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Abstract To solve the view visibility problem and keep
the observed object in the field of view (FOV) during
the visual servoing, a depth adaptive zooming visual
servoing strategy for a manipulator robot with a
zooming camera is proposed. Firstly, a zoom control
mechanism is introduced into the robot visual servoing
system. It can dynamically adjust the camera’s field of
view to keep all the feature points on the object in the
field of view of the camera and get high object local
resolution at the end of visual servoing. Secondly, an
invariant visual servoing method is employed to
control the robot to the desired position under the
changing intrinsic parameters of the camera. Finally, a
nonlinear depth adaptive estimation scheme in the
invariant space using Lyapunov stability theory is
proposed to estimate adaptively the depth of the image
features on the object. Three kinds of robot 4DOF
visual experiments  are
conducted. The simulation experiment results show
that the proposed approach has higher positioning
precision.

positioning  simulation

Visual
Lyapunov

Keywords Zooming Control, Invariant
Servoing, Depth Adaptive Estimation,

Stability Theory

www.intechopen.com

1. Introduction

The introduction of visual servoing techniques would
increase the diversity and extend the application fields of a
robot. The aim of robot visual servoing is to control the
relative pose of the robot’s end-effector, with respect to the
manipulated object, using real-time visual information
captured from a camera, which is either fixed in the robot
work space (eye-on-hand configuration) or mounted at the
robot’s end-effector (eye-in-hand configuration). In the last
few years, many robot visual servoing methods have been
proposed to solve the problem of robot positioning and
tracking with respect to the manipulated object in the
dynamic and unknown environment. These methods can
be roughly classified into three types according to the
definition of the system error function: position-based
visual servoing (PBVS), image-based visual servoing
(IBVS), hybrid visual servoing (HVS or 2.5D VS). Each kind
of visual servoing method has its own pros and cons. A
comprehensive review paper about robot visual servoing
can be found in [1]

The basic requirement of these visual servoing algorithms
is to keep the observed object in the field of view of the
camera during the visual servoing (also known as the
visibility problem). When the robot initial position is far
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from the desired position, the object could leave the
camera field of view during the visual servoing. This will
cause the visual servoing task to fail and limit its further
application [>31. There are two kinds of common solutions
to this view visibility problem: trajectory planning and
active vision techniques such as active zoom control. The
main idea of trajectory planning is to plan the trajectories
of a set of features points on the object in the image space
and then to track these trajectories. At present, many
trajectory planning methods have been proposed. In
general these methods would be roughly classified into
four types: image space-based planning P, global path
planning °l, optimization-based planning [/l and potential
field-based planning 8. Tracking a planned trajectory can
keep the change of the robot pose in a small range. Thus,
it would be possible to keep the object in the camera field
of view by enforcing such constraints on the trajectories [l
and the visibility problem could be solved. However, this
kind of method is sensitive to the change of the camera
intrinsic parameters. A comprehensive review paper
about trajectory planning can be found in [9].

Another solution is to combine the active vision
technique with the robot visual servoing system, e.g., an
active zoom control technique. The main idea of active
zooming could be described as follows:

e Zooming out when one of the interest points, which
are also called the features points on the object, is
close to leaving the image.

e Zooming in when the interest points are well centred
in the image, to get good resolution of the interesting
points.

It can be seen that active zoom control could not only
solve the view visibility problem, but also improve the
accuracy of the features extraction from the interest object
and the precision of the whole robot visual servoing
system 2. This has been widely used in the computer
vision field 1> 11, For example, Kumar et al. constructed a
stereo vision system through the two pant-tilt-zoom
(PTZ) cameras and localized a moving target precisely in
a complex and large environment ['l. If we combine the
active zooming idea with the robot visual servoing
method, we could solve the view visibility problem in
robot visual servoing and improve the accuracy of the
whole visual servoing system. However, it is difficult to
apply this active vision technique directly to traditional
visual servoing approaches because traditional visual
servoing approaches are based on a teaching-by-showing
technique. This means that we must first store the desired
image captured in the desired position and then control
the robot, starting at another position than the desired
position, where the current image coincides with the
desired image. In other words, traditional visual servoing
methods are “camera-dependent”. To solve this “camera-
dependency” problem, one good solution is to employ

