is a path-dependent exotic option, where the exercise price depends 

on the underlying asset crossing or reaching a given ‘barrier level’. Barrier options are 

usually cheaper than options without the barrier because the barrier creates an upper limit 

on the potential profit. Therefore the premium (price of the option writer sets) needs to be 
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reduced compared to the plain-vanilla option to compensate for the limited profit the 

investor holds. Barrier options were created to provide the insurance value of an option 

without charging as much premium. There are a several complex methods to value a 

barrier option i.e. Law of maximum and minimum distributions, Monte Carlo option 

model, PDE approach etc. 

 The aim of this thesis is to demonstrate some of the approaches of valuing Barrier 

Options. In particular, we will be investigating the eigenfunction expansion approach. 

 Barrier options are weakly path-dependent and slot very easily into the Black-Scholes 

framework. The Black-Scholes equation is a partial differential equation for valuing an 

option as a function of the underlying asset and time. The partial differential equations 

(PDE) satisfied by a barrier option is the same one satisfied by a vanilla option under 

Black & Scholes assumptions, but with extra boundary conditions demanding that the 

option becomes worthless (if it is a knock-out barrier option) or conversely only has value 

(if it is a knock-in barrier option) when the underlying touches the barrier. We will discuss 

the types of Barrier options further in section 3. 

 We also will see later why valuing the Barrier option in particular under the Black-

Scholes model is not appropriate. There are other several approaches to value the Barrier 

option. We will focus on the Eigenfunction Expansion approach to value path dependent 

options, such as the Barrier option. 
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2 Black-Scholes Model 

2.1 History 

 Fischer Black, Myron Scholes and Robert Merton’s original work was 

published in two separate papers in 1973. First paper “The pricing of options and 

corporate liabilities” was written by Black & Scholes and the second paper “Theory of 

rational option pricing” was written by Merton. They derived the Black-Scholes 

equation for options. Black and Scholes (1973) showed that almost all corporate 

liabilities can be viewed as combinations of options and the equation can be used to 

derive the discount that should be applied to a corporate bond because of the possibility 

of default. Merton (1973) expanded the mathematical understanding of the options 

pricing model and invented the term the Black-Scholes options pricing model.  

Fischer Black passed away in August 1995. In October 1997 Myron Scholes and 

Robert Merton were awarded the Nobel Prize for Economics for their work. The New 

York Times of Wednesday, 15th October 1997 wrote: ‘They won the Nobel Memorial 

Prize in Economic Science for work that enables investors to price accurately their bets 

on the future, a breakthrough that has helped power the explosive growth in financial 

markets since the 1970’s and plays a profound role in the economics of everyday life.’ 

 

The most important principle of financial derivative pricing is the no-arbitrage 

principle. A portfolio should be self-financing and there should be no opportunities for 

arbitrage. 

 

Definition 2.1 No-arbitrage principle is equivalent to the impossibility to invest 

zero today and receive a nonnegative amount tomorrow with positive probability. In 

other words, two portfolios having the same payoff at a given future date must have the 

same price today (law of one price). 

 

In the derivation of the Black-Scholes equation for valuing an option in terms of 

the price of the share V(S,T), we must state assumptions in the market for the share and 

for the option: 

1. There are no arbitrage opportunities. 
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2. Risk-free rate   and volatility of the share σ are known over the lifetime of the option. 

3. The distribution of possible share prices at the end of any finite interval is lognormal. 

4. Short selling of share is possible at all times, at the short-term risk free rate. 

5. No transaction costs or taxes in buying or selling the share or option 

6. All securities are perfectly divisible. Trading can take place continuously. 

7. The option is European (can only be exercised at maturity). 

8. The underlying share pays no dividends or other distributions. 

 

 

2.2 Geometric Brownian Motion 

Geometric Brownian motion is the most commonly used model for asset prices 

that follow a lognormal distibution. The Black-Scholes model is based on geometric 

Brownian motion. 

 

Definition 2.2 Geometric Brownian motion (GBM) S={S(t):t≥0} is the unique 

stochastic process satisfying the stochastic differential equation (SDE)  

                        , 

where   and  >0 are constants and B(t) is a Brownian motion.  

 

Let us use Itô’s formula to solve the equation for GBM. We take f(S)=ln S. Then we 

find the derivatives of f. We need the derivatives 

 

   
 

 
        

 

  
       . 

Then Itό’s formula gives: 
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Therefore 

            
 

 
              

                   
 

    

 

 

      
 

 
  

 

     
         

 

 

 

                           
 

    

 

 

                     
 

 
      

 

 

 

                               
 

 

         
 

 

 
 

 
    

                            
 

 
    

                 
 

 
          . 

This gives the solution of the Black-Scholes SDE as 

             
 

 
          

. 

