
“© 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.”

Analysis of Requirements Volatility during Software Development Life Cycle

N Nurmuliani, Didar Zowghi, Sue Fowell
Faculty of Information Technology
University of Technology, Sydney

P O Box 123 Broadway
NSW 2007, Australia

{nur, didar, sfowell}@it.uts.edu.au

Abstract

Investigating the factors that drive requirements
change is an important prerequisite for understanding
the nature of requirements volatility. This increased
understanding will improve the process of
requirements change management.

This paper mainly focuses on change analysis to
identify and characterize the causes of requirements
volatility. We apply a causal analysis method on
change request data to develop a taxonomy of change.
This taxonomy allows us to identify and trace the
problems, reasons and sources of changes. Adopting
an industrial case study approach, our findings reveal
that the main causes of requirements volatility were
changes in customer needs (or market demands),
developers’ increased understanding of the products,
and changes in the organization policy. During the
development process, we also examined the extent of
requirements volatility and discovered that the rate of
volatility was high at the time of requirements
specification completion and while functional
specification reviews were conducted.

Keywords: requirements volatility, taxonomy of
change, causal analysis

1. Introduction

Despite advances in Software Engineering over the
past 30 years, most large and complex software
projects still experience numerous changes during their
life cycle. These changes are inevitable and driven by
several factors including constant changes in software
and system requirements, business goals, market

demand, work environment and government regulation
[1].

Software development is a dynamic process. This
often causes software requirements to change while
development is still in progress. If these changes to
software requirements are frequent then they may
produce significant project uncertainty. Requirements
change has been reported as one of the main factors
that cause a project to be challenged [2], [3]. This
indicates that managing requirements change still
remains a challenging problem in software
development.

Although the intention is for software requirements
specifications to be captured and formed correctly in
the initial stage of development, requirements
inevitably change throughout system development and
maintenance process. As a consequence, we need to
identify a better approach to manage the impacts of
continuously changing requirements. We believe that
identifying and understanding the underlying causes of
requirements change is the first step towards better and
effective management requirements change in this
rapidly changing environment

In this paper we present a qualitative method to
characterize and evaluate requirements change
problems throughout system development process. We
apply this method to analyse requirements change
management process in a large multi-site software
development company. This leads us to develop a
taxonomy that can be used as an approach to classify
requirements change and to identify the causes of these
changes. The results improve our knowledge and
understanding of requirements volatility. This
increased understanding will improve the process of
requirements change management.

In the next section we present the background of
requirements volatility study. We then briefly describe
the organisation where this case study was conducted
in section 3. In section 4 we present our data analysis
framework and illustrate the procedures for conducting
causal analysis of requirements volatility. We present
the details of our findings in section 5 and we conclude
this paper with discussion and future work.

2. Background

Requirements volatility (RV) is generally
considered as an undesirable property. It has the
potential to produce adverse impacts on the software
development process [4]. Previous studies have
identified that requirements volatility causes major
difficulties during development. For example, a field
study conducted by Curtis et al [2] indicates that
requirements volatility is one of the major problems
faced by most organisations in the software industry.
Boehm and Papaccio [5] have observed that
requirements volatility is an important and neglected
factor that can cause software cost overrun. Other
requirements volatility problems have been identified
such as unstable or changing requirements during
elicitation process [6] and during maintenance process
[7].

Requirements volatility is also a common
phenomenon that is present in most software
development projects. However, very little research
has been published on the identification of
requirements volatility problems and the strategies to
manage its impact on software development projects.
Recent empirical studies have investigated the impact
of requirements volatility on the software project
schedule during maintenance [7], on software defect
density during code and testing phases [8], on
development effort [9] and on software project
performance [10]. These studies indicate that
requirements volatility is an important issue in system
development and maintenance process.

While the existence of requirements volatility
cannot be ignored, there is still a need to improve our
understanding of requirements volatility problems in
order to better manage its impacts. The first step to
achieving this goal is to characterize and evaluate the
problems of requirements change (i.e. reasons and
sources of changes). Only then the causes of
requirements volatility can be identified.

Few studies have discussed and highlighted issues
that relate to the causes of requirements volatility. In
their technical report, Christel and Kang [6] indicate
that requirements volatility is one of the main problems
during the requirements elicitation process. The
problem is triggered by continuous change in users’

needs, disagreement among customers or stakeholders
on agreed requirements, and changes in organization
goals and policies. Other studies have mentioned
contributing factors to requirements change, such as
developers’ knowledge of the application and business,
competitors’ products changes in technologies, poor
communication between users, customers,
stakeholders, and developers contributing to
requirements change during system development [2,
11].

