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Abstract

Graph regularized nonnegative matrix factorization (GNMF) decomposes a nonnegative data matrix X[Rm|n to the product
of two lower-rank nonnegative factor matrices, i.e., W[Rm|r and H[Rr|n (rvminfm,ng) and aims to preserve the local
geometric structure of the dataset by minimizing squared Euclidean distance or Kullback-Leibler (KL) divergence between X
and WH. The multiplicative update rule (MUR) is usually applied to optimize GNMF, but it suffers from the drawback of slow-
convergence because it intrinsically advances one step along the rescaled negative gradient direction with a non-optimal
step size. Recently, a multiple step-sizes fast gradient descent (MFGD) method has been proposed for optimizing NMF
which accelerates MUR by searching the optimal step-size along the rescaled negative gradient direction with Newton’s
method. However, the computational cost of MFGD is high because 1) the high-dimensional Hessian matrix is dense and
costs too much memory; and 2) the Hessian inverse operator and its multiplication with gradient cost too much time. To
overcome these deficiencies of MFGD, we propose an efficient limited-memory FGD (L-FGD) method for optimizing GNMF.
In particular, we apply the limited-memory BFGS (L-BFGS) method to directly approximate the multiplication of the inverse
Hessian and the gradient for searching the optimal step size in MFGD. The preliminary results on real-world datasets show
that L-FGD is more efficient than both MFGD and MUR. To evaluate the effectiveness of L-FGD, we validate its clustering
performance for optimizing KL-divergence based GNMF on two popular face image datasets including ORL and PIE and two
text corpora including Reuters and TDT2. The experimental results confirm the effectiveness of L-FGD by comparing it with
the representative GNMF solvers.
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Introduction

NMF factorizes a given nonnegative data matrix X[Rm|n into

two lower-rank nonnegative factor matrices, i.e., W[Rm|r and

H[Rr|n, where rvm and rvn. It is a powerful dimension

reduction method and has been widely used in many fields such as

data mining [1] and bioinformatics [2]. Since NMF does not

explicitly guarantee parts-based representation [3], Hoyer [4]

proposed sparseness constrained NMF (NMFsc) which incorpo-

rates the sparseness constraint into NMF. To utilize the

discriminative information in a dataset, Zafeiriou et al. [5]

proposed discriminant NMF (DNMF) to incorporate Fisher’s

criteria in NMF for classification. Sandler and Lindenbaum [6]

proposed an earth mover’s distance metric-based NMF (EMD-

NMF) to model the distortion of images for image segmentation

and texture classification. Guan et al. [7] investigated Manhattan

NMF (MahNMF) for low-rank and sparse matrix factorization of a

nonnegative matrix and developed an efficient algorithm to solve

MahNMF.

Since NMF and its extensions do not consider geometric

structure of a dataset, they perform unsatisfactorily in some tasks

such as clustering. To consider the local geometric structure of a

dataset in NMF, Cai et al. [8] proposed graph regularized

nonnegative matrix factorization (GNMF) which encodes the

geometric structure in a nearest neighbor (NN) graph for data

representation. Along this direction, Guan et al. [9] extended

GNMF to manifold-regularized discriminative NMF (MD-NMF)

to incorporate discriminative information in a dataset by using

margin maximization. The same authors proposed a nonnegative

patch alignment framework (NPAF) [10] to unify such NMF-based

nonlinear dimension reduction methods. Because the objective

functions of GNMF and NPAF are jointly non-convex with respect

to both factor matrices, their optimizations are difficult.

Similar to NMF, GNMF is NP-hard. It is impossible to obtain

its global minimum in polynomial time [11]. Fortunately, GNMF

is convex with respect to each factor matrix, i.e., the sub-problems

for updating individual factor matrix are convex, and thus it can

be solved by recursively updating both factor matrices in the frame

of block coordinate descent. Cai et al. [8] exploited the

multiplicative update rule (MUR) to update each factor matrix

alternately until convergence to a local minimum. MUR searches

one step along the rescaled negative gradient direction with a step

size setting to one. Since the step size is non-optimal, MUR does

not sufficiently utilize the convexity of the sub-problems of
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GNMF. Although both [12] and [13] can solve squared Euclidean

distance based NMF efficiently, they are not general enough to

optimize Kullback-Leibler (KL) divergence based GNMF. Re-

cently, Guan et al. [9] proposed a fast gradient descent (FGD)

method to accelerate MUR for KL-divergence based GNMF.

