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Abstract 15 

Iron nanoparticles are becoming increasingly popular for the treatment of contaminated soil and 16 

groundwater; however, their mobility and reactivity in subsurface environments are significantly 17 

affected by their tendency to aggregate. Assessing their stability under environmental conditions is 18 

crucial for determining their environmental fate. A multi-method approach (including different size-19 

measurement techniques and the DLVO theory) was used to thoroughly characterise the behaviour 20 

of iron oxide nanoparticles (Fe2O3NPs) under environmentally relevant conditions. Although recent 21 

studies have demonstrated the importance of using a multi-method approach when characterising 22 

nanoparticles, the majority of current studies continue to use a single-method approach.  23 

Under some soil conditions (i.e. pH 7, 10 mM NaCl and 2 mM CaCl2) and increasing particle 24 

concentration, Fe2O3NPs underwent extensive aggregation to form large aggregates (> 1 μm). 25 

Coating the nanoparticles with dissolved organic matter (DOM) was investigated as an alternative 26 

“green” solution to overcoming the aggregation issue instead of using the more commonly proposed 27 

polyelectrolytes. At high concentrations, DOM effectively covered the surface of the Fe2O3NPs, 28 

thereby conferring negative surface charge on the particles across a wide range of pH values. This 29 

provided electrostatic stabilisation and considerably reduced the particle aggregation effect. DOM-30 

coated Fe2O3NPs also proved to be more stable under high ionic strength conditions. The presence 31 

of CaCl2, however, even at low concentrations, induced the aggregation of DOM-coated Fe2O3NPs, 32 

mainly via charge neutralisation and bridging. This has significant implications in regards to the 33 

reactivity and fate of these materials in the environment. 34 
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1. Introduction 37 

Manufactured nanoparticles (MNPs) are defined as intentionally engineered materials with at least 38 

one dimension in the 1-100 nm size range (Lead and Wilkinson 2006). Due to their small size, they 39 

have often been shown to display improved catalytic, chemical, optical, mechanical, electronic and 40 

magnetic properties over conventional micro/macroscale particles  (Jortner and Rao 2002). Over 41 

recent decades, some MNPs have attracted increasing attention due to their potential efficacy in the 42 

treatment of contaminated soil and groundwater (Crane and Scott 2012).  43 

Due to their low cost, highly reactive surface sites and high in-situ reactivity, the most widely studied 44 

engineered nanoparticles for soil and groundwater remediation are nanoscale zero-valent iron (nZVI) 45 

nanoparticles (Wang and Zhang 1997; Elliott and Zhang 2001; Zhang 2003). Numerous studies have 46 

shown that the nanoparticles are highly effective for the removal/degradation or stabilisation of a 47 

wide range of common environmental contaminants including chlorinated organic solvents (Elliott 48 

and Zhang 2001; Zhang 2003), organic dyes (Liu et al. 2005), various inorganic compounds (Alowitz 49 

and Scherer 2002), and even some metals (Kanel et al. 2005). In the past few years, a variety of iron 50 

oxide nanoparticles have also been investigated for environmental remediation purposes. Despite 51 

the potential efficacy of these materials, many laboratory and pilot-scale field studies have 52 

demonstrated that the mobility and reactivity of iron-based nanoparticles are substantially limited in 53 

natural porous systems (e.g. soils and groundwater aquifers) (Schrick et al. 2004; Quinn et al. 2005; 54 

He and Zhao 2007; Saleh et al. 2007). Aggregation is considered to be the primary cause of reduced 55 

mobility and reactivity, and this phenomenon is the result of many factors including solution pH, 56 

ionic strength and the presence of organic matter (Ponder et al. 2000; Saleh et al. 2005). In the case 57 

of iron-based nanoparticles, previous studies have investigated that these nanoparticles have pH-58 

dependant surface charges and that extensive aggregation due to charge neutralisation occurs near 59 

the point of zero charge (PZC) (Sun et al. 2006; Baalousha et al. 2008; Baalousha 2009; Hu et al. 60 

2010). Furthermore, soil and groundwater conditions are often characterised by high ionic strength 61 

and high concentrations of monovalent (e.g., Na+, K+) and divalent (e.g., Ca2+, Mg2+) cations in the 62 

mM range; factors that are known to reduce electrostatic repulsion between particles and thereby 63 

enhance aggregation (Saleh et al. 2008). 64 

To optimise the use of MNPs for environmental remediation it is necessary to understand the factors 65 

that cause aggregation under environmentally relevant conditions with the aim of enhancing their 66 

mobility while still maintaining good reactivity (Saleh et al. 2007). Surface modifications using 67 

charged polymers, polyelectrolytes or surfactants are now widely used to disperse nanoparticles in 68 

environmental matrices such as soil and water (Zhang et al. 1998; Schrick et al. 2004; Saleh et al. 69 

2005; He et al. 2007; Saleh et al. 2007; Hajdú et al. 2009; Phenrat et al. 2009; Sirk et al. 2009; Cirtiu 70 

et al. 2011). These modifications can theoretically provide both electrostatic and steric (so-called 71 

electrosteric) stabilisation to prevent particles from aggregating and can also reduce the propensity 72 

for surface attachment (Saleh et al. 2005; Saleh et al. 2008). Unfortunately, although these different 73 

surface coatings can enhance nanoparticle stability, they can also be expensive, have toxic effects on 74 

the environment, and alter the interaction of MNPs with contaminants (Tiraferri et al. 2008). Natural 75 

surface coating by the adsorption of dissolved organic matter (DOM) such as humic and fulvic acids 76 

on the surface of nanoparticles has also been studied as an alternative “green” surface coating, and 77 

has been demonstrated to enhance nanoparticle stability through electrosteric stabilisation (Mylon 78 

et al. 2004; Illes and Tombácz 2006; Hu et al. 2010). The advantage of DOM over conventional 79 



surface modifiers is that DOM is ubiquitous in the environment, cheap, non-toxic, and not only has 80 

the ability to adsorb onto metal oxide nanoparticles but is also able to complex with heavy metals 81 