There is limited empirical research about
requirements volatility. The concept is still not well
defined in the literature. In this study we define
requirements volatility as: the tendency of
requirements to change over time in response to the
evolving needs of customers, stakeholders,
organisation, and work environment. The operational
definition of requirements volatility can be represented
as: the ratio of requirements change (addition,
deletion, and modification) to the total number of
requirements for a given period of time.

3. Case Study Context

The case study was carried out at Global
Development Systems (GDS)1. GDS is an ISO 9001
certified software development company that belongs
to an international multi-site organization with
headquarters and marketing divisions in USA. It is an
engineering lab that develops product line software.
The software produced is characterized by the delivery
of a series of releases. Each release is around
8000KLOC, development time between 12-18 months,
with approximately 120 full time developers involved.
The product is an enterprise software, of which
customers are themselves developers using the system
for developing software. Requirements for new
releases are requests for enhancements to the product
and they are gathered from multiple sources:

• Market needs (representing current customers

needs and market directions representing potential
for future customers)

• Product strategy requirements (representing
technology and engineering direction of the product
in line with the organizational strategy)

At GDS, key stakeholder groups are scattered

across several continents. The product strategy is
directed from the US, where the Product and Program
Management group is located across four sites. The
development group is located in three Australian and

1 The company and product names are fictitious to preserve
confidentiality.

one New Zealand sites, and customers are grouped in
five large market segments across five continents. In
addressing the geographical distribution of customers
worldwide, the organization maintains on-site field
support centres, to provide services to the diverse
market segments.

The purpose of this paper is to identify and
characterize requirements volatility problems and its
underlying causes during the system development life
cycle. Our unit of analysis to achieve this study
objective is based on a single project. This paper
presents our findings from one of the software releases.
A waterfall model is applied to develop this release.
During system development, all changes to products
are documented and recorded in the project database.
These activities enable us to inspect the documents and
conduct an empirical analysis.

4. Analysis Method

The purpose of our analysis was to identify and
understand the problems relating to changing
requirements during the software development process
and their underlying causes. Our analysis is based on
descriptive and qualitative methods.

Descriptive analysis provides rich information for
understanding the requirements volatility problems as
well as related aspects such as organizational policy,
customer needs and product changes. Qualitative
methods are employed to analyse the collected data
and to evaluate the change process.

Change Request
Forms

Release
Documents

Interviews
data

Change
Taxonomy

Causes of
Change

ch
ara

cte
riz

ati
on

identification

Change Analysis
Process Evaluation

Deductive Inferences

Inductive Inferences

Stage 2

Stage 1 Stage 3

Figure 1. Data analysis framework

The data analysis framework we propose in this paper
is adapted from the general approach of Briand et al
[12]. This method is used to determine the causes of
requirements volatility and its related aspects. Figure 1

illustrates our data analysis process, which is a
combination of both inductive and deductive
inferences. Our approach will be described in the next
section.

4.1. Causal Analysis of Requirements Volatility

The analysis process began by collecting change
request data. The change request documents were
collected, screened, and analysed. This paper focuses
specifically on the analysis of change requests that
related to requirements change. Our data analysis
framework (as described in Figure 1) comprises three
stages:

Stage 1: Understanding the changes

We considered three main sources of evidence to
perform causal analysis of requirements volatility:
Change Request (CR) forms, other release documents
(i.e. requirements specification document, the
configuration management plan, and software product
documents), and interview data.

Based on the information contained in the change
request forms, we identified problems related to each
change. These include: description of the change,
reasons for changes (why factor), types of change
(addition, deletion, and modification), impacts of
change on software products or documents (what
factor), effort estimate, elapsed time, and the person
who requests the change. This stage represents the
main part of the causal analysis process to characterize
the causes of requirements change.

In the inspection of the change request forms, often
we needed to crosscheck the content of the change
form with other related release documents, such as
requirements specification, requirements database, and
software product documents. The purpose of this
activity is to confirm our evaluation and triangulate our
findings.

The other source of the change analysis process
involves interviews with key figures in the project. Our
aim is being to capture information that was not
available in the change request form. Interviews were
conducted and tape-recorded with Project Managers,
Senior Managers, and Engineering Managers or
Technical Leads. The interviews were transcribed and
the transcripts were examined as part of our data
analysis process.