Int J Adv Robotic Sy, 2013, Vol. 10, 120:2013

the invariant visual servoing (or intrinsic-free visual
servoing) method proposed in [12]. The key idea of
invariant visual servoing is to construct a system error
function using a projective invariant property. The error
function is invariant to the changes in camera intrinsic
parameters and only relevant to the relative position and
pose between camera and object. An image Jacobian
matrix in the error function describes the relationship
between the camera velocity and the image features error
in the invariant space. This invariant visual servoing
approach provides a good methodology for controlling the
robot with a zooming camera, but it cannot be used on a
planar object. In addition, it doesn’t consider the focus
length control problem. This means that we can control the
robot using a different focus length to the one used in the
learned stage, but we can’t control or change the focus
length during the visual servoing. In order to deal with this
problem, a zooming visual servoing method is proposed in
[13]. This method allows us to control the focus length
during the visual servoing by using a focus length control
strategy and then recover the focus length value
corresponding to the desired image at the end of the visual
servoing. In addition, this method can also solve the
planarity problem from the method proposed in [12].
However, the methods proposed in [12 and 13] do not take
into account depth estimation problems and estimate the
object depth at the very beginning of the visual servoing,
then keep it constant throughout. However, the image
Jacobian matrix depends on the depth parameter, which is
a time-varying parameter, so a constant depth estimation
value could only locally guarantee the convergence of the
method. In order to further improve the invariant visual
servoing method proposed in [12 and 13], we proposed a
nonlinear depth adaptive estimation algorithm using
Lyapunov stability theory in the invariant space. Some
depth estimation algorithms using Lyapunov stability
theory have been proposed in the past years '+ 1°I. These
estimation methods can work well in the case of the fixed
camera intrinsic parameters but can not be used in the
case of the variant camera intrinsic parameters. In this
paper we extend these depth estimation methods to
zooming visual servoing, where the camera intrinsic
parameter changes during the visual servoing and gives a
detailed derivation. Finally, we design a zooming visual
servoing strategy for a manipulator robot with a zooming
camera. Simulation results show that our approach has a
better convergence performance of the image error.

The remaining part of this paper is organized as follows.
The basic principle of the invariant visual servoing
method is briefly introduced in Section 2. The details of
our algorithm are described in Section 3, where we
propose an efficient depth adaptive zooming visual
servoing approach. Simulation results and analysis are
given in Section 4. Section 5 will conclude the paper by
discussing the proposed approach and suggest some
improvements for further research.
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2. Basic Principles of Invariant Visual Servoing

In this section, we briefly introduce the basic principles of
the invariant visual servoing method, related space
notations and a pin-hole imaging model.

2.1 Space Notations

The 3D points, with homogeneous coordinates
X; = (X, Y,,Z;,1)(i={1,2,..n}) are projected in the absolute
camera frame F to the points m:(i e{l,2,.n})e P?. These
points are projected in the current camera frame F to the
pointsm;(ie{l,2,..n}) e P2. Then according to the
projection model:

m, :Zi[R* ) (1)

1

where Z.is the positive depth and R* and t  are the
rotation and translation, respectively, between Fand F.

2.2 Camera Model

T
The image pointp= [u v 1] is given by a pinhole
camera in the current frame F . The relationship between
p and m can be written as:

P(ZK)=Km(Z)  pel(ZK) @)

where K is the camera intrinsic parameter matrix:

fk, —fk,(cot(0)) u,
K=| 0 fk, /sin(0) v, 3)
0 0 1

f is the focal length (in metres), k, and k, separately are
the magnifications in the 4 and Vv direction (in pixels/m),
u, and v, are the coordinates of the principle point (in
pixels) and O is the angle between t and v axes.

