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Enhancement of Surgical Training Practice

with the Spring Tensor Heuristic Model
Christopher Chiu and Zenon Chaczko

Abstract—The enhancement of surgical simulation tools is an
important research study, to assist in the assessment and feedback
of medical training practice. In this research, the Spring Tensor
Model (STEM) has been used for laparoscopic end-effector
navigation through obstacles and high-risk areas. The modelling
of the surgical trainer as part of the laparoscopic simulator
seeks to emulate the physical environment as a virtualised
representation in the integrated infrastructure. Combining sensor
network framework paradigms to a surgical knowledge-based
construct demonstrates how STEM can enhance medical practice.
The architectural hybridisation of the training framework has
enabled the adaptation of STEM modelling techniques for a sim-
ulated laparoscopic training methodology. The primary benefit
of the architecture is that this integration strategy has resulted
in a seamless transition of the heuristic framework to be applied
to surgical training.

Keywords—laparoscopic surgical training, spring tensor model,
modelling and simulation systems

I. INTRODUCTION

THE development of a distributed sensor framework as-

sists in the design of enhanced heuristic approaches to aid

in medical training, without limiting the functionality of the

surgical simulator tool. To achieve the design requirements, the

prototype needs to incorporate the STEM heuristic to assist the

supervisor of the surgical knowledge-based environment. The

surgical knowledge-based framework includes the integration

strategy and training information space, ensuring the system

remains consistent with its primary responsibility to train

surgeons on how to use laparoscopic tools effectively.

Autonomous training systems are examined by Rozen-

blit [1] as a means to provide efficient navigation and control

in laparoscopic surgical scenarios. A particular concern is

that the control strategies necessary to assess accuracy and

performance [2] cannot be solved using traditional Artificial-

Intelligence techniques. Given the progression of technological

advances in wireless sensor technologies [3], [4], a distributed

control approach using sensors combined with surgical training

parameters for path coordination and neural networks for

obstacle avoidance can be incorporated within the embedded

system for monitoring and control. Thus, a multi-paradigm

approach is employed to monitor the environmental surrounds

of the end effector, while control aspects assist in surgical

procedures and trajectory planning [5]. The use of a unified

middleware framework to implement the controller function-

ality enables a uniform approach to coordinate the surgeon’s
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activities; as well as provide localised awareness of obstacles

in the vicinity of a regional zone [2].

As the end-effector is navigated to its desired destination,

real-time feedback of obstacles enables the STEM heuristic to

guide the trainee in mapping the global terrain for achieving

the medical procedure [6]. This distributed approach to obtain

a complete environmental map of the sensor’s surroundings,

provides redundancy in the situation where vital organs are po-

sitioned, or in the instance of different physiological contexts

for a particular operation [7]. The research conducted by the

University of Arizona [8] shows the growing concern about

medical risks resulting from manual fatigue due to a lack of

practice prior to new operational procedures being undertaken.

The research by Feng et al. [8] states the initiative of

medical training systems to indicate the level of risk when

conducting different surgical operations. The common types of

errors in operations include miscounting of medical operation

inventory, incorrectly identified procedures taking place and

documentation errors. In another similar study conducted by

Chuan et al. [9], the authors highlight the concerns of medical

training procedures in multi-disciplinary health institutions

in the United States. In this work, the focus is to develop

a heuristic modelling approach that can reduce the rate of error

by trainee surgeons, by highlighting the sensory factors that

enhance health diagnosis concerns and provide rectification at

the earliest opportunity.

The research from Feng and Chuan demonstrate that surgi-

cal training errors can occur during the operational procedure,

with the effects resulting in life-threatening outcomes if the

error is not detected at an early stage. Based upon the above

discussion, the conclusion is that environmental perception

can optimise the training process by augmenting the surgical

process. The aim is to reduce the number of training errors

introduced, ensuring that trainee surgeons perceive the vital

statistics necessary to observe the quality of the procedure

that they are conducting.