Stage 2: Change Analysis and Process Evaluation

The collected information based on the three
sources of evidence described in the Stage 1, were then
transferred into spreadsheets. Each change request
form was carefully examined. The collected
information, such as description of change

(requirements change), origin/sources of change, type
of requirements (high or low requirements), reason for
change, types of change (addition, deletion, and
modification), impacted documents, the time when it is
raised, and full interval time to process the change, are
the main information that were quantitatively analysed.
These analyses lead us to better understand the nature
of requirements change, its attributes, and its driving
factors. This process of analysis required several
iterations and the classification of changes were
derived inductively.

While analysing the change request forms, we also
evaluated the company’s process of change
management.

Stage 3: Taxonomy Development

Based on the information collected (Stage 2) and
our observations, we defined a taxonomy for
categorizing requirements change. Our preliminary
taxonomy classifies changing requirements based on
general types of change, reasons for change, and the
change origin. Mapping the changes to the defined
taxonomy helps us to determine the causes of
requirements volatility. The purpose of this is to
improve our knowledge and to better understand the
change process and its related activities.

5. Findings

In this section we present our findings in terms of
the change process model, the change request arrival
rate, the requirements volatility measure, and a
taxonomy of requirements change. Finally, we discuss
the limitations of the current change management
process and causes of requirements volatility.

5.1. Change Process Model

We studied the change management process that
was defined by this organization to communicate and
manage changes during software product development.
This study provided an opportunity to identify
problems and to improve the change process.

In this organization, the change management
process is driven by change request forms. This
represents the locus of information on any change to be
made on baseline documents. The change request form
is used to request any changes that might impact the
project schedule. The change request can be either
reports of problems (i.e. bug reports), requests for
changes to requirements (addition, deletion, and
modification), functionality enhancement requests, or
changes to project schedule. This process is the
responsibility of a project manager throughout the
development life cycle.

We outlined our findings below for the four main
phases of the change request process.

Phase 1: Change Request Initialisation

This is the initial phase of the change process
where any project engineer or development team
members can submit a proposed change and enter the
change request (CR) into project database. This phase
involves five main activities, which include: identify
problem, analyse problem, describe the rationales of
the proposed change, perform impact analysis, and fill
in change request form.

Phase 2: Change Request Validation and
Evaluation

The purpose of this phase is to validate the change
request form in terms of the detailed description of the
proposed change, its impact on schedule, and the
required reviews and approvers to review the change
request. The Project Manager is responsible for
moderating and managing the change request process.
In special circumstances, the project manager solicits
and coordinates a discussion with other engineering
managers to obtain more information about the impact
of the proposed change. When the validation is
complete, the project manager circulates the request
form to the chosen reviewers and approvers through
email. They review the change request in terms of the
nature/clarity of proposed change, its impact on project
schedule, reasonableness and feasibility of the
proposed change.

Phase 3: Change Implementation

This phase starts when the proposed change has
been accepted and approved and the change becomes
part of the system development. The Project Manager
assigns related engineers to implement the change.
Communication and coordination among project
members is very important because it allows them to
trace the change across the impacted products. It is left
up to the Project Manager and team members to trace
the change.

Phase 4: Change Verification

The objective of this phase is to verify that the
change was made correctly. The Verifier (i.e. project
manager or quality assurance team) performs
verification tasks. If the verification is successful, the
initial change request is closed. If it is not successful,
the project manager will be notified. In this
circumstance, the implemented change needs to be
investigated further and change request remains open.

In summary, our analysis identified the following
limitations in the change management process: a lack

of information about the rationales of the proposed
change, the impact analysis of the proposed change has
not been performed completely, and the change
implementation process is controlled manually.

5.2. Change Request Arrival Rate

This section describes our findings in the change
process analysis: the arrival rate of change requests
(overall) over time and change requests against
requirements throughout the project life cycle.

The arrival rate of overall change requests during
development life cycle is presented in Figure 2. There
are two legends illustrated in the Figure 2: overall
change requests and change requests against
requirements. The average rate is relatively low,
approximately between two and three change requests
submitted per week. In fact, the number of change
requests reflects the number of request for
requirements change.

