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ABSTRACT

Accurate prediction of evapotranspiration E depends upon representative characterization of meteoro-

logical conditions in the boundary layer. Drag and bulk transfer coefficient schemes for estimating aero-

dynamic resistance to vapor transfer were compared over a semiarid natural woodland ecosystem in central

Australia. Aerodynamic resistance was overestimated from the drag coefficient, resulting in limited E at

intermediate values of vapor pressure deficit. Large vertical humidity gradients were present during the

summer, causing divergence between momentum and vapor transport within and above the canopy surface.

Because of intermittency in growth of the summer-active, rain-dependent understory and physiological re-

sponses of the canopy, leaf resistance varied from less than 50 sm21 to greater than 106 sm21, in which the

particularly large values were obtained from inversion of drag coefficient resistance. Soil moisture limitations

further contributed to divergence between actual and reference E. Unsurprisingly, inclusion of site-specific

meteorological (e.g., vertical humidity gradients) and hydrological (e.g., soil moisture content) information

improved the accuracy of predicting E when applying Penman–Monteith analysis. These results apply re-

gardless of canopy layering (i.e., even when the understory was not present) wherever atmospheric humidity

gradients develop and are thus not restricted to two-layer canopies in semiarid regions.

1. Introduction

One-fifth of the global land area is arid or semiarid,

where water scarcity can limit productivity in agricul-

tural and native vegetation. Except where groundwater

is present, evapotranspirationE in arid regions is second

only to precipitation P as the largest component of the

hydrometeorological cycle (Sheffield et al. 2010); thus,

accurate knowledge of E is required for managing wa-

ter resources (Er-Raki et al. 2010; Tabari et al. 2012).

Australia is the driest permanently inhabited continent

on Earth, with over 70% of the land surface character-

ized as (semi) arid (Eamus and Froend 2006), where the

seasonality of moisture limitations exerts strong control

over vegetation characteristics andE (Hutley et al. 2005;

O’Grady et al. 2009).

To provide a reference of E (E0), the Food and Ag-

ricultural Organization adopted standard parameteriza-

tion of the Penman–Monteith (PM) model for a reference

grass crop (FAO56; Allen et al. 1998). This mechanistic

model incorporates plant physiological constraints

(Monteith 1965) into Penman’s original model that
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combines available energy QA with atmospheric con-

straints (Penman 1948). FAO56 remains the most fea-

sible and widely adopted method for predictingE across

the globe (Steduto et al. 2003). The importance of FAO56

as a tool in water resources management is unequalled

because of its simplicity and intercomparability among

various crop and ecosystem types (Lemeur and Zhang

1990).

With the growth of worldwide eddy covariance (EC)

networks, FAO56’s aerodynamic resistance and surface

conductanceGS terms can be evaluated by inverting the

equation with measured values of actual E (Reichstein

et al. 2002; Wohlfahrt et al. 2009). Numerous computa-

tional methods are used to estimate aerodynamic re-

sistance to momentum flux ram as a function of the drag

coefficient CD, either directly (i.e., from the friction co-

efficient u* in moderately unstable conditions; Isaac

et al. 2004) or inferentially from the logarithmic profile

of wind speed U above a surface (Allen et al. 1998;

Brutsaert 1982). Likewise, aerodynamic resistance to

vapor transfer ray is determined either directly from

surface-to-air gradients of specific humidity (i.e., the

bulk transfer coefficient CE; Brutsaert 1982; Stull 1988)

or inferentially from CD, in which case ray and ram are

equivalent. While direct assessment of ray is preferred

because of the unambiguous relationship between CE

and ray, measurements of vertical profiles in humidity

are historically rare and ray must be inferred from CD

(Brutsaert 1982; Cleugh et al. 2004).

Errors in Penman–Monteith (PM) predictions have

been observed at low to moderate values of D (Whitley

et al. 2009). Thus, we hypothesized that these errors are

the result of differences between ray (from CE) and ram
(from CD). This study compares ray to ram by inverting

the PM equation at an OzFlux EC site in semiarid,

central Australia (Cleverly 2011). To clarify variable

designations, the generic subscript x will represent m

for momentum or y for vapor (e.g., GSx represents GSm

when derived from ram). Likewise, subscripts a and S

refer to aerodynamic and surface, respectively.

2. Measurements and methods

a. Aerodynamic resistance to momentum

and vapor transfer

Application of ram to vapor transport follows an inverse

function ofU andCD, which can be estimated from canopy

structural characteristics (Allen et al. 1998; Stull 1988):

ram5 (UCD)
21
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m
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d
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d
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where k is von K!arm!an’s constant (0.41), zm (m) is the

measurement height, zd (m) is the displacement height

(2/3 of the canopy height zc), and z0m and z0y (m) are the

roughness lengths for momentum and vapor, respec-

tively. The logarithmic profile that underpins ram is not

applicable below the height zd; thus, ram was computed

for a single layer representing the canopy surface.