II. SURGICAL TRAINING TOOLS WITHIN HEURISTIC

MODEL

The actor-based paradigm as elaborated by the works of

Georgeff et al. [10] has been employed to incorporate the

rule-sets for the surgical training path manoeuvres, and tensor-

analysis heuristics for obstacle avoidance [6]. In this system

design, each software actor is associated with the sensors

incorporated into the laparoscopic effector, and the motor

controller mechanisms of the robotic effector when the surgical

operation is conducted in a remote location. A core actor will
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represent the effector, such that a hierarchical structure of actor

responsibilities exists within the medical training setup.

A. Characteristics of Surgical Training Tools

The actor-based characteristics defined in the model are

elaborated as follows [4]:

• Central Gateway: The aggregation of statistical data

from all medical sensors in a predefined region, and

coordinate scheduled activities by the administrator or

coordinator user:

– Health and Vital Life-sign Monitoring: Health mon-

itoring data is collected from all sensors embedded

in the laparoscopic effector, along with vital life-

signs of the patient imported from external data

sources; such that it assists in forecasting potential

health complications arising from a specific medical

procedure that would affect trajectory path planning.

– Obstacle Mapping: Obstacle data accumulated from

the end effector can be geo-tagged in a global map,

thus allowing for the new mapping of undefined

obstacles or refreshing existing obstacle maps for

future medical procedures.

• Surgical End-Effector: The incorporation of various

sensor data via a multi-modal approach [3], [11], com-

municating with neighbouring sensors in a peer-to-peer

fashion, and centralising gateway exchanges for collabo-

rative data exchange:

– Blood Pressure and Body Temperature: The moni-

toring of vital life-signs, along with additional data

such as electrocardiogram measurements, will mon-

itor localised health conditions and predict patient

health stability throughout the medical operation.

– Triangulation Positioning: Sensors embedded with

gyroscopic sensors provide a geographical reference

point for accurate positioning of sensors relative to

the patient’s body; with the end-effectors incorporat-

ing static gyroscopes as designated anchor nodes.

– Ultrasonic and Infrared Sensors: For close-

proximity obstacle detection so that pre-emptive path

navigation can be established; additionally sensors

can incorporate digital video capture with embedded

machine vision algorithms for enhanced obstacle

recognition.

Harnessing the surgical end-effector control dynamics as

elaborated by the works of Chaczko et al [4], [5], the purpose

is to examine the coordination of multiple craft irrespective of

the medical health domain. The coordination and control of

autonomous systems have its origins in autonomous robotic

control [10], with the customisation in place to account for

end-effector kinematic parameters. The main study of investi-

gation is to determine what optimum method can be used to

augment surgical training feedback in uncertain conditions.

B. Ensuring Medical Diagnosis Optimisation

The incorrect identification of obstacles or critical regions

can lead to surgical errors and have life-threatening conse-

quences [8]. This results from the misinterpretation of the

procedure being conducted by hospital or ancillary staff. Thus,

improper diagnosis can lead to the improper treatment of drugs

supplied to a patient, or the wrong drug dosage as a result of

an absence of required drug. For these reasons, the detection

of defective medical diagnosis is critical.

1) Obstacle Recognition

The medical procedure needs to establish the potential

obstacles or regions of interest before the operation takes

place. The categorisation of potential obstacles by Chuan,

Rozenblit et al. [9] is listed in the criteria below:

• Obstacle Geometry: The dimensions and shape of the

obstacle can determine the criticality of the object during

an operation. This means that while a smaller obstacle

can be ignored, larger obstacles will result in a rerouted

trajectory.

• Threshold Parameter Breaches: In case of breaching

technical thresholds or parameters, the system must

gracefully handle failure in such a way to minimise the

occurrence of cascading failures during the operational

procedure.

• Technical Defects: The operation must always ensure that

all equipment is maintained to the highest quality. How-

ever, defects in the tensile strength and robustness of the

end-effector can result in equipment failure. Therefore,

the system must be able to detect minor deviations in

performance that could indicate greater points of failure.

