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Abstract—This paper addresses the sensor placement problem
associated with monitoring spatial phenomena, where mobile
sensors are located on the optimal sampling paths yielding a lower
prediction error. It is proposed that the spatial phenomenon to be
monitored is modeled using a Gaussian Process and a variance
based density function is employed to develop an expected-value
function. A locational optimization based effective algorithm is
employed to solve the resulting minimization of the expected-
value function. We designed a mutual information based strategy
to select the most informative subset of measurements effectively
with low computational time. Our experimental results on real-
world datasets have verified the superiority of the proposed
approach.

I. INTRODUCTION

Recent advances in micro-electro-mechanical systems and
wireless communications empower wireless sensor networks
(WSN) to play a key role in a wide range of modern smart
technology applications [1]. In particular, mobile robotic wire-
less sensor networks have attracted a significant attention for
monitoring the spatial phenomena due to its distributed spatial
properties and the mobility aspects. For example, applications
of this technology includes detecting and monitoring forest
fires [2], monitoring air quality [3], and monitoring ocean
ecology conditions [4].

With on-board sensors, wireless communication and the
mobile ability, the mobile wireless robotic sensor networks are
capable of providing services required not only for monitoring
and exploring the environment but also for exchanging the
information. In [5], Cressie proposed a Gaussian Process (GP)
model, also known as Kriging interpolation technique, a non-
parametric generalization of linear regression, for the spatial
phenomena assuming it obeys a Gaussian distribution. It is
possible to exhaustively learn a GP model from the sensor
readings and then utilizes this model to predict the values at
unobserved locations. Combining these we address the sensor
placement problem using the mobile wireless robotic sensor
networks. Here, sensing observations and locations of sensors
are used to generate a GP model for the phenomena.

Recently, there has been considerable activity in studying
the wireless sensor placement problem [6] - [11] and designing
wireless sensor networks for optimal monitoring. Nevertheless,
most of these works are primarily focused on selecting the best
subset from among a set of candidate sensor locations which

are selected from the discrete space. For example, in [10], the
authors proposed a greedy heuristic algorithm based on entropy
based information-theoretic model. The premise behind the
entropy approach is to minimize the uncertainty of conditional
entropy of unobserved locations, given observations. However,
owning to a static sensor network, as shown in [7], the
entropy method tends to pick locations along the border of the
interested space causing sensed information waste. To address
the drawbacks of the entropy approach, Guestrin et al., [7]
proposed a new method based on the mutual information. In
this method a subset from a set of potential sensor locations is
selected such that the mutual information between the selected
subset and the rest of the space is maximal. In our previous
work [11], a computationally efficient simulated annealing
based approximately heuristic algorithm was proposed to solve
the sensor selection problem. Nevertheless, solutions of the
sensor placement problem, using both mutual information and
our previous proposed approach, are not optimal as the subset
of sensor locations chosen is fixed.

Motivating on the sensor coverage problem, the authors in
[12] proposed an algorithm that allows sensors to concentrate
around locations of high event density while satisfying the
minimal area coverage constraints. In Cortes et al [13], the
authors optimized the mobile sensor network locations with
respect to a known event probability density. Their proposed
technique guarantees to minimize a cost function locally.

In this paper, we propose to utilize a GP model to develop
a variance based density function. The proposed locational
optimization based algorithm employed in this work locates the
optimal sampling paths for mobile sensors. These trajectories
allow to significantly improve the quality of prediction and
to reduce the model uncertainty simultaneously. Moreover, a
strategy based on mutual information is designed to select the
best subset of measurements from all observations. This selec-
tion substantially decreases the computation time in developing
the density function. In certain circumstances characteristics
of the density function may lead the sensors to trap in certain
locations. In this case all the mobile sensors are trapped in
stationary locations without any further improvement to the
sensing quality. An effective technique is developed to drive
the mobile sensors to circumcenters instead of moving them
to the centroids of the sensor locations’ voronoi partitions.

Organization: Section II presents locational optimization
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problem. Section III reviews the basics of Gaussian Process
regression. Section IV describes the sensor placement based
on the locational optimization. A density function and an algo-
rithm for sensor movements are also analyzed and synthesized
here. Experimental results are provided in Section V. Section
VI shows the conclusions.