Alternatively, aerodynamic resistance to vapor trans-

port ray was determined as a function ofU and CE, which

is determined as a function of U, kinematic vapor flux

(w0q0), and the specific humidity (q; kg kg21) gradient

between the surface and air (qa 2 q0) (Brutsaert 1982;

Stull 1988):

ray 5 (UCE)
21

52
q
a
2 q0

w0q0
. (2)

Equation (2) is directly analogous to Ohm’s law. Using

profile measurements of q, ray was solved during each

half hour across two atmospheric layers during one of

three scenarios (Fig. 1): 1) when ray across the base layer

was zero or undefined (base short circuit), 2) when ray
across the top layer was zero or undefined (top short

circuit), or 3) when ray across both layers was defined

(parallel circuit). Layer boundaries were set to zm, the

effective canopy surface height (zsurface 5 zd 1 z0), and

FIG. 1. Conditional three-circuit, two-layer aerodynamic resistance

model. See text for variable descriptions.
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the soil surface (zsoil; Fig. 1). Measurement heights for

the finite difference qa 2 q0 were set, for example, to zm
and zsurface in the top layer.

b. Meteorology and eddy covariance

E and w0q0 were measured using the eddy covariance

method as fully described for this site in Eamus et al.

(2013). Flux measurements were made at a height of

11.7m (zm) for vapor and momentum (CSAT3, Camp-

bell Scientific Inc., Logan, Utah; LI7500, Li-Cor Bio-

sciences, Lincoln, Nebraska) and 12.6m for radiation

(CNR1, Kipp & Zonen, Delft, Netherlands). Surface

soil moisture was measured across the top 10-cm depth

(CS616, Campbell Scientific) and in profiles to 1-m depth

(CS605, Campbell Scientific; Cleverly et al. 2013). Soil

porosity was 0.36 6 0.005m3m23 above the variable-

depth hardpan (Cleverly et al. 2013). Additionally, tem-

perature and humidity measurements were made at

heights of 11.7m (zm), 6.5 m (zc), 4.25 m (zd), and 2m

(HMP45C, Vaisala, Helsinki, Finland). Given the sepa-

ration required to resolve differences betweenHMP45C

measurements, q0 and qawere obtained within each layer

by linearly extrapolating paired measurements of q with

height.That is,q0wasextrapolated fromthe slope [(zm2 zc)/

(qm 2 qc)] in the top layer and from the slope [(zd 2 2)/

(qd 2 q2)] in the base layer. All measurements were

collected during the calendar year 2012 over a two-layer

(canopy and soil plus intermittent understory) surface.

FIG. 2. Specific humidity q profiles through the canopy and atmosphere, scaled by atmospheric layer thickness Dz.

Subscripts represent measurement height. (a)–(c) The difference between qmeasured at two heights (subscripts:m,

measurement; c, canopy; 2, 2m). (d)Atmospheric q profile (6 standard error) during the period ofmaximal gradients

in the top layer (2100–2300 LST 22 Dec 2012; squares and broken line) and in the base layer (0130–0400 LST 5 Nov

2012; circles and solid line).
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c. Penman–Monteith: Surface and canopy

conductance

The PM equation was inverted to compare GSm to

GSy. In both cases, GSx includes conductance from soil,

understory, and canopy surfaces (Brutsaert 1982). In-

version of the PM equation was computed as

G21
Sx 5 rax

(" 
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A
1 r

a
c
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Dr21
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lw0q0
2D

!

g21

#

2 1

)

, (3)

where QA is the difference between net radiation flux

and ground heat flux, ra is the density of moist air, cP is

the heat capacity of moist air, D is the vapor pressure

deficit, D is the slope of the saturation vapor pressure

curve against temperature, and g is the psychromet-

ric coefficient. For comparison to physiological mea-

sures of conductance (G), units were converted

as G (mmol m22 s21) 5 ra (g m23) G (m s21)/0.018

(g mmol21).