• Criticality of Region: Criticality of region provides an

identity to distinguish zone of interest from the general

surgical operation. This is important to ensure that only

the required medical operation is conducted for the ex-

press purpose of treatment and operative care.

• Obstacle Identification: Each obstacle is uniquely iden-

tifiable to the end-effector depending on the operation

performed. Impairment of the identification process can

lead to errors in classifying obstacles.

• Obstacle Recognition: The obstacles throughout a proce-

dure may vary depending upon the stage of operation. As

an example, a blood vessel for a minor appendage must be

distinguished from a major artery. Hence, it is important

to recognise obstacles at an early stage throughout the

medical procedure.

2) Surgical Operation Concerns

The surgical operation concerns identified from this research

perspective include [1], [8]:

• Procedural Similarity: Similarity of procedures in terms

of operational risk between medical domains, such as the

entry point of a procedure being similar with one another;

• Equipment Usage: Resemblance of equipment and tools

when operations are conducted in a medical scenario;

• Equipment Identification: Counting and identification of

all medical tools used for the procedure, during and after

the medical operation is completed; and

• System Quality: Ensuring all tools are accounted in terms

of quality, with all contaminated equipment inspected,

tested and sterilised before reuse.
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Referring to the abovementioned information leads to de-

duction that during an operational procedure, the risks associ-

ated with surgical operations can be addressed by augmenting

the perception of the surgeon to highlight potential defects or

risks throughout the medical task. The authors propose the

use of the Spring Tensor analysis method to address these

problems related with surgical training for global perception

and awareness.

III. DEVELOPMENT METHODOLOGY OF THE STEM

MODEL

A. Context of STEM with Surgical Training Dynamics

The method to determine a globalized trajectory mapping

method has been inspired by protein fluctuation dynamics. As

discussed in depth by Lin and Song [6], the premise of the

Spring Tensor Model (STEM) is to determine conformational

changes in proteins using second-order partial derivatives as

Hessians. Conformational change is the transition of macro-

molecular structures in proteins as a result in a change of

acidity, temperature and voltages.

The spring tensor model is an enhancement of anisotropic

modelling and Gaussian modelling methods, as while the

former determines fluctuations of an atom’s direction, the

latter is better at determining the prediction of magnitudes

of direction [6]. Thus by combining the two methodologies,

the spring tensor model can be applied to a coordinated end-

effector system as follows:

• Anisotropic Modelling: The determination of confor-

mational variation or fluctuation in direction between

elements.

– Adaptation: This is suitable for determining how the

interactions between neighbouring end-effectors will

result in the degree of directional fluctuation. The

variation of potential direction will indicate what

possible directions a sensor can travel if it is in

proximity with a neighbouring sensor.

– Interpretation: Smaller anisotropic values indicate

a smaller potential to alter the direction, while larger

values indicate a larger potential to alter the direc-

tion.

• Gaussian Modelling: The determination of conforma-

tional variation or fluctuation in magnitude between ele-

ments.

– Adaptation: This is appropriate to ascertain how

interactions between end-effectors will result in the

magnitude or total range of the fluctuation. The vari-

ation of potential magnitude indicates the maximum

range the sensor can travel towards.

– Interpretation: Smaller magnitudes values indicate

a smaller potential to alter the distance, while larger

magnitudes indicate a larger potential to alter the

distance of the sensor.

In the application of the STEM Model by Lin and Song [6],

the Go-like potential [12] is considered to take non-native and

native conformations as the injected data; for this instance

these values are the difference in the end-effector’s Cartesian

TABLE I

ADAPTATION OF STEM MODEL TO SURGICAL TRAINING

Hessian Term Adaptation to Surgical Context

Radius of

Connectivity∑

Bonds

V1(r, r0)

• Determined by the sum of the first term, V1.
This value resolves the magnitude of change

between neighbouring objects in space.
• End effects between neighbouring objects is

observed in free space. An example is how the
impact of one object results in kinetic energy

Bond Angle∑

Angles

V2(θ, θ0)

• Determined by the sum of the second term, V2.
This value is used to calculate the direction of

change between neighbouring objects.
• The angular displacement is the impact of

change between objects is referred to the bond
angle.