FGD searches the optimal step size along the rescaled negative

gradient direction by using Newton’s method. Since FGD sets a

single step size for the whole factor matrix, it has the risk of

shrinking to MUR, i.e., the final step size shrinks to one. To

overcome this deficiency, Guan et al. [10] further proposed a

multiple step-size FGD (MFGD) method which sets a step size for

each row of W and each column of H, and searches the optimal

step size vector by using the multivariate Newton’s method.

MFGD converges more rapidly than FGD, but the dimensional-

ities of the Hessian matrices used in the line search procedures for

updating both factor matrices are too high, i.e., the Hessian

matrices are m6m-dimensional and n6n-dimensional for optimiz-

ing W and H, respectively. Therefore, MFGD suffers from the

following two drawbacks: 1) both the Hessian inverse operators

and their multiplications with the corresponding gradients cost too

much computational time, and 2) the dense Hessian matrices

consume too much memory.

To overcome the aforementioned deficiencies of MFGD,

motivated by limited memory BFGS (L-BFGS) [14], we propose

a limited-memory FGD (L-FGD) method to directly approximate

the multiplication of the Hessian inverse and the gradient for the

multivariate Newton method in MFGD. Since L-BFGS stores only

a few most recent historical gradients, L-FGD greatly reduces the

memory cost compared to MFGD which stores the Hessian

matrix. In addition, since L-BFGS converges as fast as the

multivariate Newton method and avoids calculating the Hessian

inverse, L-FGD converges in similar iteration rounds and costs

much less CPU time in each iteration round. Therefore, L-FGD is

much more efficient than MFGD both in terms of memory

complexity and time complexity. The theoretical analysis and

experimental results on real-world datasets including two popular

face image datasets, i.e., ORL [15] and PIE [16], and two text

corpora, i.e., Reuters [17] and TDT2 [18] show that L-FGD

converges much more rapidly than MUR, FGD, and MFGD.

Furthermore, we apply the L-FGD method to solve KL-

divergence based GNMF and confirm its effectiveness by

evaluating its clustering performance. Experimental results on

two popular face image datasets, i.e., ORL [15] and PIE [16],

confirm the effectiveness of L-FGD compared with the represen-

tative GNMF solvers.

The remainder of this paper is organized as follows: Section II

briefly reviews GNMF and its optimization algorithms; Section III

presents the L-FGD method; Section IV evaluates its efficiency

and effectiveness by experiments; and Section V concludes this

paper.

Figure 1. Descent of both W and H along their rescaled negative gradient directions in MFGD.
doi:10.1371/journal.pone.0077162.g001

Figure 2. Basic process of L-FGD.
doi:10.1371/journal.pone.0077162.g002
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Analysis

This section reviews several significant works on nonnegative

matrix factorization (NMF) including sparseness constrained NMF

(NMFsc, [4]), earth mover’s distance metric-based NMF (EMD-

NMF, [6]), discriminant NMF (DNMF, [5]), and graph regular-

ized NMF (GNMF, [8]).

A. NMF
Given a nonnegative data matrix X[Rm|n, NMF [1] aims to

find two lower-rank nonnegative matrices W[Rm|r and H[Rr|n

by minimizing the following objective

min
W§0,H§0

D(X ,WH),

where D(X ,WH) measures the distance between X and WH,

which is usually the squared Euclidean distance, i.e.,

D(X ,WH)~ X{WHk k2
F or the Kullback-Leibler (KL) diver-

gence:

D(X ,WH)~
X

ij
(Xij log

Xij

(WH)ij

{Xijz(WH)ij): ð1Þ

B. NMFsc
It is well-known that NMF does not guarantee parts-based

representation of data [3]. To remedy this problem, Hoyer [4]

proposed to explicitly constrain the sparseness of each column of

W and each row of H, i.e.,

min
W§0,H§0

X{WHk k2
F ,Vjsparseness(W:j)~sW ,

Visparseness(Hi:)~sH ,

where W:j and Hi: stand for the j-th column of W and the i-th row

of H, respectively, and sW and sH are two constants in 0,1½ �. The

sparseness of a vector x
I[Rn is defined as

sparseness( x
I

)~

ffiffiffi
n
p

{ x
I
���
���

1

.
x
I
���
���

2ffiffiffi
n
p

{1
:

C. EMD-NMF
Since both Euclidean distance and KL-divergence cannot

appropriately qualify the errors in images or histograms, the

standard NMF does not perform well in image analytics. To make

NMF more appropriate for image analytics, Sandler and

Lindenbaum [6] proposed earth mover’s distance (EMD) metric-

based NMF (EMD-NMF) because EMD qualifies the errors in

images or histograms better than other metrics. The objective of

EMD-NMF is

Table 1. Summary of the two loop recursion algorithm for L-
FGD.

Algorithm 1. Two loop recursion procedure for L-FGD

Input: Pairs f(s
I

k{m’,y
I

k{m’),:::,(s
I

k{1,y
I

k{1)g, Gradient +f (r
Ik

).

Output: d
I

k

1. Initialize q
I
~+f (r

Ik
).

2. For i~k{1,:::k{m’

3. Compute ai~ti s
IT

i q
I

.

4. Update q
I/q

I
{ai y

I

i .

5. End For

6. Initialize d
I

~H0
k q
I

.

7. For i~k{m’,:::k{1

8. Compute bi~ti y
IT

i d
I

.

9. Update d
I

/d
I

zs
I

i(ai{bi)

10. End For

11. d
I

k~d
I

doi:10.1371/journal.pone.0077162.t001

Table 2. Summary of the proposed limited memory fast
gradient descent algorithm.

Algorithm 2. Limited Memory FGD (L-FGD)

Input: X[Rm|n
z , L, Wt[Rm|r

z , Ht[Rr|n
z

Output: Htz1[Rr|n
z

1. +~Ht{Ht0
lHtL

{zW T
t

X
Wt Ht

lHtLzzW T
t 1m|n

.

2. Initialize r
I0

~1
I

, r
I1

~(1zj)r
I0

, s
I

1 , y
I

1 , k~1.

3. Calculate relative gradient +f (r
I0

) and +f (r
I1

).

Repeat

4. Update s
I

kz1 and y
I

kz1 .

5. Calculate d
I

k by using Algorithm 1.

6. Update r
Ikz1

: r
Ikz1

~r
Ik

{akd
I

k .

7. Calculate +f (r
Ikz1

) at r
Ikz1

.

8. Update k~kz1.

Until {Stopping when the criterion r
Ikz1

{r
Ik

���
���ƒtol is met.}

9. Set r
I

t~r
Ikz1

and calculate Htz1~Ht{+|diag(r
I

t).

doi:10.1371/journal.pone.0077162.t002

Table 3. The time and memory complexity of one iteration
round of MUR, FGD, MFGD and L-FGD for GNMF.

Algorithm Time Complexity Memory Complexity

MUR O(mnr) O(mnzmrznr)zO(n2)|S

FGD O(mnrzmnk1) O(mnzmrznr)zO(n2)|S

MFGD O(mnrzn2rzn3

z(mnzp3)|k2)

O(mnzmrznrzn2)zO(n2)|S

L-FGD O(mnrzn2r

z(mnzm0n)|k3)

O(mnzmrznrzm0n)zO(n2)|S

k1 , k2 and k3 : iteration number of Newton’s method, multivariate Newton
method, and L-BFGS methods for line search in FGD, MFGD, and L-FGD,
respectively; S: sparsity of the alignment matrix; p,n.
doi:10.1371/journal.pone.0077162.t003
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min
W§0,H§0

EMD(X ,WH)~
Xn

j~1

EMD(X:j , WH½ �:j),

where EMD between any two same sized matrices equals to the

summation of EMD distances between their column vectors.

Please refer to [6] for more details about EMD.