 

 S(t) is a geometric Brownian motion with constant drift and volatility where   is the 

rate of return and B(t) is a Brownian motion. It follows from this that the returns follow a 

log-normal distribution, which is one of the assumptions on how stock prices evolve 

under the Black-Scholes framework.  

 Geometric Brownian motion has become the most widely used process for modelling 

asset prices in modern finance. However, real world asset prices do not follow geometic 

Brownian motion. We will discuss this further later. 

 

2.3 Deriving the Black-Scholes PDE 

 The derivation of the famous Black-Scholes partial differential equation uses Itό’s 

lemma and a simple hedging argument. The resulting equation is readily generalisable to 

allow incorporation of dividends, other payoffs, stochastic volatility, jumping processes 

etc. to price other options with different underlyings and other exotic contracts. 

Assuming that the movement of share price follows the geometric Brownian motion 

given by  

 

                        . 
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The value V of an option is a function of share price ‘S’ and time ‘t’. Applying 

Itô’s Lemma, we get: 

   
  

  
   

  

  
   

 

 
       

     . 

Itô’s Lemma finds the change of the option price with changes in the share price. 

From this follows the idea of hedging. Now consider a portfolio of value   constructed 

by longing one option and shorting Δ amount of shares:             

Differentiating this gives the change in portfolio as  

           

         
  

  
   

  

  
   

 

 
    

   

   
         

to eliminate the randomness associated with the portfolio (the random terms are those 

with the dS), let   
  

  
 (the value   should be chosen such that the portfolio will earn 

the same rate of return as other risk-free securities). So change is completely riskless: 

   
  

  
   

 

 
    

   

   
   

Since the change in portfolio is riskless, then it must have the same as the amount 

if we invest the same amount of outlay in a risk-free interest-bearing account: 

let                 and               

This follows from the no-arbitrage principle. 

So (
  

  
 

 

 
       

            where        

 
  

  
 

 

 
    

   

   
              

  

  
   

 

 
    

   

   
          

  

  
    

 

Therefore the Black-Scholes partial differential equation (PDE) is: 

  

  
   

  

  
 

 

 
    

   

   
      

It is a PDE because it has more than one independent variable, the PDE is in two 

dimensions, S and t. It is a linear second-order parabolic equation because it has a second 

derivative with respect to S, and a first derivative with respect to the other variable t.  

 The equation requires two parameters to be known, the risk-free interest rate 

‘r’ and the asset volatility. The volatility is rather harder to forecast accurately compared 
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to the risk-free interest rate ‘ ’. The first term of the equation represents how much the 

option value changes by if the share price doesn’t change, the second term represents 

how much a hedged position makes on average from share moves, third term represents 

the drift term for the growth in the share at the risk-free rate and the last term is the term 

discounting the payoff, since the option is being valued at t=0. 

 

In deriving this equation, recall we assumed that: 

1. There are no arbitrage opportunities. 

2. Risk-free rate   and volatility of the share σ are known over the lifetime of the      

option. 

3. The distribution of possible share prices at the end of any finite interval is lognormal. 

4. Short selling of share is possible at all times, at the short-term risk free rate. 

5. No transaction costs or taxes in buying or selling the share or option 

6. All securities are perfectly divisible. Trading can take place continuously. 

7. The option is European (can only be exercised at maturity). 

8. The underlying share pays no dividends or other distributions. 

 

2.4 Transformation into heat equation 

It is useful to transform the basic Black-Scholes equation into a constant coefficient 

diffusion equation. We transform our Black-Scholes partial differential equation into the 

heat equation by a change of variables. The problem we transform is: 

  

  
   

  

  
 

 

 
       

   
      with boundary conditions:                              (2.1) 

                   

V(0,t)       S as S     ∞ 

V(S,T)=max(ST – K,0). 

The PDE is clearly in backward form, with final data given at t=T. Let us now change 

the variable such that: 
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Changing the variables will make the PDE dimensionless (have constant coefficients) 

and turn it into a forward equation. Substitute 
  

  
 into the PDE (2.1): 

 
  

  
   

  

  
 

 

 
    

   

   
       

 

hence, 

  

  
   

  

  
 

 

 
       

   
   .                                                            (2.2) 

Next we let                   . 

                          .  

Then find the derivatives; 

  

  
 

   

  

  

  
 

 

 

   

  
 , 

   

    
 

 

 

  
 
   

  
  

 

  

   

  
 

 

  

    

    
 

  

   

  
 

 

  
          . 

Therefore substitute the derivatives back in the PDE (2.2): 

   

  
   

 

 

   

  
 

 

 
     

 

  
                 

or 

    
 

 
          

 

 
                                      (2.3) 

 

The change of variables also lets the final condition be seen as an initial condition: 

V(S,T)=                                         

 

Next let                       which is a common transformation for parabolic 

equations.  

Given any ODE                        we can always eliminate the    term. 

