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Abstract

Presence-only data, where information is available concerning species presence but not species absence, are subject to bias
due to observers being more likely to visit and record sightings at some locations than others (hereafter ‘‘observer bias’’). In
this paper, we describe and evaluate a model-based approach to accounting for observer bias directly – by modelling
presence locations as a function of known observer bias variables (such as accessibility variables) in addition to
environmental variables, then conditioning on a common level of bias to make predictions of species occurrence free of
such observer bias. We implement this idea using point process models with a LASSO penalty, a new presence-only method
related to maximum entropy modelling, that implicitly addresses the ‘‘pseudo-absence problem’’ of where to locate
pseudo-absences (and how many). The proposed method of bias-correction is evaluated using systematically collected
presence/absence data for 62 plant species endemic to the Blue Mountains near Sydney, Australia. It is shown that
modelling and controlling for observer bias significantly improves the accuracy of predictions made using presence-only
data, and usually improves predictions as compared to pseudo-absence or ‘‘inventory’’ methods of bias correction based on
absences from non-target species. Future research will consider the potential for improving the proposed bias-correction
approach by estimating the observer bias simultaneously across multiple species.
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Introduction

Often data are available giving point locations where a species is

found, but no data are available concerning where a species is not

found. [1] describe this as presence-only data, and examples of

where such data may arise include atlases, herbarium records and

species lists. Such records consist largely of incidental species

sightings. When modelling the spatial distribution of a species,

ideally a more reliable source of information would be presence-

absence data, where sites are surveyed systematically and species

recorded as present or absent. But often presence-only data are the

best or only available information concerning the distribution of a

species, and as such presence-only data are frequently used in

species distribution modelling [2] and related applications such as

wildlife fatality modelling [3]. A range of methods have been

proposed for analysing such data [2,4,5], many of which involve

generating ‘‘pseudo-absences’’ or ‘‘background points’’ to be used

alongside presence points in analysis. A particularly promising

method is point process modelling [6,7], which provides a means

of solving the ‘‘pseudo-absence problem’’ of where to choose

pseudo-absence points for analysis, and choosing the spatial

resolution at which to conduct analyses [6].

An example presence-only dataset is given in Figure 1a. This

figure gives all locations where a particular tree species (Eucalyptus

apiculata) has been incidentally reported by park rangers since

1972, in a 86,227 km2 area containing the Greater Blue

Mountains World Heritage Area, near Sydney, Australia. We

would like to use these presence points, together with maps of

environmental variables, to predict the location of E. apiculata and

how it varies as a function of explanatory variables (Figure 1). A

problem doing so however is observer bias.

Inspection of Figure 1 reveals that point locations where E.

apiculata has been recorded to be present tend to be near a major

road. These presences are also frequently near Sydney, the

region’s major city. This observer bias is a general concern in

presence-only analyses – a species is more likely to have been

recorded as occurring in a place where more people are likely to

see and record it. A similar issue arises in many other contexts, for

example, in the recent trend towards citizen science [8], in the

modelling of marine population abundance in the presence of

varying catch effort [9], and in estimating treatment effects on

patients in an uncontrolled observational study [10]. The problem

does not arise in presence-absence analysis, because the recorded

absences provide a means to control for any differences in

visitation rates of different sites (by conditioning it out – we model

presence/absence conditional on a site having been visited).

[11] showed across several large datasets that using presence

points for non-target species as pseudo-absences can substantially

improve predictive performance of single-species models. They

referred to this method as using ‘‘inventory absences’’, but

hereafter it will be referred to as the ‘‘pseudo-absence bias

correction’’ approach. The reason being that [12] later motivated
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this method of choosing pseudo-absences as a form of correction

for observer bias, because if the observer bias is similar across

species, such bias cancels out when looking at the presence of a

species relative to other species. The implicit assumption that

observer bias is similar across species usually seems plausible. In

this paper, we consider two implementations of the pseudo-

absence approach – (1) using point event data, for which all non-

target presences are treated as pseudo-absences, and (2) aggregat-

ing presence data to grid cells, where a grid cell is treated as a

pseudo-absence if it contains non-target species but lacks presence

records from the target species. The point-event pseudo-absence

approach has the advantage of making best use of the data

available, whereas the grid-cell pseudo-absence approach is also

considered because it has been proposed previously [11,12] and is

similar to what is used in Maxent [13] software.

