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Abstract   

 
In-situ treatment of chlorophenols using a permeable reactive barrier is still an emerging 

research area. A novel integrated sorption-oxidation barrier is proposed and 

systematically investigated in a neutral pH, very poorly buffered water. Intermittent 

injections of permanganate oxidise dissolved and sorbed chlorophenol as well as the 

woody sorbent with manganese dioxide formed as a by-product.  

 

Common woody biomass (pine/hardwood) were evaluated as a cost effective sorbent. 

Chlorophenol uptake on these was relatively low (3–8 mg g-1) with evidence of sorption 

hysteresis. Increased sorbent particle size and reactions with the oxidant did not 

significantly affect sorption. Under dynamic conditions non-equilibrium sorption 

occurred with higher flow rates.  

 

Oxidation within the porous media was complex with multiple oxidation processes 

occurring simultaneously. An analytical method was developed to allow the 

quantification of chlorophenol in the presence of a quenching agent. This allowed the 

collection of kinetic data for the permanganate oxidation reaction. Oxidation of 

dissolved chlorophenol by manganese dioxide was found to be minimal. Early time data 

showed that the oxidation rate of pine (0.06 min-1) was less than for chlorophenol 

sorbed on pine (0.07–0.12 min-1) which was much less than for dissolved chlorophenols 

(0.4–1.48 min-1). This suggests that the reaction between permanganate and pine 

materials is kinetically controlled and will dominate only after the oxidation reaction 

with chlorophenol. The rate of sorbed chlorophenol oxidation decreased with increasing 

contaminant hydrophobicity. In column studies the oxidation of the pine sorbent was 
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found to be both pH and residence time dependent. Some evidence of sorbent/column 

plugging and reduced sorbent oxidant demand due to manganese dioxide precipitation 

was found at pH 6.15 but not at pH 2.  

 

The research has shown that a novel sorbent-oxidation barrier system that can treat 

chlorophenol contaminated water is technically feasible. Insights into the key 

mechanisms that would occur in the system have been given. Further work into 

operationalizing these processes is still needed. 
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Abbreviations 
 

2-CP  : 2-Chlorophenol 

3-CP  : 3-Chlorophenol 

4-CP  : 4-Chlorophenol 

2,4-DCP  : 2,4-Dichlorophenol 

2,6-DCP : 2,6-Dichlorophenol 

2,4,6-TCP : 2,4,6-Trichlorophenol 

AOPs  : Advanced Oxidation Processes 

BET   : Brunauer-Emmett-Teller 

CP  : Chlorophenol 

DOC  : Dissolved Organic Carbon 

FC  : Filter Coal 

GAC  : Granular Activated Carbon 

HW  : Hardwood 

ISCO  : In-Situ chemical Oxidation 

LOD  : Limit of Detection 

MDL  : Minimum Detection Limit 

NPI  : National Pollutant Inventory 

NOD  : Natural Oxidant Demand 

PRB  : Permeable Reactive Barrier 

PV  : Pore Volume 

PVC  : Polyvinyl Chloride 
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Principal Notation 

 
Ce  : equilibrium concentration (mg L-1) 

Co  : initial concentration (mg L-1) 

Dow  : octanol-water distribution coefficient 

Kow  : octanol-water partition coefficient 

kth   : Thomas rate constant (L min-1 mg-1)  

kyn   : Yoon-Nelson rate constant (min-1) 

qt    : amount of sorbate at any time t (mg g-1) 

qe   : amount of sorbate at equilibrium (mg g-1)  

Q   : volumetric flow rate (mL min-1) 

r2    : correlation coefficient 

ky    : Yan rate constant (L min-1 mg-1)  
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concentrations of KMnO4: I ~0.02 M, Initial pH 7.0 (22 °C) 

Table 5.4 Rate constants for the oxidation of chlorophenols (CP) with fixed 

concentrations of KMnO4 solutions: I ~ 0.02 M, Initial pH 7.0 (22 °C) 

Table 5.5 Rate constants for 4-CP (~0.16 mM) oxidation by KMnO4
 (1.5 mM): I~0.02–

0.2 M, Initial pH 7.0 (22 °C) 

Table 5.6 Rate constants for 4-CP (~0.16 mM) oxidation by KMnO4
 (1.5 mM) and at 

various initial pH (5.5–8.5): I ~0.02 M (22 °C) 

Table 6.1 Pseudo-first-order parameters for the sorption of chlorophenols on sorbents 

Table 6.2 Pseudo-second-order parameters for the sorption of chlorophenols on sorbents 

Table 6.3 Fitted sorption parameters from Freundlich isotherm 

Table 6.4 Fitted sorption parameters from Langmuir isotherm 

Table 6.5 Best fit Langmuir isotherm parameters of different particle sizes for pine  

Table 6.6 Best fit Freundlich isotherm parameters of different particle sizes for pine  

Table 6.7 Characteristics of wood particle shape 

Table 6.8 Fitted sorption parameters for desorption from Freundlich isotherm. 

Table 6.9 Freundlich parameters and hysteresis coefficients for desorption of 

chlorophenols on pine and hardwood.  

Table 7.1 Column characteristics: mass of pine 66 g, mass of glass beads 1665 g 

Table 7.2 Column data and parameters obtained at different flow rates, Pine 4.75 mm 
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Table 7.3 Column data and parameters obtained at different particle sizes, flow 5       

mL min-1, 22 °C  

Table 7.4 Column data and parameters obtained at modified and unmodified pine, 22 °C 

Table 7.5 Examples of batch and column study 

Table 7.6 Predicted parameters from the Thomas model (linear, >0.05 and <0.85) of 

2,4-DCP sorption on pine      

Table 7.7 Predicted parameters from the Yoon-Nelson model (linear, >0.25 and <0.85) 

of 2,4-DCP sorption on pine  

Table 7.8 Predicted parameters from the Yan model (non-linear) of 2,4-DCP sorption     

on pine  

Table 8.1 Sorption of CP on pine: contact time 3 days, mixing rate150 rpm, 22 °C 

Table 8.2 Rate constants for chlorophenol (~0.16 mM) oxidation by KMnO4 (1.5 mM): 

initial pH 7.0, 22 °C 

Table 8.3 KMnO4 consumption during oxidation of pine and sorbed-CP after 160 min 

reaction: KMnO4 (~4 mM), initial pH 6.15, 22 °C 

Table 8.4 First-order rate constants for pine (1.18 mm) and sorbed CP oxidation by 

KMnO4 (~4 mM): initial pH 6.15, 22 °C 

Table 8.5 Desorption of CP from pine 

Table 8.6 Rate constant for CP oxidation by in-situ MnO2 (~0.034 mM), initial pH ~5.0,   

22 °C 

Table 8.7 Column characteristics: pine particle size 4.75 mm, mass of pine 66 g, mass 

of glass beads 1665 g 

Table 8.8 Column data and parameters obtained at different flow rates 

Table 8.9 Column data and parameters obtained with pine/sorbed CP at flow 5 mL min-1 
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