To do this we use: 

                            

                                             

                               

                                                                          (2.4) 

Set     
 

  
  

   
 

 
   

   
 

 
 

 

    as this eliminates   . 

So              
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And we know from (2.3)   
 

 
        

 

 
         . 

Substitute in (2.4) to get     
 

 
       

 

 
   

  
 

 
  

   

 

    
 

 
    

  
 

 
  

        

i.e.     
 

 
         where ‘c’ is constant  

Let        

By the product rule                  so that 

            
 

 
                

So therefore    
 

 
        

Now we rescale time. Put       so that 

           
 

 
   Then 

     

  

  
 

 

 
   

    So 
 

 
   

 

 
      

or 

   
 

 
       

So taking   
 

   gives the heat equation: 

       

The initial condition is found by using: 

                       so that 

                    

or 

                    
 
 
 
 

 
            

If we let   
 

 

 
  

  then 

             
 

 
         

 

 
                        

The simpler constant coefficient diffusion equation is easier to handle than the Black-

Scholes equation, when seeking closed-form solutions. 
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2.5 Solving the heat equation via Fourier Transform 

We now have the heat equation. Such equations have been used to model all sorts 

of physical phenomena. The equation goes back to the beginning of the 19
th

 century. 

Grindrod (1991) includes many problems successfully modelled by the diffusion 

equation.  

 

Solving the linear diffusion equation  

      , 

with the initial condition 

                    
 

 
         

 

 
                                     (2.5)                

will give us the Black-Scholes call option formula. Boundary conditions tell us how the 

solution must behave for all times at certain values of the asset. We will solve the heat 

equation by Fourier transform 

 

Definition 2.3 The Fourier transform of u is: 

                      
 

  

 

The inverse Fourier transform of    is: 

       
 

  
              

 

  

 

 

Take the Fourier transform of     and    : 

                      
 

  

 

                  
      

 

  
 using integration by parts we get 
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Also 

                
      

 

  

 

                
 

  
              

 

  

 

 

So taking the Fourier transforms of both sides of the heat equation gives 

                   and 

                      
 

  

        

Since 

                    we find 

                 
 
 
   

 

But because   

              then  

                                                  
 

  

  

Now by Fourier inversion  

       
 

  
              

 

  

 

               
 

  
                 

 

  

 

               
 

  
                 

 

  

        
 

  

 

               
 

  
                     

 

  

    
 

  

 

              
 

  
                     

  
    

 

  
   

We reverse the order of integration and complete the square to obtain 

              
 

  
              

 
 
        

      

  

 

  

    
 

  

 

              
 

  
        

 

 
  

      

    
 

  

 

               
 

    
      

 
      

    
 

  

 



2010  Mahrita Harahap 

35480 Thesis: Mathematics and Finance  20 
 

               
 

    
      

 
      

    
 

  

 

The function        
 

    
      

 
      

   is the fundamental solution of the heat 

equation. 

 

2.6 Pricing a European Call Option 

The PDE is readily generalisable to allow incorporation of dividends, other payoffs, 

stochastic volatility, jumping processes etc. to price other options with different 

underlying and other exotic contracts.  The problem of evaluating the option price has 

been reduced to computing the standard integral. We can now work out the price of the 

European Call option with: 

        
 

    
      

 
      

    
 

  

 

where             
 

 
         

 

 
         . Working out the integration then 

replacing the original variables  will give the price of an European call option under the 

Black-Scholes model:  

                             

where    
   

  
 

     
  

 
      

     
        

   
  
 

     
  

 
      

     
          

The full details of the integration can be found on page 78 of Paul Wilmott’s book “The 

Mathematics of Financial Derivatives”, 1995. 
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3 Barrier Options 

3.1 Introduction 

Definition 2.3 A barrier option is a path-dependent exotic option, where the 

exercise price depends on the underlying asset crossing or reaching a given ‘barrier 

level’.  

 

The most basic type of barrier option is the single barrier option. The main types 

of single barrier options are: 

“Knock-In” options are initially worthless and become active in the event of a 

predetermined knock-in barrier level is breached (right to exercise is active). 

 
Figure 3.2 Visualising the payoff of a Knock-In barrier.  

Taken from http://thismatter.com/money/options/exotic_options.htm 

 

“Knock-Out” options are initially active and become terminated in the event that a 

predetermined knock-out barrier is violated. Once it’s out, it’s out for good (right to 

exercise is lost). The option ceases to exist. 

 

Figure 3.2 Visualising the payoff of a Knock-Out barrier.  

Taken from http://thismatter.com/money/options/exotic_options.htm 

 

http://thismatter.com/money/options/exotic_options.htm
http://thismatter.com/money/options/exotic_options.htm
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Barrier events occur when the underlying hits the barrier level. We further 

characterise the option by the position of the barrier level relative to the initial asset 

value. The main types of single barrier options are: 

*Up & Knock-Out – the spot price is below the barrier level and has to move up for 

option to be knocked out. 