Additionally, FAO56 was applied using rax to esti-

mate E0x (Allen et al. 1998; Jensen et al. 1990):

lE0x 5
DQA1 racPDr21

ax

D1 g[11 (G
C
r
ax
)21]

. (4)

FIG. 3. Comparison ofCD-based (GSm andGam) andCE-based (GSy andGay) conductances. Comparison of surface

conductances GSy vs GSm at (a),(c) 30-min and (b) daily time scales. Dashed line shows 1:1 line. In (b), complete

(squares and solid line) and top layer (circles and broken line) are shown. In (c), top layer (filled squares and solid

line), full layer (open squares and broken line), and base layer (circles and dash–dotted line) are shown. (d) Aero-

dynamic conductance to vapor transfer Gay vs momentum transfer Gam.
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Canopy conductance (GC) was estimated in place ofGS

as a function of leaf resistance (rL) and leaf area index

(LAI):GC
21

5 rL/(0.5 LAI), in which rL (100 sm21) is the

leaf resistance of a well-illuminated grass crop (Allen

et al. 1998; Jensen et al. 1990).E0m is equal to FAO56 for

this site’s canopy characteristics (i.e., zm, zd, z0). LAI

was interpolated to daily values by applying a spline

function to the Moderate Resolution Imaging Spec-

troradiometer (MODIS) LAI product (Cleverly et al.

2013). Mulga ecosystem rL was determined by inverting

the LAI relationship: rLx 5 GSx
21 (0.5 LAI). Additional

limitations of soil moisture (below air dry) and small D

on evaporation (Choudhury and Monteith 1988) and

large D on stomatal function (Ball et al. 1987; Leuning

1995) were included in the calculation of E0 by using the

Water, Atmosphere, Vegetation, Energy and Solutes

(WAVES) model, which is a soil–vegetation–atmosphere

transfer scheme that employs PM and maintains balance

in model complexity among carbon, energy, and water

processes (McCallum et al. 2010; Zhang andDawes 1998).

3. Results

Surface soil moisture content had a strong influence

over atmospheric moisture gradients across each layer

(Figs. 2a–c). Short circuits (i.e., qa 2 q0 . 0) were re-

stricted to periods when soil moisture content was

low:,0.2m3m23 for the top layer (Fig. 2a),,0.05m3m23

in the base layer (Fig. 2b), and ,0.12m3m23 across the

full layer (Fig. 2c). Atmospheric humidity gradients

were larger andmore consistently negative (i.e., qa, q0)

in the base layer than across the top and full layers (Fig.

2). The largest gradients in the top and base layers were

observed in late spring (5 November) and early summer

(22 December), respectively (Fig. 2d), which represent

the start of the growing season in the canopy and un-

derstory, respectively (Cleverly et al. 2013; Eamus et al.

2013; Ma et al. 2013).

Figure 3 shows the comparison of GSm and GSy. Most

values were smaller than 15mmolm22 s21 (Figs. 3a,c).

The slope between GSm and GSy was smaller than 1:1,

indicating that values of GSm tended to be smaller than

GSy (Figs. 3a–c). Notable exceptions in which GSm .

GSy occurred at intermediate values of GSy (Figs. 3a,c).

Likewise, when integrated over a day, GSm exceeded

GSy at low values, which was more pronounced in the

top layer alone than when the complete model (Fig. 1)

was used for computing GSy (Fig. 3b). When scaled to

the same units as GSx, aerodynamic conductance to mo-

mentum Gam was much smaller than Gay and only mar-

ginally larger than GSm (Fig. 3d).

Maximal values of GSy and GSm declined exponen-

tially in response to increasing D (Fig. 4a). At small

(,0.5 kPa) and large (.4 kPa) values of D, GSy, and

GSm were similar (Fig. 4a). However, at intermediate

values of D, maximal values of GSm were smaller than

maximal values ofGSy (Fig. 4a). In the top layer,GSywas

large and restricted to low and intermediate values ofD

(,4 kPa; Fig. 4b). In contrast, in the base layer, which is

solvable only during the top-layer short circuit, GSy was

generally smaller than 5mmolm22 s21 and was restricted

to intermediate and large values ofD (.0.5 kPa; Fig. 4b).

FIG. 4.GSy orGSm as a function of vapor pressure deficitD. (a) Complete modelGSy (squares) andGSm (circles).

(b) Top (squares) and base (circles) layers. The inset is the same as in (b) but with top layer superimposed over

base layer.
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Figure 5 illustrates daily totals of P, E, GSy, and GSm

along with average air temperature (Ta) and D. Winter

(June–August) was particularly dry; thus, E and re-

sultant conductances were negligible (Fig. 5). The D

in the winter was often small (minimal daily average

0.6 kPa) because of low temperature. Rainfall events

resulted in further reductions in D (minimal daily av-

erage 0.3 kPa) during any season and at any temperature

(Fig. 5b). During periods when E was large, GSy was

larger in the top layer than in the full layer (Fig. 5c). The

GSy from the base layer was small but prominent in the

early autumn (March; Fig. 5c). The complete model

showed a stronger conductance response following rain-

fall than the top layer alone (Fig. 5d); GSm followed the

same general pattern as GSy, but with smaller values

(Fig. 5d).