Although NMF, NMFsc, and EMD-NMF perform well in some

tasks, they completely ignore the discriminative information of the

dataset, and thus perform unsatisfactorily in some pattern

recognition tasks.

D. DNMF
To utilize the labels of the dataset, Zaferiou et al. [5] proposed

discriminant NMF (DNMF) to incorporate Fisher’s criterion in

NMF, i.e.,

min
W§0,H§0

D(X ,WH)zcSw{dSb,

where Sw and Sb are within-class scatter and between-class scatter

of H, respectively. Since NMF itself does not assume data points

are Gaussian distributed, it is improper to use Fisher’s criterion to

retain the discriminative information for subsequent classification.

E. GNMF
Graph regularized nonnegative matrix factorization (GNMF)

[8] encodes the geometric structure of the dataset based on

manifold regularization [19] and sheds a light to overcome the

deficiency of DNMF. It constructs an adjacent graph, i.e., G, for a

dataset and keeps the neighbor relationship of nodes on G during

projecting data points from the high-dimensional space to the low-

dimensional subspace, i.e.,

min
W§0,H§0

F (W ,H)~D(X ,WH)z
l

2
tr(HLHT ), ð2Þ

where tr(:) signifies the trace operator, L is the graph Laplacian of

G, and l is a positive tradeoff parameter. Since GNMF utilizes the

intrinsic geometric information, it has discriminating power and

performs well in clustering.

Since GNMF is jointly non-convex with respect to both W and

H, its optimization is quite difficult. Although some efficient solvers

of NMF, e.g., NeNMF [12], can be utilized to optimize the

squared Euclidean distance based GNMF, they are not general

enough to optimize the KL-divergence based GNMF. In the

following section, we will introduce a new efficient solver for KL-

divergence based GNMF.

Results

This section first revisits the existing GNMF solvers, i.e.,

multiplicative update rule (MUR), fast gradient descent (FGD),

and multiple step-sizes FGD, and then introduces limited-memory

FGD algorithm.

A. GNMF Solvers Revisit
Multiplicative update rule (MUR) is one of the most popular

algorithms for optimizing GNMF. According to [9], the MUR for

KL-divergence based GNMF is

Htz1~Ht0
lHtL

{zW T
t

X
WtHt

lHtLzzW T
t 1m|n

, ð3Þ

and

Figure 3. Objective values versus number of iterations and CPU time on the ORL dataset. The reduced dimensionality is set to 50 (a and
b) and 100 (c and d).
doi:10.1371/journal.pone.0077162.g003
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Wtz1~Wt0
X

WtHtz1
HT

tz1

1m|nHT
tz1

, ð4Þ

where 0 signifies the element-wise multiplication operator and t

signifies the iteration counter, L+ and L2 can be obtained with

Lz~( Lj jzL)=2, L{~( Lj j{L)=2. Both L+ and L2 are nonneg-

ative symmetric matrices because L is a symmetric matrix.

Figure 4. Objective values versus number of iterations and CPU time on the PIE dataset. The reduced dimensionality is set to 50 (a and b)
and 100 (c and d).
doi:10.1371/journal.pone.0077162.g004

Figure 5. CPU time versus parameter l on both ORL (a and b) and PIE (c and d) datasets. The reduced dimensionality is set to 50 (a and c)
and 100 (b and d).
doi:10.1371/journal.pone.0077162.g005

Limited-Memory Fast Gradient Descent Method

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e77162



Although (3) and (4) reduce the objective function of (2), they

converge slowly because MUR is intrinsically a rescale gradient

descent method with a step size equal to 1. To accelerate MUR,

Guan et al. [9] proposed fast gradient descent (FGD) which sets a

step-size for each factor matrix (W or H) and searches the optimal

step size along the rescaled negative gradient direction in each

iteration round. Taking the procedure of updating H as an

example, the objective function of searching the optimal step-size

is

minr f (r)~D(X ,WtH
0)~D(X ,Wt(Ht{r+)),s:t:,Ht{r+§0,ð5Þ

Figure 6. Objective values versus number of iterations and CPU time on the Reuters dataset. The subspace dimensionality is set to 100 (a
and b) and 500 (c and d).
doi:10.1371/journal.pone.0077162.g006

Figure 7. Objective values versus number of iterations and CPU time on the TDT2 dataset. The subspace dimensionality is set to 100 (a
and b) and 500 (c and d).
doi:10.1371/journal.pone.0077162.g007
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where + is the rescaled negative gradient calculated as follows:

+~Ht{Ht0
lHtL

{zW T
t

X
WtHt

lHtLzzW T
t 1m|n

: ð6Þ

Since the objective function of (5) is convex, it can be solved by

using Newton’s method without increasing the computational cost.