While the pseudo-absence approach to bias correction has often

been demonstrated to be successful at improving individual species

predictions [11,12,14], it has one major problem – it replaces

observer bias with species richness bias. This happens because the

use of non-target species as pseudo-absences in effect converts the

problem from estimating species occurrence to estimating species

composition – specifically, the probability that if we encounter a

species, it is the target species rather than some non-target species.

This compositional rate is related to the true occurrence rate, but

is confounded by non-target species richness. That is, while a

species encounter is more likely to involve the target species in

places where the occurrence probability is higher, it is also more

likely to involve the target species at a site with less non-target

species. The problem is illustrated in a hypothetical setting in

Figure 2. In both Habitats I and II, the occurrence rate of species

A is 20% (species A occurs in 20% of grid cells). However, in

Habitat II species richness is twice as high, such that the

compositional rate for species A halves (from 50% to 25%).

Hence a model constructed using a pseudo-absence bias correction

incorrectly concludes a halving of species A from Habitat I to II

when the species is actually equally likely to be found at each site.

Note that this argument applies irrespective of whether pseudo-

absence bias correction is implemented using point-event or grid-

cell data – simulation (Figure 2c) demonstrates that the numbers

change when coarsening to grid-cell data, but the confounding

effect of species richness remains.

An alternative, model-based bias correction approach is

proposed in this paper, and validated against a separate

systematically collected dataset. Our bias correction approach is

simple to implement and intuitive – it involves modelling observer

bias directly, then correcting for it when bias-free predictions are

desired, and it is demonstrated to have good predictive perfor-

mance.

This paper has two specific aims:

N To propose a model-based approach to bias correction, via

modelling and controlling for known and quantifiable sources

of observer bias, when predicting species distribution.

N To validate the proposed model-based approach to bias

correction in predicting to a separate, systematically collected

presence/absence dataset of 62 endemic species from the plant

family Myrtaceae in a study region 86,227 km2 in extent near

Sydney, Australia. This region includes both high-density

urban areas and pristine wilderness, a substantial gradient in

accessibility ideal for validation of our method.

Model-based Bias Correction

The method proposed in this paper to deal with observer bias

involves two steps: modelling the observer bias; then conditioning

on a common level of observer bias at all locations to predict

species distributions. This method can in principle be used

together with any type of predictive model for presence-only data.

In this paper, the method will be demonstrated using Poisson point

process regression models [6].

Consider a predictive model for mi, some measure of the

likelihood of observing a presence for the ith observation used in

analysis, as a function of a suite of environmental variables, stored

in the vector xi for the ith observation. Irrespective of whether the

model is constructed using a Poisson point process regression

model [6], maximum entropy [13], boosted regression trees [15]

or some other approach, the predictive model can be written as:

g(mi)~fx(xi) ð1Þ

where g(:) and fx(:) are some (possibly known) functions of mi and

of the environmental variables, respectively.

A key idea in this paper is to model the likelihood of observing

presences mi not just as a function of the environmental variables

xi, but as a function of a suite of ‘‘observer bias variables’’ zi which

describe how observer bias varies spatially. Hence the predictive

model becomes:

g(mi)~fx(xi)zfz(zi) ð2Þ

A key source of observer bias in predicting Eucalyptus apiculata,

for example, is thought to be accessibility – hence we could use

distance from the nearest main road and distance from nearest

urban area as observer bias variables, which are readily calculable

using standard GIS software [16].

Figure 1. Example presence-only data. Atlas records of where the
tree species Eucalyptus apiculata has been reported to be present, west
of Sydney, Australia. These values are superimposed on a map of
distance from nearest main road (in km). Note that species presences
tend to be more likely to have been recorded in areas that are closer to
a main road, which can be understood as a product of observer bias.
doi:10.1371/journal.pone.0079168.g001

Modelling Observer Bias in Presence Only Data
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Note that the effects of environmental and observer bias

variables on g(mi) are assumed in equation (2) to be additive, i.e.

it is assumed that there is no interaction between observer bias

and the environmental effect on the target species. If this

assumption is not satisfied, and hence the effect of environment

on the target species changes with observer bias, then it is not

possible to obtain a valid description of how the target species

responds to environmental variables that is free of observer bias

using any method.