Over the course of the project (16 months), a total
of 78 change requests were submitted. Most of these
requests (86%) were related to product changes, which
include changes to requirements specification,
functional specification, and software product
specification. The rest of the change requests (14%)
were related to process/plan changes, which include
changes to the project development plan and test plan.

Design

Code and SIT
SAT and Field Test

Requirements Analysis

0

2

4

6

8

10

12

14

16

C
ha

ng
e

R
eq

ue
st

Ja
n-

02

Fe
b-

02

M
ar

-0
2

Ap
r-

02

M
ay

-0
2

Ju
n-

02

Ju
l-0

2

Au
g-

02

Se
p-

02

O
ct

-0
2

N
ov

-0
2

D
ec

-0
2

Ja
n-

03

Fe
b-

03

M
ar

-0
3

Change Request (CR) CRs against Requirements

Figure 2. Change requests arrival rate

The rate of change requests increased sharply from

March to April 2002 when requirements analysis and
documents reviews (i.e. requirements specification,
feature proposal, and functional specification) were
being completed. During this period, most of the
requests resulted in additions and deletions of
requirements. This is not surprising, since the

developers or engineers received feedback from
requirements and functional specification reviews. The
arrival of change requests decreased as the project was
getting closer to the end of its lifecycle. However the
rate of change requests increased again during the end
of detailed design review and system integration
testing. The majority of change requests during this
period related to functional and design specification
changes, as the developers gained more knowledge
about the product.

5.3. Measuring Requirements Volatility

Since we were only interested in analysing the
volatility of requirements, the focus of the analysis was
on the change requests that related to changes in
requirements and other changes to the software product
that affect requirements specification. This section
presents our quantitative analysis on the change request
data. The objective here is to quantify the extent of
requirements volatility throughout system development
life cycle.

The measure of requirements volatility is defined as
the ratio of the number of requirements change (i.e.
addition, deletion, and modification) to the total
number of requirements for a certain period of time
(i.e. development phase).

Out of 78 change requests, 42 requests were related
to changing requirements. These change requests were
carefully examined and evaluated. As a result, we have
identified the total number of requirements change
throughout the development life cycle and calculated
the requirements volatility measure.

Design

Code and SIT
SAT and Field Test

Requirements Analysis

6.90

16.85

4.44
6.45

4.83

1.02 0.68 0.000.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Apr-02 May-02 Jun-02 Jul-02 Aug-02 Sep-02 Oct-02 Nov-02

R
eq

ui
re

m
en

ts
 V

ol
at

ilit
y

(%
)

Figure 3. Requirements volatility during

development life cycle

The level of requirements volatility at each stage of

product development is illustrated in Figure 3. The
volatility rate varied across the stages of development

and is consistent with the arrival rate of change
requests. The overall rate of volatility is 6%, which is
considered tolerable. The only high peak (16.85%)
was at the end of requirements analysis stage and at the
beginning of the design stage. The requirements
volatility measure can be viewed as an indicator of
how stable requirements are in the system.

Our analysis (as illustrated in Figure 3) indicates
that requirements volatility was high at the end of
requirements analysis (May 2002). This means that a
lot of changes to software requirements occurred in the
period when requirements specification reviews were
being completed. The volatility decreased sharply in
June 2002, however it increased slightly again in July
2002 (at the end of design phase). Then the volatility of
requirements decreased steadily at the end of system
integration testing and this continued towards the end
of the development life cycle.

5.4. Taxonomy of Requirements Change

As part of our analysis, we developed a taxonomy
to assist us in understanding the requirements volatility
problems. We believe this taxonomy will also allow
practitioners or project managers to characterise
change requests and improve the change process.

Our taxonomy of requirements change consists of
three components: Change Type, Reason, and Origin.

Change Types, is the first component of the taxonomy
to classify the change requests in terms of:
• Requirements Addition; adding new

requirements into the system being developed,
• Requirements Deletion; deleting or removing

existing requirements from the system,
• Requirements Modification; modifying or

rewording requirements text.

Reason, this component relates to the categorization of
the change in term of the reason or rationales behind
the proposed changes. Our classification for the
Reason of change is as follows;
• Defect Fixing: - changes to correct defects that

arise from previous releases
• Missing requirements: - requirements were not

captured during the initial product definition or
discovered after detailed design analysis

• Functionality Enhancement: - maintaining or
managing functionality for the product releases,
e.g. technical upgrade, functionality upgrade, etc.