Torsional

Interaction∑

Diheadral

V3(ϕ,ϕ0)

• Determined by the sum of the third term, V3.

This value finds the forces of change between
neighbouring objects in the contextual space.

• The impact of neighbouring objects will result
in torsional interaction, which is influenced by

the radius and bond angle changes.

Non-Local /

Global

Interactions∑

i<j−3

V4(rij , r0,ij)

• Determined by the sum of the final term, V4.
This term is of interest in this work, as it

determines the forces of change between non-
neighbouring objects.

• This value is important to the research as it
concerns how non-neighbouring objects can

impact the relations of all objects connected
in a shared field.

• The interpretation of these effects depending

on the medical context and domain.

coordinates between time n and time n+ 1. These terms are

divided into four terms as elaborated in Tab. I.

The unique value of epsilon and Taylor expansion param-

eters suitable for end-effector surgical contexts is obtained

through experimental observation of the surgical sensors. In

addition to their interaction in the physical environment, it

is important to determine the thresholds of the end-effector’s

direction and magnitude to make a complex manoeuvre under

various conditions, such as when a critical artery must be

avoided to prevent medical complications during complex

procedures. The minimisation of risk is an important factor

in the success of the operation, once post-operative care and

treatment is considered.

It is noted that there is no fixed parameter values that

can be used for all end-effector technologies and devices,

although a close approximation can be made for classes

or category types of end-effectors that is sufficient for the

majority of results. As an example of this property, a micro-

incision end-effector will have a different operational action

compared to a coarse-scale incision end-effector, due to their

differentiation in size, weight and operational thresholds for

each end-effector.

The surgical training environment by its nature will need to

perform complex maneuvering tasks, due in part to the surgical
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Fig. 1. Local vs. global context in free space [3].

operations that can be performed as a result in the advances

in laparoscopic surgery [1], [8]. As a direct consequence of

these medical advances, heuristic models need to reflect that

the surgeon will be performing in more dynamic, unexpected

environments with increasing complexity. The STEM heuristic

model provides a method to visualize how local effects in the

environment can impact on the global operational model.

The reason that these effects matter is because the expertise

of the surgeon is his or her ability to navigate the end effector

to the destination point, so that they can perform the operation

with skill and expertise [1]. Operations vary in complexity,

with some obstacles or critical zones being unavoidable, while

other concerns are of lesser importance.

To provide a contextual perspective of critical zones, the

skill of a laparoscopic surgeon is not just understanding how

to use the end-effector in free space, but also his or her

skill to recognize different surgical contexts and perform

a maneuver based upon the operation being performed. As an

example, a heart by-pass operation will involve more critical

zones of risk compared to an appendix operation, due to

a higher number of critical blood vessels and veins. Therefore,

an optimum balance must be made between achieving an

optimum end-effector trajectory, while simplifying the number

of maneuvers made by the surgical operator.

The research exercise is to evaluate how sensor network

heuristics can be applied to a laparoscopic surgical train-

ing platform, so that the operation is performed effectively

and efficiently. The training environment must consider the

importance of the end-effector sensing its surroundings and

neighboring environment, so that auditing and feedback can

take place. Feedback is essential for post-operational review

and trajectory mapping analysis.

Trajectory mapping for surgical operations is an important

task in training surgeons, as the simpler the maneuver, the risk

of error made by the surgical trainee is reduced. As shown in

Fig. 1 (Above) traditional trajectory mapping methods rely on

Fig. 2. Incorporation of sensors within the surgical training instrumenta-
tion [5].

local perception to maneuver around its neighbors, such as

neural networks.

Such a trajectory path places emphasis on intelligence at

the source, without realizing the bigger picture: that the path

can be potentially complex and meandering. The environment

is considered as a global perception, by taking a sensor-

network approach to the solution as shown in Fig. 1 (Below).