[17] also discusses the idea of including observer bias variables

in the model. Provided that the form of observer bias model

fz(zi) is correct, [17] explain that the precise form of

environmental response fx(xi) can be estimated free of bias,

even if the environmental and observer bias variables are

correlated. In contrast, when observer bias is ignored, unbiased

estimates of species occurrence are only achievable if observer

bias variables are independent of environmental variables [18].

[17] note however that the intercept term in the model is not

estimable – that is, this method can only achieve a relative

measure of species occurrence, not an absolute measure, unless

supplemented with additional information or presence/absence

data.

To control for observer bias effects in species prediction, we

correct for observer bias prior to prediction. This is done by

setting each observer bias variable equal to a common value

(stored in a, say) at all locations in the region in which

predictions are to be mapped. That is, predicted values are

calculated using:

g(mi)~fx(xi)zfz(a) ð3Þ

Figure 2. A simple demonstration of how pseudo-absence bias correction confounds the true occurrence rate of a target species
with species richness. (a) Example occurrences in 20 grid cells for each of two habitat types; (b) Corresponding occurrence rates and compositional
rates of occurrence in each habitat; (c) Predicted probabilities from simulation, as estimated using a model-based approach and using a pseudo-
absence approach. Note that the occurrence patterns for species A–C are identical for both habitats (b), hence model-based predicted probabilities
are the same for these species (c). However, the addition of species D–F at Habitat II doubled its species richness, meaning that the compositional
rate halved in (b), thus pseudo-absence predicted probabilities halved in (c) e.g. Species A reduced from being half of all occurrences in Habitat I to
being only a quarter at Habitat II, even though the absolute occurrence rate was unchanged.
doi:10.1371/journal.pone.0079168.g002

Modelling Observer Bias in Presence Only Data
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The key point is that each observer bias variable is set equal to

exactly the same value everywhere in the region for which

predictions are required, so that we can make predictions that

correct for observer bias effects everywhere in the region. The

actual values a used for prediction are irrelevant, given that there

is no interaction between observer and environmental variables,

however some choices of common values may be easier to

interpret than others. For example, in the following section, we

make Eucalyptus apiculata predictions when distances from main

road and from urban area are both taken to be zero everywhere.

Subsequent predictions then have an interpretation as the

likelihood of observing the species if all places had ideal access,

being next to a road and an urban area.

The above proposal may be new in the context of controlling for

observer bias in presence-only data, but the approach itself is quite

old and widely used. It has long been used in studying the effects of

one variable on another while conditioning on a covariate – for

example, the classical procedure analysis of covariance, proposed

over eighty years ago [19], is an application of this approach to the

problem of testing for a treatment effect after controlling for the

effects of some quantitative covariate. [20] used this method to

control for varying survey effort in marine surveys. The idea

proposed here is also related to a well-known notion in

biostatistics, propensity scoring [10], long used for making causal

inferences based on observational studies. The main application of

propensity scoring is measuring treatment effects in a set of

patients in an observational study, i.e. a study in which there was

no opportunity to randomise the allocation of treatments to

subjects.

Related but distinct methods of handling observer bias have

been proposed in relation to maximum entropy estimation of

presence-only data [21,22]. [21] suggested ‘‘factoring bias out’’ of

presence-only analyses, which is closely related to the idea

proposed in this paper, except that it requires the observer bias

to be known. This ‘‘bias grid’’ option has been incorporated into

MAXENT software [22]. But a key distinction is that the

MAXENT sampling grid requires the observer bias to be known

a priori, whereas the proposal in this paper weakens this

requirement such that only variables associated with observer

bias need to be specified – a model is then fitted in order to use

the data to estimate the observer bias. Because the observer bias

is usually not known a priori, [21] suggested estimating it using

additional data where available. [12] proposed using non-target

species for this purpose, which leads to what is referred to in this

paper as pseudo-absence bias correction.

Results

We present a worked example in which we apply the model-

based bias correction approach to a single species, then we

evaluate the approach using 62 species and a separate presence/

absence test dataset. We have written an R package called

ppmlasso which can be used for Poisson point process regression

with a LASSO penalty, and have included some code as Table S2

in File S1 to mimic our example analysis.