*Down & Knock-Out - the spot price is above the barrier level and has to move down for 

option to be knocked out. 

*Up & Knock-In – the spot price is below barrier level and has to move up for option to 

become activated. 

*Down & Knock-In – the spot price is above barrier level and has to move down for 

option to become activated. 

Another type of barrier option is the double barrier option. The double barrier option 

has both an upper and lower barrier relative to the current asset price. In a double-out 

barrier option, contract ceases to exist if either of the barriers is reached. In a double-in 

barrier option, barriers must be reached before expiry in order to activate the contract. 

 

Figure 3.3 Visualising the characteristics of a double knock-out barrier option.  

Taken from http://formulapages.com/live/OptionBarrierDouble.html 

 

Barriers can take either American or European forms. They have been traded on 

the OTC since the late 60’s and have been used extensively to manage risks related to 

commodities, FX and interest rate exposures. Barrier options have become popular in the 

past decade for a number of reasons. An investor who would buy a barrier option, would 

have very precise views about the direction of the market and will take advantage of the 

cheaper option, relative to the plain-vanilla option, which doesn’t pay for all the upside 

potential. 
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Barrier options are sometimes accompanied by a rebate, which is a payoff to the 

option holder in case of a barrier event. The rebate can either be paid at the time of the 

event or at expiration. Barrier options with rebates increases the value of the barrier 

option but are not traded as much as barriers without the rebate. 

There are numerous types of other sorts of barrier options. Just to name a few, a 

discrete barrier is one for which the barrier event is considered at discrete times, rather 

than the normal continuous barrier case and a Parisian option is a barrier option where 

the barrier condition applies only once the price of the underlying instrument has spent at 

least a given period of time on the wrong side of the barrier.  

 

A barrier option is usually cheaper (premium is low) than a standard plain-vanilla 

European call option because of the limited profit the barrier option holder may have. 

Whereas the standard European call option may have unlimited payoff profit and the 

writer holds a higher risk potential compared to the barrier option. For example, in order 

to compensate for the limited profit the holder of a down-and-out call option, the writer 

of the down-and-out call option may reduce the premium (cost of the option). Barrier 

options were created to provide the insurance value of an option without charging as 

much premium. 

The buyer of the down-and-out call option might believe the stock price of a 

company will go up this year and is willing to bet it won’t go below a certain level 

(barrier level). Whereas the writer of the down-and-out option believes that the stock 

price of a company will fall below a certain level (barrier level) and will make money 

from the premium. Remember that once a “out” barrier option is knocked out, it’s out for 

good (if the underlying goes back above the barrier level, option is still void, the right to 

exercise is already lost once it’s knocked out). 

 

Merton (1973), see [27], provided the first analytical formula for a down-and-out 

option which was followed by a more detailed paper by Reiner & Rubinstein (1991), see 

[32], which provides the formulas for all single barriers.  

There are fundamentally two different ways to price barrier options. They are the 

expectations approach of Rubenstein and Reiner (1991), see [32], and the PDE approach 

explained by Wilmott, see [39]. In this section we will tend to focus more on the latter 

approach. The expectations approach requires the calculation of the risk-neutral densities 

(often difficult to calculate) as the barrier level is breached, which involves the reflection 
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principle of the Brownian motion. See Konstandatos [25]. The PDE approach involves 

solving the Black-Scholes PDE, similar to section 2.4, but with extra boundary 

conditions to account for the barrier events. 

 

3.2 Barrier Option PDE  

The barrier option is weakly path dependent. We only have to know whether or 

not and when the barrier has been reached. The value of the barrier option still satisfies 

the Black-Scholes equation for the plain-vanilla option  

  

  
   

  

  
 

 

 
       

          

but has extra boundary conditions that account for the barrier events and in different 

domains. 

So the boundary conditions for an up and out barrier call option are: 

           for when the barrier is triggered or           if a rebate is paid 

when the barrier is triggered and 

                    for when the barrier is not triggered. 

The boundary conditions for a down and out barrier call option are: 

           for when the barrier is triggered or           if a rebate is paid 

when the barrier is triggered and 

                    for when the barrier is not triggered. 

The boundary conditions for an up and in barrier call option are: 

                     for when the barrier is triggered and 

         for when the barrier is not triggered. 

The boundary conditions for a down and in barrier call option are: 

                     for when the barrier is triggered  and 

         for when the barrier is not triggered. 

The boundary conditions for a double barrier out call option are: 

           or             for when either barrier is triggered and 

                   for when the barrier is not triggered. 

The boundary conditions for a double barrier in call option are: 

                     or                       for when either barrier is 

triggered and 

         for when the barrier is not triggered. 
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   is the upper barrier and    is the lower barrier. 