• Product Strategy: - change that related technical
engineering and instigated by Marketing group

• Design Improvement: - changes that are triggered
by improved knowledge of the developers about

the product, action items from review documents
(i.e. functional specification, design specification)

• Scope Reduction: - removing functionality or
reducing amount of work due to lack of resources

• Redundant Functionality: - unnecessary
functionality or functionality that already exists or
can be replaced by other existing functions

• Obsolete Functionality: - functionality that no
longer required for the current release or has no
value for the potential users

• Erroneous Requirements: - Incorrect or wrong
requirements

• Resolving Conflicts: changes that triggered by
functionality conflicts that exist in the system

• Clarifying Requirements: - rewording
requirements text for clarification

Origin, is the sources of the proposed change, that is,
where it originated from. The sources or requirements
change could be from: Defect Reports, Engineering’s
Call, Project Management Consideration, Marketing
Group, Developer’s Detailed Analysis, Design Review
Feedback, Technical Team Discussion, Functional
Specification Review, Feature Proposal Review, and
Customer-Support Discussions.

The list of these taxonomy attributes was derived
from the change request forms. This taxonomy is our
deductive inferences that we used to classify the 42
change request data.

As we mentioned earlier the change request form is
a vital element to communicate changes on product
deliverables across the project team. Each change
request form does not necessarily contain a single
change, it could contain multiple changes that require
multiple different actions.

Out of 78 change request forms, we identified 42
change requests that related to changing requirements.
We classified these 42 CR according to the three
components defined above. We further analysed the
data to identify single and multiple change requests. As
a result, five (12%) multiple change requests and 37
(88%) single change requests were identified. It should
be noted that the taxonomy was developed based only
on single change types and multiple changes described
in the next section are not included in the development
of the taxonomy.

Change Request with Multiple-changes

Multiple change requests were found to be any of
these three combinations: ‘addition and deletion,
‘addition and modification’, or ‘deletion and
modification’ requests (the order is not significant).

Only one of the multiple change requests was of
‘addition and deletion’ combination type. This request

was aimed to remove a requirement for a particular
operating system that was not supported by the third
party software in the current release under
development. As a consequence of this deletion, a new
requirement had to be added to provide an alternative
operating system that supported this release. This
change request was raised as a result of functional
specification review.

A multiple change request of ‘addition and
modification’ combination type was aimed to modify
(reword) several requirements due to changes in screen
capabilities. As a result of these modifications, new
requirements were needed to enable two sub-features
exchange the screens definition. This change request
was raised as an action from the detailed design
reviews.

The last multiple change request we identified is of
‘deletion and modification’ combination type. The
changes involved were as follows:
(1) An obsolete requirement was deleted resulting in
modification of several requirements to resolve
functionality conflicts. This was raised as a result of
technical team discussions
(2) An obsolete requirement was deleted resulting in
modification of an existing requirement to address
specification changes in data transfer mechanism. This
was raised as a result of feature proposal review
(3) A redundant (those that are not necessary or already
existed in the previous release), requirement was
deleted, resulting in modification of an existing
requirement (reword text) for clarity. This multiple
change was raised as results of functional specification
review

Change Request with Single-change

We classified the 37 (88%) change requests into the
three general change types of requirements addition,
deletion, and modification. We further classified the
data according to the reason category of the changes.
Then we linked the changes to their origin or sources.

Mapping the change data to the defined taxonomy
attributes enabled us to answer questions of this type:
“what are the types of the proposed changes?”; “why is
the change needed?”; and “where does the change
originated from?”. This classification and the
relationship of the three components above lead us to
better understand the changes and their underlying
causes. The following graphs (Figure 4-6) illustrate the
relationship of change request attributes resulting from
our taxonomy. The numbers on each arrow in these
diagrams refer to the number of change requests
related to the reason categories or origins.

Figure 4 indicates that the main reasons for adding
new requirements were related to improving the
design, “functionality enhancement”, and “product

strategy”. The other reasons encountered were:
“missing requirements” and “fixing defects” from the
previous release. These changes originated mainly
from developers/engineers’ detailed analysis, feedback
from design specification review, marketing group
requests, and project management consideration.

Adding new requirements in this product release
was aligned with the organization’s business goals,
where functionality enhancement and introducing new
functionality are the main concern.