Example application
As an illustrative example, we modelled the distribution of

Eucalyptus apiculata (as in Figure 1) as a function of environmental

variables, in a manner that controls for observer bias. This was

done using a Poisson point process regression model [6], with a

LASSO penalty for variable selection [23]. For details, see the

Methods section. The response being modelled in a point process

model is known as the ‘‘intensity’’, in this case, the expected

number of Eucalyptus apiculata presence reportings per square

kilometre.

The predicted intensity of presences has been presented in

three different ways in Figure 3: For a model with environmental

variables only (Figure 3a) as in equation (1); For a model

including observer bias variables also (Figure 3b) as in equation

(2); When conditioning on a common level of observer bias

(Figure 3c) as in equation (3) with a~0, i.e. distance from main

roads and urban areas set to zero. Note that the addition of

observer bias variables to the model noticeably improved the fit –

visually, the regions of higher predicted intensity (Figure 3b)

better co-incide with presence locations of Figure 1, and the

better fit is supported by model selection criteria

(DBIC~{45:6). Note also that correcting for observer bias

(Figure 3c) led to a qualitatively different pattern to either of the

previous models, with greater predicted intensity in areas with

low accessibility than either of the previous models that did not

correct for observer bias (such as in Wollemi National Park,

about 150km north-west of Sydney).

The LASSO model that was fitted implicitly performs variable

selection, only returning non-zero coefficients for terms considered

useful for predictive purposes. Non-zero coefficients were included

for both observer bias variables, and as expected, the predicted

intensity of Eucalyptus apiculata was estimated to decrease with

distance from road and distance from urban area, reflecting the

decreased accessibility at such locations.

Evaluation
Our evaluation study had two goals:

1. Does model-based bias correction improve predictive perfor-

mance?

2. How does the predictive performance of model-based bias

correction compare to that of pseudo-absence bias correction?

We compared predictive performance on a separate presence-

absence dataset, to which we applied 5-fold cross-validation, to

obtain approximately independent test predictions. This is a

subtle departure from the approach used in previous work

[14,24], where a separate dataset was taken ‘‘on faith’’ to be

statistically independent of the observed presence-only data. This

issue, and the precise model-fitting approach used, is considered

in greater detail in the Methods section.

Key results are presented in Figure 4. In addressing the two

aims of the model evaluation, it can be seen that:

1. A clear majority of species (52 of the 62) were better predicted

when using model-based bias-correction than when ignoring

observer bias altogether. However, the ten species for which

better predictions were obtained without bias correction

emphasise that the notion that we can improve predictions

by correcting for observer bias is not universally true. On

average, bias-correction improved predictions, but by a

relatively small amount (95% CI for increase in AUC:

1:5+1:1%).

2. Significantly more species were better predicted by model-

based bias correction (40 vs 22) than by a pseudo-absence

approach fitted to point-event data, but there were four species

with generally poor model-based fits that performed substan-

tially better under a pseudo-absence approach (AUC about

10% larger). These species dragged down the average

improvement in AUC due to a model-based approach, such

that it was not statistically significant (95% CI for mean

AUCmodel{based-AUCpseudo{absence: 0:6+1:0%) as compared

Modelling Observer Bias in Presence Only Data
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to a pseudo-absence approach. Results were similar when using

grid-cell data in place of point-event data for the pseudo-

absence approach (39 vs 23 species better predicted by model-

based approach, 95% CI for mean improvement 0:4+1:0%).

The predictive performance results for Eucalyptus apiculata, the

species of Figure 3, are presented in the plots of Figure 4 as a solid

green point. For this species, the model-based correction offered

little improvement as compared to using no correction, a result

that can perhaps in part be attributed to the sparsity of data for

this species from which to estimate observer bias.

Discussion

A model-based bias-correction approach has been described

and evaluated. This is distinct from the approaches currently used

in the ecology literature [11,12,14], where one chooses pseudo-

absence points in a selective way to reflect underlying observer

bias, i.e. rather than modifying the model to correct for bias, the

pseudo-absence approach tries to modify the data to correct for it.

Model-based bias correction as proposed here, in contrast, frees us

of the need to make difficult decisions concerning pseudo-absence

selection, and instead puts the focus on describing the underlying

processes at play using models and incorporating terms in such

models to adjust for observer bias as appropriate.