 

3.3 Method of Images 

The theory of the method of images can be used to price a barrier type option. 

Otto Konstandatos, see [25], prices all eight of the classic barrier options using the 

method of images in his book. The amount of calculations can be minimised by noting 

symmetries inbuilt in the structure of the barrier problems. 

The traditional approach to solving the Black-Scholes PDE, illustrated in section 

2.4, is to transform to the heat equation, and to solve it by Fourier transform to find the 

fundamental solution or to use the well known Green’s function to solve the problem in 

the transformed variables. Either way, we’ll end up with the same solution: 

                         
 

  

 

where 

         
 

     
  

      

      

is the given Green’s function. 

We then seek a solution of the initial value problem for the Heat Equation in the 

truncated domain     for       . 

 

Theorem 3.1 (Method of Images for the Heat Equation) 

To solve the problem: 

  

  
 

   

   
                     

            

                                 

we first solve the related full-range problem with the introduction of an indicator 

function 1 in the initial condition: 

   

  
 

    

   
                     

                   

The solution for u(x,t) is then given by: 

                          

See Konstandatos [25].    



2010  Mahrita Harahap 

35480 Thesis: Mathematics and Finance  26 
 

 

           The solution to the original problem is obtained by back-transforming the solution 

for the transformed heat problem form space back to Black-Scholes space. 

 

3.4 Pricing Formulas of Single Barrier Options 

Paul Wilmott’s (2006), see [38], Quantitative Finance book summarises all the 

pricing formulas of single barrier options in his Barrier Options chapter. To summarise 

here: 

Use N(*) to denote the culmulative distribution function for a standardised Normal 

variable, q is the dividend yield,    is the barrier level, 
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 Up-and-Out Call 

                                                                            

 

 Up-and-In Call 

                                                                

 

 Down-and-Out Call 

If K>    

                                                        

If K<    

                                                        

 

 Down-and-In Call 

If K>    

                                            

If K<    

                                                                    

 

 Up-and-Out Put 

If K>    

                                                    

If K<    

                                                    

 

 Up-and-In Put 

If K>    

                                                            

If K<    
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 Down-and-Out Put 

                                                                            

 

 Down-and-In Put 
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4 Pricing Barrier Options on Scalar Diffusions 

4.1 An Eigenfunction Expansion Approach 

Linetsky and Davydov (2003) worked out how to price a whole range of options 

under any process. Linetsky and Davydov stated in an earlier paper (2001), that the 

prices of options which depend on extrema, such as the path-dependent barrier options, 

can be much more sensitive to the specification of the underlying price process than 

standard plain-vanilla options and shows that a financial institution that uses the standard 

geometric Brownian motion assumption is exposed to significant pricing and hedging 

errors when dealing in path-dependent options.  

Linetsky and Davydov (2003), see [18], developed an option pricing methodology 

based on unbundling all contingent claims into portfolios of primitive securities called 

eigensecurities (eigenfunctions). They solved the pricing PDE by separation of variables 

obtaining eigenfunctions and the eigenvalues of the pricing operator. The pricing is then 

immediate by the linearity of the pricing operator and the eigenvector property of 

eigensecurities. We will apply this to double-barrier options under the geometric 

Brownian process and constant elasticity of variance (CEV) process. 

 

 4.1.1 General Set-Up of Pricing a Double-Barrier Option 

Under an equivalent martingale measure Q, the underlying asset price follows 

a scalar diffusion process (Itό Process)  

                    , 

with generator: 

        
 

 
                     , 

where {Bt,t≥0} is a standard Brownian motion. 

Let f be a square-integrable function on I that claim pays off an amount f(XT) 

at expiration T>0 if the process X does not leave the interval I=(L,U), such that the 

claim pays prior to expiration, and zero otherwise. Then the price of this double-

barrier claim at time t=0 is given by the risk-neutral expectation of the discounted 

payoff: 

           
         

 
                  . 
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Where Ex denotes expectation assuming  process      and 

F(L,U)=inf{t≥0:Xt [L,U]} is the first exit time from (L,U) that occurs after T and 1{A} 

is the indicator function of the event A.  

The following proposition (from the Linetsky Davydov (2003 paper)) 

summarises the eigenfuntion expansion method: 

 

Proposition 4.1 

To price an option using the eigenfunction expansion method: 

1. Find the scale function of the particular scalar diffusion process  

          
  

     

     

 
  

                                             (4.1) 

2. Find the speed density of the particular scalar diffusion process 

     
 

         
 

3. Find the eigenfunctions (eigenvectors) of the pricing operator 

Let H=L
2
([L,U],m) be the Hilbert Space of functions on (L,U) square integrable 

with the m(x) endowed with the inner product                      
 

 
. 

Then: 

i) H admits a complete orthonormal basis            
  

                    
 

 

          

                    
 

 
        , 

Such that   are eigenfunctions of the pricing operator (eigenvector 

property) 

                    
 
                                

                 . 