Notation: Let R+ be a set of non-negative real numbers.
The Euclidean distance function is defined by ‖.‖. We let P be
a convex polytope in R

d and Ve(P ) be a vertex set of P . The
set of all robotic sensor locations is denoted S = {s1, ..., sn}.
In other words, the position of ith sensor is denoted si. And
we define p as an arbitrary position in P . For a set P , we let
P(P ) denote the collection of subsets of P . Other notations
will be explained in due course.

II. LOCATIONAL OPTIMIZATION PROBLEM

In this section, we describe the basic concepts and results
on locational optimization that are used in this work. Readers
are referred to [13] and [14] for further details.

A. Voronoi Partition

Consider a network of n mobile robotic wireless sensors
that are deployed in a known, convex polytope P . At the fixed
locations, the sensors could be divided by the optimal partitions
of P , which are a set of Voronoi partitions V(S) = {V1, ...,
Vn} ⊂ P(P ) defined by, for each i ∈ {1, ..., n}

Vi = {p ∈ P | ‖p− si‖ ≤ ‖p− sj‖, ∀j �= i}. (1)

In equivalent words, Vi is the set of the positions of P that
are closer to si than to any of the other points in S.

B. Centroidal Voronoi Tessellation

Take a density function (also called bounded measurable
function) φ : R

d → R+ into a consideration in a bounded
environment of interest P ∈ R

d. For this work, we only use
the value of φ limited to P of interest. We can consider φ as a
function of measuring the information of probability that the
events happen over P . The greater the value of φ(p) is, the
more significant the point p is. In this paper, we use a non-
increasing and piece-wise continuously differentiable function
fs : R+ → R+ as a sensing performance function. This
function characterizes the utility at position p taken from ith

mobile robotic wireless sensor at the location si. One can
easily see that the value of this function downgrades with the
distance ‖p − si‖ between p and si. Therefore, we let this
function is defined by a quadratic function fs = ‖p− si‖2.

Given a density function φ, and a sensing performance
function fs, we formulate the expected-value function over
the region P as

H(S) =

n∑
i=1

∫
Vi

fsφ(p)dp

or

H(S) =

n∑
i=1

∫
Vi

‖p− si‖2φ(p)dp. (2)

From the notation of the Voronoi partition, we can easily
be seen that

minimize ‖p− si‖ = ‖p− sj‖ for all p ∈ Vj , (3)
subject to i ∈ {1, ..., n}.

Therefore, our task here is to minimize the locational
optimization function (2)

minimize
n∑

i=1

∫
Vi

‖p− si‖2φ(p)dp. (4)

In other words, this optimization problem is to identify an
optimal robotic sensor network configuration that makes (2)
minimum.

Carrying out the partial derivative of H(S) with respect to
the ith robotic sensor, we get

∂H(S)

∂si
=

n∑
i=1

∫
Vi

∂

∂si
[‖p− si‖2φ(p)]dp. (5)

Let us recall in Euclidean space. The generalized area and
the first mass moment of a set P ⊂ R

d with respect to φ are
specified by

A(P ) =

∫
P

φ(p)dp (6)

and
FM(P ) =

∫
P

pφ(p)dp. (7)

Therefore, the centroid (center of mass) of a set P is
formulated by

C(P ) =
FM(P )

A(P )
. (8)

Moreover, the polar moment of inertia of P about s ∈ P
is defined by

J(P, s) =

∫
P

‖p− s‖2φ(p)dp. (9)

From [15], by using Parallel Axis Theorem, we can easily
state that

J(P, s) = J(P,C(P )) +A(P )‖s− C(P )‖2. (10)

From (2) and (9), using the Parallel Axis Theorem again,
we simplify (2) to

H(S) =

n∑
i=1

J(Vi, C(Vi)) +

n∑
i=1

A(Vi)‖si − C(Vi)‖2, (11)

and (5) to
∂H(S)

∂si
= 2A(Vi)(si − C(Vi)). (12)

Equation (12) demonstrates that the solution of the loca-
tional optimization problem (4) is the set of centroidal Voronoi
configurations in P [16]. In other words, the optimal mobile
robotic wireless sensor location is the centroid of its Voronoi
cell.
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III. GAUSSIAN PROCESS BACKGROUND