(Liu et al. 2008; Dickson et al. 2012). A recent study by Chen et al. (Chen et al. 2011) demonstrated 82 

that DOM–coated nZVI may significantly mitigate bacterial toxicity due to the electrosteric hindrance 83 

preventing direct contact. 84 

In this study, characterisation of bare Fe2O3NPs and the aggregation behaviour of these 85 

nanoparticles under relevant environmental conditions (i.e. pH, particle concentration and ionic 86 

strength) were performed using flow field-flow fractionation (FlFFF), dynamic light scattering (DLS) 87 

and scanning electron microscopy (SEM). Although the characterisation of MNPs can be considerably 88 

simpler than it is for natural particle samples, MNPs are also complex, and a multiple 89 

characterisation approach is necessary to ensure the accuracy of the characterisation data (Lead and 90 

Wilkinson 2006; Domingos et al. 2009). In fact, due to analytical challenges, the lack of appropriate 91 

characterisation data in environmentally realistic conditions is a major limitation of current research 92 

in this area. As such, there is clearly a need for useful characterisation tools that can assist in 93 

assessing MNP behaviour under relevant environmental conditions. Flow field-flow fractionation 94 

(FlFFF) is well suited to measuring MNP behaviour under relevant conditions simply by modifying the 95 

mobile phase used during characterisation. However, one of the main limitations of FlFFF is related 96 

to material losses during analysis. These generally occur via particle-membrane interaction and 97 

adsorption and may represent up to 50% of the injected mass (Hassellöv and Kaegi 2009). The 98 

particle-membrane interaction is mainly due to attractive forces (e.g. Van der Waals), hydrophobic 99 

and charge interactions which are all dependent on the mobile phase characteristics.  100 

This is the first time that FlFFF has been applied to study the aggregation behaviour of Fe2O3NPs 101 

under relevant environmental conditions. The results have been compared with those from other 102 

size-measurement techniques and theoretical models to provide increased confidence in the 103 

outcomes. The stability of the DOM-coated Fe2O3NPs was also assessed under relevant conditions 104 

using FlFFF and DLS. Although many studies have demonstrated that DOM-coated Fe2O3NPs can be 105 

stable under a wide range of pH and NaCl concentrations, there is a lack of data in regard to the 106 

effect of divalent cations, especially Ca2+, which is known to complex easily with organic matter 107 

(Hong and Elimelech 1997).  108 

The results of this study are also relevant to the aggregation behaviour of nZVI, as nZVI particles 109 

have been shown to have substantial shells of iron oxide (Phenrat et al. 2007). Therefore, Fe2O3NPs 110 

demonstrate various similar properties to nZVI when they are used to treat contaminated soil and 111 

groundwater and can thus be used as a model system for understanding aggregation behaviour (He 112 

et al. 2008). 113 

2. Theoretical method: The DLVO theory 114 

The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory (Derjaguin and Landau 1941; Verwey 1947; 115 

Verwey and Overbeek 1948) was employed in this study to model the interactions between 116 

Fe2O3NPs at different particle concentrations, pH and ionic strength. This theory provides the 117 

classical explanation for the stability of colloids in suspension. It states that the stability of 118 

nanoparticles can be explained by the sum (i.e. total interaction energy) of the van der Waals 119 

attractive forces (Vvdw) and the electrostatic repulsive forces (Vel). The total interaction energy (VT) is 120 



experienced by a nanoparticle when approaches another particle, and determines whether the net 121 

interaction between the particles is repulsive or attractive (Zhang et al. 2008; Dickson et al. 2012). 122 

DLVO calculations were performed according to the equations described in (Elimelech et al. 1998)): 123 

        (1) 124 

          (2) 125 

           (3) 126 

where A (J) is the Hamaker constant (1.10-9 J for iron nanoparticles (Phenrat et al. 2009)); R (m) is the 127 

radius of particles; h (m) is the distance between the surfaces of two interacting particles; ε=εrε0 is 128 

the dielectric constant where εr (78.54 for water at 25°C) is the relative dielectric constant of the 129 

medium and ε0 (8.85.10−12 C2/J.m) is the permittivity in vacuum; δ, the zeta potential of the charged 130 

particles; k (1/m) is the reciprocal of the thickness of the double layer with k=2.32×109 (ΣCiZi
2)1/2 131 

where Ci is the concentration of ion, i, and Zi is its valency value. 132 

The following assumptions/measurements are used in this study:  133 

(1) Particle diameter is 30 nm (average size of the primary particles provided by Sigma Aldrich).  134 

(2) When not specified, ionic strength is assumed to be 1 mM NaCl. In fact, when no electrolytes are 135 

used (i.e. when using ultrapure water), equation 2 is reduced to zero and calculations cannot be 136 

performed.  137 

(3) Zeta potentials are experimentally determined. 138 

3. Materials and analytical methods  139 

3.1 Chemicals and reagents 140 

Commercially available Fe2O3NPs (α-Fe2O3, average particle size 30 nm, BET 50-245 m2/g, 20 wt. % 141 

dispersed in water at pH 4), humic acid (HA) (technical grade), NaCl and CaCl2 (99.99% purity) were 142 

all supplied by Sigma-Aldrich Australia. HA was employed as a surrogate DOM since HA and more 143 

generally humic substances represent an important fraction of DOM in soils, surface and 144 

groundwater  (Aiken et al. 1985) and have been demonstrated to play a key role in water quality for 145 

various pollutants such as trace metals and some organic compounds (Murphy et al. 1990; Maurice 146 

and Namjesnik-Dejanovic 1999). 147 

3.2 Sample preparation 148 

Fe2O3NPs were suspended in ultrapure water to obtain a set of solutions in the range 10-200 mg/L at 149 

pH 4 ± 0.1. Solution pH was adjusted using 0.1 M HCl and 0.1 M NaOH solutions and left for 24 hours 150 

to equilibrate, after which the pH was re-measured and adjusted if necessary for all experiments. No 151 



buffers were used in this study because they usually have a high ionic strength and thus may alter 152 

the surface chemistry of the Fe2O3NPs and enhance their aggregation (Baalousha 2009). 153 