2.3 Basic Principle of the Invariant Visual Servoing

The main idea of the invariant visual servoing proposed in
[12] is to construct an error function, which is independent
of the changes in camera intrinsic parameters and 0 is only
dependent on the relative pose of the camera/robot, with
respect to an observed object on the invariant space. The
image Jacobian matrix in the error function describes the
relationship between the camera velocity and image
features error in the invariant space. Then the visual
servoing law can be designed by the error function.
Therefore, the construction of the invariant space and
image Jacobian matrix are two important elements for
invariant visual servoing.

2.3.1 Construction of the Invariant Space

The aim of the construction of the invariant space is to
keep the features points invariant to the camera intrinsic
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parameters. The whole construction process can be
divided into five steps as follows.

Step 1: to obtain the pixel coordinates of the target in the
desired frame.

Step 2: to chose three non-collinear 3D points x;, X5, X3
among the n non-coplanar points ¥;(i €{1,2,..n}),which
are visible on the observed object.

Step 3: to obtain the corresponding three normalized
projective points m,,m,, m,(unitm) in the current
frame and another three points m; , m;,m; (unit:m) in
the desired frame respectively.

Step 4: to compute the corresponding image pixel
coordinate Pi1, P,,P;and p;,p; ,p; respectively
according to the camera model defined in (2), as follows:

Q(Z,K) = KM(Z) )
Q((Z ,K)=KM (Z) ®)

*

whereM:[m1 m, m3],M*:[m* m; mJ
Q:[P1 P> P3], Q :[P1 P> st

Non-singular matrices Q and Q are called as invariant
spaces transformation matrices .

Image feature point p and p inthe original image space
can be converted into the invariant image feature point
and q* in the invariant space via invariant spaces

transformation matrix Q and Q" as follow
qZ)=Q'p=M"K'Km=M"m (6)
qZ)=Q"p =MK'K'm" =M "'m’ )

From the equations above we know that both q and q
do not depend on the camera intrinsic parameters, but are
only related to the camera position with respect to the
observed object and the 3D structure itself. Now we can
use the error in invariant space to control the camera’s
motion, even if the camera intrinsic parameters change
during the visual servoing.

2.3.2 Construction of the Image Jacobian Matrix in the
Invariant Space

Just like in the IBVS (image-based visual servoing)
approach, the camera is now controlled in the invariant
space. The derivative of the vector q is

q=J,v. (8)

]q is the (3x6) Jacobian matrix in the invariant space and
is similar to the image Jacobian matrix. After the
derivative of equation (6) we get:

. dQ*! 1.
L =——p. + .
4=y P Q™ p
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By plugging equation (6) into the above equation, we can
get:

. dqQ! 4. dQ™ 1.
q; = ?t p+Q7'p; = ?t Qq; +Q7'p; ©)
Since %Q:-Q" (il—Q, by plugging this into equation
t t
(9) we could obtain:
q1
P S _d£ _ O lan T+ . .
q;=Q (p at q;)=0 (p; [Pl P> P3J :21 ) (10)
3i

= Q7 (P, —qy;P; — diP2 —93:P3)

According to the IBVS we know the derivative of the
current image point isp, =
equation (10), we can obtain:

V.. By plugging this into

T4 =Q'(J—qu) — a2, —9q3J5)i=1.n (11)

where J, is the standard image Jacobian matrix.