This means that the neighboring environment is treated as an

interconnected environment, such that the end-effector is not

treated in isolation. Rather, the end-effector’s movements have

a direct and consequential impact to the environment around

it. As an example, while damaging a small vein will have

an inconsequential impact to the success of the operation,

severing a main artery will result in major intervention by

the surgical team.

B. Development of the STEM Heuristic Platform

The development of the STEM model for a Sensor-Actor

network enabled laparoscopic surgical training tool assumes

the consideration that includes maintaining an environment

suitable for stable operational procedures. Thus, the training

tools need to be verified in terms of their operational procedure

or task prior to the surgical task taking place. As shown in

Fig. 2, the system architecture needs to encapsulate the sensor

network incorporated within the end-effector as the virtual

surgical construct.

This ensures that the Vision System incorporated in the end-

effector can be unified as part of the training exercises from

the effector’s Point of View (POV), so that the overall system

can be quality controlled throughout the medical procedure.

The synchronised recording of the procedure along with the

medical sensory feedback is essential to provide real-time

interactivity to the surgical trainee, so that they can enhance

their skill and expertise in future training operations.

The machine vision for recording the medical procedure

uses the existing Charge Coupled Device (CCD) camera

built into the end-effector. The two-dimensional vision of the

procedure uses a predefined sample template to sample the

scale and variation of the operational procedure taking place,

with identification of obstacles being relayed into the STEM

model.
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TABLE II

PROCESSING APPROACH AND EXPERIMENTAL IMPACTS ON THE STEM
MODEL

Processing

Approach Impact on the Experimental Model

Direct

Interpretation
Direct interpretation provides an injection of the raw
dataset into the STEM heuristic model:

• The first evaluation of the data structure con-

siders the direct the STEM model, with the
analysis of results being provided to the end

user.
• The direct instance considers the data structure

in its original form without any transforma-
tions or modifications of any kind. This allows

the heuristic to be evaluated purely on its
predictive capability.

Indirect

Transformation
Indirect transformation means that the data is pro-

cessed according to existing geometric or other pre-
defined rules, before it is processed by the STEM

heuristic model as follows:

• The indirect approach incorporates a pre-
processing stage and a main processing stage.

The raw data set is optimised according to an
objective function within the Particle Swarm

Optimisation (PSO) heuristic.
• After the population is checked with the ac-

cepted fitness level, further manipulation of
the data structure is halted. At this point, the

transformed data structure is injected to the
STEM model for final processing and analysis,
with the results shown to the end user.

The Spring Tensor model considers all sensory devices

as a coordinated network that is bound together by their

connectivity [6], [11]. In STEM, the principle of connectivity

is applied as a field of interconnected “springs”, where the

effects of one sensor result in the effect throughout the entire

network structure. The process of optimising the STEM model

depends upon the input parameters fed into the model, as an

optimisation procedure to ensure that the results match against

the desired level of fitness.

The structure of the data affects the validity and quality

of the STEM results, with the combination of data structure

optimisation techniques to improve classical global perception

by reducing the overall computational complexity [5]. The

use of STEM provides an optimisation tool to process large

amounts of sensory information, as to determine the effects

of change when the sensor network structure is impacted by

localised changes in the surgical environment.

In Fig. 3, the process starts with initialisation of the raw data

sets of obstacle positions and sensor node localisations. The

experimental platform considers two main processing models,

direct and indirect with the impacts on the experimental model

as elaborated in Tab. II.

In this process, the STEM model processes the sensory and

obstacle information as a unified instructional base, where both

sensory data and obstacle data is handled equally in terms of

data processing and priority. In order to reduce computational

processing requirements, thresholds are established to display

only significant changes in magnitude and direction above

Fig. 3. Flow diagram for applying STEM to the surgical training scenario [3].

a pre-defined threshold. The current threshold is established

to display all results within 3 Standard Deviations of the

mean threshold result, or 99.7% of the result. The threshold

parameters are customisable in the experimental model, and

can be modified depending on the context of the evaluated

medical domain.