Figure 3. Maps of estimated intensity (in presence points per square kilometre) of Eucalyptus apiculata from three different models.
(a) As a function of environmental variables only; (b) As a function of environmental and observer bias variables; (c) As a function of environmental
variables, having modelled and conditioned on a common level of observer bias. Note that (c) predicts a higher intensity of E. apiculata in more
remote, inland areas.
doi:10.1371/journal.pone.0079168.g003

Figure 4. Comparison of predictive performance of different methods of correcting for observer bias. Measured as area under the ROC
curve (AUC), for 62 different Myrtaceae species in the Sydney Basin. Model-based bias correction (‘‘AUCmodel{based’’) is compared to: (a) No bias
correction (‘‘AUCuncorrected’’); and (b) The pseudo-absence approach using point-event data (‘‘AUCpseudo{absence’’). Note that most points lie above
the line, suggesting that the model-based bias correction typically outperforms both alternative methods. The solid point on each plot represents
results for the Eucalyptus apiculata models of Figure 3.
doi:10.1371/journal.pone.0079168.g004

Modelling Observer Bias in Presence Only Data
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The model-based approach has been demonstrated to improve

predictions, and across a dataset consisting of 62 endemic species,

had better performance than a pseudo-absence approach for a

significant majority of species. Our evaluation gives a brief sense of

some of the performance properties of the proposed method.

Some other properties and potential limitations are discussed

below.

A key property of the proposed approach is that the exact

observer bias is not known, rather it is estimated from the pattern

of the presence points in the data using a set of variables thought

by the modeller to relate to observer bias. How effective this

method will be in controlling observer bias will depend in part

on how effective the variables chosen to model observer bias do

their job, and it will depend in part on how well the effect of

these observer bias variables can be estimated from the existing

presence points. For a rare species in which there are few

presence points in the first place, one cannot expect to reliably

estimate observer bias.

One potential improvement to the approach proposed in this

paper, for consideration in future work, is to use data from many

species in estimating the bias-correction term. In this paper we

fitted single species models, so only data from a single species was

used in model-based bias correction. But it is often reasonable to

assume that all species are affected by observer bias in the same

way, in which case, a much better estimate of observer bias should

be obtainable by jointly modelling it across all species. This would

require a point process regression model fitted simultaneously

across all target species, simultaneously estimating a common

observer bias component, while (as in the current model)

estimating a separate response to environmental variables for

each species. This approach could be computationally intensive,

but it would have the best of both worlds – it would share with

pseudo-absence bias correction the property that data from all

species would be used in estimating the bias-correction term, and

would share with the model-based approach of this paper the

property that it would correct for observer bias without

introducing species richness bias.

A second key property to understand about the proposed

approach is that its effectiveness will be reduced by correlation

between observer bias variables and environmental variables [25].

This point is worthy of discussion because in most practical

situations we expect some correlation between observer bias and

environment – because environmental conditions affect both

accessibility and where observers live. Both of these sources of

correlation arose in our study region (Figure 1) – main roads

tended to run along ridgetops, and people most often live on or

near the coast. Hence observer bias variables were moderately

correlated with elevation and thus most environmental variables.

We expect such correlations to be the rule rather than the

exception. Such correlation makes it more difficult (but not

impossible) to tease apart environmental and observer bias effects,

and subsequently we expect the proposed method to be more

successful in circumstances where this correlation is weaker.

Further, it is worth emphasising that it has been proven

theoretically that if observer bias variables were ignored when

correlated with important environmental variables, resultant

estimates of species occurrence would be biased [18]. Our results

lend empirical support to this result (Figure 4a).

As discussed earlier and illustrated in Figure 2, the pseudo-

absence approach described in [12] can be understood as

replacing observer bias with species richness bias, or at least,

attempting to. Hence that method can be expected to work better

when species richness is closer to uniform across a study region,

and to work less effectively when there is strong spatial variation in

species richness. But there was a strong species richness gradient in

our data, with additional analyses suggesting species richness

varied by more than a factor of ten over our study region

(Figure S1 in File S1). This might in part explain the competi-

tiveness of model-based bias correction as compared to the

pseudo-absence approach to bias correction.

The proposed model-based bias correction approach can be

used in combination with any predictive model capable of

handling additive effects. Additivity is required such that the

effects of environmental and observer bias variables can be

disentangled. We used the model-based bias correction approach

in combination with a point process model, a method only recently

proposed for presence-only data modelling [6,7], but a method

with considerable potential, as explained in the Methods section.