f X XV X,
0 s S P4 SR ks R
2 Z, f £
Ji = f > i:1,2,...n
0 -—— Lo ¥ XN
Z, Z, f f
i=1..n 12)
Jgi can be written just as follows:
] —[q)(zzz.Z)q)]K O 1is12.n
qi vty Wil g 1 s
cdi 1, W Y
=14 % Zi =14
3 q. 3 u,
where, ¢, =Q™! 0 z&,l &,Zﬁ
1z % %4 |
| 0 0 0 ]
i 3 3., ) 3 )
wv; — Zuiviqji Zui 9~ V- Zviqji
=1 =1 =1
J o, &, 3 3
P, =0 \A _ZVi 9;i zuiviqji —WVv; Zuiq]‘i -
j=1 =1 j=1
0 0
[sing —coso 0 ]
fx,  fk,
1
FK)=| 0 — 0
fx,
0 0 1
L kUkV_
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2.3.3 Definition of the error function in the Invariant Space

The error function in the invariant space can be defined
as follows:

e =j;(s-s*) (13)

wheres=1(q,,q,,-..q,,) is 7 points of the observed object
coordinate vector in the invariant space and current
position and s = (ql*,q;,...qn*) is the coordinate vector
in the invariant space in the desired position of these
points. is the image Jacobian matrix in the invariant space
and j; is the pseudo-inverse of the estimated image
Jacobian matrix (3nx6). If the visual servoing law is:

u=-Ae (14)

where A is a positive scalar factor, the robot can be
driven back to the desired position only if s converges to
s", meaning that the end operator of the robot arrives in
the desired position.

3. Basic principle of the depth adaptive zooming visual
servoing

The invariant visual servoing approach described above
provides a good methodology to control the robot with a
zooming camera. In this section, we will bring the zoom
control and depth adaptive estimation into the invariant
visual servoing method and proposed a depth adaptive
zooming visual servoing method. The purpose of the
proposed method is to keep the observed object always
staying in the field of view of camera during the visual
servoing through change the camera focus length, and to
adaptively estimate the depth of the image feature points
on the object during the visual servoing.

3.1 The Basic Structure of the Depth Adaptive
Zooming Visual Servoing

The whole servoing structure diagram of the proposed
robot depth adaptive zooming visual servoing method
can be depicted in Fig. 1. The desired input p shows the
image feature points on the observed object with respect
to the camera in the desired position. The transformed
points s~ are the corresponding features in the invariant
image space, which are independent of the internal
camera parameters. Similarly, s are features in the
invariant image space of the same image feature points in
the current frame. The servoing law:
u=-Ae= —Aj;(s -s) can be calculated with the error in
the invariant image space. We could control the robot to
the goal position from the invariant space to the robot
motion space by this visual servoing law. The robot
visual positioning task will be accomplished once the
image features in the invariant space are consistent with
themselves at the desired position ['°l. The main aim of the

visual
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zooming control (see details in subsection 3.2) is to ensure
the interest object is lying in the field of view of the
camera during the visual servoing. The aim of the depth
estimation is to adaptively estimate the depth of the
image feature points on the object during the visual
servoing (see details in subsection 3.3).

desired i nage - >
invariant s
features P space

transforamtion
Q™

feature
extraction
invariant

desi red i nage I

transforamtion
(@’

adaptive depth
estimation

A
current
image feature current e
features extraction i nage
P {
control object

Figure 1. Structure diagram of depth adaptive zooming visual
servoing.

3.2 Zooming Control

The purpose of zooming control can be described as
follows:

During the robot visual positioning process, zooming out
when the object moves away from the camera (even out
of the field of view) and zooming in to produce an
expanding image of the interest object can achieve high
precision positioning -1, Note that the zooming control
can’t change the resolution of the image captured from
the camera, but can change the local resolution of the
interest object.

First, we define & as the distance from the nearest feature
point on the object to the border of the image plane.
0 =min(u,,v;,u, max — Vi), where u_ . and
Vonax are respectively the image dimensions in the 4
and Vv direction. We can control the zoom in order to
keep the nearest point to the image borders at a given
distance. The zooming areas in the image plane are

shown in Fig. 2.