Consider a two dimensional robotic sensor network that
has a Q, |Q| = m, set of possible locations, which provide
point measurements of some physical quantities. If we deploy
all mobile sensors in Q, S ⊂ Q, sensor readings can still
represent the distribution of the physical quantity in the whole
space. This can be effectively predicted using Gaussian Process
(GP) [17]. Lets denote Q = [q1, q2, ... , qm] as a set of
locations, and ZQ = [z1, z2, ... , zm] as corresponding random
variables at these locations. A joint probability distribution is
given by

P (ZQ = zQ) =
1

(2π)n/2ΣQQ
e−

1
2 (zQ−mQ)TΣ−1

QQ(zQ−mQ),

(13)
where mQ is the mean vector and ΣQQ is the covariance
matrix of random variables, ZQ.

Rasmussen et al. [17] demonstrated that GP has a marginal-
ization property, which implies for any subset, S, of Q, the
joint distribution on random variables of its locations is Gaus-
sian. Moreover, GP is comprehensively specified by its mean
function M(q) = E[z(q)], and a symmetric positive definite
covariance function C(q1, q2), often called kernel function. One
of frequently used kernel function is squared exponential, i.e.,

C(q1, q2) = σ2
fe

− ‖q1−q2‖2
2l2 , (14)

where q1, q2 ∈ Q, σ2
f is the maximum allowable covariance,

l is the bandwidth of the kernel, and ‖q1 − q2‖2 denotes the
Euclidean distance between q1 and q2.

We define S ⊂ Q as a subset that includes all the
selected sensors locations. For any subset S, let ZS denote
the collections of observations at locations in S. In addition,
take into account U = Q\S as the set of all elements in Q but
not in S, and ZU is a vector of random variables over these
unobserved locations. We will assume that sensor measurement
has an additive independent identically distributed zero-mean
Gaussian noise with variance σ2

n. It can be clearly shown that
ZS and ZU are jointly Gaussian distributed as[ZS

ZU

]
∼ N

([
mS

mU

]
,

[
ΣSS + σ2

nI ΣSU

ΣUS ΣUU

])
, (15)

where mS and mU (ΣSS and ΣUU ) are mean vectors (covari-
ance matrices) of ZS and ZU , respectively. ΣUS(= ΣT

SU ), are
cross-covariance matrices between ZS and ZU ; and I is the
|S| × |S| identity matrix.

In probabilistic terms, we derive the conditional distribution
at predicted positions of U , given ZS as follows:

mU|S = mU +ΣUS(ΣSS + σ2
nI)

−1(ZS −mS), (16)

ΣU|S = ΣUU − ΣUS(ΣSS + σ2
nI)

−1ΣSU , (17)

where mU|S and ΣU|S are mean vector and covariance matrix
of ZU , given ZS . As a consequence, using observations at
locations in set S, we can predict quantities at unobserved lo-
cations, U . This process is described as the Gaussian regression
approach [18].

The quality of prediction is generally measured by calcu-
lating the errors at unobserved locations. Therefore, the goal

is to drive robotic sensors to optimal locations S ⊂ Q so
that it will minimize a certain measure of prediction error at
unobserved locations, given observations ZS . A typically used
function inspired by the notions of G-optimality from optimal
design [5], [19] is maximum predictive variance. Specifically,
it is given by

M(U) =maximize σ2
f − ΣqS(ΣSS + σ2

nI)
−1ΣSq (18)

subject to q ∈ U

where ΣqS (= ΣT
Sp) is the cross-covariance column vector

between ZS and zq .

IV. LOCATIONAL OPTIMIZATION BASED SENSOR
PLACEMENT

A. Density Function

Recall that in section II, we employed the density function
to describe the measurement of information or probability
of the events over P . In this work, we developed a density
function based on the variances of the random variables ZQ.

Consider a location p ∈ U , U ⊂ R
2. From (17), the

predicted variance at location p, given observations generated
by S, is specified by

Σp|S = Σpp − ΣpS(ΣSS + σ2
nI)

−1ΣSp, (19)

where Σpp = σ2
f , and ΣpS (= ΣT

Sp) is the cross-covariance
column vector between ZS and zp.

