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Abstract 
 
A market is typically considered to dominate price discovery if it is the first to reflect 
new information about the fundamental value.  Our simulations indicate that common 
price discovery metrics – Hasbrouck information share and Harris-McInish-Wood 
component share – are only consistent with this view of price discovery if the price series 
have equal levels of noise, including microstructure frictions and liquidity.  If the noise in 
the price series differs, the information and component shares measure a combination of 
leadership in impounding new information and relative avoidance of noise, to varying 
degrees.  A third price discovery metric, the ‘information leadership share’ uses the 
information share and the component share together to identify the price series that is first 
to impound new information.  This third metric is robust to differences in noise levels and 
therefore correctly attributes price discovery in a wider range of settings.  Using four 
recent empirical studies of price discovery we show that the choice and interpretation of 
price discovery metrics can have a substantial impact on conclusions about price 
discovery. 
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1. Introduction 

Price discovery, a fundamentally important role of secondary markets, is the 

“efficient and timely incorporation of the information implicit in investor trading into 

market prices” (Lehmann, 2002, p. 259).  When multiple price series are related via a 

common asset (e.g., a stock trading in multiple venues, order flow for one security from 

different market participants, and different derivative securities linked to the same 

underlying asset) the contribution of a price series to price discovery is typically 

considered to be the extent to which it is the first to reflect new information about the 

‘true’ underlying asset value.  There are two main (occasionally competing) empirical 

measures of the contribution of different price series to price discovery: Hasbrouck 

information share (IS) and Harris-McInish-Wood component share (CS).1  Market 

microstructure scholars have made substantial progress in reconciling and understanding 

the two measures (e.g., Baillie et al., 2002; Lehman, 2002).  In a recent and notable 

contribution to this effort, Yan and Zivot (2010) analytically show how to interpret IS and 

CS in the context of a structural cointegration model. 

  Despite the substantial progress made to date, there is still not a consensus in 

practice on what each metric really measures.  Consequently, the approach to applying 

and interpreting the metrics in different applications is far from consistent.2  Furthermore, 

Yan and Zivot (2010) propose combining IS and CS to specifically measure impounding 

of new information, and the usefulness of this technique is yet to be thoroughly tested. 

 This article aims to illustrate what each of the price discovery metrics really 

measures, in the hope of promoting a more consistent approach to their use and 

interpretation.  We do this by estimating each price discovery metric on simulated data 

for a simple structural model, choosing parameter values and sample size to mimic an 

empirical research setting.  A key feature of the model is that it allows price series to 

differ in two important ways: (i) noise (e.g., microstructure frictions such as tick 

                                                 
1 For a good review of IS and CS and how they are related see Baillie et al. (2002), Lehman (2002) and Yan 
and Zivot (2010).  The next section provides a brief overview of these metrics.  We refer to CS as the 
Harris-McInish-Wood component share due to their role in popularizing this measure of price discovery, 
but we note that others were involved in pioneering the use of this metric to measure price discovery (e.g., 
Booth et al., 1999; Chu et al., 1999).  
2 For example, see recent studies such as Chen and Gau (2010), Frijns et al. (2010), Korczak and Phylaktis 
(2010), Anand et al. (2011), Fricke and Menkhoff (2011), Liu and An (2011), Chen and Chung (2012), 
Chen and Sub Choi (2012), Rittler (2012), and Chen et al. (2013). 
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discreteness and bid-ask bounce); and (ii) speed of adjustment to new information.  The 

interaction of these two dimensions is the source of much of the confusion and debate 

about the different price discovery metrics.  By varying each of these two characteristics 

independently we obtain a two-dimensional grid of parameters describing the relations 

between two price series, i.e., relative to the reference price series, a price series of 

interest can be: (i) noisier and slower; (ii) noisier and faster; (iii) less noisy and slower; or 

(iv) less noisy and faster.  By estimating all of the price discovery metrics for each of 

these cases (and many values in between) we demonstrate what each metric actually 

measures and thus how the price discovery metrics should be interpreted with respect to 

the relative amount of noise and speed of incorporation of information.   