-u;,V

If the object is in region 1, i.e., d is in section 1, in order
to improve the image resolution of the interest object, we
can enlarge the focal length. Zooming means

@ >0.
ot

0>0, ¢
If the object is in the dark grey area, i.e.,  isin region 2,

there is no zooming in this area which can keep all the
feature points in the view of the camera stably. That is
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ot

'm

=0.

in <0<0ay

If the object is in the light grey area, i.e.,, d is in region 3,
it means that the object will escape from the field of view
of the camera, so we should decrease zoom in this area to
obtain a sufficient field of view of the camera. The
corresponding mathematical expression can be written as

00

§5<5min<

0.

According to the different regions where the object is, we
can adopt the corresponding zooming control rules to
improve the image resolution on the premise of
guaranteeing all the features on the object stay in the field
of view of the camera.

region 1

region 3

Figure 2. Zooming areas.
3.3 Depth Adaptive Estimation

As the description in subsection 2.3 states, the visual
servoing law isu =-Ae = —/\j;(s -s') and J q is animage
Jacobian matrix with relation to the target depth, which is
a time-varying parameter. Depth estimation is a
challenging problem in computer vision and robotics.
Many studies have presented methods to estimate the
unknown depth distance in robot motion in the 3D
environment U4 5. However, these depth estimation
methods are only suitable for fixed camera intrinsic
parameters. In this paper, we extend these depth
estimation methods to zooming visual servoing, where
the camera intrinsic parameter changes during the visual
servoing. We propose a depth adaptive estimation
method in the invariant space. The basic steps of this
method can be described as follows:

Step 1: to transform the image features in the original
image space into the ones in the invariant space by using
(6) and (7).

Step 2: to choose a state function not only related to the

feature error, but also to the depth parameter.
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Step 3: to design a nonlinear depth adaptation scheme
according to Lyapunov stability and prove its rationality.
Next we will depict this depth adaptive estimation
method in the invariant space in detail.

We define the function of the whole state (§,&) as follows:
Tg (15)

where §=s-s  and the definitions of s and s are
described in subsection 2.3. The definition of the error
vector & iséz[él,...,énf, i=1,..n. Where § =¢,
the reciprocal of the target depth 51=1/ Z, and g, is the

estimated value of ¢; .

—-g,¢1is

In order to ensure system stability, we must address the
system satisfy Lyapounov theories.

Observing the matrix J q’ the depth has a proportional
relationship with the first three columns of the matrix.

By expanding equation (15), we can observe:

oo I on . - - 1.
V(S'E)=Ezi:1q1i2 + 3+ + 7812 (16)
1

The derivative of equation (16) is:

" n ~ ~ ~ ~ ~ ~ 1 ~
V=Zi:1(q1iqli +90i92i 9393 T 75@1)

1
=> 1 (@(Q 'O K) |, Vi +(Q Y FK) |, Vg
+35;(Q'OK) |, Vi +(Q 'Y FK)) |, Vi)
+q5(( Q_1¢K)|r3 Q_lq’F(K) s YR)

1 ,.x A
+—(&;&; — &6, — £,£,))
Y1

=3 (&(@(Q'CK) |, +3,((Q'CK)) I,
+45((Q'CK)) 5) Vi - j—)

+HQ 'Y FK)) |, Ve HQ P FK)) |, Vi
HQPYF) |, VR+Yi

1

(64-8£)

If we use the depth adjusting law:

& =7(QMCKIvV,)'q, - v,(Q(CKIv) e, (17)
Where, y,>0,7,>0,i=12,..,n,e, —& d* is called as
prediction error ,d, Q (C K)vpe,, i=1,2,..n.
&= |:£1, SE ] is the derlvatlve of the reciprocal of the
depth parameters and & = |:€1, 4E ] i=1,..n is the error
of the reciprocal of the depth parameters.
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So equation (17) can be simplified as follows:

2
&2 18)

