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Abstract 

Three laboratory scale anaerobic-aerobic (low-oxygen) SBRs (R1, R2 and R3) 

were conducted at different influent phosphorus concentration to evaluate the impacts 

of phosphorus load on nutrients removal and nitrous oxide (N2O) emission during 

low-oxygen simultaneous nitrification and denitrification (SND) process. The results 

showed that TP and TN removals were enhanced simultaneously with the increase in 

phosphorus load. It was mainly caused by the enrichment of polyphosphate 

accumulating organisms (PAOs) under high phosphorus load and low COD/P ratio 

(<50), which could use nitrate/nitrite as electron acceptors to take up the phosphorus. 

N2O emission was reduced with increasing phosphorus load. N2O-N emission amount 

per cycle of R3 was 24.1% lower than that of R1. It was due to the decrease of N2O 

yield by heterotrophic denitrification. When the phosphorus load increased from R1 to 

R3, heterotrophic denitrification (D) ranged from 42.6% to 36.6% of the N2O yield.  

 

Keywords: Phosphorus load; Nutrients removal; Nitrous oxide; Low-oxygen;  
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1. Introduction 

To date, nutrients in the wastewater are enforced to be removed in order to protect 

the water from eutrophication. Therefore, simultaneous nitrification-denitrification 

(SND) under oxygen-limiting condition is widely studied, due to its high nutrients 

removal efficiencies and low energy consumption (Holman and Wareham, 2005; 

Danie et al., 2009). However, it was reported that a significant amount of N2O may be 

produced during this low-oxygen process (Meyer et al., 2005; Zhu and Chen, 2011; 

Jia et al., 2012). N2O is an important greenhouse gas, and is also the dominant 

ozone-depleting substance emitted in the 21st century (IPCC, 2007). Therefore, its 

control has attracted increasingly more attentions over the past decade. 

N2O emission during wastewater treatment process is affected by many factors, 

such as dissolved oxygen (Tallec et al., 2006), COD/N ratio (Chung and Chung, 2000; 

Wu et al., 2009), pH value (Thörn and Sörensson, 1996), nitrite concentration (Yang 

et al., 2009; Rajagopal and Béline, 2011) and consumption of internal storage 

compounds (Lemaire et al., 2006; Jia et al., 2012). In addition, the impact of 

phosphorus on N2O emission in kinds of ecosystems has been studied by many 

researchers (Hall and Matson, 1999; Liu and Song, 2010; Mori et al., 2010), and the 

influence is still under discussion. However, no literatures have yet focused on the 

impact of phosphorus concentration on N2O emission during biological wastewater 

treatment process. 

During conventional biological nutrients removal process, N removal is 

accomplished by a two-stage treatment, aerobic nitrification and anoxic denitrification, 
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whereas P removal is achieved through enhanced biological phosphorus removal 

(EBPR) under alternating anaerobic–aerobic conditions (Zeng et al., 2003). The group 

of microorganisms that is largely responsible for phosphorus removal is called 

polyphosphate accumulating organisms (PAOs). Under anaerobic conditions, PAOs 

are able to take up organic substrates and store them as polyhydroxyalkanoates (PHA) 

using the energy obtained partly from the glycogen utilization but mostly from the 

hydrolysis of the intracellular stored polyphosphate (polyP), resulting in 

orthophosphate release into solution. Then, under aerobic or anoxic conditions PAOs 

oxidize the internally stored PHA for biomass growth, glycogen replenishment and 

polyphosphate recovery from external P uptake (Morse et al., 1998). 

An essential requirement for successful phosphorus removal is to only provide 

carbon under anaerobic conditions in order to provide PAOs with a selective 

advantage, as other heterotrophic organisms like glycogen accumulating organisms 

(GAOs), can take up carbon in the absence of an electron acceptor. The ratio of 

organic carbon to phosphorus in the influent (C/P ratio) has been shown to have 

significant impacts on the competition of microbial community for carbon (Thomas et 

al., 2003; Chuang et al., 2011). Mino et al. (1998) found that a low COD/P ratio (e.g. 

10-20) in influent tends to favor the growth of PAOs instead of GAOs, whereas a high 

COD/P ratio (e.g. >50) will be favorable to the growth of GAOs. 