 We find that IS and CS only accurately measure contribution to price discovery, in 

the conventional sense of being the first to reflect innovations in the fundamental value, 

when the price series being compared have a similar level of noise.  When the levels of 

noise differ both IS and CS measure to varying extents: (i) the relative speed at which a 

price impounds new information; and (ii) the relative avoidance of noise.  That is, price 

series that reflect new information faster will tend to have higher IS and CS, but so too 

will price series that are less noisy, holding constant the speed with which information is 

impounded.  When the difference in noise levels is sufficiently large relative to the 

differences in the speed at which information is impounded, conventional interpretations 

of IS and CS can lead to incorrect conclusions about which price series incorporates 

information first.  For example, in a two-market setting IS and CS could be larger (greater 

than 50%) for the market that is slower to incorporate new information as long as it is 

sufficiently less noisy.  Our simulations indicate that IS places greater weight on the 

speed at which a price series impounds information compared to the CS metric. 

 In contrast, an adaptation of an expression derived by Yan and Zivot (2010), 

which we call the ‘informational leadership share’ (ILS), is able to correctly attribute 

contributions to price discovery in the presence of different levels of noise.  This metric, 

which is only applicable in bivariate systems, uses IS and CS together to identify the price 

series that leads the process of impounding new information. 

We illustrate the practical importance of the choice and interpretation of the price 

discovery metric using four recent empirical price discovery studies.  For the four studies 
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we calculate ILS and compare the conclusions from this metric with those made by the 

studies.  The results are striking: in many cases ILS leads to opposite conclusions to those 

made by the studies.  For example, Rittler (2012) concludes that futures contracts 

dominate price discovery in the EU emission trading market and that their dominance has 

increased through time, whereas ILS indicates the opposite: the spot market leads price 

discovery overall, and the contribution of the futures market to price discovery is in fact 

declining through time.  The differences in conclusions stem from the failure of many 

empirical price discovery studies to account for the way IS and CS are affected by 

differences in noise levels across the price series of interest.  We discuss several 

implications of our findings for existing and future research. 

 The present paper complements Yan and Zivot (2010) by using Monte Carlo 

simulations to illustrate the insights that Yan and Zivot provide analytically, and also 

provides some extensions and novel insights.  We design our simulations and choose 

parameter values to mimic an empirical setting in order to demonstrate the relevance of 

the analytic results for empirical work.  Another reason for turning to simulations is that 

the structural cointegration specifications implied by our models of price formation are 

not invertible and therefore we cannot perform the analytic exercise that is done by Yan 

and Zivot.  An advantage of our structural models, in addition to being simple and 

intuitive, is that each of the two price series has an independent source of noise (trading 

frictions) rather than sharing one transitory shock, which we argue is a realistic feature in 

many price discovery applications.  A further advantage is that we are able to provide 

evidence on how Yan and Zivot’s results and measure of informational leadership hold 

up in a model of price formation that does not satisfy the assumptions under which Yan 

and Zivot derived their results.  Interestingly, the measure of informational leadership 

reliably attributes price discovery in our setting, suggesting it is also useful in at least 

some models of price formation that do not satisfy Yan and Zivot’s assumptions.  We do 

not know whether this holds for other models of price formation.  We also document 

some differences from Yan and Zivot’s analytic results.  For example, our simulations 

indicate that CS measures to some extent the relative speed at which a price series 

impounds new information, not just the relative avoidance of noise as documented by 

Yan and Zivot. 
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This paper also provides a modification of the price discovery metric proposed by 

Yan and Zivot to make it less susceptible to extreme values and make it easily 

comparable to the well-established IS and CS metrics.  The result is the ‘information 

leadership share’ (ILS).  Importantly, we provide the first tests of the performance of this 

new metric.  Given that our simulations highlight some very attractive features of ILS, 

particularly compared to existing metrics, we hope it will be used in future empirical 

work.  Finally, we delve deeper into the implications for existing and future research, of 

both Yan and Zivot and the present paper’s findings about what price discovery metrics 

really measure.   