Whether using this modelling approach or another, it is important

to consider how well suited the model is to the data at hand, and

diagnostic tools have a critical role in this assessment. There is no

simple answer to the question of what happens if the chosen model

is not well matched to the data at hand – robustness of a model to

failure of its assumptions varies with the model and with the type

and extent of the violation. To some extent one can gauge the

potential effects of model misspecification through measuring the

predictive performance of competing models on test data, as in this

paper. A quite general rule however is that if a model accurately

reflects the key properties of the data, in a simple way, then the

fitted model tends to have desirable properties – in interpretability

as well as in predictive performance.

Methods

Simulation (Figure 2c)
Figure 2c reported the results of a simulation where the model-

based approach and pseudo-absence bias-correction approaches

were applied, in order to demonstrate how pseudo-absence

approaches (whether analysing point-event or grid-cell data)

measure a compositional rate rather than an absolute rate of

occurrence. Details of the method of simulation are given here.

A total of one hundred random datasets were created, of the

form of Figure 2a, as follows. For each of Habitats I and II,

randomly located presence locations for six species (A–F) were

uniformly generated across twenty grid cells such that the mean

rate of occurrence per grid cell was as given in Figure 2b. Note

that this is an extremely simplified setting in which there is only

one environmental variable – habitat type, a binary variable – and

there is no observer bias. Such a simplified setting was used to

illustrate clearly the confounding with species richness that arises

when using a pseudo-absence approach.

Predicted probability (/intensity) of occurrence for a species was

then estimated for each dataset in one of three ways:

model-based Using a Poisson point process model. In this

simple setting, the model fit simplifies to calculating the

sample mean number of presence locations of a species per

grid cell, within each habitat type.

pseudo-absence (point event) Using a logistic regression

model, fitted to the point event data. In this simple setting, the

model fit simplifies to calculating the sample proportion of

point events which correspond to a species, within each

habitat type.

pseudo-absence (grid cell) Using a logistic regression

model, fitted to data aggregated to grid cells. In this simple

setting, the model fit simplifies to calculating the sample

proportion of non-empty grid cells containing a species,

within each habitat type.

Modelling Observer Bias in Presence Only Data
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Predicted probabilities for each of the six species were averaged

across the 100 simulated datasets and presented in Figure 2c.

In all simulations no LASSO penalty was used. The LASSO

was not necessary since there was only one predictor variable, and

using an unpenalised fit instead enabled simplification of model fit

calculations.

Presence-only data
The presence-only data used in the example application and

model evaluations consist of 62 Myrtaceae tree and shrub species in

the Greater Blue Mountains World Heritage Area (GBMWHA),

west of Sydney, Australia, together with a 100 kilometre buffer

zone, excluding residential areas. The spatial extent of this region

is about 3006420 kilometres. The identities of the 62 species, and

the number of presence records available for each, can be found

Table S1 in File S1. We focussed on the Myrtaceae because they are

a highly diverse plant family that contains many endemic species

in the GBMWHA with contrasting distributions [26] – this region

was declared a World Heritage Area in part because of its diversity

of Myrtaceae species.

Presence-only points were obtained from [27] which contains

both full floristic survey records and opportunistic sightings.

Analyses were limited to opportunistic sightings by only using

records labelled as ‘‘Default Incidental Sightings’’. The full floristic

survey data were kept aside as test observations to be used in

evaluations.

Climate variables used in modelling (minimum temperature,

maximum temperature and annual preciptation) were derived

from ANUCLIM 5.1 using a 100-metre resolution digital elevation

model. Fire frequency data were obtained separately from the

New South Wales Office of Environment and Heritage.

Example application
Poisson point process regression models were used because they

have advantages in model specification, implementation and

interpretation [6]:

N The model is scale independent, that is, doubling the number

of ‘‘pseudo-absences’’ does not affect the final model in any

way, once a sufficient number have already been included that

the model has converged. In contrast, methods which instead

model probabilities are sensitive to the number of pseudo-

absences and/or spatial resolution [6,17,28].

N Implementing the model requires a set of pseudo-absences (as

a device for estimation of the likelihood function via numerical

integration), but the data can be queried to inform the analyst

concerning the number and location of these pseudo-absences.

As in [6], we chose pseudo-absences on a regular grid and used

progressively finer-scale grids until the model no longer

changed. The model was considered to have converged when

a further doubling of the spatial resolution changed the

maximised log-likelihood by less than two, and this criterion

was satisfied at a a resolution of 1 km. Data can also be used to

check key model assumptions, as discussed later.