Moreover, it is found that denitrification and P removal can be achieved 

simultaneously, which called denitrifying phosphorus removal, due to the capacity of 

denitrifying phosphorus accumulating organisms (DPAOs) to use nitrate and/or nitrite 
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as electron acceptor for P removal instead of oxygen (Kuba et al., 1996). In this 

simultaneous nitrification-denitrification-phosphorus removal system, carbon is 

supplied in an initial anaerobic period and can therefore selectively be taken up by 

PAOs and stored as PHA. In the following aerobic period, simultaneous nitrogen and 

phosphorus removal is achieved by the presence of adjacent aerobic and anoxic 

microzones in microbial aggregates caused by mass transport limitation of oxygen. 

Both N and P removal processes require COD. Therefore the ratio of COD:N:P is 

essential for the removal of N and P. 

It was reported that N2O could accumulate during denitrifying phosphorus 

removal process due to the competition for electrons between the denitrifying 

enzymes (Kampschreur et al., 2009). The variation of phosphorus load can change the 

community composition of the bioreactor, leading to the different N2O emission 

characteristics. Moreover, it is necessary to investigate the influence of phosphorus 

load on the two processes, nitrifier denitrification and heterotrophic denitrification, to 

investigate the mechanism of N2O emission under different P load. However, so far, 

no information, to our best knowledge, is available regarding this point. 

This study presented an initial attempt to investigate the impacts of phosphorus 

load on nutrients removal and N2O emission during low-oxygen SND process. To this 

end, three sequencing batch reactors (SBRs) were constructed with different influent 

phosphorus concentration to (1) determine the influence of phosphorus load on 

contaminant removal performance, and (2) investigate the impact of phosphorus load 

on N2O emission characteristics during low-oxygen SND process.  
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2. Materials and methods 

2.1 Reactor setup and operation 

Experiments were carried out in three lab-scale anaerobic-aerobic SBRs (R1, R2 

and R3), with effective volume of 5 L. The schematic diagram of the experiment 

system is shown in Fig. 1. The SBRs were operated at room temperature (25±2 oC) 

with a cycle time of 6 h, consisted of 90 min anaerobic stage, 180 min aerobic stage, 

70 min settling, and 20 min decant. In each cycle, 3 liters of synthetic municipal 

wastewater was fed into each SBR in the first 5 min of anaerobic stage and same 

amount of supernatant was withdrawn after settling, resulting in a hydraulic retention 

time (HRT) of 10 h. 

Electromagnetic stirrers were used to keep the suspension of sludge during 

anaerobic and aerobic stage. During aerobic stage, air supply was regulated using an 

on/off control system to keep the dissolved oxygen (DO) level between 0.35-0.80 

mg/L. Before settling, 0.25 L mixed liquor was wasted to control the solids retention 

time (SRT) at approximately 20 d. The SBRs were seeded with sludge collected from 

a parent SND SBR (Jia et al., 2012), and the mixed liquor suspended solid (MLSS) 

was maintained at approximately 3000-3500 mg/L.  

After the SBRs were acclimated under specific operation condition for over 3 

months and reached stable performances, indicated by stable nitrogen and phosphorus 

concentrations in the effluents, the effluent was sampled and analyzed every 3 days to 

evaluate the contaminant removal performance. The systems were gastight and off 

gases were collected into gas sampling bags to measure N2O concentrations at time 
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intervals of 15 min. Meanwhile, liquid phase samples were taken to measure the water 

quality parameters and sludge samples were taken to measure the intracellular PHA 

content. 

2.2 Synthetic wastewater 

The three SBRs were fed with synthetic municipal wastewater containing different 

phosphorus concentration. The synthetic wastewater used in this study was comprised 

of (per liter): 289.55 mg C6H12O6·H2O; 174.58 mg CH3COONa; 152.86 mg NH4Cl; 

200 mg NaHCO3; 11-32.93 mg KH2PO4; 18.41-55.22 mg K2HPO4·3H2O; 10 mg 

MgSO4·7H2O; 10 mg FeSO4·7H2O; 10 mg CaCl2·2H2O and 1 ml nutrient solution 

(Zeng et al., 2003). The influent characteristics of each SBR are shown in Table 1. 

2.3 Batch experiments 

In order to investigate the characteristics of N2O emission under different 

phosphorus load, the contribution of nitrifier denitrification and heterotrophic 

denitrification to N2O emission was evaluated by the batch experiments. The 

experiments were carried out according to the methods described by Tallec et al. 

(2006), with slight modification.  