 

2. What do researchers mean by “price discovery”? 

2.1 The economic process of price discovery 

Part of the confusion and debate about alternative price discovery metrics stems 

from differences and lack of precision in definitions of price discovery.  Here, we refer to 

definitions of the economic process rather than the empirical metrics, which we review in 

the next subsection.  In order to correctly interpret the price discovery metrics it is 

essential to distinguish between speed and noise in the process of price discovery.  Both 

are implicit in Lehman’s (2002) definition of price discovery provided earlier, “efficient 

and timely incorporation of information …”.  Timely refers to the relative speed with 

which a price series reflects new information about the fundamental value.  Efficient 

implies a relative absence of noise, such as bid-ask bounce, tick discreteness, temporary 

deviations due to imperfect liquidity and so on.   

 In a multiple price series setting, by far the most widely accepted view of what it 

means for a price series to contribute to or to be dominant in price discovery stems from 

the seminal work of Hasbrouck (1995), which puts forward the “who moves first” view 

of price discovery.  Hasbrouck intended to measure “‘who moves first’ in the process of 

price adjustment” (p.1184) to innovations in the efficient price.  Hasbrouck is very clear 

on what IS does not measure; it does not measure the total amount of information 

impounded into prices, nor does it measure which market has the “best” prices.  

Hasbrouck illustrates the latter with an example of a market that is informationally 

dominant (and has an IS of 100%) because innovations in the market drive reactions in 
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other markets, yet the informationally dominant market could also have the widest 

spreads and therefore not necessarily the “best” prices. 

 The vast majority of price discovery studies either: (i) follow Hasbrouck’s “who 

moves first” view; or (ii) are not explicit in describing their view of price discovery, 

referring only to “share of price discovery”, “contribution to price discovery”, or 

“dominant in price discovery”.  For example, Booth et al. (1999) state that “price 

discovery is typically documented by noting the speed at which prices react to new 

information” (p.620).  Chakravarty et al. (2004) interpret a price series as making a 

contribution to price discovery if it is the first to reflect at least some new information.  

Cabrera et al. (2009) state that “if the innovations in a market drive the reaction of the 

other markets, then this market is informationally dominant” (p.144).  Rittler (2012) 

interprets a market as dominating price discovery if it incorporates information first.  

Mizrach and Neely (2008) use price discovery to mean “which of several markets tends 

to incorporate permanent changes in asset prices first” (p.1222).  Forte and Pena (2009) 

consider the analysis of price discovery in related asset classes as a task of teasing out 

which asset class ‘leads’ the others. 

 A minority of studies describe price discovery in slightly broader terms, 

potentially admitting aspects other than simply leading the process of adjusting to new 

information, but unfortunately none are specific or precise about other aspects of 

relevance.  For example, Harris et al. (2002) state that “price discovery is the process by 

which security markets attempt to identify permanent changes in equilibrium transaction 

prices” (p. 279).  Chen and Gau (2010) assert, “the price discovery process refers to how 

price movements react to relevant information” (p.1628).  Cao et al. (2009) interpret 

Hasbrouck information shares as indicators of a price series’ informativeness “about the 

true value of the asset” (p.39).   

 In summary, a broad view sees a strong contribution to price discovery as 

involving efficient and timely incorporation of information about the fundamental value 

into the price.  In a multiple price series setting the vast majority of the literature takes the 

view that a price series dominates price discovery if it is the first to adjust to new 

information about the fundamental value, and a price series makes a greater contribution 

to price discovery (is responsible for a larger “share” of price discovery) the more often it 
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is the first to adjust to new information.  This is different from measuring which price is 

the most informative about fundamental value because the price series that is the first to 

impound new information may also be considerably noisier than other price series 

potentially rendering it less useful as a measure of the fundamental value.  The focus in 

the price discovery literature on which price series moves first rather than which is most 

informative follows from the objective of uncovering where and how information enters a 

market and gets impounded into prices.  Knowing which price “moves first” regardless of 

how noisy it is contributes to achieving this objective; knowing which price is more 

informative does not necessarily. 