The pre-processing stages in Fig. 3 are relevant when a data

transformation methodology is applied to the STEM model.

The premise of the experiment is to evaluate the impact of

the data model when the Spring Tensor model is adopted to

predict the magnitude and fluctuation of change in the medical

training environment. The main source of laparoscopic training

data is obtained from Chuan et al. [9].

IV. RESULTS OF EXPERIMENTAL STEM HEURISTIC

The experiments were executed to determine the accuracy

of the STEM model to predict the magnitude and direction of

change for a simulated laparoscopic surgical procedure. The

experimental model utilised the Virtual-Assisted Simulation

Training (VAST) datasets obtained from the University of

Arizona [8], with the data structures injected into the STEM

source code adopted from Lin and Song [6]. The heuristic

analysis was developed in MATHWORKS MATLAB 2012a,

with Fig. 4 showing a sample surface plot of the 4th Hessian

of non-local contacts for a 60-element dataset. The maximum

value indicates the highest magnitude of change and direction

occurring for the 38th element in the input dataset.

Figure 5 shows the representation of the trajectory of change

and magnitude in 3D space as directional arrows. The direction

is indicated in the arrowhead, with the magnitude shown by

the thickness and darkness of the arrow. Greater thickness

and darkness indicate a stronger magnitude relative to each

element being analysed in the STEM model. The user front-

end environment depicts the direction of each element’s long-

term Hessian value in an isometric perspective within the

sensor medical training environment.

The simulation environment will be extended in future

to depict a more realistic surgical scenario, including the

overlay of the critical organs and blood vessels that the

surgeon will encounter in a real-life scenario. To handle the

increased complexity for graphical modelling and simulation,

a staged migration of the heuristic model to the VAST re-

source is necessary to facilitate further experimentation and
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Fig. 4. Hessian surface plot of non-Local / global interactions (Hessian V4).

Fig. 5. Interpretation of Hessian plots as Cartesian points in 3D space.

analysis. The STEM heuristic has been designed so that it

is programmatically portable, and it is not dependent upon

any proprietary libraries or functions that will inhibit its use

beyond the MATLAB development environment.

Furthermore, the surgical environment is designed to be

progressively built upon the expertise of the surgical trainee, so

that the heuristic analysis displayed to the trainers is suitable

for the audience. As an example, while beginner surgeons

will need to familiarise themselves with the equipment and

learn how to navigate in free space, more advanced operators

will learn navigational strategies and manoeuvres to operate

in a safe manner. The STEM heuristic model can also be

augmented in a similar manner. While the projection operation

will be shown to all operators during the training exercise,

a beginner operator will see just the major projections. Mean-

while, a more advanced operator will be able to see the minor

projections as well to assist in training exercises that require

greater precision.

The experimental approach conducted is categorised accord-

ing into the dataset processing method used. This includes

pseudo-randomised data, grid-lattice structured data and the

Particle Swarm Optimisation approach as described in Tab. III.

As observed in Fig. 6, the purpose of the experiment is

to measure the total number of projections made using the

Tensor Analysis method. The results show that as the number

of agents increase in the environment, so do the number of

tensor projections. That is expected because the increase in

population density will result in a larger number of interactions

between sensors within the laparoscopic end effector. How-

ever, it is important to take note of the projection frequencies

between random data sets: grid lattice structures having an

average 15% lower difference of projections compared to

random data, and PSO with an average 18% difference of

projections compared to random data. As the purpose of

utilising the STEM heuristic is to minimise the number of

interactions of end-effector sensory devices interacting with

other sensory devices, the results demonstrate that a PSO

method is suitable to extend the heuristic process further for

environmental global awareness.