In this paper, we embedded P into a two dimensional
space, and we define

φ(p) = Σp|S

φ(p) = Σpp − ΣpS(ΣSS + σ2
nI)

−1ΣSp. (20)

The actual measurements substantially influence on the
density function as the covariance matrix include the hyper-
parameters that are learned from the actual sensor readings.,.
Therefore when mobile robotic wireless sensors get to new
positions, they need to sample the environment to generate a
new density function.

B. Computations

There are two key issues associated with the implementa-
tion of the proposed algorithm in real mobile robotic wireless
sensor networks: (a) limited computing resources to continu-
ously compute the density function (b) moving mobile sensors
out of stationary locations due to undesirable characteristics
of the density function. As it requires to compute the density
function in real-time after each iteration and it depends on
the number of observations, calculation of this density func-
tion becomes intractable with increasing number of sensors’
readings.
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1) Mutual Information: In order to address the first issue,
we employed a method based on the mutual information,
a concept from information theory [20], to select the most
informative subset of measurements from among all of the
potential sensor measurements. After that the selected subset
is utilized to develop the density function. For instance, to
find k best measurements from whole observations O, it
starts from an empty set of locations A = 
 and greedily
adds placements in sequence until |A| = k. The algorithm
chooses the next point that produces the maximum increase of
mutual information. More specifically, the mutual information
between the subset A and the rest of observations O \ A can
be formulated by

F (A) = I(A;O \A). (21)

Once y ∈ OA is chosen and added to A, the variation of
mutual information can be calculated by

F (A ∪ y)− F (A) = (22)

= H(A ∪ y)−H(A ∪ y|A)− [H(A) −H(A|A ∪ y)]

= H(y|A)−H(y|A),
where A∪ y denotes the A∪ y and A represents O\ (A∪ y);
H(y|A) is the conditional entropy of y after observing A. By
maximizing F (A ∪ y)− F (A), we will find the next point y
to add into A. Suppose that the variables in O are distributed
normally, then 22 can be calculated in detail by

F (A ∪ y)− F (A) = (23)

=
1

2
[log(σ2

y|A)− log(σ2
y|A)],

where σ2
y|A (σ2

y|A) is the variance of y, given A (A).

2) Circumcenter: As discussed in section II-B, the centroid
of a sensor’s current location will be the sensor’s new location
in the next movement. Importantly, computation of the cen-
troids substantially depends on the shape of the density func-
tion. For instance, if the shape of the current density function
is quite similar to that of the previous one or the shape of the
density function is nearly flat, the distance between current
and new locations is trivial. This leads the mobile robotic
wireless sensors to stationary positions, which inadvertently
indicates that the mobile sensors have already converge to their
optimal locations. In order to address this issue, we utilized
an approach derived from a circumcenter notion (refer [21]
for more detail). In the event of all mobile robotic wireless
sensors are immobile during any iteration without reaching
the criterion of sensing quality, mobile sensors are driven from
current positions to circumcenters rather than to the centroids
of their voronoi cells.

The circumcenter of a bounded set D ⊂ R
2 is the center

of the circle of minimum radius that contains D. Hence, the
circumcenter is unique. The calculation of the circumcenter
of a polygon D ⊂ R

2 is to minimize the radius r of the
circle centered at p subject to the constraints that the distance
between p and each of the polygon vertices is smaller than or
equal to r. Mathematically, the problem can be formulated as

minimize r (24)

subject to ‖ p− d ‖2≤ r2, for all d ∈ Ve(D)

C. Sensor Movement

Let us define the dynamics of each sensor movement by
employing the first order form:

ṡi = ui. (25)

Solving the locational optimization in section II with
the density function built in section IV-A, we can find the
centroidal Voronoi configuration for a robotic sensor network.
As a result, we propose a control law for each mobile sensor
as follows:

ui = a(si − C(Vi)), (26)

where a is a proportional control gain.

Applying this control input, sensors will move to the new
locations that generate constantly the Voronoi partitions.