 

2.2 The empirical measures of price discovery 

Turning to the empirical measures of price discovery, both IS and CS rely on the 

notion that prices for the same asset (in different markets, for example) can deviate from 

one another in the short run due to trading frictions, but will converge in the long run 

because both are connected to the fundamental value of the asset.  Such prices series are 

therefore cointegrated and lend themselves to empirical analysis using vector error 

correction models (VECM) under the assumption that the price series share a common 

random walk efficient price.  Both IS and CS are derived from the estimates of a reduced 

form VECM.  Hasbrouck (1995) proposes that the contribution of a price series to price 

discovery (the ‘information share’, IS) can be measured by the proportion of the variance 

in the common efficient price innovations that is explained by innovations in that price 

series.  This approach follows naturally as an extension of Hasbrouck’s earlier work 

(Hasbrouck, 1991) in which he proposes that the relative informativeness of trades could 

be measured by the proportion of efficient price variation attributable to trades.  When 

price innovations across markets are correlated, the attribution of efficient price 

innovation variance cannot be done uniquely and instead one can estimate an upper and 

lower bound on a price series’ IS.    

 The second commonly used metric, CS, is based on Gonzalo and Granger’s 

(1995) work on the econometrics of cointegration, and is first applied to price discovery 

by Booth et al. (1999), Chu et al. (1999) and Harris et al. (2002).  Gonzalo and Granger 

(1995) propose a method of decomposing a cointegrated price series into a permanent 
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component and a temporary component using the error correction coefficients.  In the 

context of price discovery the permanent component is interpreted as the common 

efficient price and the temporary component reflects deviations due to trading fractions.  

Importantly, Gonzalo and Granger (1995) show that the permanent component is a linear 

combination of all variables in the cointegration system (all the price series).  Booth et al. 

(1999), Chu et al. (1999) and Harris et al. (2002) propose that a price series with greater 

weight in the linear combination moves more closely with the common efficient price 

and thus contributes more to price discovery.  Therefore, under this approach a price 

series’ contribution to price discovery (the ‘component share’, CS) is it’s normalized 

weight in the linear combination of prices that forms the common efficient price.  Baillie 

et al. (2002) show that although IS and CS seem dissimilar, they share a lot in common 

because both are closely related to the same combination of the reduced form error 

correction coefficients.  

 Lehmann (2002) points out that because IS and CS are both defined in terms of a 

reduced form VECM, their interpretation with respect to price discovery is not always 

clear because it is dependent on the (often unspecified) structural model of price 

formation.  Yan and Zivot (2010) directly address this problem by specifying a fairly 

general structural cointegration model for asset prices and analytically demonstrating 

what IS and CS measure for that model.  Their structural model, motivated by models 

used in empirical macroeconomics, consists of two price series that are driven by two 

sources of shocks: one permanent and one transitory.  The permanent shocks represent 

innovations in the fundamental value and therefore, by definition, a one-unit permanent 

shock leads to a one-unit increase in each of the prices in the long run.  The transitory 

shock represents noise due to trading frictions and therefore, by definition, a one-unit 

transitory shock has zero effect on the prices in the long run.  The short-run impacts of 

the permanent and transitory shocks, however, are not restricted by the structural model; 

each price series is defined by two lag polynomials that describe its dynamic response to 

the permanent and transitory shocks.  This allows the price series to differ in how quickly 

they reflect innovations in the fundamental value and how they are impacted by the 

transitory shocks.   
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Within this setup, Yan and Zivot (2010) are able to express the IS and CS of a 

price series in terms of its dynamic response to permanent and transitory shocks (the lag 

polynomials).  Their results indicate that CS is a function of the dynamic responses of the 

two price series to the transitory shocks only, whereas IS is a function of the dynamic 

responses of the two price series to the transitory and permanent shocks.  This suggests 

that IS and CS can give misleading information regarding price discovery in some 

situations due to their dependence on the dynamic response to transitory shocks.  A 

useful byproduct of this result is that IS and CS can be combined in an expression, 

|(IS1/IS2)(CS2/CS1)|, such that the dynamic responses to the transitory shocks cancel out, 

leaving only a ratio of the price series’ dynamic responses to the permanent shocks.  This 

metric can be useful in attributing price discovery because under certain assumptions it 

accurately measures the relative impact of permanent shocks on the two price series and, 

unlike IS and CS, it is not influenced by how the price series respond to transitory shocks.  