The current results show that a combined heuristic mod-

elling approach provides enhanced projection capability, com-

pared to a single heuristic approach. Further experimentation

is necessary to determine the performance effects of a multi-

heuristic strategy, and its ability to make projection operations

in a near real-time manner. The suitability for a heuristic model

to be applicable in medical contexts depends on its ability

to handle continuous demands from the end-user; an ideal

heuristic should be transparent to the operator and should not

require external user intervention. In life-critical environments,

real-time systems should have an extremely low failure rate,

and rely on redundancy measures to minimise the potential of

complete system failure.

Particle swarming in robotic contexts is based on the prin-

ciple that the autonomous actuators all move in a particular

direction, but for the context of surgical trajectory control

this is not the desired behaviour. The current experimental

model demonstrates how particle swarming can assist in global

perception of the laparoscopic end-effector for a surgical

scenario. It is noted that a process needs to be developed

so that the swarming is executed as required; so an end-

effector can execute a navigational path that is obscured by

neighbouring obstacles. Further work needs to be developed

to build a model that can balance the needs of the individual

end-effector, while harnessing the cooperative capability of the

virtual training environment using different metadata models.
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TABLE III

DATA MODELS USED FOR EXPERIMENTAL PLATFORM

Data
structure Adaptation to the experimental platform

Random Data

Generation
Data is directly injected into the STEM model with no transformational process:

• The data is randomly generated using a Pseudo-Random algorithm (Mersenne- twister method) as a control baseline to

evaluate the other dataset layouts.
• The random data is subject to the limits of variation among the total population size using a predetermined threshold value.

• Random data provides the worst-case scenario, as the structure is not defined by any rules that govern its configuration.
• The use of the structure is an experimental control to determine the validity of alternate data structures.

Grid-Lattice

Layout
Data is indirectly transformed according to an equidistant grid lattice formation before being injected into the model:

• The data is generated according to a grid lattice plane, with each element equidistant from each other.
• This data structure is used to evaluate how radial and linear trajectories can impact on geometrically layered structures, and

its network impact resulting from geographically spread arrangements.
• Equidistance is based on the principle of geometric distribution, primarily on the physical plane of dimensionality.
• The free space of the experiment is defined in three-dimensions, in the X, Y and Z plane. The operation takes place according

to a defined reference position, designated as the origin of the operational procedure.

Particle

Swarm

Optimisation

Data is indirectly transformed according to Particle Swarm Optimisation heuristics before being injected into the model:

• The data is subject to Particle Swarm Optimisation (PSO) as described by the work of Clerc [13], with random, grid- lattice
datasets and future data sources being processed by the PSO algorithm incorporated into the STEM model.

• The optimisation of the data to obtain a global minimum or maximum value is limited by the total number of iterations that
can be executed, the objection function used and the thresholds values for inertia and correction factors.

• The purpose of utilising PSO is its ability to handle dimensions beyond the physical plane. This means that the metadata is
not confined to the X, Y and Z plane.

• To enhance the experimental model, additional data metrics are simulated in the experiment:

o The criticality of the obstacle encounter as a metric from 0 to 1 (highest being of most risk.)
o The signal strength of the wireless sensor from 0 to 100 (based on Signal to Noise ratio).

o The precision of the end-effector being utilised from 0 to 1. A higher precision tool will have a greater threshold to
perform in greater zones of risk, while a lower precision tool will have a reduced threshold to risk.

Fig. 6. Results of STEM analysis with projection frequency of different data
types.

V. CONCLUSION

The incorporation of the STEM heuristic in a surgical

training construct aims to assist the surgeon in determining the

local impacts, which can cause global issues in the environ-

mental field. A balance must be maintained between global op-

timality and local environmental awareness in the development

of a surgical training system, by capturing the metric values

necessary for projecting the magnitude and direction of change

in the network. Using a multi-tiered approach to heuristics

achieves the desire of achieving cooperative behaviour from

a global context. This is because complete visibility of the

network structure is maintained throughout the optimisation

and coordination process, regardless of the trajectory path

established in the sensory field. Although further research

work is required to obtain parameter values that are suitable for

analysing laparoscopic operations, the current results from the

experimental prototype show potential in adopting the STEM

heuristic for surgical training environments.
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