. n .4 1 .. v,
V=> qJ Ve——¢&¢ ——=|Q
Zqu we Y1 Y1 H

where:

[ 3
Zqﬁ -1 0
=1

=1
3 3
C = 0 qui -1 = vy
j=1 j=1
| 0 0 0 ]
The camera velocity v, relative to the target, can be
describe as v, =| v, VRT:| , where

|:V1 v, v3] is the translation velocity vector of
the camera and Vg = [v4 A véJ
velocity vector of the camera.

is the rotation

A

If we define the vector ):7 =J ng e R®, equation (18) can be

reduced to:
G aaTh iz Lo, Yo _ el
V=A§] J 8- —& & =g, —-/\y (] ] )! y-f
Y1 Y1 Yl
A a2 2l 1P
<y o
Oy Y1
where Oy = max(jq) 6, = min(jq) and
T
¢,-[Jecxvifa, .. Jolckv [z, | -

We know thatV>0.If V<0 in a region then the system

with the adaptive estimation method is locally
asymptotically stable. If:
e e R (19

V) >0. The V is negative

where HEYH >
in the region:

kfr

m
2
UM

~112

5|}

R={5eQ, eeR“'
Yl

meaning that the state error § converges to the residual
£0y

— )
286,y AY1 Y,

As the unknown object depth, if the visual servoing law is
u=-Ae= —Aj;(s -s’), the adaptive
mechanism can guarantee that the states of its system are
uniformly bounded.

set B(S,

adjustment
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4. Simulation Results

In this section we build a robot depth adaptive zooming
visual servoing simulation model in a MATLAB
environment, based on Peter’s robotics toolbox 20 and
conduct three kinds of robot visual positioning
simulation experiments to validate the performance of the
proposed depth adaptive zooming visual servoing.

The first simulation experiment aims to demonstrate the
rationality of the whole structure with zooming control.
The second simulation involves plugging into the depth
adaptive method and is in contrast with the first
simulation, in order to validate the visual servoing
performance of the proposed approach. The third
simulation aims to demonstrate the validity of the
proposed approach in a different initial position.

4.1 Related Parameter Settings

The camera is in the eye-in-hand configuration. The
related parameters used in the simulation experiments
are as follows:

e the number of the feature points n=12

e coordinates of the principle point u,=256,v,=256
(in pixels)

e magnifications in the direction t and v k =20000,
k,=20000 (in pixels/m)

e angle between i and v axes” 6=90°

e initial focal length f;=0.015 (in meters)

e desired focal length f;=0.012 (in meters)

e coordinates of the 12 image points in the 3D space
with different depth points=

[0.5-0.52.01;0.9 0.22.04;-0.2-0.22;
0.9-0.52.01;0.9-0.92.01;0.5-0.9 2.01;
0.7-0.72.01; 0.5-0.2 2.04; 0.7 0 2.04;
02 022;02-022; -020.22],

e the initial camera pose

Tcamera_0=[0 0.0001 1 0.5;
-0.0001 1 -0.0001 -0.3;
-1 -0.0001 0 0.6;
0 0 0 1]

Suppose the robot move 700mm in the X-minus direction,
300mm in the Y direction, 100mm in the Z-minus
direction and take the rotation -0.3rad along the Z
direction. Then we get the goal position:

Tcamera_e= [0 0.0001 1 0.4;
-0.2956  0.9553 -0.0001 O;

-0.9553 -0.2956 0 -0.1;
0 0 0 1],

The visual servoing law used is u=-Ae= —Aj:l(s -s’)
where the control gainA=0.3 and the image Jacobiar
matrix J q can be computed by (11).

www.intechopen.com

We don’t consider the depth estimation in the first
simulation experiment, but consider the depth estimation,
with the depth adjusting gains y,=10*,y,=10" in the second
simulation.