HA was dissolved in ultrapure water with a resistivity of 18 MΩ/cm (MilliQ, Millipore, USA) to obtain 154 

a stock solution with a concentration of 500 mg/L. This was then filtered through a 0.45 μm filter 155 

using vacuum suction to retain only the ‘dissolved’ organic matter, and stored at 4°C prior to 156 

experimental use. The total organic content (TOC) of the stock solution (dilution 1:10) was measured 157 

as 19.1 mgC/L using a TOC analyser (TOC-VCPH, TNM-1, Shimadzu, Japan).  158 

HA-coated Fe2O3NPs were prepared by mixing 10 mL of concentrated Fe2O3NPs (i.e. 2 g/L) with 159 

either 1, 2, 4, 10 or 20 mL of HA (initial concentration of the stock solution: 500 mg/L) for one hour 160 

before diluting in ultrapure water to obtain five solutions with Fe2O3NP concentration of 200 mg/L 161 

and HA concentration of 5, 10, 20, 50 and 100 mg/L. All solutions were then brought to pH 4 ± 0.1 162 

using either 0.1 M HCl or 0.1 M NaOH and stored at 4°C for 24 hours before measurements were 163 

taken. 164 

NaCl and CaCl2 were also dissolved in ultrapure water to obtain stock solutions with a concentration 165 

of 500 mM. The stock solutions were filtered through a 0.45 μm filter using vacuum suction to avoid 166 

dust contamination before being used as the mobile phase in FlFFF experiments or to prepare 167 

samples for FlFFF and DLS measurements. 168 

3.3 FlFFF Analysis 169 

FlFFF is a chromatography-like separation technique based on laminar flow (so-called channel flow) 170 

in a very thin (i.e. ~250 μm) channel with a cross flow applied perpendicular to the channel flow. The 171 

channel flow has a parabolic velocity profile (i.e. the maximum velocity is at the centre of the 172 

channel). The cross flow forces the particles to move toward a membrane at the channel wall, from 173 

where they can move back into the channel as a result of diffusion forces in the normal elution 174 

mode (i.e. for particles smaller than 1 µm). The smallest particles, having the highest diffusion 175 

coefficient, will migrate farther into the channel at higher flow rates and will thus elute first. The 176 

theory and principles of FlFFF can be found elsewhere (Giddings 2000; Phuntsho et al. 2011). 177 

Two different FlFFF systems were used in this study. One was an asymmetrical AF2000 Focus (FlFFFa) 178 

(Postnova Analytics, Germany) with channel length of 29.8 cm (tip to tip), channel width of 2 cm and 179 

channel thickness of 0.025 cm. The detection system comprised a UV/Vis detector operating at a 254 180 

nm wavelength (SPD 20A from Shimadzu, Japan). The software AF2000 Control, version 1.1.0.23 181 

(Postnova Analytics) was used to control the FlFFF system. A regenerated cellulose membrane (Z-182 

AF4-MEM-612-10KD, Postnova Analytics, Germany) with a molecular weight cut-off of 10 kDa was 183 

used as a channel wall. Sodium azide (0.1 mM NH3) was used as bactericide in the mobile phase for 184 

all experiments. The sample volumes were all 20.8 µL and were injected using 50 μL sample loop 185 

(Rheodyne Corporation, CA, USA); at least three independent replicates were run per sample and 186 

the data averaged. In general, good agreement was observed between replicates (i.e. peak heights 187 

differing by less than 5 %). The final solution concentration of Fe2O3NPs for all FlFFF/UV experiments 188 

was 50 mg/L for the aggregation study and 200 mg/L for the DOM coating stability study to give 189 

satisfactory separation and detection. These concentrations are necessary to ensure suitable 190 



detection by UV detectors because the sample becomes considerably diluted in the FlFFF channel 191 

during the elution stage. 192 

The second FlFFF system (FlFFFb), used only for the pH effect study, consisted of an Eclipse 3+ 193 

system (Wyatt Technology, Dernbach, Germany) with channel length of 26.55 cm (tip to tip) and 194 

channel thickness of 0.035 cm, equipped with an Agilent 1200 HPLC system (Agilent technologies, 195 

Santa Clara, CA, USA). The Agilent 1200 HPLC system comprised an in-line degasser and an 196 

autosampler for the delivery of the carrier liquid and the injection of samples. A regenerated 197 

cellulose membrane (Millipore PLGC, 10KD, Wyatt Technology, Dernbach, Germany) with a 198 

molecular weight cut-off of 10 kDa was used as a channel wall. The on-line detection system for 199 

eluted particles consisted of a UV/Vis absorbance diode array detector (DAD1200, Agilent 200 

Technologies) with a spectral range from 190 nm to 950 nm and a quasi-elastic light scattering 201 

detector (QELS, Dawn HELEOS II, Wyatt Technology Corporation, Santa Barbara, CA) operating at a 202 

wavelength of 658 nm. The software ChemStation, version B.04.02 SP1 (Agilent Technology) was 203 

used to control the delivery flow of the FlFFF system. Data acquisition and data processing were 204 

done using Astra, version 6.0.2 software (Wyatt Technology). The final solution concentration of 205 