Although FGD greatly accelerates MUR, it risks shrinking MUR

because the incorporated constraint may result in r = 1. To

remedy this problem of FGD, multiple step-sizes FGD (MFGD,

[10]) considers the step-size for each row of W and each column of

H. Thus it is necessary to calculate a vector r
I

for each matrix in

each iteration round. Figure 1 shows the step-size assignment of W

and H in MFGD.

It is clear that the objective of searching the optimal step size

vector for H is

min
r
I f ( r

I
)~D(X ,Wt Ht:1

{r1+:1, � � � ,Ht:n{rn+:n

h i
),s:t:,

Vj,Ht:j
{rj+:j§0,

ð7Þ

where Ht:j
is the j-th column of Ht and +:j is the j-th column of +.

Since the constraints are incorporated on columns of H and +,

MFGD reduces the risk of shrinking to MUR and thus accelerates

MUR in most cases. Since problem (7) is convex, we can employ

the multivariate Newton’s method to obtain the optimal solution.

However, the Hessian matrix used in MFGD has high dimen-

sionality and thus MFGD has two additional disadvantages: 1) it

costs too much memory especially when m or n is large, and 2) the

Hessian inverse operator and its multiplication with gradient are

computationally too expensive.

B. Limited-memory FGD
Motivated by L-BFGS [20], we directly approximate the

multiplication of the Hessian inverse and gradient to overcome

the deficiencies of MFGD. L-BFGS uses historical information to

approximate the Hessian inverse, thus avoiding the complex

matrix inverse operator. For efficiently solving our line search

problem (7), we develop a limited-memory FGD (L-FGD) method.

The updating rule of L-FGD is given by

r
Ikz1

~r
Ik

{ak d
I

k, ð8Þ

Table 4. Normalized mutual information and accuracy of GNMF solved by MUR, FGD, MFGD, and L-FGD on the ORL dataset.

K Normalized Mutual Information (%) Accuracy (%)

MUR FGD MFGD L-FGD MUR FGD MFGD L-FGD

2 64.3641.7 63.8641.8 63.8641.8 64.9641.1 86.3616.7 86.5616.1 86.5616.1 87.0616.0

3 69.1625.1 70.6624.0 70.6624.0 70.6624.0 81.7616.5 81.8616.8 81.8616.8 81.8616.8

4 70.2618.0 71.4618.1 71.6617.4 71.0618.3 77.9615.6 77.6616.8 77.5617.0 78.6615.7

5 71.7611.1 71.8611.1 71.1611.4 71.8611.1 76.2611.3 76.0611.2 75.8611.2 76.0611.2

6 70.3611.7 68.3611.5 69.8611.4 69.2611.4 73.9610.4 72.869.5 73.3610.4 73.1610.0

7 75.666.6 75.966.8 75.167.9 75.167.0 73.668.5 74.469.1 73.5610.5 73.969.4

8 72.5610.9 73.769.7 72.9610.9 73.569.3 69.8612.1 71.7611.6 71.3612.8 71.6610.9

9 71.565.7 72.865.7 72.666.0 72.865.6 67.767.8 68.968.4 69.167.9 68.668.0

10 74.666.4 73.766.8 74.066.0 74.766.5 69.869.0 68.869.1 69.168.3 69.268.4

Avg. 71.1615.2 71.3615.1 71.3615.2 71.5614.9 75.2612.0 75.4612.1 75.3612.3 75.6611.8

doi:10.1371/journal.pone.0077162.t004

Table 5. Normalized mutual information and accuracy of GNMF solved by MUR, FGD, MFGD, and L-FGD on the PIE dataset.

