Time Resolved Analysis of the Positive Ion Dynamics in the Variable Pressure Scanning Electron Microscope

M.R. Phillips and S.W. Morgan

Microstructural Analysis Unit, University of Technology Sydney, Broadway, NSW 2007 Australia

In a variable pressure s canning electron microscope (VPSEM) the secondary electron (SE) emission signal is amplified via a gas ionization cascade, which is produced by the introduction of a positively biased electrode into the specimen chamber. Current flow induced in the biased (or ground) electrode through the movement of charge within the cascade is used to form an image rich in SE contrast [1]. A consequence of this type SE detection process is the generation of a significant concentration of positive ions within the specimen chamber. The presence of these positive ions enables imaging and analysis of uncoated non -conductive specimens at all electron beam energies without charging artifacts. Recent studies, however, have revealed that the positive ions can have a significant affect on SE contrast by (i) suppressing SE emission [2], (ii) reducing the ionization cascade amplification of the SE emission signal [3] and (iii) increasing the landing energy of the primary beam [4]. A detailed knowledge of the dynamic behavior of positi ve ions will therefore enable optimization of the SE image quality and correct interpretation of SE contrast in the VPSEM.

In this work, the time dependent behavior of the positive ion current was used to investigate the ion dynamics in the VPSEM. Time re solved ion current profiles were measured as a function of specimen stage geometry, biased electrode voltage (+30V to +550V), sample conductivity and atomic number, type of chamber gas (water vapor, nitrogen and argon) and gas pressure using four different types of grounded electrode arrangements; a grounded straight copper wire inserted into the gap between the specimen and the biased electrode, copper wire rings with a range of diameters positioned at various heights above the sample, aluminum cylinders centered over the specimen with an assortment of diameter and height configurations and the specimen stage itself. The electric field distribution for each of the above electrode configurations was calculated using commercial software (QuickfieldTM). In each experiment, the electron beam was positioned on the specimen in spot mode with a zero electrode bias. The ion current was allowed to stabilize before the bias voltage was rapidly switched to a pre -determined positive voltage. Once a steady state current was observed the bias was then re-set to zero volts, and the ion current was collected until it reached the initial zero bias signal level. The ionization cascade amplification was measured in all experiments. A Keithley 617 electrometer connected to an Ea gle Technology 330kHz, 12 bit A/D board was used to measure the ion current as a function of time.

A typical time resolved ion current profile (shown in figure 1) exhibits three distinct regions over a \sim 40 second time interval; region 1 where the ion current (I_{ion}) increases since the ion generation rate (dG) is greater the ion de-ionization rate (dI) reaching a maximum at time t_{max} , region 2 where the I_{ion} decays as dI < dG and region 3 where I_{ion} is constant where dG = dI. The results show that as the ion concentration grows the position of t_{max} decreases with an associated increase in the I_{ion} decay rate in region 2. Time resolved ion current profiles collected under identical experimental conditions and electrode arrangements varied significantly for water vapor, nitrogen and argon, reflecting the differences in the ionization / recombination efficiency, lifetime and mobility of each gas ion species. These profiles provide a measure of the capacity of each gas to form a positive ion space charge. A significant shift in the ionization gas gain curve as a function of pressure was observed for

different grounded electrode configurations, particularly the VPSEM conditions for maximum amplification when compared with the conductive stage as the ground electr ode. The significance of these results in terms of SE image quality and interpretation of SE contrast in the VPSEM will be presented. A series of SE images were collected from a copper TEM grid under equivalent VPSEM conditions and grounded electrode configurations to illustrate these effects.

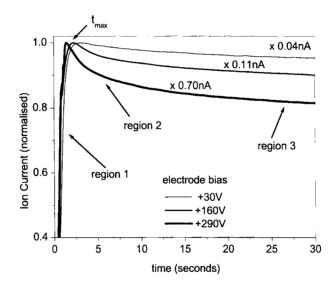


Figure 1: Typical ion current profile versus time for an insulating specimen measured from the grounded conductive stage. Pressure = 3.0 torr, Gas = Nitrogen, E ______=20keV, I _b=1nA, Working Distance =10mm

References:

- [1] Danalatos G.D., Adv. Elec. Electron Phys, 71 (1988) 109
- [2] Toth M. et al., Applied Physics Letters 77 9 (2000) 1342
- [3] Toth M. and Phillips M.R, Scanning 22 (2000) 319
- [4] Phillips M.R., Toth M. and Griffin B.J., Microscopy and Microanalysis 6 Suppl. 2 (2000) 786

Proceedings

MICROSCOPY AND MICROANALYSIS 2002

Microscopy Society of America 60th Annual Meeting

Microbeam Analysis Society 36th Annual Meeting

Microscopy Society of Canada / Société de Microscopie du Canada 29th Annual Meeting International Metallographic Society 35th Annual Meeting

Québec City, Québec, Canada

August 5-8, 2002

Edited by

E. Voelkl

D. Piston

R. Gauvin

A. J. Lockley

G. W. Bailey

S. McKernan

Microscopy AND Microanalysis

THE OFFICIAL JOURNAL OF

MICROSCOPY SOCIETY OF AMERICA
MICROBEAM ANALYSIS SOCIETY
MICROSCOPICAL SOCIETY OF CANADA / SOCIETÉ DE
MICROSCOPIE DU CANADA
MEXICAN MICROSCOPY SOCIETY

BRAZILIAN SOCIETY FOR MICROSCOPY AND MICROANALYSIS VENEZUELAN SOCIETY OF ELECTRON MICROSCOPY EUROPEAN MICROBEAM ANALYSIS SOCIETY

PUBLISHED IN AFFILIATION WITH

ROYAL MICROSCOPICAL SOCIETY
GERMAN SOCIETY FOR ELECTRON MICROSCOPY
BELGIAN SOCIETY FOR MICROSCOPY
MICROSCOPY SOCIETY OF SOUTHERN AFRICA

Editor in Chief Editor, Microanalysis

Charles E. Lyman
Materials Science and Engineering
Lehigh University
5 East Packer Avenue
Bethlehem, Pennsylvania 18015-3195
Phone: (610) 758-4249
Fax: (610) 758-4244
e-mail: charles.lyman@lehigh.edu

Editor, Materials Applications

Vinayak P. Dravid Materials Science and Engineering Northwestern University 2225 N. Campus Drive, Room 3013A Evanston, Illinois 60208-3105 Phone: (847) 467-1363 Fax: (847) 491-7820 e-mail: v-dravid@nwu.edu

Editor, Biological Applications

Ralph Albrecht Department of Animal Sciences University of Wisconsin-Madison 1675 Observatory Drive Madison, Wisconsin 53706-1581 Phone: (608) 263-3952 Fax: (608) 262-5157 e-mail: albrecht@ahabs.wisc.edu

Editor, Light and Scanning Probe Microscopies

Brian Herman Cellular and Structural Biology University of Texas at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78284-7762 Phone: (210) 567-3800 Fax: (210) 567-3803 e-mail: hermanb@uthscsa.edu

Editor, Materials Applications

C. Barry Carter
Chemical Engineering and Materials
Science
151 Amundson Hall
University of Minnesota
Minneapolis, Minnesota 55455-0132
Phone: (612) 625-8805
Fax: (612) 626-7246
e-mail: carter@cems.umn.edu

Editor, Biological Applications

Heide Schatten
Veterinary Pathobiology
University of Missouri-Columbia
1600 E. Rollins Street
Columbia, Missouri 65211-5030
Phone: (573) 882-2396
Fax: (573) 884-5414
e-mail: schattenh@missouri.edu

News and Commentary Editor Book Review Editor

JoAn Hudson
Institute of Neuroscience
University of Oregon
222 Huestis Hall
Eugene, OR 97403-1254
Phone: (541) 346-4508
Fax: (541) 346-4548
e-mail: hudson@uoneuro.uoregon.edu

Special Section Editor

James N. Turner
Phone: (518) 474-2811
Fax: (518) 474-8590
e-mail: turner@wadsworth.org

Expo Editor

William T. Gunning III Phone: (419) 383-5256 Fax: (419) 383-3066 e-mail: wgunning@mco.edu

Proceedings Editor

Stuart McKernan Phone: (612) 624-6009 Fax: (612) 625-5368 e-mail: stuartm@tc.umn.edu