Fe2O3NPs for all FlFFF/QELS experiments was 200 mg/L since QELS needs relatively high 206 

concentrations of particles to ensure proper detection. 207 

3.3.1 FIFFF Calibration Curves 208 

Latex beads of 22 nm, 58 nm, 100 nm and 410 nm were used to create calibration curves from which 209 

hydrodynamic diameters of Fe2O3NPs were determined. These curves correlate the retention time to 210 

particle size. Calibration curves were established for all mobile phases and conditions (change in 211 

cross flow or channel flow) used in this study and regularly (i.e. once a week) re-drawn to check the 212 

accuracy of sizing. An example of the calibration curves used for the pH effect study can be found in 213 

Figure S1. 214 

3.3.2 pH Effect 215 

To investigate the effect of pH on the aggregation of Fe2O3NPs samples of 50 mg/L of NPs were pH-216 

adjusted then equilibrated for 24 hours prior to analysis. The mobile phase consisted of ultrapure 217 

water prepared at different pH values ranging from pH 3 to pH 10. This is the range of pH tolerance 218 

for the FFF membrane; outside this range the membrane may be altered. For pH 2, 11 and 12, only 219 

DLS measurements were performed. The FlFFF measurement conditions are summarised in Table 1. 220 

3.3.3 Ionic Strength Effect 221 

The effect of Na+ and Ca2+ on Fe2O3NPs aggregation was investigated as follows. NaCl and CaCl2 222 

solutions were prepared at 1mM, 5mM and 10 mM, and 0.5 mM and 2 mM, respectively, by diluting 223 

the 500 mM stock solutions using ultrapure water and adjusting to pH 4 before being used as the 224 

mobile phase. Fe2O3NPs samples of 50 mg/L were suspended in solutions having the same ionic 225 

strength as the different mobile phase solutions (i.e. 1 mM, 5 mM and 10 mM NaCl and 0.5 mM and 226 

2 mM CaCl2) and equilibrated for 24 hours before measurements. These ions were chosen because 227 

they are abundantly present in soil and in groundwater aquifers in this typical concentration range 228 

(Saleh et al. 2008). The operating conditions are presented in Table 1. 229 



3.3.4 Stability of DOM-coated Fe2O3NPs 230 

HA-coated Fe2O3NPs at five different HA concentrations were analysed by FlFFF for size 231 

determination using ultrapure water at pH 4 as the mobile phase. The operating conditions are 232 

displayed in Table 1. 233 

The most stable DOM-coated Fe2O3NPs (i.e. mixture of 50 mg/L HA and 200 mg/L Fe2O3NPs) were 234 

then tested under environmentally relevant conditions by modifying the mobile phase and the 235 

solution where the particles were suspended (i.e. pH 7, 10 mM NaCl and 0.5 mM CaCl2). The 236 

operating conditions are summarised in Table 1. 237 

A solution of 100 mg/L of HA was also analysed by FlFFF for molecular weight determination using 238 

sodium salt of Polystyrene sulfonates-PSS (Polysciences, Inc., PA, USA) of four different molecular 239 

weights (4600, 8000, 18000 and 35000 Da, as provided by the manufacturer,  with a polydispersity 240 

of 1.1) to create a calibration curve (see Figure S2). The operating conditions were 0.5 mL/min for 241 

the channel flow and 3 mL/min for the cross flow. 242 

Table 1 243 

3.4 DLS analysis 244 

A Zetasizer (model ZEN3600; Malvern Instruments, Worcestershire, UK) operating with a He-Ne laser 245 

at a wavelength of 633 nm was used to determine the zeta potential and hydrodynamic diameter of 246 

the different samples. Physical principles, mathematical treatment, and limitations of the DLS data 247 

can be found elsewhere (Filella et al. 1997). Samples used in DLS experiments were the same as for 248 

FlFFF experiments to ensure data comparability except for the study of concentration effect.  249 

3.4.1 Concentration Effect 250 

Five solutions of Fe2O3NPs were prepared at pH 3 with concentrations of 10, 20, 50, 100 and 200 251 

mg/L. The pH was raised slowly from pH 3 to 5 by adding drops of 0.1 M NaOH, and the Z-average 252 

hydrodynamic diameter was measured without further modifications. The pH was then brought 253 

directly to pH 10 to overcome the aggregation occurring around the PZC, before being raised slowly 254 

to pH 12. Finally, solutions were brought from pH 9 to 6 by adding drops of 0.1 M HCl. 255 

3.5 Scanning Electron Microscopy (SEM) analysis for the effect of pH 256 

Silicon wafers attached on carbon stubs were used for SEM measurements. About 10 μL of sample 257 

was deposited on a silicon wafer and left to dry completely. Images were obtained from a Zeiss 258 

Supra 55VP variable pressure SEM (Carl Zeiss AG, Germany) and recorded using SmartSEM® software. 259 

The mean equivalent circular diameter was determined from these images. Samples used for SEM 260 

measurements were the same as those analysed in the FlFFF and DLS experiments for the study of 261 

pH effect. 262 

4. Results and discussions  263 

4.1 Characterisation of Fe2O3NPs Nanoparticles 264 

SEM was used to identify the general characteristics of the Fe2O3NPs. At pH 3, the Fe2O3NPs were 265 

spherical and present as single independent particles, as illustrated in Figure 1a. Analysis of 212 266 



particles by SEM yielded a mean equivalent circular diameter of 25 nm with a very low polydispersity 267 

(i.e. standard deviation: ± 3.5 nm, Figure 1b). 268 

Figure 1 269 

Zeta potential measurements carried out at different particle concentrations (see Figure S3) 270 

suggested that Fe2O3NPs are highly positively charged at low pH values (i.e. pH 2-5). The zeta 271 

potential decreased as pH increased from 5 to 9 and became highly negative from pH 10 with a PZC 272 

at around pH 7 for all particle concentrations. This value is within the range of PZC values (i.e. pH 6.8 273 

to 8.1) found in the literature for iron oxide nanoparticles (Tombácz et al. 2004; Illes and Tombácz 274 