After the SBRs were acclimated, a total of 3 liters of mixed liquor and sludge was 

taken from each SBR at the end of anaerobic stage and divided equally into three mini 

bioreactors with working volume of 1 L. Three batch experiments were 

simultaneously conducted: (a) no addition of nitrite and inhibitor, (b) with addition of 

nitrite, and (c) with addition of both nitrite and nitrification inhibitors (Allythiourea 

(ATU) and chlorate (NaClO3)). The nitrite, ATU and NaClO3 were added at the start 
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of experiment to have a concentration of 5 mg/L, 10 mg/L, and 1 g/L, respectively. 

A mixture of N2 and air was supplied into the mini bioreactors with the ratio 

adjusted so as to best simulate the DO variation and hydrodynamic environment of 

the parent reactor. The off-gas during each experiment was all collected into gasbags 

to quantify the emission amount of N2O. Each experiment was conducted three times. 

2.4 Analysis 

The analysis of COD, NH4
+-N, NO3

--N, NO2
--N, TN, TP and MLSS were 

conducted in accordance with the standard methods (APHA, 2001). DO was 

measured with a DO meter (HQ30d53LDOTM, Hach, USA). N2O concentration was 

determined by the gas chromatography (SP-3410, China) with an electron capture 

detector (ECD) and a Poropak Q column. PHA was measured by the gas 

chromatography with a flame ionization detector (FID) and a column DB-5.  

The emission rate and quantity of N2O were calculated using the equation 

described by Hu et al. (2010). During the batch experiments, the N2O yields by 

nitrifier denitrification and heterotrophic denitrification were calculated according to 

the method described by Tallec et al. (2006). N2O-N conversion rate was calculated 

by the following equation: 

N2O-N conversion rate = N2O-N/TN removed×100%. 

3. Results and discussion 

3.1 Effect of phosphorus load on contaminant removal performance 

After running for about three months, the effluent contaminant concentration 

tended to be stable and the SBRs were in steady-state. The contaminants removal 
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efficiencies of each SBR were evaluated and the results are shown in Table 1. The 

COD removal efficiency of all three SBRs was high (> 92%) and there was no 

significant difference of three SBRs. The high COD removal efficiency was due to the 

easy degradation of the influent organic compounds (glucose and sodium acetate). 

The influent carbon was consumed quickly for denitrification and hydrolysis of 

intracellular stored polyphosphate. 

The TP removal was enhanced with the increase of phosphorus load. The TP 

removal efficiency of R1 was only 85.7%. R3 gained the highest TP removal 

efficiency (89.3%) although the phosphorus load was much higher than R1 and R2. 

The influent COD/TP ratio of R1, R2 and R3 was 91.6, 40.8 and 27.6 on average. 

With the decrease of COD/P, the phosphorus removals exhibited an upward trend. It 

has been reported that the influent COD/TP ratio of wastewater has great impact on 

phosphorus removal (Wang et al., 2009; Kapagiannidis et al., 2012). Numerous 

studies have found that a high COD/P ratio (e.g. >50 mg COD/mg P) in influent tends 

to favor the growth of GAOs instead of PAOs, which outcompete PAOs for organic 

substrate. The metabolism of GAOs is similar to that of PAOs, except that no P 

transformations are taking place (Liu et al., 1997). Thus, a low COD/P ratio will be 

more favorable to the growth of PAOs and phosphorus removal (Mino et al., 1998).  

The TN removal efficiency presented an upward trend with the increase of 

phosphorus load, although there was no significant difference for R1 and R2. The 

ammonium was almost completely removed in all SBRs, indicating that the nitrifier 

was not affected by the C/P ratio. The higher TN removal efficiency of R3 was due to 
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the little accumulation of nitrate. The effluent nitrate concentration of R3 was only 

5.7±1.3 mg/L, which was lower than that of R1 and R2. It was known that the 

nitrogen removal during SND process was achieved by the coupled denitrification 

during aerobic stage, i.e., nitrifier denitrification and heterotrophic denitrification 

(Chiu et al., 2007). The autotrophic nitrifiers were not affected by the phosphorus 

concentration under P-rich condition. Therefore, the variation of nitrogen removal 

was mainly caused by the activity of heterotrophic denitrification.  

To further investigate the influence of phosphorus load on contaminant removal, 

the characteristics of C, P and N transformation during one cycle in each SBR were 

studied. Fig. 2 shows the time profiles of COD and TP concentrations in the liquor as 

well as intracellular PHA content in the sludge during one cycle in each SBR. All of 

the three SBRs had similar time course of COD depletion. During the anaerobic stage, 

the COD was consumed quickly in the first 30 min, with the increase of TP 

concentration and intracellular PHA content. Part of the organic substrates was used 

as carbon source for denitrification and another part was stored as intracellular PHA. 