If   has this eigenvector property for some  , then its price time 0 is 

                

Any payoff f H is in the span of eigenpayoffs     

       

 

   

             

and convergence of the eigenfunction expansion f is in the norm of the 

Hilbert space. 
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ii) Let A be the second order differential operator (the negative of the 

infinitesimal generator of the pricing semi-group) 

         
 

 
                               

where r(x) is the risk-free rate. This can be reduced in terms of the scale and 

speed density function of the scalar diffusion: 

         
 

    
 
     

    
            

This can be seen as a second-order ODE of the regular Sturm-Liouville type 

              with the two Dirichlet boundary conditions u(L)=0 and 

u(U)=0. 

4. Find the eigenvalue corresponding to the eigenfunction. 

5. Compute the coefficient cn to satisfy the initial condition by integrating the payoff 

against the eigenfunction. Coefficients cn in        
 
      are determined by 

calculating the inner products of the payoff function with the eigenpayoffs 

                                                             
 

 
 

6. Value of the option is found – this is the price of the option. Finally the pricing 

formula            
         

 
    follows from the eigenfunction expansion 

of the payoff         
 
       , the linearity of the pricing operator, and the 

eigenvector property of  

                 
 
                                

 

Note: (4.1) Linetsky defines the scale function as the derivative of the original 

scale function 

 

4.1.2 Separation of Variables 

As stated earlier, partial differential equations can be solved to predict 

phenomena. Typically, in describing natural phenomena the dependent variable will 

depend on one or more space variables and time t. The goal is to find the function (i.e 

the solution) that satisfies the partial differential equation and the initial and boundary 

conditions.  
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Separation of Variables is one of the most important methods for solving 

partial differential equations with boundary conditions. This technique reduces a 

partial differential equation in n independent variables to n ordinary differential 

equations. We use the separation of variables in the eigenfunction expansion 

approach. 

The first step is to find product solutions which are separated by a separable 

constant eigenvalue. Next is to find the fundamental solutions by satisfying the 

boundary conditions. We will find the eigenvalues of the problem, and the 

corresponding solutions are called the eigenfunctions of the problem. These 

fundamental solutions which satisfies the PDE and the boundary equations are the 

building blocks for the final solution.  The last step is the summing of the fundamental 

solutions, which also satisfies the coefficients. 

4.1.3 Sturm-Liouville Problem 

Proposition 4.1 unbundles any European-style, double-barrier contingent claim 

with the payoff in H into a portfolio of eigensecurities with eigenpayoffs   . The 

pricing is then automatic by the linearity of the pricing operator and the eigenvector 

property of the eigenpayoffs           . This is accomplished by solving the regular 

Sturm-Liouville boundary value problem: 

 

  
     

  

  
                                                 (4.2) 

with boundary conditions: 

                 

                 

        with neither   and    both zero nor   and    are both zero. 

The Swiss mathematician Jacques Sturm and the French mathematician Joseph 

Liouville studied the solutions of this type of second-order ordinary differential 

equations under appropriate boundary conditions. These solutions are complete 

orthogonal sets of functions in L
2
. The differential equations considered here arise 

directly as mathematical models of motion according to Newton’s law, but more often 
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as a result of using the method of separation of variables to solve the classical partial 

differential equations of physics.  

Theorem 4.1 All eigenvalues of problem (4.2) are real. See [2]. 

Theorem 4.2 The eigenfunctions of problem (4.2) form an orthogonal basis for 

L
2
([a,b], r(x)). See [2]. 

4.2 Pricing a double-barrier option under the 

Geometric Brownian Motion 

In this section we will price a double-barrier option under geometric Brownian 

motion. Assume that under the risk-neutral measure Q the underlying asset price follows 

a geometric Brownian motion  

               
 
 
                                            

                     is a S.B.M, σ>0 is the constant volatility, S(0)>0 is the initial 

asset price at t=0, r is the risk-free rate, q is the dividends and   
 

 
     

 

 
   . 

This scalar diffusion process solves the SDE  

                                         

We will price a double-barrier knock-out call option that has strike K, expiration T and 

two knock-out barriers 0≤L<K<U, with payoff  

                            F(L,U)=inf{t≥0:S(t) [L,U]} and x
+
≡max{x,0}. 

Then the double-barrier call price at t=0 is given by the risk-neutral expectation of the 

discounted payoff                                       

In order to price the option we proceed as follows: 
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1. The scale function of the Geometric Brownian Motion  

      
  

     

     
 

  
 

                 
       

    
   

 

 

                 
      

   
   

 

 

              
      

  
      

                                                    
      

    

Linetsky defines   
 

 
     

 

 
   , hence: 

      
       

 
 
   

    
  

   

 
  

  

 

2. The speed density of the Geometric Brownian Motion is 

     
 

         
 

            
 

     
   
 

  
 

             
     

  
 

  
  

3. We find the eigenfunctions (eigenvectors) of the pricing operator and the 

corresponding eigenvalue. 