Requirements

Addition

Defect
Fixing

Missing
Requirements

Functionality
Enhancement

Product
Strategy

Design
Improvement

Defect
Report

Engineer
ing's Call

Project
Management
Consideration

Marketing
Group

Developer's
Detailed
Analysis

Design
Review/

Feedback

Change
Type

Reason
Category

Origin

CR=21

2 2 6 3 8

2 1

1
3

2 31 3
2

3

Figure 4. Graphical illustration for requirements
addition classification

The main reasons for requirements deletion during

system development life cycle were to remove
‘obsolete functionalities” and “requirements
redundancy”. The other reasons included “erroneous
requirements”, “scope reduction”, and “design
improvement”. Removing functionality or deleting
requirements were originated from marketing group,
feedbacks from design review, and project
management consideration. The detailed relationship
of these changes is illustrated in Figure 5. In the case
of scope reduction, often the project management had
to consider reducing the amount of work due to lack of
resources.

Requirements
Deletion

Erroneous
Requirements

Obsolete
Functionality

Design
Improvement

Redundant
Functionality

Scope
Reduction

Technical Team
Discussion

Project
Management
Consideration

Marketing
Group

Developer's
Detailed
Analysis

Design
Review/

Feedback

Change
Type

Reason
Category

Origin

CR=8

1 3 1 2 1

1 1
2

1
1

2

Figure 5. Graphical illustration for requirements
deletion classification

The last type of changes is requirements
modification, which involves mostly rewording
requirements text for clarity and it does not necessarily
change the meaning of requirements itself. The main
reasons for requirements modifications during system
development were to: “clarifying requirements” and
“design improvement”. The other two reasons for
modifications were: “product Strategy” and resolving
conflicts”. The origin of these modifications were
mainly from technical team discussions and marketing
group requests. The result of our taxonomy on
requirements modifications is illustrated in Figure 6.

Requirements
Modification

Clarifying
Requirements

Product
Strategy

Design
Improvement

Resolving
Conflicts

Technical
Team

Discussion

Functional
Specification

Review

Marketing
Group

Developer's
Detailed
Analysis

Feature
Proposal
Review

Change
Type

Reason
Category

Origin

CR=8

3 1 3 1

1 1 1 1

1

2

Customer-
Support

Discussion

1

Figure 6. Graphical illustration for requirements
modification classification

5.5. Causes of Requirements Volatility

 The results of our taxonomy on the change
request data provided useful insight to help us draw
conclusions about the causes of requirements volatility.
It is clearly shown in the three diagrams above that a
particular change type has a particular purpose or
reason as a result of a specific activity. After carefully
examining and analysing the taxonomy of
requirements changes in this case study, we identified
the root causes of requirements volatility. Three main
causes of requirements volatility during system
development are:

(1) Changes in market demands, which is a
reflection of changes in customer needs

(2) Developers’ increased understanding of product
domain, which can be explained by most of the
requests for design refinements originating from design
reviews, technical discussions, and developer detailed
analysis, and

(3) Organizational considerations, which is most
likely related to the business goals and policy, such as
functionality enhancements, product strategy, or scope
reduction.

Although our findings regarding the causes of RV
is not very surprising and more or less aligns with what
is speculated in the literature in various forms but we
feel that it increases our understanding of the nature of

requirements volatility. Furthermore, this detailed
analysis of RV and its causes are very valuable to GDS
and other software development organizations that
wish to undertake an analysis of their requirements
changes.

6. Discussion

The analysis of change request data in GDS has
allowed us to develop a comprehensive taxonomy of
requirements changes. The main source of our data
analysis has been the Change Request forms. The CR
form in GDS is currently used primarily as an
operational tool to allow managers track and
communicate changes to software. Our analysis has
resulted in an increased understanding of the role that
CR forms can and should play in project management.
Our study has led us to believe that there are other
more important usages of the CR forms that are not
currently being considered by most software
development organizations such as GDS.

The change request forms, if they contain
appropriate information, could be used to contribute to
more strategic levels of decision making within the
organization. As illustrated in the previous sections,
aggregated change request information can be used to
assess the nature of requirements volatility.
Furthermore, a taxonomy such as the one developed in
this paper could be used as a strategic tool to assist
project managers in their planning, risk assessment,
prediction of effort and cost estimation. For example,
if practitioners capture impact analysis data in the
change request forms, this information could be used to
estimate the effort needed to implement the change
more accurately. This is especially effective in
developing product line software where the main
baseline features remain stable from one release to the
other and effort estimates of changes could be carried
over from one release to the next with minor
modifications.