Then the COD concentration was stabilized at low level during the rest period of one 

cycle in each SBR. With the consumption of COD, the PHA content in the sludge 

increased during the anaerobic stage using the energy supplied by hydrolysis of 

intracellular stored polyphosphate (polyP) (Mino et al., 1998), resulting in the release 

of orthophosphate into solution and the rise of TP concentration in the SBR. During 

the following low-oxygen aerobic stage, the stored PHA was consumed for biomass 

growth and polyphosphate recovery from external phosphorus uptake as well as 
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possible denitrification driven by PHA (Chuang et al., 2011), leading to the gradually 

decrease of intracellular PHA and TP concentration in the liquid in each SBR. Similar 

phenomena were also found in other literatures about simultaneous nitrogen and 

phosphorus removal (Zeng et al., 2003; Meyer et al., 2005; Lemaire et al., 2006). 

However, it was noteworthy that the amount of released phosphorus and stored 

intracellular PHA was different with the variation of phosphorus load. For R1, the TP 

concentration at the end of anaerobic stage reached to 12.1 mg/L. Then during the 

aerobic stage the phosphorus was taken up by PAOs and the effluent phosphorus 

concentration was only about 0.5 mg/L (Fig. 2a). For R2 and R3, the TP concentration 

was 17.3 mg/L and 27.5 mg/L at the end of anaerobic stage, and the effluent 

concentration was 0.8 mg/L and 1.5 mg/L, respectively (Fig. 2b and 2c). The results 

indicated that more phosphorus would be released during anaerobic stage and 

absorbed during aerobic stage when the influent phosphorus load was higher.  

Meanwhile, the synthetic intracellular PHA during the anaerobic stage was 

enhanced with the increase of phosphorus load, although the amount of organic 

carbon input was same in each SBR. At the end of anaerobic stage, the PHA content 

in the sludge of R1 and R2 was 64.0 mg/gSS and 73.8 mg/gSS (Fig. 2a and 2b). For 

R3, the synthetic PHA was as high as 175.2 mg/gSS (Fig. 2c). It was mainly caused 

by the enrichment of PAOs under high phosphorus load. Seviour et al. (2003) 

indicated that more PAOs could be accumulated and activated in the reactor with 

higher P loading. More P was available for PAO to accumulate as internal poly-P 

under higher phosphorus load, despite the similar COD loading adopted in all SBRs, 
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resulting in more PHA synthesized and stored during anaerobic stage. 

Fig. 3a shows the time course of nitrogen concentration during one cycle of R1. 

During the feeding period of the anaerobic stage, the TN and NH4
+-N concentrations 

decreased sharply due to the dilution of the residual water of the previous cycle. 

Meanwhile, the nitrite concentration increased transitorily for the reduction of nitrate, 

and then decreased to about zero quickly due to the fast denitrification. The TN 

removal mainly occurred during the aerobic stage and the removal rate was high in 

the first 120 min of aerobic stage. During this period, the ammonium concentration 

decreased fast for nitrification and nearly no nitrate accumulated. Although there was 

slight accumulation of nitrite, it was decreased quickly to about zero. It showed that 

the simultaneous denitrification in this period was enhanced, leading to the high 

removal rate of TN. Then in the last 60 min of aerobic stage, the ammonium was 

almost completely removed, and the nitrate concentration increased gradually to about 

7.7 mg N/L. During this period, the TN removal rate was very low, and the effluent 

TN concentration was about 8.6 mg N/L.  

For R2 and R3, the time course of nitrogen transformation was similar with that of 

Run 1 (Fig. 3b and 3c). However, with the increase of influent phosphorus load, the 

accumulation of nitrate was eased. The effluent nitrate concentration of R3 was lower 

than that of R1 and R2. Meanwhile, the accumulation of nitrite of R3 was also lower 

than that of R1 and R2. The maximum concentration of nitrite was 1.1 and 2.1 mg/L 

at 180 min in Run 1 and Run 2, while the peak value in Run 3 was only 0.7 mg/L.  