N The quantity being modelled, intensity, has a natural

interpretation as the expected number of presence reportings

per unit area (in this case, per square kilometre).

The Poisson point process method is mathematically related to

maximum entropy modelling [28], but modified to be scale-

invariant and to analyse point event data rather than aggregating

data to grid cells. Maximum entropy has often performed

favourably in previous methodological comparisons [22,24], and

through equivalence of methods Poisson point process models

inherit these advantages.

We modelled the intensity of presence points (denoted mi at

location yi) using a log-link as a quadratic function of environ-

mental variables (although other types of environmental response,

e.g. smoothers, could also be considered):

log (mi)~xT
i bxzxT

i BxxizzT
i bzzzT

i Bzzi ð4Þ

where as previously xi and zi are corresponding vectors of

environmental and observer bias variables, respectively. There

were four environmental variables (stored in xi) as in [6]: # fires

since 1943, annual averages of maximum and minimum

temperature, and precipitation. There were two observer bias

variables (stored in zi) – distance from main roads and distance

from urban areas, as estimated using arcGIS software [16].

A key assumption of Poisson point process models is that the

presence points are independent, conditional on environmental

and observer bias variables. Goodness-of-fit diagnostic tools were

used to check the independence assumption [29]. In particular, the

inhomogeneous K-function was plotted and compared to that

expected from a Poisson point process using ‘‘simulation

envelopes’’ as in [6,28,30], using 100 randomly generated

realisations from the fitted model. The observed data are close

to the upper boundary of the envelope, marginally suggestive of a

violation of the independence assumption (Figure 5a), which could

potentially be handled by adding a point-interaction term to the

model.

A second key assumption is that the intensity function has

been accurately modelled as a function of environmental

variables in equation 4. This was checked by constructing a

spatially smoothed map of Pearson residuals (Figure 5b) across

the study region. If there were an appreciable spatial trend in

residuals over the study region, that would suggest the model for

intensity had not captured some of the key structure in the data.

But in Figure 5b, the mean residual was always between 20.03

and 0.03, suggesting little trend and an acceptable model fit.

Point process regression models are typically fitted via

maximum likelihood [31], i.e. to find the parameters that

maximise:

logL(bx,bz,Bx,Bz; y)~
Xn

i~1

log (mi){

ð
y[A

m(y)dy ð5Þ

where m(y) is the intensity at a location y, and y[A denotes all

points in the study region. Note that this likelihood involves an

integral, which in practice needs to be estimated using numerical

integration. The ‘‘quadrature points’’ introduced to estimate this

integral play the role of pseudo-absences [6] or MAXENT’s

background points [28], except that in this context we have a clear

criterion to guide how these values should be added: approxima-

tion of the integral in equation (5). We added quadrature points in

a regular rectangular grid at increasing spatial resolution until this

integral (and hence the likelihood) converged [6]. At each step we

doubled the spatial resolution, quadrupling the number of data

points, and we claimed convergence when the log-likelihood

changed by less than two. Plotting the maximised log-likelihood

against the spatial resolution for choice of quadrature points, the

likelihood appeared to have converged by about the 1|1km

resolution. Fitting models at any finer spatial scale than this return

equivalent maps, estimated coefficients, and standard errors [6].

We have noticed convergence at a similar spatial scale for other

species also, and used this resolution in all ensuing analyses.
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Rather than fitting the Poisson point process model by

maximum likelihood, we included a LASSO penalty in order to

automatically undertake variable selection and constrain or

‘‘regularise’’ parameter estimates [32]. The LASSO penalty is

also used in MAXENT [13] and has been demonstrated to be a

major reason for the relatively high performance of MAXENT

compared to other methods [28,33]. Whereas the MAXENT

software makes an arbitrary choice of the LASSO penalty

parameter [34], we estimated it by BIC, a more conventional

approach which allows the parameter to be tuned to suit the data

at hand [23]. In the LASSO context for point process models, BIC

was defined as follows:

BIC~{2 logL(bx,bz,Bx,Bz; y)zp log n

where n is the total number of presence locations, and p is the total

number of parameters with non-zero values. We chose the value of

the LASSO penalty parameter which minimised BIC.