2006; Baalousha et al. 2008; Baalousha 2009; Hu et al. 2010). 275 

4.1.1 Effect of particle concentration on the aggregation behaviour of Fe2O3NPs 276 

Size measurements by DLS were performed at different particle concentrations ranging from 10 to 277 

200 mg/L, and different pH values from pH 2 to 12 (all data are presented in Supportive Table 1). It 278 

should be noted that samples with particles having Z-average hydrodynamic diameter > 1,000 nm 279 

were settling during the analysis; however, DLS can only be used when particles are strictly 280 

subjected to Brownian motion. Thus, these data are only indicative of the agglomeration trend and 281 

cannot be used as accurate or absolute measurements. 282 

At all particle concentrations, maximum aggregation was reached at the PZC where the net particle 283 

surface charge was reduced to zero, as shown in Figure 2. Far from this point, particle aggregate 284 

sizes decrease because particles are stabilised by electrostatic repulsion forces.  285 

The results also show a particle size concentration dependence at nanoparticle concentrations 286 

above 50 mg/L, especially at pH > 5. This is presumably due to the fact that when particle 287 

concentration increases, the distance between the particles in the sample is reduced, which 288 

increases the chance of collision between particles and hence, their aggregation. Previous studies 289 

(Baalousha 2009; Dickson et al. 2012) indicated similar findings for this concentration range. It 290 

should be noted here that injected concentrations of Fe2O3NPs on contaminated sites are generally 291 

between 1 to 10 g/L (Saleh et al. 2008), and aggregation phenomena are expected to be even more 292 

exacerbated in this high concentration range. 293 

Figure 2 294 

These results can also be explained by the DLVO theory. Figure 3a and 3b show the interaction 295 

forces that arise between two nanoparticles at concentrations of 10 and 200 mg/L, respectively. At 296 

10 mg/L and high pH values (i.e. pH 10, 11 and 12), a net positive energy barrier prevents particles 297 

from aggregating. Because this barrier decreases from pH 12 to pH 10, we observe an increase in 298 

particle aggregate sizes. However, at 200 mg/L and pH 10, the net energy between particles is 299 

attractive which induces the aggregation of particles. At pH 11 and pH 12, the net positive barrier, 300 

although existing, is too low to prevent the particles from aggregation. 301 

Figure 3 302 

4.1.2 Effect of pH  303 

The effect of pH on the aggregate size of Fe2O3NPs at a concentration of 50 mg/L is shown in  304 



Table 2 for FlFFFa, DLS and SEM measurements. The results for DLS and FlFFFb measurements at 200 305 

mg/L are reported in Table S1 and S2. The size analysis showed a good agreement among the three 306 

measurement techniques. In general, the sizes measured by SEM were comparable to FlFFFa sizes, 307 

while the sizes measured by DLS were generally larger than both FlFFFa and FlFFFb. DLS is known to 308 

be very sensitive to larger particles and a very small number of large particles (e.g. formed during 309 

the aggregation process) can induce a substantial shift toward larger sizes (Domingos et al. 2009). 310 

Moreover, it has also been demonstrated that the diffusion coefficient, from which the Z-average 311 

hydrodynamic diameter is determined, may show angular dependence and that lower angles yielded 312 

more precise values than those obtained at one angle only, which is the case with DLS (Takahashi et 313 

al. 2008).  314 

At pH 10, a significant difference in size was observed using the SEM, FlFFF and DLS techniques; the 315 

FlFFF results in particular, were much lower than those from other techniques showing the limitation 316 

of this technique. This could be explained by the fact that, at this pH, both the FFF membrane and 317 

Fe2O3NPs are negatively charged. Thus, in addition to the concentration gradient effect that drives 318 

the diffusion of particles back into the channel, electrostatic repulsive forces also arise between 319 

particles and the membrane, causing lower retention times than expected and translating into an 320 

underestimation of particle size. 321 

Another limitation of the FlFFF techniques simulating environmental conditions is related to the 322 

recovery of the injected sample. FlFFF fractograms show that the majority of the samples are eluted 323 

in the void region (except at pH 3) and only a small fraction of the injected sample (i.e. < 5%) is 324 

detected during the elution time. This can probably be explained by the fact that when pH increases, 325 

some large aggregates may be formed (> 1 µm). These aggregates (even though not representative 326 

of the whole sample) are much larger than the rest of the sample and are eluted in the void peak in 327 

steric elution mode. To reduce the intensity of the void peak signal, pre-fractionation of the sample  328 

could be used to increase the sample concentration and recovery during the elution. 329 

Despite differing in absolute values, size measurements by FlFFF and DLS did show similar trends. 330 

Both the hydrodynamic diameter (from FlFFF) and Z-average hydrodynamic diameter (from DLS) 331 

increased slightly from pH 3 to 5 with the formation of doublets, triplets or larger aggregates (as 332 

illustrated by the SEM images) and then increased significantly at higher pH values, up to a 333 

maximum at pH 7 (i.e. at the PZC) with the formation of very large aggregates (cf. SEM image). 334 

Around the PZC, aggregation was so extensive that the samples could not be measured by FlFFF and 335 

DLS. At pH values above the PZC, aggregate sizes started to decrease but not at the same rate. As 336 

discussed previously, at high particle concentration (i.e. 200 mg/L), the chance of collision is 337 

enhanced, as is the potential for aggregation due to lower interparticle repulsive forces according to 338 

the DLVO theory. However, below 50 mg/L, far from the PZC (i.e. pH 10 to 12), Fe2O3NPs remained 339 

stable and the average particle size became closer to the original size (i.e. as measured at pH 3). 340 