The key assumptions underlying Yan and Zivot’s (2010) results are: (i) there are only two 

price series; (ii) the structural model has only one permanent and one transitory shock; 

and (iii) the reduced form VECM errors are uncorrelated.  For models of price formation 

that violate these assumptions it is not known to what extent the expression that combines 

IS and CS purges the responses to transitory shocks. 

 

3. Method 

 We examine the relation between price discovery metrics and two key features of 

a price series: speed in impounding new information and noise.  This choice is motivated 

by the fact that most price discovery research strives to identify which market impounds 

new information faster, yet Yan and Zivot (2010) find that IS and CS also measure the 

relative avoidance of noise.  For our main analysis we use a structural model of price 

formation that allows two price series to differ in: (i) the amount of noise; and (ii) the 

speed of adjustment to new information.  Of the many models that could be used to 

achieve this, our choice is driven by three main considerations: (i) simplicity and 

intuitiveness; (ii) a clear separation of the speed and noise dimensions; and (iii) an 

independent source of trading frictions for each price series, consistent with many of the 
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empirical settings that we describe later.  In robustness tests we examine an alternative 

model. 

The fundamental value of a stock is assumed to follow a random walk,  

),,0(N~        , 1 utttt uumm       (1) 

where  is the natural log of the fundamental value at time t, and ut is i.i.d..  Price series 

i tracks the fundamental value with a time delay of  periods, and contains noise, :    

tm

i tis ,

),,0(N~        , ,,, ii stititti ssmp       (2) 

where  is the natural log of price series i at time t, and si,t is i.i.d. and uncorrelated 

across different price series (independent under normality).  Therefore, the two 

parameters,  and 

tip ,

i is , characterize price series i in terms of its speed of adjustment to 

innovations in the fundamental value (the speed with which it impounds new 

information) and its noise.  Noise can arise for a number of reasons such as transaction 

prices “bouncing” between bid and ask quotes, a discrete price grid, a lack of liquidity 

resulting in temporary deviations from equilibrium prices, noise trading, and errors in 

converting from derivative prices to derivative-implied underlying asset prices.  Although 

time could take any units, in what follows we treat time as being discrete and measured in 

1-second intervals, consistent with much of the empirical literature. 

 The model of price formation given by equations (1) and (2), although simple and 

intuitive, does not satisfy the assumptions under which Yan and Zivot (2010) derive their 

results for what IS and CS measure.  In particular, when the model is used to describe two 

price series, there are three shocks: one permanent and two temporary.  This allows each 

price series to have an independent source of noise (trading frictions), which is a realistic 

feature of many price discovery applications including some of those described later in 

this section.  In contrast, the structural cointegration model used by Yan and Zivot 

requires that there be only one permanent and one transitory shock.  Therefore, it is not 

clear that Yan and Zivot’s results will hold in our setting.  Furthermore, the structural 

cointegration model implied by our design is not invertible and therefore we cannot 

perform the type of analytical exercise that is done in Yan and Zivot (2010).  This 

necessitates our use of simulations to examine the various price discovery metrics. 
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 In the remainder of the paper we will consider the simple case of two price series.  

We treat price series 1, p1, as the reference price series by setting its parameters so that it 

has moderate speed and moderate noise.  We then vary the parameters of price series 2, 

p2, to make it faster/slower and more/less noisy than p1.  In particular, we fix p1 with the 

parameters  (seconds) and 51  5
1
s  (b.p.) and we vary the parameters of p2 through 

the following ranges that are centered on the ‘moderate’ values chosen for p1: 

 (seconds) and  ,2,1,02   10, ...  10, ... ,2,1,0
2
s  (b.p.).  We set 1u  (b.p.).  We 

deliberately choose parameter values that approximately correspond to those of an 

average US stock in recent years, so that our simulations would reflect situations that 

could plausibly be encountered in empirical studies.3 

Holding the parameters of p1 fixed at moderate speed and moderate noise, the 

various speed and noise values for p2 create an 1111 grid of parameter combinations.  