The above results indicated that the increase of phosphorus load enhanced the 
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simultaneous denitrification during the aerobic stage. During this period, the COD 

concentration in each SBR was very low (Fig. 2) and the carbon source for 

denitrification was insufficient. Therefore, the simultaneous heterotrophic 

denitrification was carried out using internal stored carbon source. It was reported that 

under the low C/N ratio condition, some heterotrophic denitrifiers, such as PAOs and 

GAOs, could use the intracellular PHA as carbon source to reduce the nitrate/nitrite 

(Zeng et al., 2003). The higher phosphorus load could synthesize more PHA during 

anaerobic stage and supply more intracellular carbon as electron donor for 

denitrification during aerobic stage. That may be one reason for the higher TN 

removal efficiency of R3. 

It was noteworthy that simultaneous high nitrogen and phosphorus removal 

efficiency was achieved in R3, due to the enrichment of PAOs/DPAOs under high 

phosphorus load. The results were consistent with the other researchers’ studies that 

the simultaneous nitrification, denitrification and phosphorus removal was achieved 

by coupling nitrification with denitrification by PAOs using PHA stored in the 

anaerobic period as carbon source in one anaerobic-aerobic stage (Zeng et al., 2003; 

Meyer et al., 2005; Lemaire et al., 2006). This combination could offer substantial 

savings on carbon for the overall nutrient removal process. 

3.2 Effect of phosphorus load on N2O emission 

The time course of N2O emission rate under each phosphorus load is shown in Fig. 

4a. During the feeding period of anaerobic stage, it presented transitory high N2O 

emission rate in all SBRs and then decreased to about zero. The high N2O emission 
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was due to the NO2
- accumulation at the beginning of new cycle (Fig. 3). During the 

following anaerobic stage, the N2O emission rate was very low in each SBR. The 

majority of N2O emission occurred in the aerobic stage. The N2O emission rate 

increased rapidly at the beginning of aeration and reached to the peak at about 165 

min in each SBR. The emission rate was then decreased with the accumulation of 

nitrate. At the beginning of aerobic stage, the TN and NH4
+-N removal rates were 

high with no nitrate/nitrite accumulation (Fig. 3). Nitrifier denitrification and 

heterotrophic denitrification, which were the two main processes responsible for most 

N2O emission during low-oxygen SND process (Meyer et al., 2005), were carried out 

quickly during this period, leading to the high N2O emission rate. The accumulation 

of nitrate indicated that the two processes have been finished, resulting in the decrease 

of N2O emission rate. It was found that the profile of N2O emission rate in each SBR 

was accordance to the change of nitrite concentration (Fig. 3 and Fig. 4a), which was 

also observed in other literature (Hu et al., 2010). The NO2
- could stimulate the 

emission of N2O (Colliver and Stephenson, 2000). 

With the increase of phosphorus load, the maximum N2O emission rate was 

decreased. The peak average N2O emission rate was 8.9 and 8.5 μg/gMLSS/min for 

R1 and R2, respectively. The maximum N2O emission rate of R3 was 6.9 

μg/gMLSS/min, which was much lower than that of R1 and R2. The N2O–N emission 

amount and conversion rate in each SBR were calculated and the results are shown in 

Table 2. The emission amount during anaerobic stage was negligible compared to the 

amount during aerobic stage. It was found that N2O emission amount was reduced 
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with the increase of phosphorus load. The N2O-N emission amount per cycle of R3 

was 24.1% lower than that of R1. Only 6.22% of removed nitrogen of R3 was 

converted to N2O-N, which was also much lower than that of R1 and R2. 

The time course of ammonium concentration in each SBR showed that the 

community of ammonia-oxidizing bacteria (AOB) was not affected significantly by 

the phosphorous load (Fig. 3). Therefore, the variation of N2O emission in three SBRs 

was not caused by the nitrifier denitrification. The respective contribution of 

heterotrophic denitrification and nitrifier denitrification in each SBR was evaluated by 

the batch experiments and the results are shown in Fig. 5. In all three SBRs, nitrifier 

denitrification (ND) appeared to be the major process responsible for the N2O 

emission during low-oxygen SND process, which was also observed in other literature 

(Tallec et al., 2006). N2O emission from ND was stimulated by a nitrite addition, but 

there was no significant difference of three SBRs. However, the contribution of 

heterotrophic denitrification was decreased with the increase in phosphorus load. 

When the phosphorus load increased from R1 to R3, heterotrophic denitrification (D) 

ranged from 42.6% to 36.6% of the N2O yield. 