Table 2 341 

Figure 4 shows the DLVO energy profiles for particle-particle interactions as a function of pH at 50 342 

mg/L. From pH 2 to 7, there is a significant decrease in the repulsive forces between particles due to 343 

the decrease in particle surface charge to zero at the PZC (cf. Figure S3). Around the PZC there is no 344 

net positive energy barrier promoting the formation of very large aggregates (i.e. up to several 345 



micrometres) since the only factor controlling aggregation is Brownian motion (Hu et al. 2010). At 346 

higher pH, starting at pH 10, the particles become highly negatively charged; giving rise to repulsive 347 

forces, and a net positive energy barrier once again prevents particles from aggregating. 348 

Figure 4 349 

4.1.3 Effect of ionic strength  350 

Figure 5 shows the FlFFF/UV fractograms of Fe2O3NPs as a function of ionic strength, and Table 3 351 

gives the corresponding hydrodynamic diameters obtained from the FFF fractograms as well as the 352 

Z-average hydrodynamic diameters obtained by DLS measurements.  353 

The DLS results show an increase in particle aggregate sizes with increasing ionic strength. At low 354 

ionic strength (1 mM-5 mM NaCl and 0.5 mM CaCl2), the Z-average hydrodynamic diameter varies 355 

slightly from 63.19 to 64.92 nm. This is not significantly different from the size of nanoparticles 356 

measured in ultrapure water. This indicates that at low ionic strength, electrostatic repulsive forces 357 

are dominant over the attractive forces, preventing particles from aggregation. However, the use of 358 

10 mM NaCl or 2 mM CaCl2 resulted in particle aggregation, probably due to the reduction in 359 

repulsive forces between particles as shown in Figure 6. 360 

The FlFFF fractograms (Figure 5) show no change in the retention times with increased ionic strength 361 

but a significant decrease in the UV signal intensity is observed. The constant elution time is 362 

expected as it has been demonstrated in previous studies that ionic strength has no effect on 363 

retention time of particles of the same size (Dubascoux et al. 2008; Shon et al. 2009). 364 

Figure 5 365 

Table 3 366 

However, the decrease in UV signal points to a lower recovery at higher ionic strength, which could 367 

be explained by the DLVO theory and DLS results. Figure 6 shows that increasing ionic strength leads 368 

to a significant decrease in the repulsive forces between particles, which could lead to the formation 369 

of larger particle aggregates. Dubascoux et al. (2008) explained that an increase in ionic strength 370 

leads to a decrease in the double layer thickness of particles, which promotes the formation of larger 371 

aggregates. These larger clusters of particles will be located closer to the FFF membrane which will 372 

increase the  interactions between the membrane and these larger aggregates. Thus, they could be 373 

irreversibly adsorbed onto the membrane explaining the observed decrease in the UV signal. 374 

Figure 6 375 

4.2 Stability of DOM-coated Fe2O3NPs under environmentally relevant 376 

conditions 377 

4.2.1 Effect of DOM on particle charge 378 

Figure 7 shows the zeta potential profiles of Fe2O3NPs alone (200 mg/L), HA-coated Fe2O3NPs at 379 

variable HA concentration and HA alone (50 mg/L) plotted as a function of pH, ranging from 3 to 10.  380 



At low HA concentrations (i.e. from 5 to 20 mg/L), the zeta potential of Fe2O3NPs decreases, 381 

resulting in the PZC occurring at lower pH values (i.e. from pH 7 for 0 mg/L HA to pH 4 for 20 mg/L 382 

HA). This shift in the pH of the PZC is probably due to the adsorption of HA on the surface of 383 

Fe2O3NPs causing a change in their surface charge. The zeta potential of HA indicates that it is 384 

negatively charged over the whole pH range. This is due to the fact that HA macromolecules carry 385 

many functional groups, including carboxylic and phenolic groups (Hajdú et al. 2009; Hu et al. 2010; 386 

Dickson et al. 2012). At concentrations above 20 mg/L, the zeta potential of HA-coated Fe2O3NPs 387 

remained negative across the whole pH range tested. At pH values greater than the PZC of the 388 

uncoated Fe2O3NPs, both Fe2O3NPs and HA are negatively charged and adsorption of HA is not 389 

expected to occur. Thus, the decrease in zeta potential values is probably due to the increased HA 390 

concentration which brings more negative charges into solution and shifts the zeta potential 391 

downwards. 392 

Figure 7 393 

4.2.2 Effect of DOM concentration on particle aggregation 394 

The effect of HA concentration on the aggregation of HA-coated Fe2O3NPs was investigated by FlFFF 395 

and DLS (Figure 8 a and b) at pH 4. At this pH, Fe2O3NPs are strongly positively charged (i.e. zeta 396 

potential of +38.5 mV, Figure 7) and HA is still strongly negatively charged (i.e. zeta potential of -38.8 397 

mV, Figure 7). As the adsorption of DOM on the surface of Fe2O3NPs is mainly governed by 398 

Coulombic interactions via ligand-exchange reactions, this provides the most favourable conditions 399 

for sorption (Filius et al. 2000; Chorover and Amistadi 2001; Illés and Tombácz 2004). 400 

At low concentration (i.e. < 20 mgHA/L), HA partially neutralises the positive charges on Fe2O3NPs as 401 

shown in the zeta potential profile in Figure 7. Thus, aggregation takes place and extends with 402 

increasing HA concentration to reach a peak at 20 mgHA/L at which point the zeta potential is 403 

reduced to almost zero. At HA concentrations of 10 and 20 mg/L, very large aggregates were formed 404 