This grid is illustrated in Figure 1.  The vertical axis measures the delay in a price series’ 

adjustment to innovations in the fundamental value.  In regions below the dashed 

horizontal line at which both series have equal speed, i.e., in Quadrants 3 and 4, p2 is 

faster (less delay) than p1.  Therefore, according to the “who moves first” view of price 

discovery, p2 would be considered the dominant price series in Quadrants 3 and 4.  The 

horizontal axis measures noise.  In regions left of the dashed vertical line at which both 

series are equally noisy, i.e., in Quadrants 1 and 3, p2 is less noisy than price p1.  This 

could occur due to greater liquidity, a narrower spread, less noise trading, a finer tick 

resolution and so on.  Therefore, in Quadrant 3, p2 is superior in both elements: it is faster 

to adjust to innovations in the fundamental value and it is less noisy.  Thus in Quadrant 3, 

p2 is unambiguously superior in price discovery.  In Quadrants 1 and 4, p2 has an 

advantage over p1 in one element but not the other – either it is faster but noisier or it is 

less noisy but slower.  In these regions it is debatable which price series has the “best” 

prices.  Such judgment depends on how much value is placed on the speed with which 
                                                 
3 We set: (i) the standard deviation of the noise parameter for the reference price series (5 b.p.) to be in the 
same order of magnitude as effective spreads (see, e.g., Hendershott et al., 2011); (ii) the volatility of the 
fundamental value (1 b.p./second) to be in the same order of magnitude as the average volatility of stocks, 
measuring volatility at a daily frequency then scaling to 1-second intervals so as to minimise the amount of 
high-frequency microstructure noise captured by the volatility estimates (see, e.g., Hendershott et al., 
2011); and (iii) the delay of the reference price series (5 seconds) to be in the same order of magnitude as 
statistically significant midquote return autocorrelations (see, e.g., Hendershott and Jones, 2005). 
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information is incorporated compared to avoidance of noise, as well as the relative 

strengths of the advantage/disadvantage in speed/noise.  In Quadrant 2, p2 is 

unambiguously a weaker contributor to price discovery; it is slower and noisier. 

 

< Figure 1 here > 

 

The economic interpretation of the relations between p1 and p2 in each of the 

quadrants, by way of example, is as follows.  In all quadrants we could consider the 

reference price series, p1, as trade prices in a moderately liquid and efficient traditional 

stock exchange.  In Quadrant 1, p2, which is slower to impound new information but less 

noisy, could for example be trade prices from a ‘dark pool’ (an off-exchange equities 

trading system that matches orders with no pre-trade transparency).  Orders sent to a dark 

pool are often matched at the midpoint of the best bid and ask quotes prevailing on a 

traditional stock exchange, or sometimes at other prices within the spread.  Therefore, 

trade prices from dark pools have less noise from microstructure frictions such as bid-ask 

bound and tick discreteness.  Trades from dark pools are often printed to the public ‘tape’ 

of executed trades with a delay.  For example, in the US, trades executed in dark pools 

are reported to the tape via trade reporting facilities, with a delay of up to 30 seconds.   

 In Quadrant 2, p2, which is slower and noisier than p1, could for example be trade 

prices from an alternative exchange that has a wider spread and tends to follow 

innovations on the primary exchange rather than contribute new information.  To give 

another example, p2 could be prices of trades that are comparatively more often liquidity 

motivated than information motivated, e.g., upstairs negotiated block trades compared to 

normal order book trades (Booth et al., 2002).   

 In Quadrant 3, p2, which is both faster and less noisy, could be the quote midpoint 

of a market in comparison to the market’s trade prices (p1).  Such a comparison is studied 

by Cao et al. (2009).  Midquotes are commonly used as a proxy for fundamental value 

because they contain less microstructure noise than trade prices, which are affected by 

bid-ask bounce.  Furthermore, if informed traders use a relatively high proportion of limit 

orders because they face lower adverse selection risks (e.g., Rindi, 2008) then quotes may 
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be faster to adjust to innovations in the fundamental value than trade prices (Goettler et 

al., 2009). 