Estimation uses the machinery of generalised linear models

[35], but with observations weighted (using ‘‘quadrature

weights’’) in such a way that the model is scale independent

[6]. The free spatstat software [29] on R [36] can be used for

estimation, although we wrote our own code specifically adapted

to SDM with a LASSO penalty, soon to be available in the

ppmlasso package on R [36].

Evaluation
We evaluated predictive performance of presence-only models

for Eucalyptus apiculata and 61 other Myrtaceae species using data

from near Sydney, Australia, as in Figure 1. Evaluations compared

presence-only models to presence/absence data that were

systematically collected in quadrats over the same region.

To estimate predictive performance in an unbiased fashion we

require a test dataset that is statistically independent of the

training dataset on which the model was originally fitted [37].

Independence is required because otherwise covariance between

training and test values leads to underestimation of predictive

errors (‘‘optimism bias’’), and importantly, more complex models

tend to suffer greater from this issue [38], hence without correcting

for this issue we might expect the predictive performance of

different bias-correction techniques to be underestimated by

differing amounts. [24] and others have used presence/absence

data as ‘‘independent’’ records against which predictions from

presence-only data could be tested. However, such datasets

collected from the same region are not statistically independent

– if the presence-only dataset had a presence record at a given

location, this obviously increases the probability that a systematic

transect at that location would also record a presence.

We dealt with the dependence of the validation dataset by using

spatial 5-fold cross-validation: we split the study region into coarse

grid cells which were 32632 kilometres in size, randomly assigned

each grid cell to one of five groups, and assessed how well a

presence-only model based on four such ‘‘training’’ groups could

predict presence/absence records in the fifth ‘‘test’’ group. By

using coarse grid cells, there was little spatial dependence between

observations across grid cells, and our validation data was closer to

satisfying the important independence assumption. We repeated

the process 20 times to minimise the amount of variability

introduced to results via random assignment of the coarse grid

cells to validation groups.

Three different approaches were compared:

uncorrected No bias correction: A Poisson point process

regression was fitted with environmental variables only, as in

equation (1).

model-based Model-based bias correction: A Poisson point

process regression was fitted with environmental and observer

bias variables, and predictions made conditioning on a

common level of observer bias, as in equation (3).

Figure 5. Diagnostic plots for a point process analysis of the Eucalyptus apiculata data. (a) Inhomogeneous K-function with simulation
envelope; (b) Spatially smoothed Pearson residuals. Note from (a) that the K function of the observed data (solid line) runs through the centre of the
simulation envelope, suggesting no evidence of inter-point dependence. Note from (b) that the spatially smoothed residual is always close to zero
(always between 20.03 and 0.03), suggesting little spatial trend hence a plausible model for intensity of E. apiculata.
doi:10.1371/journal.pone.0079168.g005
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pseudo-absence Pseudo-absence bias correction: logistic

regression was fitted with environmental variables only, but

the locations of presences of the 61 non-target species were

used as pseudo-absence or ‘‘inventory absence’’ points. We

considered both point-event and grid-cell data (at the 1 km

resolution).

Pseudo-absence logistic regression and Poisson point process

regression are closely related – they have previously been shown to

be asymptotically equivalent [6], and when given two independent

Poisson point processes (a marked point process with binary

marks) with log-linear intensity, the model for the probability that

a given point comes from one process not the other follows a

logistic regression model [30]. Hence the approaches can be

understood as using the same underlying model to estimate two

different things – the key distinction between the above

approaches is the method of adjusting for observer bias, rather

than the type of model fitted.

In all cases, models were fitted using a LASSO penalty as in

[28] to improve predictive performance. Such an approach is

also standard in maximum entropy modelling [13]. We fitted a

full regularisation path and chose the LASSO regularisation

parameter using an ‘‘oracle estimator’’, the optimal value for

prediction to presence/absence data. This was done to reduce

sampling error, as data-driven estimation of the LASSO penalty

as in [28] would introduce considerable randomness to the

process.

All analyses were conducted using quadrature points selected in

a regular rectangular grid at the 161 km resolution, as previously.

Predictive performance of models was measured using area

under the curve (AUC) [39] and proportion of deviance explained

by a logistic regression of presence/absence data against predicted

values from presence-only analyses. Both criteria returned similar

results so only AUC results have been presented. Confidence

intervals around estimates of average difference in AUC were

constructed using a paired t approach.
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