Let H=L
2
([L,U],m) be the Hilbert Space of functions on (L,U) square 

integrable with the m(x) endowed with the inner product  

                     
 

 

 

Let A be given by: 

         
 

 
                               

  
 

    
 
     

    
 

 

       

  
     

    
 

 

                       

This is a second-order ODE of the regular Sturm-Liouville type 
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               with        is constant and the two Dirichlet boundary 

conditions f(L)=0 and f(U)=0. We can reduce this ODE to: 

 
     

    
 

 

                 

which is 

  
  
 

        
 

      
     

  
 

  
       

  
  
 

          
  

 
    

  
             

     
  
 

  
       

or 

          
  

 
               

 

  
        

To solve this let x=e
t
, this converts the ODE into a constant conversion 

equation. We want the conditions:  

                   

             transform to 

                

Then, 

  

  
 

  

  

  

  
 

 

 

  

  
     

   

   
 

 

  
    

 

  
   

 

Thus, 

          
  

 
               

 

  
     

         
  

 
           

 

  
    

i.e      
  

 
         

 

     , and 

                 

For solutions to 

                                . 

Hence 
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The quadratic formula gives: 

  

   

 
     

   
 

       

 
. 

Thus 

       
 
 
 
   
 

     

   
 
         

   
 
 
 
   
 

     

   
 
         

 

which is equivalent to 

      
   

    
 

 
    

   
 

        
   

 
 

 
    

   
 

        
 . 

If  
   

   
 

  
        or 

   

   
 

  
       , 

these give A=B=0.. 

If  
   

  
 

 

  
               

So put 
   

   
 

  
          

This gives us the form of the eigenfunctions: 

      
   
       

  

 
       

  

 
   

The eigenvalues are chosen by requiring                 ; 

        
     

       
    

 
       

    

 
      

and 

        
     

       
    

 
       

    

 
    . 

We let    
     

    

 
 

    
    

 
 
, hence 

     
    

 
       

    

 
  

           

 

  
     

    
  

    
    
  

    
    

 
       

    

 
 

 

  

                 
    

 
     

    

 
       

    

 
     

    

 
  

         =B(    
    

 
     

    

 
      

    

 
     

    

 
      

        and we want      

So     
    

 
     

    

 
      

    

 
     

    

 
    



2010  Mahrita Harahap 

35480 Thesis: Mathematics and Finance  37 
 

Using the trig identity SinxCosy+SinyCosx=Sin(x-y) we can reduce this to  

     
    

 
 

    

 
    

    
 

 
               

 

 
                

Therefore   
   

   
 

 
 
. 

Recall that 
   

  
 

 

  
           

Thus 

 
   

  
 

 

  
        

   

   
 

 
 
 

 

. 

Solving gives the eigenvalues 

  
  

 
  

   

   
 

 
 
 

 

 
   

     , 

or 

    
  

 
 

      

     
 

 
 
   . 

To find the corresponding eigenfunction, substitute    
     

    

 
 

    
    

 
 
 in F(t): 

      
   
 

 

 
     

    
  

    
    
  

    
  

 
       

  

 
 

 

  

            
   
  

    
    
      

  
       

  
      

    
  

    
    
  

  

            
   
  

    
    
  

  
  

    
    
  

    
   
  

    
 
         

    
    
  

   

Recall that x=e
t
 and   

   

   
 

 
 
 so 
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Therefore      
 

     
 

 
 

  
  

      
      

 

 
 

    
 

 
 
   are the eigenfunctions. 

Multiplying by  
 

     
 

 
 

  normalises the eigenfunction. 

4. Next we compute the coefficient cn to satisfy the initial condition by 

integrating the payoff against the eigenfunction 

The Call Payoff is f(x)=(x-K)
+
 on [L,U]. Then 

                          
 

 

 

              
 

    
 

 
 

  
  

      
     

 

 
 

   
 

 
 

  
  

   
  
 

  
  

 

 
 

 

If x<K i.e. L≤x≤K then (x-K)+=0 So     
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5. Value of the option is found – this is the price of the option 

           
         

 

   

 

 

4.3 Pricing a double-barrier option under the Constant 

Elasticity Process 

As stated earlier, a financial institution that prices a path dependent option under the 

standard geometric Brownian motion assumption is exposed to significant pricing and 

hedging errors. Barrier options, can be much more sensitive to the specification of the 

underlying price process than standard plain-vanilla options. Therefore we will price the 

double-barrier under the constant elasticity of variance (CEV) process of Cox (1975). 