4.2 Results and Discussion

4.2.1 Simulation experiment 1: robot zooming visual servoing
without depth estimation

In this simulation experiment, 12 image feature points on the
target object at the desired position and at the initial position
are obtained respectively. Then the robot moves from the
initial position to the desired position using zooming visual
servoing without depth estimation. The motion trajectory of
the 12 feature points in the image plane is shown in Fig. 3. At
the very beginning of the servoing, the focal length is 12mm
and there are four points outside of the field of view. The
camera zooms out in order to assure the interest object
points are all in view at the beginning of the servoing.
During the late servoing, zooming in improves the image
resolution and the final focus value is 17.3mm ( Fig. 5 (b)).
The simulation results show that the control method can
make the error of characteristic vectors in invariant space of
the target object zero (Fig. 5 (a)) .As a consequence, the
positioning error in directions X, Y and Z are
Xerror=1.66mm, Yerror=0.59mm, Zerror=6.44mm,
respectively. The rotation error converges to 0 (Fig. 4 (a) and
Fig. 4 (b)). So the robot can reach the desired position.

Visual servoing in invariant space 1

|
|
100 - - — - |
|
|
200 - — — ~ |
|
|
300 - — — - {l
|
|
400~ — — — {
|
| =
500 = = = - | T Gl e
o 100 200 300 400 500

(the green triangle points represent the initial position, the red asterisk
ones represent the desired position, the red circle ones represent the real
position after the servoing)

Figure 3. The image points trajectory (blue points) without depth
estimation.
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Figure 4. Visual positioning error without depth estimation; (a)
Translation error. (b) Rotation error around Z axes.
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Figure 5. Error in the invariant space and change of focal length
without depth estimation; (a) The total error in the invariant
space. (b) Focal length changes in visual servoing.

4.2.2 Simulation experiment 2: robot zooming visual servoing
with depth adaptive estimation

In this section, we conducted another robot 4DOF visual
positioning simulation experiment using zooming visual
servoing with a depth adaptive estimation method. The
experiment parameters used in this experiment are the
same as the ones used in the first simulation experiment.
The visual positioning results using zooming visual
servoing with a depth adaptive estimation are shown in
Fig. 6 - Fig. 8. The motion trajectory of the 12 feature
points in the image plane is shown in Fig. 6.

Visual servoing in invarant space 2

100
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300

400

500

0 10 200 30 400 500

(the green triangle points are at the initial position, the red asterisk ones
are at the desired image from the learning, the red circle ones are the
image points at the real position after the servoing)

Figure 6. The image points trajectory (blue points) with depth
estimation

The errors of the characteristic vectors in the invariant
space of the target object are zero (Fig. 8 (a)) and the focal
lengths finally converge to 17.1mm (Fig.8 (b)). The errors
along the X, Y and Z axes are Xerror=0.29mm,
Yerror=0.35mm and Zerror=2.59mm. The rotation errors
converge to 0 and are shown in Fig.7 (a) and Fig.7 (b)
respectively. The simulation results show that the
positioning error along the Z axis is smaller when depth

Int J Adv Robotic Sy, 2013, Vol. 10, 120:2013

estimation is considered in the zooming visual servoing.
The whole depth converge process is shown in Fig. 10.
Comparison results of the convergence performance of
the two zooming visual servoing methods are shown in
Fig. 9. It can be seen from the Fig. 9 that the zooming
visual servoing with a depth adaptive estimation method
has a better convergence performance.
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Figure 7. Visual positioning error with depth estimation
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Figure 8. Error in the invariant space and change of focal length
with depth estimation; (a) The total error in the invariant space;
(b) Focal length changes in visual servoing.
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Figure 10. Depth convergence curve

Error(mm Run time(s)
X Y Z (in MATLAB)
Simulati 1.66 059 | 644 22.84
onl
Simulati 0.29 035 | 2.59 21.82
on 2

Table 1. The translation convergence errors along X, Y, Z axes in
the two simulations experiments.