(see Figure 8 b) and due to their rapid sedimentation on the bottom of the vial, FlFFF analysis could 405 

not be performed. From the FlFFF fractogram of the mixture of Fe2O3NPs with 5 mg/L of HA, the 406 

following observations can be made. Compared to the fractogram of Fe2O3NPs alone, there is a slight 407 

increase in the void peak UV signal which is probably due to the loss of sample during the injection 408 

and focusing step and because HA is better adsorbed by UV as shown on the fractogram of HA alone. 409 

The second observation is that no apparent shift toward larger retention times is observed because 410 

the difference in size obtained from both fractograms is very low. This can be explained by the fact 411 

that at 5 mgHA/L, there is a very low amount of HA in the solution; thus, the number of coated 412 

nanoparticles is very low and they were not detected during the FFF analysis. 413 

Figure 8 414 

At higher HA concentrations (i.e. ≥ 50 mg/L), the surface of the Fe2O3NPs becomes negatively 415 

charged (i.e. -27.1 mV at 50 mgHA/L, Figure 7) providing electrostatic stabilisation of the particles 416 

and reducing their aggregation (i.e. from almost 1700 nm at 20 mgHA/L to 85.2 nm at 50 mgHA/L as 417 

measured by DLS as shown in Figure 8 b). A significant increase in the void peak UV signal can be 418 

observed on the FFF fractograms of 50 mgHA/L and 100 mgHA/L (Figure 8 a). This can be caused by 419 

the unadsorbed HA macromolecules. In fact, HA has a molecular weight of 38.7 kDa (as measured by 420 

FlFFF – see Figure S4) which corresponds to approximately 1.7 nm (conversion based on (Shon et al. 421 



2006)) and is considerably smaller than the Fe2O3NPs. Therefore, the applied cross flow was too low 422 

to retain the unadsorbed HA molecules, and the elution of unretained HA is indicated by the larger 423 

void peak. FFF results also showed a shift toward higher retention times (compared to the FIFFF 424 

fractogram of bare Fe2O3NPs), indicating the formation of small aggregates of coated-particles. The 425 

broadening of the peak is probably caused by aggregates having different size and conformation. At 426 

a HA concentration of 100 mg/L, both DLS and FFF measurements indicate an increase in the particle 427 

size, which is probably due to the formation of larger aggregates. This consideration is supported by 428 

the fact that a small fraction of the sample settled on the bottom of the vial.  429 

Finally, by comparing DLS and FFF results, it is clear that FFF, as a fractionation method, can provide 430 

not only the hydrodynamic diameter of the coated particles but also valuable information on the 431 

coating itself. For instance, the FFF results may be used to assess the amount of HA coated onto the 432 

nanoparticles by comparing the intensity of the void peak on the fractograms of HA alone and HA-433 

coated Fe2O3NPs. This demonstrates the versatility of FFF over conventional size-measurement 434 

techniques.  435 

4.2.3 Stability under realistic conditions of pH and ionic composition 436 

The stability of HA-coated Fe2O3NPs was tested under realistic environmental conditions (i.e. pH 7, 437 

10 mM NaCl and 0.5 mM CaCl2) to verify whether or not this coating could be used effectively in the 438 

field. Figure 9 shows the FFF and DLS results for the stability study of a mixture of Fe2O3NPs (200 439 

mg/L) coated by HA (50 mg/L). 440 

Compared to bare Fe2O3NPs, HA-coated Fe2O3NPs were less affected by an increase in pH and were 441 

much more stable under neutral pH conditions. In fact, for the bare nanoparticles, an increase in pH 442 

to pH 7 (i.e. the PZC) resulted in extensive aggregation with the formation of large aggregates that 443 

were thirty-five times larger than at pH 4 (Figure 9b). However, when the nanoparticles were coated 444 

with HA, the same increase in pH resulted in a size increase of less than 15%. This is most likely due 445 

to the negatively charged HA layer on the Fe2O3NPs surface which prevents particles from 446 

aggregating through electrostatic repulsion. Moreover, the macromolecular layer can also provide 447 

steric stabilisation by causing entropically unfavourable conditions when the particles come closer to 448 

one another (Tiller and O'Melia 1993; Illés and Tombácz 2004).  449 

Figure 9 450 

Regarding the effect of NaCl on the stability of HA-coated Fe2O3NPs, FFF and DLS results (cf. Figure 9) 451 

showed that increasing the NaCl concentration to 10 mM does not result in aggregation or 452 

sedimentation of the sample in comparison to bare Fe2O3NPs. In fact, it has been demonstrated in 453 

previous studies (Illés and Tombácz 2004; Hajdú et al. 2009) that HA-coated Fe2O3NPs are more 454 

stable under high NaCl concentration due to the electrosteric stabilisation providing by HA coating. 455 

In the presence of CaCl2 at 0.5 mM, HA-coated Fe2O3NPs became unstable and formed large 456 

aggregates (greater than 500 nm when measured by DLS). The effect of increasing the CaCl2 457 

concentration on FFF results is that no peaks were observed, which is most likely to be the results of 458 

aggregation and consequently much longer retention times. This aggregation behaviour could be 459 

attributed to the formation of complexes between Ca2+ and HA, which neutralises the negative 460 

charge imparted by the HA coating on the Fe2O3NPs and thus, reduces the electrostatic stabilisation 461 



which previously arose between the coated nanoparticles. In addition, the presence of Ca2+ cations 462 

may promote the formation of complexes Fe2O3NPs-HA-Ca2+-HA- Fe2O3NPs  (Chen et al. 2006). It has 463 

also been reported that other alkaline earth metal divalent cations such Ba2+ and Sr2+ could 464 

accelerate hematite aggregate growth at very low concentrations, whereas Mg2+ showed no effect 465 

on aggregation even at high concentrations (Chen et al. 2007). 466 

5. Conclusions 467 

The stability of both coated and uncoated Fe2O3NPs has been investigated under different 468 

environmental conditions by using several analytical techniques and a theoretical method. The need 469 

for a multi-method approach has been demonstrated by highlighting the limitations of each method. 470 