 Finally, the situation in Quadrant 4, in which p2 is faster to reflect innovations in 

fundamental value but is noisier than p1, could arise in a hybrid market such as the NYSE 

where dealers can “cream skim” the uninformed order flow and offer it price 

improvement, leaving the relatively more informed order flow to trade in the limit order 

book (e.g., Bessembinder and Kaufman, 1997; Ready, 1999).  In such circumstances, 

dealer trades (p1) might be less noisy due to price improvement that reduces the noise 

induced by the spread and at the same time have a larger delay in reflecting innovations 

in fundamental value compared to order book trades (p2) due to the lower prevalence of 

informed traders.  

 For each set of parameter values in the 1111 grid we simulate 1,000 samples of 

21,600 time-series observations, in total approximately 2.6 billion observations.  The 

number 21,600 is chosen to imitate empirical studies, which often estimate the VECM for 

each stock-day using 1-second intervals, e.g., Hasbrouck (1995), Hasbrouck (2003), 

Hendershott and Jones (2005), Cao et al. (2009) (there are approximately 21,600 1-

second observations in a typical trading day in US stock markets).  Figure 2 illustrates a 

sub-sample of the simulated price series and fundamental value for four sets of parameter 

values, corresponding to the four quadrants of Figure 1.  It is visually apparent that 

different parameter combinations are able to capture various speed and noise 

characterizations that could exist in comparing two price series.   

 

< Figure 2 here > 

 

For each set of parameter values and each of the 1,000 samples we estimate the 

following VECM: 
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We calculate IS1, IS2, CS1 and CS2 from the error correction parameters and variance-

covariance of the error terms, following Baillie et al. (2002).  The component shares are 

obtained from the normalized orthogonal to the vector of error correction coefficients, 

),( 21   , thus: 

12

2
11 




CS ,     
21

1
22 




CS .   (4) 

Given the covariance matrix of the reduced form VECM error terms, 
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and its Cholesky factorization, MM  , where 
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the IS are calculated using: 
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Because the estimates of IS are affected by the ordering of the price series in the 

VECM, we use the approach advocated by Baillie et al. (2002) (also used by Booth et al. 

(2002), Cao et al. (2009), Chen and Gau (2010), Korczak and Phylaktis (2010) and 

others) and calculate IS under each of the two possible orderings and then take the simple 

average.   

 We calculate the Yan-Zivot information leadership metric using:  
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CS

CS

IS
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IL  .    (8) 

We introduce the terminology “information leadership” to refer to this metric because it 

comes from an (unnamed) expression derived by Yan and Zivot (2010) to measure which 

price series leads the process of adjusting to innovations in the fundamental value.  As 

described earlier, in Yan and Zivot’s structural cointegration model CS measures the 

level of noise in one price series relative to the other, and IS measures a combination of 

relative level of noise and relative leadership in reflecting innovations in the fundamental 

value.  Recognizing this, Yan and Zivot proposed combining CS and IS as in equation (8) 
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so that the relative level of noise would cancel out and leave a clean measure of relative 

informational leadership. 

Unlike IS and CS, the IL proposed by Yan and Zivot is not a “share” in that IL1 

and IL2 do not sum to 1 (or even approximately 1).  Rather, IL1 has the range [0,∞).  

Values of IL1 above (below) 1 suggest that p1 leads (does not lead) the process of 

incorporating new information about the fundamental value.  In order to make the 

information leadership metric easier to interpret and more readily comparable to IS and 

CS we define the “information leadership shares” (ILS) of p1 and p2 as: 

21
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2

21
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1       ,

ILIL
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ILS

ILIL

IL
ILS





 .   (9) 

Now, ILS1 and ILS2 have the range [0,1], similar to IS and CS, with values above (below) 

0.5 indicating the price series leads (does not lead) the process of adjusting to innovations 

in the fundamental value.  In addition to being more readily comparable to IS and CS, ILS 

has the added advantage of not producing extreme values which occur in IL when both IS 

and CS approach the value 1. 