In general, rLy and rLmwere in close agreement except

during late summer (Fig. 6a). Consequently, E0y and

E0m followed similar patterns (Fig. 6b). A phase shift

was observed between EC-based actual E (Ea) and all

formulations of E0 such that peaks inEa preceded peaks

in E0 by approximately 2–8 days (Fig. 6b). Divergence

between E0y and E0m occurred during the dry period of

the late summer when Ta and D were large (cf. Figs. 5

and 6). Application of WAVES E0 resulted in an im-

proved fit to Ea (Fig. 6b), especially during the early

autumn (Fig. 6b). During summer (e.g., mid-January to

mid-February), discrepancy remained between Ea and

WAVES but was of smaller magnitude than the differ-

ence between Ea and E0x (Fig. 6b).

4. Discussion

The estimation of ram as a function of the CD leads to

overprediction of GSm at small values of E and to un-

derprediction of GSm at large values of E (Figs. 3b and

FIG. 5. Daily patterns of (a) P and air temperature at a height of 2m (Ta), (b) E andD, (c)GSy,

and (d) GSy and GSm.
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5b,d,e). Steduto et al. (2003) similarly observed over-

prediction of E0 by FAO56 at low values of E0 and un-

derprediction at high values. These patterns of over- and

underprediction were observed during the summer

when atmospheric gradients in specific humidity q were

large (cf. Figs. 2 and 6b), which was the time of year

when ram was expected to underpredict ray. Surface

conductance computed from ray (GSy) was much smaller

than aerodynamic conductance of vaporGay (Fig. 3) and

consequently reduced the influence of errors in estima-

tion of Gay on the determination of GSy and E0 (Fig. 3).

To accurately fit E0 to prevailing conditions, a large

amount of meteorological data is required (Dehbozorgi

and Sepaskhah 2012; Tian and Martinez 2012). Failure

to account for the influence of atmospheric gradients in

q by CD resulted in underestimation of GSm at small

to moderate values of vapor pressure deficit (0.5 kPa ,

D , 3.5 kPa; Fig. 4a). This underestimation occurred

because ram was too large relative to ray, thus reducing

the strength of the aerodynamic term racPDr21
ax [Eqs. (3)

and (4)]. Because E is sensitive to small variations in

GSm regardless of the CD formulation that is used

(Shahrokhnia and Sepaskhah 2012), measurement of

atmospheric humidity profiles improved PM estimates

of E0 by more closely matching the true site-specific

aerodynamic resistance (cf. Figs. 2, 5, and 6).

Leaf-level stomatal resistance rL was variable and

much larger than for the grass reference (i.e., 100 sm21,

Fig. 6a). A constant rL accounts for neither non-

physiological (Steduto et al. 2003) nor physiological

contributions to canopy conductance GC in vegetation

that demonstrates large physiological responses to pre-

cipitation. The Mulga plants under investigation here

are a good example of vegetation that experiences only

partial stomatal closure at lowwater potential (,25MPa)

and large D (O’Grady et al. 2009). Natural ecosystems

are characterized by complex soil and atmospheric mois-

ture gradients that change with soil moisture, growth

responses in understory vegetation, and stress responses

in the upper canopy (Cleverly et al. 2013).

Mismatch between Ea and E0 occurred because of

1) the delay between precipitation and vegetation

greening, 2) unaccounted soil moisture limitations on rL,

and 3) seasonal divergence between ray and ram. The lag

of E0 behind Ea following precipitation was the result of

1) the dependence of E0 on LAI and 2) heterogeneously

rapid drying of the soil surface, which leads to un-

derestimation of E0 by WAVES (cf. Fig. 6 and Cleverly

et al. 2013). Thus,E0 failed to capture the initial pulse of

evaporation, which can be particularly important in

semiarid areas with intermittent rainfall (Cleverly

et al. 2013; Eamus et al. 2013). Application of WAVES

improved the fit between E0 and Ea, especially during

seasons when E0y and E0m were equivalent (Fig. 6).

Altogether, accurate prediction of E0 was dependent

upon 1) characterization of ray that was responsive to

FIG. 6. Daily patterns of leaf resistance rL and E. (a) The rL determined from surface

resistance inverted with ray (rLy, solid line) or ram (rLm, dashed line). Grass reference rL shown

as a horizontal broken line at 100 sm21
. (b) Actual E from EC measurements (broken line)

and E0 parameterized with ray (E0y, dashed line), ram (E0m, solid line), or from the output of

the WAVES model (dash–dotted line).
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atmospheric humidity profiles and 2) identification of

leaf physiological and soil moisture (Choi et al. 2012)

limitations on E that are not modeled by PM.
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