Algorithm 1 Pseudocode for Sensor Movement in Sensor
Placement

1: Initialize: Proportional control gain a
2: Robotic sensors start at random positions S
3: Stot = S
4: Collect measurements
5: loop
6: Learn hyperparameters
7: Develop density function
8: Generate Voronoi partitions V(S) = {V1, ..., Vn}
9: Calculate the centroid C(Vi)

10: → set of all new centroids S′
11: Calculate d(i) =‖ s′i − si ‖
12: if Max(d) < predefined value then
13: Remove S′
14: Calculate circumcenter CC(Vi)
15: → set of all new circumcenters S′
16: end if
17: if ‖ s′i − stoti ‖<predefined threshold then
18: Remove s′i
19: end if
20: Stot = Stot+ rest of S′
21: S = S′
22: Drive sensors to new locations S′
23: Get measurements for rest of S′
24: Select k out of all Stot using mutual information
25: end loop

The approach to implement the sensor movements in
practice in described by algorithm 1.

In this paper, we consider the environments that are
constant or slowly changing in a short period of time. In
this interval, mobile sensors will collect data, compute the
new locations based on the locational optimization and move
to these new positions, which have high variances. These
movements make the maximum predictive variance (18) to
gradually decline. Iteratively, sensors will run on the optimal
trajectories that result in minimizing the maximum predictive
variance.

V. EXPERIMENTS AND RESULTS

We conducted experiments using a real world
data set of a indoor temperature environment from
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Fig. 1: Spatial temperature field
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Fig. 2: Predicted temperature field at iteration 1

the Intel Berkeley Research Lab [7] (available at
http://db.scal.mit.edu/labdata/labdata.html. Fig. 1 illustrates
the spatial temperature field generated using this dataset with
52 sensors.

In this paper, in order to learn a Gaussian Process model,
we first choose the isotropic square exponential covariance
function and the second order trend for the mean function.
One can recall that the covariance function is specified by the
set of hyper-parameters (σf , l, σn). Theoretically, these hyper-
parameters could be learned by maximizing the log of the
marginal likelihood (see [17] for more details). However, in
this experiment, we used the geoR package [22] to learn these
parameters.

In this experiment, we employ 20 mobile robotic wire-
less sensors to collect measurements iteratively, starting from
random locations as shown in Fig. 5 (in white dots). In this
implementation the time period of each iteration is dependent
on the configuration of the sensor network, the computational
time and the motion time. The predicted temperature fields are
demonstrated from Fig. 2 to Fig. 4 at iterations 1, 5, 10. It can
be clearly seen that the predictive means are getting closer to
the true temperature field Fig. 1 as the number of observations
increases. White circles in Figures Fig. 5 to Fig. 7 show the
trajectories for the optimal paths of the mobile robotic wireless
sensors at iterations 1, 5, and 10. Additionally, Figures Fig. 5
to Fig. 7 also show the prediction error variance corresponding
to 1st, 5th and 10th iterations. Note that the white dots in these
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Fig. 3: Predicted temperature field at iteration 5
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Fig. 4: Predicted temperature field at iteration 10

figures correspond to the starting locations.

In order to evaluate the effectiveness of the proposed
approach, we compare the maximum predictive variance per-
formance metric for the proposed method and random motion
method. In random motion method, mobile robotic wireless
sensors move along random trajectories. Note that after each
iteration, sensors move to new locations and sample the
environment. Following that, hyperparameters are learned and
variances at all unobserved locations are continuously updated.
In Fig. 8, we can see that the maximum predictive variance is
degrading gradually as the number of iterations increases as
sensors have better knowledge of the environment. In particu-
lar, it can be clearly seen that the proposed algorithm exhibits
improved performance continuously as each successive motion
of sensor nodes is driven by the information gain.

VI. CONCLUSION

In this work we have considered the problem of prediction
in spatial phenomena using observations obtained by a robotic
mobile sensor network. We modeled the spatial field using
Gaussian Processes and proposed a variance based density
function for a loacational optimization problem. As the num-
ber of observations increases, the proposed computationally
efficient algorithm allows the mobile sensors to find the most
informative locations in collecting measurements minimizing
the prediction error variance. The demonstrations of results
on real-world datasets have shown that our proposed approach
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Fig. 5: Prediction error variances at iteration 1
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Fig. 6: Prediction error variances at iteration 5

outperforms the random motion method.
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