K Normalized Mutual Information (%) Accuracy (%)

MUR FGD MFGD L-FGD MUR FGD MFGD L-FGD

2 75.5633.6 83.8632.0 84.4632.5 75.2636.5 91.6613.2 93.8614.1 93.7614.8 90.8615.4

3 96.068.3 96.967.6 96.967.6 96.967.6 98.263.8 98.663.5 98.663.5 98.663.5

4 95.768.2 97.664.9 98.064.5 90.568.5 96.468.1 98.762.8 98.962.6 93.266.5

5 98.364.6 98.864.1 98.864.1 98.564.4 98.166.3 98.565.8 98.565.8 98.465.8

6 96.265.4 97.165.0 96.865.0 96.665.0 96.565.9 97.864.2 97.664.2 97.464.2

7 94.965.5 94.066.0 93.566.0 93.965.9 93.867.5 91.668.7 90.868.6 91.668.7

8 93.963.6 93.964.3 93.664.6 93.564.2 91.466.8 90.268.0 89.468.2 89.567.9

9 93.864.2 93.163.6 93.163.6 93.763.9 90.667.0 87.966.4 87.966.2 89.766.7

10 92.162.9 92.163.6 91.863.6 92.063.4 85.666.9 85.866.6 84.767.1 85.667.4

Avg. 92.968.5 94.167.9 94.167.9 92.368.8 93.667.3 93.766.7 93.366.8 92.867.3

doi:10.1371/journal.pone.0077162.t005
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where k signifies the iteration counter of the line search,

d
I

k~Hk+f ( r
Ik

) is the multiplication of Hessian inverse Hk and

gradient +f ( r
Ik

) of f ( r
Ik

), and ak is the step-size. According to

[14], L-FGD approximates the Hessian inverse by using a

recursion process, i.e.,

Hkz1&

U(U( � � �U(Hk{m0z1, s
I

k{m0z1, y
I

k{m0z1) � � � , s
I

k{1, y
I

k{1), s
I

k, y
I

k),
ð9Þ

where s
I

k~r
Ikz1

{r
Ik

, y
I

k~+f ( r
Ikz1

){+f ( r
Ik

), and m0v?.

The recursion function is defined as follows:

U(Hk, s
I

k, y
I

k)~(I{tk s
I

k y
IT

k )Hk(I{tk y
I

k s
IT

k )ztk s
I

k s
IT

k , ð10Þ

where tk~
1

y
IT

k s
I

k

. From (9) and (10), L-FGD utilizes finite recent

pairs ( s
I

k, y
I

k) to approximate the Hessian inverse and refreshes

the set of pairs iteratively by replacing the oldest pair with the

newest pair as showed in Figure 2. Due to the recursion process in

(9), L-FGD avoids the Hessian inverse operator and thus costs

much less CPU time than MFGD.

However, the recursion process (9) retains an approximate

Hessian inverse matrix and thus L-FGD consumes too much

memory. To overcome this deficiency, we utilize the two loop

recursion process [14] to directly approximate the multiplication

of Hessian inverse and gradient in two steps summarized in

Algorithm 1 (See Table 1). Similar to (9), H0
k represents an

approximation of the Hessian inverse, however, it can be set to a

scaled identity matrix, i.e., H0
k~ckI , where ck~

s
IT

k{1 y
I

k{1

y
IT

k{1 y
I

k{1

. In this

case, line 6 can be directly calculated and thus L-FGD avoids

storing the Hessian inverse matrix. This strategy greatly reduces

the memory costs of L-FGD. To search the optimal r
I

t along the

rescaled negative gradient of H for solving (7), we initialize r
I0

and

update it by using the L-BFGS method until the criterion

r
Ikz1

{r
Ik

���
���ƒtol is met, where tol is a predefined tolerance.

Similar to MFGD, the update formula of L-FGD is

Htz1~Ht{+|diag( r
I

t) ð11Þ

where r
I

t is the obtained optimal step-size vector. Since L-FGD

needs to fill the queue of ( s
I

k, y
I

k) pairs, we set two initial points

r
I0

and r
I1

in each call of Algorithm 1 to avoid null pairs in the

first iterations. The procedure of L-FGD for updating Htz1 is

summarized in Algorithm 2 (See Table 2).