For instance, one of the limitations of DLS is the polydispersity of the sample which leads to an over-471 

estimation of the average particle size. With FFF, limitations arise from the interaction between the 472 

membrane and the particles; furthermore the pH dependent changes in the surface charge of the 473 

NPs, which controls the interaction with membrane, may limit the suitability of latex beads as 474 

references for particle size. Therefore, the use of FFF with mobile phases mimicking environmentally 475 

relevant conditions may not provide definitive answers in terms of particle size as in this case most 476 

measurements will not be made using an optimised mode of operation. However, the versatility of 477 

FFF was demonstrated for the characterisation of HA-coated Fe2O3NPs by providing valuable 478 

information on the adsorption of HA onto Fe2O3NPs. Finally, the DLVO modelling approach is useful 479 

for the interpretation of the experimental results, but cannot predict the size of the aggregates. The 480 

presence of large aggregates (i.e. above 1 µm) and sedimentation of these aggregates during the 481 

analysis were also a significant limitation to the collection of accurate and reliable data. Therefore, 482 

this study shows that it is essential to deploy a number of analytical and theoretical techniques to 483 

investigate the behaviour of NPs. Other analytical methods that can measure the size of aggregates 484 

in this size range with greater accuracy (e.g. low-angle laser light scattering (LALLS) techniques) 485 

should also be considered. 486 

The pH and ionic strength are important environment conditions that need to be carefully 487 

considered before releasing nanoparticles into the environment. In the case of Fe2O3NPs, commonly 488 

encountered soil and groundwater conditions (i.e. pH 6-8 and high ionic strength) can induce 489 

extensive aggregation and can thus considerably reduce their mobility and reactivity once injected 490 

into subsurface environments. Finding solutions to reduce or suppress particle aggregation is 491 

therefore crucial in optimising remediation strategies using these materials. Surface coating is one of 492 

the preferred methods used to enhance the stability of the Fe2O3NPs. The choice of surface modifier 493 

is important and this will depend on the soil conditions and the target contaminants. This study has 494 

demonstrated the performance of DOM as a surface coating under conditions similar to the natural 495 

soil environment. DOM-coated nanoparticles were observed to show higher stability than naked 496 

Fe2O3NPs under some conditions. Aggregation and stabilisation have significant effects on the 497 

environmental transport, reactivity and fate of the released nanoparticles and especially on the 498 

transport of low-solubility contaminants in subsurface waters. Increased stabilisation will result in 499 

better transport and reactivity in the subsurface but may also increase contaminant transportation.  500 

Development of modellings on the behaviour of MNPs in the subsurface is still needed but 501 

restrained by the lack of data under relevant environmental conditions. 502 
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Table 1 764 

Study 
Channel Flow 

(mL/min) 
Cross Flow 
(mL/min) 

Mobile phase 

1. Effect of pH 

pH 3 

1 

0.5 Ultrapure water at pH 3 

pH 4 0.3 Ultrapure water at pH 4 

pH 5 
0.15 

Ultrapure water at pH 5 

pH 10 Ultrapure water at pH 10 

2. Effect of Ionic 
Strength 

Ultrapure water 

1 0.3 

Ultrapure water at pH 4 

1 mM NaCl 1 mM NaCl at pH 4 

5 mM NaCl 5 mM NaCl at pH 4 

10 mM NaCl 10 mM NaCl at pH 4 

0.5 mM CaCl2 0.5 mM CaCl2 at pH 4 

2 mM CaCl2 2 mM CaCl2 at pH 4 

3. Effect of HA 
concentration 

HA alone (100 mg/L) 

1 
0.5 

Ultrapure water at pH 4 

Fe2O3NPs alone (200 
mg/L) 

HA/Fe2O3NPs  5 
mgHA/L 

HA/Fe2O3NPs 50 
mgHA/L 

HA/Fe2O3NPs 100 
mgHA/L 

0.15 

4. Stability of HA-
coated Fe2O3NPs 

pH 4 

1 0.5 

Ultrapure water at pH 4 

pH 7 Ultrapure water at pH 7 

pH 7/10 mM NaCl 10 mM NaCl at pH 7 

pH 7/0.5 mM CaCl2 0.5 mM CaCl2 at pH 7 
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pH 
FlFFF/UV fractograms  

and hydrodynamic diameter (nm) 
Z-average hydrodynamic diameter 

as determined by DLS (nm) 
Corresponding SEM images (50 mg/L)  

3 

 
27.05 ± 0.16 

 
55.3 ± 2.4 

 
Approximated size: 25 nm 

4 

 

 
 

41.42 ± 0.04 

63.0 ± 3.9 

 
Approximated size: 35 nm 

5 

 

 
 

80.33 ± 0.74 

 
106.1 ± 3.6 

 
Approximated size: 80 nm 

7 
Samples settled down rapidly to the bottom of the vial and could not be 

analysed by FlFFF and DLS. 
 

 
Approximated size: 1500 nm 

10 

 
132.03 ± 5.85 

377.5 ± 3.6 

 
Approximated size: 250 nm 
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Ionic 
strength 

Particle size (nm) 

FlFFF/UV DLS 

Ultrapure 
water 

41.4 ± 0.1 61.4 ± 1.4 

1 mM 
NaCl 

42.3 ± 0.1 63.2 ± 3.6 

5 mM 
NaCl 

42.8 ± 1.7 64.4 ± 5.2  

10 mM 
NaCl 

44.7 ± 2.5 312.4 ± 10.7 

0.5 mM 
CaCl2 

44.4 ± 0.6 64.9 ± 4.9 

2 mM 
CaCl2 

44.8 ± 2.7 438.7 ± 18.1 
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