Although the organization in this case study has
implemented change management practices over the
last few years, our findings reveal that some activities
are still in need of minor improvement.

When we examined the change request forms we
discovered that they had little information about the
rationale or reasons for the proposed change. The
information was inadequate to analyse the importance
of the change to be made. We believe this kind
information is necessary if we are to analyse problems
effectively and understand the proposed changes.

There was no formal impact analysis performed
due to inability to predict the potential impact of the
change on other related areas. Therefore, it is very
difficult for GDS to estimate effort needed to

implement the changes at this time. Impact analysis is
not a simple task to perform in a large software project.
However the benefits of impact analysis are well
known in requirements management.

As a result of our case study, some
recommendations have been made to GDS
management for improving the change request form
content as well as the change management process.

7. Conclusions and Future Work

In this paper we have presented the causal analysis
of requirements change based on a case study in an
industrial setting. The main contributions of this study
are twofold. Firstly, a qualitative method for
characterizing and evaluating requirements change
problems has been developed. This method is
described in detail and therefore could potentially be
used by other researchers and practitioners in their own
environment to identify causes and reasons for
requirements changes. Secondly, the analysis of data
from change request forms has led us to better
understand the nature of requirements volatility during
the software development lifecycle and to the
development of a comprehensive taxonomy of
requirements changes. We have identified the root
causes of requirements volatility in a specific project at
GDS and been able to offer recommendations on how
to improve change management process.

This study represents the first phase in a long-term
investigation of the phenomenon of requirements
volatility and is one of a number of longitudinal
investigations currently being undertaken. It helps to
set the scene for what is planned to follow. The
findings of this case study have provided valuable
insight about the dynamic behaviour of software
requirements from the beginning of the systems
development until the end of the project. The next
stage of the research involves developing a model of
requirements volatility, its causes and impacts. This
model will allow us to identify and develop a set of
strategies to manage the impacts of requirements
volatility during software development life cycle.

References

[1] E. J. Barry, T. Mukhopadhyay, and S. A. Slaughter,
"Software Project Duration and Effort: An Empirical
Study," Information Technology and Management, vol.
3, pp. 113-136, 2002.

[2] B. Curtis, H. Krasner, and N. Iscoe, "A Field Study of
the Software Design Process for Large Systems,"
Comunications of the ACM, vol. 31, pp. 1268-1287,
1988.

[3] The Standish Group, "CHAOS: A Recipe for Success,"
1998.

[4] D. Zowghi, R. Offen, and N. Nurmuliani, "The Impact
of Requirements Volatility on Software Development
Lifecycle," presented at the International Conference
on Software, Theory and Practice (ICS2000), Beijing,
China, 2000.

[5] B. W. Boehm and P. N. Papaccio, "Understanding and
Controlling Software Cost," IEEE Transactions on
Software Engineering, vol. 14, pp. 1462-1477, 1998.

[6] M. Christel and K. Kang, "Issues in Requirements
Elicitation," Carnegie Mellon University, Pittsburgh
TR.CMU/SEI-92-TR-12, September 1992.

[7] G. Stark, A. Skillicorn, and R. Ameele, "An
Examination of the Effects of Requirements Changes
on Software Maintenance Releases," Journal of
Software Maintenance: Research and Practice, vol. 11,
pp. 293-309, 1999.

[8] Y. Malaiya and J. Denton, "Requirements Volatility and
Defect Density," presented at the 10th International
Symposium on Software Reliability Engineering, Boca
Raton, Florida, 1999.

[9] D. Pfahl and K. Lebsanft, "Using Simulation to Analyse
the Impact of Software Requirements Volatility on
Project Performance," Information and Software
Technology, vol. 42, pp. 1001-1008, 2000.

[10] D. Zowghi and N. Nurmuliani, "A Study of the Impact
of Requirements Volatility on Software Project
Performance," presented at the 9th Asia-Pacific
Software Engineering Conference, Gold Coast,
Australia, 2002.

[11]J. Chudge and D. Fulton, "Trust and Co-operation in
System Development: Applying Responsibility
Modelling to the Problem of Changing Requirements,"
IEEE, Software Engineering Journal, vol. 11, pp. 193-
204, 1996.

[12]L. C. Briand, V. R. Basili, and Y. Kim, "A Change
Analysis Process to Characterise Software Maintenance
Projects," presented at International Conference on
Software Maintenance, 1994.