In line 2 of Algorithm 2, j is a small positive constant that

regularizes the speed of convergence, e.g., j~4 on dense dataset

and j~10{3 on sparse dataset, and tol is the predefined tolerance,

e.g., 1023. In line 6 of Algorithm 2, ak is the step size of the k-th

iteration round, e.g., ak~
2
k

in our experiment. The main time cost

is spent on lines 1 and 5, whose time complexities are

O(mnrzn2r)and O(m0n), respectively. Thus its total complexity

is O(mnrzn2r)zk|O(m0n), where k stands for the total number

of iterations of Algorithm 2. Since the L-BFGS method

converges as rapidly as the multivariate Newton method, k is

usually small, and the time cost of one iteration of L-FGD is

comparable to that of MUR, i.e., O(mnrzn2r). However, L-FGD

converges much more quickly than MUR in terms of number of

iterations because the used step-size is optimal, thus the overall

time cost of L-FGD is much less than that of MUR. In Table 3, we

compare the time and memory complexities of L-FGD with those

of MUR, FGD and MFGD.

The second column of Table 3 compares the time complexities

of one iteration of MUR, FGD, MFGD, and L-FGD and shows

that L-FGD takes much less time than MFGD because it avoids

calculating the Hessian inverse. Although L-FGD has similar time

complexity to MUR, it accelerates MUR in each iteration round

and costs much less overall time complexity. By comparison with

FGD, it reduces the risk of shrinking to MUR. The third column

of Table 3 compares the memory complexity of four methods,

where the term O(n2)|S is caused by the graph Laplacian

matrix, which is usually sparse. The promising advantage of L-

FGD is that it greatly reduces the memory cost of MFGD and is

thus much more suitable for large-scale datasets.

Experiments

In this section, we evaluate the efficiency of L-FGD for solving

GNMF by comparing it with MUR [9], FGD [9] and MFGD [10]

on ORL [15] and PIE [16] face image datasets and Reuters [17]

and TDT2 [18] text corpora. We implement all algorithms in

MATLAB program on a workstation which contains a 3.4GHz

Intel (R) Core (TM) processor and an 8GB RAM. We use the 0–1

weighting scheme for constructing a k-nearest neighbor graph in

GNMF. For fairness of comparison, all algorithms start from an

identical initial point. To evaluate the efficiency of L-FGD for

GNMF, we stop all GNMF solvers until they reach an identical

objective value. To this end, we first use MUR [9] to optimize the

KL-divergence of GNMF and stop when the following condition is

satisfied with precision e = 1024:

F (Wt,Ht){F (Wtz1,Htz1)

F (W1,H1){F (Wtz1,Htz1)
ƒe, ð12Þ

where (W1,H1) is the initial point and both matrices are set to

random dense matrices. We then use three other methods to

optimize the function and stop when each reaches the same

objective value of MUR. Meanwhile we count the number of

iterations and time cost to compare their efficiency. To evaluate

the effectiveness of L-FGD for GNMF, we test the clustering

performance obtained by these GNMF solvers. Taking the same

measure as that of efficiency, we calculate and compare their

normalized mutual Information and accuracy. Each experiment is

repeated 20 times to avoid the impact of randomness.

The ORL dataset [15] includes 400 images collected from 40

individuals. Each individual has 10 images and each image is

cropped into 32632 pixels and reshaped into a 1024-dimensional

long vector. The PIE dataset [16] contains 11,554 pictures

collected from 68 individuals with varying poses and illuminations.

In this experiment, we select all the images taken at Pose 27 of

each individual to construct a subset containing 1428 images.

Each image is also cropped into 32632 pixels and reshaped to a

1024-dimensional vector.

The Reuter corpus [17] contains 21578 documents which

compose of 135 categories. We discard those documents belonging

to multiple categories and the obtained dataset contains 8293

documents in 65 categories. The TDT2 corpus [18] consists of

11201 on-topic documents which are categorized into 96 groups.