4.2.3 Simulation experiment 3: robot zooming visual servoing
with depth adaptive estimation in the different initial position.

In order to demonstrate the validity of the proposed
approach further. We conduct another robot 4DOF visual
positioning simulation experiment with a different initial
camera pose.

Suppose the robots moves 300mm in the X-minus
direction, 200mm in the Y direction and -200mm in the Z-

minus direction.

Then we get the new initial camera pose:

Tcamera_1= [0 0.0001 1 0.7;
-0.0001 1 -0.0001 -0.5;
-1 -0.0001 0 0.3;

0 0 0 1]

Other experimental parameters used in this experiment
are the same as the ones used in the first two simulation
experiments.

The visual positioning results using zooming visual
servoing with depth adaptive estimation in the different
initial camera position are shown in Fig.11 - Fig.13.

The translation errors along the X, Y and Z axes and the
rotation error around the Z axis are shown in Fig. 11 (a)
and Fig. 11 (b) respectively. The errors of characteristic
vectors in the invariant space of the target object are zero
(Fig. 12 (a)) and the focal length finally converge to
17.1mm in Tcamera_0 and 23.0mm in Tcamera_1 (Fig. 12
(b)). The whole depth convergence process is shown in
Fig. 13. The simulation results show that our approach
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has good visual positioning performance in the different
camera initial positions.
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Figure 11. Visual positioning error in the different initial camera
position
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Figure 12. Error in the invariant space and change of focal length
in the different initial camera position; (a) The total error in the
invariant space; (b)Focal length changes in visual servoing.
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Figure 13. Depth convergence curve in the different initial
camera position

Error(mm) X Y V4
Simulation 2 0.29 0.35 2.59
Simulation 3 0.49 0.31 3.61

Table 2. The translation convergence errors along X, Y, Z axes in
the two different camera initial positions.

The simulation results show that the zoom control

method can be used in the invariant visual servoing
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system. The purpose of the zooming control is to extend
the camera’s field of view when the target is moving out
of range and improve the local resolution of the object of
interest when the target is in range of the camera view. In
addition, the proposed depth adaptive zooming visual
servoing method can guarantee closed-loop stabilization
to achieve the 4-DOF robot visual positioning task. It can
be seen from Table 1, in contrast to simulation 1, the
second simulation system with a depth adaptive
estimation has higher visual servoing precision and the
whole state of the robot visual servoing system is
bounded, though the depth converges to a stable value
instead of the true value.

5. Conclusion

In this paper, a depth adaptive zooming visual servoing
method is proposed to solve view visibility problems. In
order to enlarge the field of view, the visual servoing
system in the invariant space with zooming control is
performed. This could improve the accuracy of image
resolution of the target. In order to overcome the defects
of the constant depth method, a nonlinear depth adaptive
estimation method for robot zooming visual servoing is
proposed. With robustness in the invariant space, this
adaptive method can improve the accuracy of the
servoing system under the zooming condition. The
adaptive adjustment mechanism can guarantee that the
states of its system are uniformly bounded. The
simulation results of robot 4DOF visual positioning show
that the proposed method has a better convergence
performance for the image error.

No specific feature extraction algorithm is considered in
the simulation experiment and some simulation points
are defined as the image feature points. The performance
of the feature point’s extraction will affect the final robot
visual servoing. In some cases, the whole robot visual
servoing would become unstable, if there is a big mistake
while extracting these points. Changing lighting
conditions would affect the performance of the feature
point’s extraction. In addition to a robot/camera system
with eye-in-hand configuration, the image captured by
the camera will undergo some deformations because of
the change in robot pose and camera focus length during
the robot zooming visual servoing. These deformations
can be locally well approximated by affine
transformations of the image plane. In the future, we will
apply the affine invariant feature extraction algorithm PV
22l to extract the affine invariant feature points on the
object and extend the proposed robot depth adaptive
zooming visual servoing method to real nature scenes .
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