The above results indicated that the reduction of N2O emission of R3 was mainly 

caused by the decrease of N2O yield by heterotrophic denitrification. Some 

heterotrophic bacteria, mainly GAOs and PAOs in the present study, could use nitrate 

or/and nitrite as electron acceptors and thereby carry out denitrification using 

intracellular PHB, the main part of PHA, as carbon source under low C/N ratio 

condition (Zeng et al., 2003). The slower nature of PHB degradation can produce 
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competition for electrons between denitrifying enzymes, resulting in a higher NO 

reduction rate compared to the N2O reduction rate, causing the accumulation of N2O 

(Kampschreur et al., 2009). Compared with R1, R3 could synthesize more PHB 

supplied as electron donor for denitrifying enzymes and eased the competition for 

electrons. That may be one reason for the low N2O yield of R3. 

In addition, for R1, the low phosphorus load and high COD/TP ratio favored the 

growth of GAOs instead of PAOs. On the contrary, the PAOs were enriched under 

high phosphorus load and low COD/TP ratio condition of R3. It was reported that 

N2O was the main denitrification end-product of GAOs (Zeng et al., 2003; Lemaire et 

al., 2006). Zhu and Chen (2011) also found that N2O emission was much higher when 

the number of GAOs was more than PAOs. The enrichment of PAOs instead of GAOs 

of R3 was another main reason for low N2O yield. 

It was found that the high phosphorus load of R3 in the present study achieved 

higher nutrients removal as well as lower N2O yield, which makes this approach 

attractive. However, balancing three different processes (nitrification, denitrification 

and phosphorus removal) simultaneously in a single sludge system requires skilful 

management of the bacterial populations, because that the successful enrichment of 

PAOs can fail due to the proliferation of GAOs.  

4. Conclusions 

With the increase of phosphorus load, TP and TN removal was enhanced by the 

enrichment of PAOs. Under low COD/P ratio condition (<50), PAOs instead of GAOs 

were enriched. Some PAOs can use nitrate/nitrite as electron acceptors to take up the 
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phosphorus, achieving simultaneous nitrogen and phosphorus removal. N2O emission 

was reduced by the increase of phosphorus load, due to the decrease of N2O yield by 

heterotrophic denitrification. Under high phosphorus load, more PHB was synthesized, 

easing the competition of denitrification enzymes for electrons. The enrichment of 

PAOs instead of GAOs was another reason for low N2O yield. 
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Figure captions: 

Fig. 1 Schematic description of the experiment system. 

Fig. 2 Time profiles of COD, TP concentration and PHA content during one cycle in 

each SBR. (a) R1; (b) R2; (c) R3. Each data point is the mean of at least three 

repeated experiments. 

Fig. 3 Time profiles of nitrogen and N2O emission rate during one cycle in each SBR. 

(a) R1; (b) R2; (c) R3. Each data point is the mean of at least three repeated 

experiments. 

Fig. 4 Time profiles of N2O emission rate during one cycle in each SBR. Each data 

point is the mean of at least three repeated experiments. 

Fig. 5 N2O emission rate of each batch experiment for three SBRs. Regarding the 

treatment “with nitrite addition”, white is the N2O emission rate by nitrifier 

denitrification (ND), and grey is the N2O emission rate by denitrification (D). All the 

data are the mean of at least three repeated experiments. 
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Table 2 N2O-N emission during one cycle in each SBR. All the data are mean values 
with standard deviations in brackets of at least three repeated experiments. 

 

N2O-N emission 

during anaerobic stage 

(mg/gMLSS) 

N2O-N emission 

during aerobic stage 

(mg/gMLSS) 

Total N2O-N 

emission 

(mg/gMLSS) 

N2O-N 

conversion rate 

(%)* 

R1 0.0030 (0.00) 0.53 (0.04) 0.54 (0.04) 8.41 

R2 0.0054 (0.00) 0.52 (0.04) 0.53 (0.04) 7.24 

R3 0.0035 (0.00) 0.41 (0.06) 0.41 (0.06) 6.22 

* N2O-N conversion rate = N2O-N/N removed ×100%. 
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Highlights 

TP and TN removal was enhanced simultaneously with the increase of phosphorus 

load. 

y Simultaneous N and P removal was due to denitrification of PAOs under high P 

load. 

y N2O emission was reduced with the increase of P load during low-oxygen SND 

process. 

y N2O yield by heterotrophic denitrification was reduced under high P load. 

y The enrichment of PAOs instead of GAOs led to low N2O yield under high P load. 