The constant elasticity of variance (CEV) process is a diffusion model where the 

volatility is a function of the underlying asset price. Geometric Brownian motion is a 

special case of the CEV process; take      

Assume that under the risk-neutral measure Q the underlying asset price follows a 

CEV process. 

This scalar diffusion process solves the SDE  

                      

                                                     
   

                                

 

where   risk-neutral drift rate, r≥0 constant risk-free rate and q≥0 is the dividend yield 

and   is the elasticity of the local volatility function. 

    means the local volatility          is a decreasing function of the asset price. 

    means the local volatility          is an increasing function of the asset price. 

The parameters   and   can be interpreted as the elasticity of the local volatility 

function.  

We will price a double-barrier knock-out call option that has strike K, expiration T 

and two knock-out barriers 0≤L<K<U, with payoff  

                            F(L,U)=inf{t≥0:S(t) [L,U]} and x
+
≡max{x,0}. 
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Then the double-barrier call price at t=0 is given by the risk-neutral expectation of the 

discounted payoff                                      . 

In order to price the option we proceed as follows: 

1. The scale function of the CEV process:  

      
  

     

     
 

  
 

                 
   

       
   

 

 

               
     

     
   

2. The speed density of the CEV process 

     
 

         
 

 
 

            
     

     
 

 

 
      

     

     
 

       
  

3. We find the eigenfunctions (eigenvectors) of the pricing operator and 

the corresponding eigenvalues. 

Let H=L
2
([L,U],m) be the Hilbert Space of functions on (L,U) square 

integrable with the m(x) endowed with the inner product  

                     
 

 

 

Let A be the second order differential operator (the negative of the 

infinitesimal generator of the pricing semi-group). To find the eigenfunction 

and corresponding eigenvalues, we solve the equation coming from a CEV 

Process: 
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This can be seen as a second-order ODE of the regular Sturm-Liouville type 

              with        a constant and the two Dirichlet boundary 

conditions f(L)=0 and f(U)=0. We can reduce this ODE to: 

 
     

    
 

 

                 

which becomes 

 

 
                             . 

To solve this let the change of variables be 

       
 

    

       
 

 
    

     

     
 ,                                             (4.3) 

this converts the ODE into a simpler equation.  

This gives 

              
 

        
                

with                      . 

Then taking another transformation         gives the simpler equation 

     
       

      
     

           
     

                             (4.4) 

The solution is 

             
      

 
          

      

 
                      (4.5) 

where   
       

         
     

            

   
   and     

 

 
  

      gives the solution in terms of Whittaker functions where       and      

are Whittaker functions. 

 

 

 

 

 

Note: Linetsky and Davydov’s,  see [18], use the change of variables given 

here as (4.3) but obtain a different form of Whittaker’s equation, (4.4) was 

verified in Mathematica. 
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Definition 4.1 Whittaker’s equation is an equation in the form 

   

   
   

 

 
 

 

 
 

 
 
     

  
     

and the solutions to these type of equations are Whittaker’s functions: 

          
 
 
  

 
 
    

 

 
             

          
 
 
  

 
 
    

 

 
             

        
      

  
 
      

        
     

  
 
      

          

M is Kummer’s confluent hypergeometric function  

         
    

          
                    

 

 

 

and U is Tricomi’s confluent hypergeometric function 

         
 

    
                     

 

 

 

where  

                
 

 

  

 

So the eigenfunctions are            

      
 

    

       
 
 
    

     

     
  

Then             

Now let  
       

       
      

      . 

We know that f(L)=0. 

Cancelling the factors gives 

         
              

      . 

Making    the subject, we have: 

    
             

           
. 
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Then the eigenvalues are the zeroes of : 

          
              

               
              

       

as a function of λ. They can be found numerically. If the nth eigenvalue is   , 

let      
        

         
    

So the eigenfunctions are 

       
 

    

       
 

 
             

              
               

              
     . 

 

4. Next we compute the coefficient cn to satisfy the initial condition by 

integrating the payoff against the eigenfunction 

The Call Payoff is f(S)=(S-K)
+
 on [L,U]. Then 

                          
 

 

 

 

5.          Value of the option is found – this is the price of the option 
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5 Conclusion 

This thesis shows some of the different methods of pricing the increasingly 

popular barrier options. It prices barrier options under all different scalar diffusion 

processes. The eigenfunction expansion method is a very powerful computational tool 

for derivatives pricing. The eigensecurities (eigenfunctions of the negative infinitesimal 

generator of the pricing semigroup) are solutions to the static pricing equation (the 

second-order ordinary differential equation of the Sturm-Liouville type) without the 

derivative term. The eigenfunction expansion method is readily generalisable to allow 

incorporation of dividends, other payoffs, stochastic volatility, jumping processes etc. to 

price other options with different underlyings and other exotic contracts. Further 

applications of the eigenfunction expansion method in financial engineering will be 

certainly be investigated by practitioners in the industry and academia. 
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