We remove the documents appearing in two or more categories

and obtain 9394 documents in 30 categories.
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A. Study of Efficiency
In this section, we evaluate the efficiency of L-FGD for solving

GNMF by comparing it with MUR [9], FGD [9] and MFGD

[10]. The sizes of the data matrices for ORL and PIE datasets are

40061024 and 142861024, respectively. The subspace dimen-

sionality is set to 50 and 100 to study the scalability of L-FGD. The

tradeoff parameter l is set to 0.001 and the number of nearest

neighbors is set to 5. Figures 3 and 4 present the iteration numbers

and time cost of the four algorithms on the ORL and PIE datasets,

respectively.

Figures 3 and 4 show that L-FGD spends the least CPU time

among all GNMF solvers to reach the same objective value. The

number of iterations of L-FGD is almost the same with MFGD,

but L-FGD greatly reduces the time of calculating the inverse

Hessian matrix in MFGD. Although L-FGD searches multiple

step sizes in each iteration round like MFGD, its total CPU time is

less than that of FGD. Since the step size of MUR equals 1, its

time cost is the highest.

The GNMF (2) has two essential parameters, including the

number of nearest neighbors k and the tradeoff parameter l. The

latter has great effect on the speed of convergence. Figure 5 shows

the performance of algorithms on ORL and PIE respectively when

l is searched on the grid {0.001, 0.01, 0.1, 1, 10, 100}. It shows

that L-FGD costs less CPU time than MUR, FGD, and MFGD in

most cases on the ORL dataset and converges most rapidly on the

PIE dataset.

In order to validate the proposed L-FGD algorithm on medium

scale datasets, we compare it with other GNMF solvers, i.e.,

MUR, FGD, and MFGD, on two document corpora including

Reuters and TDT2. The dimensionalities of Reuters and TDT2

are 8293618933 and 9394636771, respectively. We select the first

15000 columns of TDT2 matrix for our evaluation due to the

memory limit of our test platform. The subspace dimensionality is

respectively set to 100 and 500 to study the scalability of L-FGD.

The tradeoff parameter l is set to 0.001 and the number of nearest

neighbors is set to 5. Figures 6 and 7 present the objective values

versus iteration numbers and CPU time of L-FGD, MUR, FGD,

and MFGD on both Reuters and TDT2 datasets, respectively.

They depict that the proposed L-FGD algorithm converges much

faster than MUR, FGD, and MFGD on both Reuters and TDT2

datasets.

In summary, L-FGD optimizes GNMF with quite light

computational burden and rather limited memory cost, and thus

makes it possible to extend GNMF to various practical problems

such as supervised learning [21][22] and tensor factorization

[23][24] on medium scale datasets.

B. Study of Clustering Performance
In this section, we test the effectiveness of L-FGD for solving

GNMF by comparing its clustering performance with those of

MUR, FGD and MFGD. We randomly selected K class samples

from the ORL and PIE datasets to perform K-means on the results

of GNMF to obtain both the clustering accuracy and normalized

mutual information. The cluster number K varies from 2 to 10. For

each K, 20 tests run on each randomly chosen cluster to avoid the

impact of randomness. Table 4 and Table 5 show the mean and

standard error of the accuracy and normalized mutual information

on the ORL and PIE dataset, respectively.

Tables 4 and 5 show that the four GNMF solvers have nearly

the same normalized mutual information and accuracy whatever

the cluster number K is. In summary, the proposed L-FGD

method accelerates MFGD while keeping the clustering perfor-

mance of GNMF.

Conclusions

Motivated by L-BFGS, this paper presents a new method L-

FGD to accelerate the MFGD algorithm for GNMF. Since the

memory cost of MFGD storing the Hessian matrix is high, and

much time is taken to calculate its inverse in the used multi-

variable Newton method, it is both memory-consuming and time-

consuming. L-FGD needs nearly the same iteration rounds as

MFGD before convergence but greatly reduces the time costs

needed by each iteration round. Experiment results show that L-

FGD converges much more rapidly than MFGD in terms of CPU

time and retains the effectiveness of the solution obtained for

GNMF.
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