 

4. Results 

4.1 Main results 

Tables 1-3 report means and standard deviations of each of the three price 

discovery metrics (IS, CS and ILS) across the 1,000 samples of simulated data.  The 

distribution of price discovery metric estimates in the 1,000 samples approximates the 

sampling distribution of the metrics and therefore the reported mean and standard 

deviation are Monte Carlo estimates of the sampling distribution’s mean and the 

estimator’s standard error.4  The Tables have the same layout as Figure 1: rows 

correspond to different values of the delay in p2, , and columns correspond to different 

values of the noise in p2, 

2

2s .  Bold is used to indicate rows/columns in which the 

delay/noise of p2 is equal to that of p1 and therefore divide the tables into four quadrants 

as in Figure 1.  Grey shading is used to indicate parameterizations for which the mean of 

                                                 
4 The standard error of the reported estimate of the sampling distribution’s mean is the standard deviation 
reported in the Tables divided by . 1000
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the price discovery metric is greater than 0.5.  In other words, grey shading marks regions 

in which the price discovery metric suggests that p2 is dominant in price discovery.5 

 The results indicate that only ILS reliably measures price discovery in a “who 

moves first” sense.  The shaded areas of Table 3, i.e., regions in which the ILS metric 

suggests p2 is dominant in price discovery, correspond exactly to Quadrants 3 and 4 

(ignoring the row in which both price series have equal delay).  In these quadrants the 

structural parameters are such that p2 adjusts to innovations in the fundamental value 

faster than p1.  The ILS metric is relatively unaffected by differences in the noise of p1 

and p2; it focuses squarely on differences in informational leadership. 

The IS and CS metrics on the other hand, have shaded regions that cut diagonally 

across the parameter space with different slopes, suggesting that they measure, to varying 

extents, both informational leadership and relative avoidance of noise.  To illustrate, 

consider the row where , i.e., p2 reflects innovations in the fundamental with a 

slightly larger delay (7 seconds) than p1 (5 seconds).  When the noise parameter of p2 

takes the value 

72 

1
2
s  both IS and CS suggest that p2 is dominant in price discovery, 

despite the fact that p2 takes longer to adjust to innovations in the fundamental value (the 

estimates of IS2 and CS2 are 0.70 and 0.85, respectively).  This occurs because for the 

given parameter values, p2 contains less noise than p1 and in this case p2’s relative 

avoidance of noise outweighs its more sluggish reaction to innovations in the 

fundamental value.  Furthermore, holding the delay in p2 constant (staying on the row 

where ) and examining a different value of noise in p2, say 72  5
2
s , both IS and 

CS now suggest that for these parameters p1 (not p2) is dominant in price discovery.  The 

estimate of IS2 falls from 0.70 to 0.27 and CS2 from 0.85 to 0.37, despite the fact that the 

relative speed at which p1 and p2 incorporate new information has not changed.   

 In short, the amount of noise in a price series affects the IS and CS metrics 

independently of the speed at which the series reflect innovations in the fundamental 

value.  The influence of noise on the IS and CS metrics can outweigh the extent to which 

they measure informational leadership and therefore these measures can in some 

                                                 
5 In shading cells we do not include a margin for sampling error because in this setting there is no reason to 
treat the dominance of one price series as the null hypothesis and the other as the alternative. 
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circumstances attribute price discovery dominance to markets or order flow types that are 

slower to reflect innovations in the fundamental value, i.e., IS and CS do not always 

correspond to the “who moves first” view of price discovery. 

Comparing IS and CS, the flatter slope of the interface between the shaded and 

non-shaded regions for IS indicates that IS places more emphasis on “who moves first”, 

relative to avoidance of noise, compared to CS.  This is consistent with the analytical 

results of Yan and Zivot (2010) who show that CS is closely related to the relative 

avoidance of noise, while IS measures both relative avoidance of noise and informational 

leadership.  One difference from Yan and Zivot’s analytic results, however, is that in our 

simulations CS measures to some extent the relative speed at which a price series 

impounds new information, not just the relative avoidance of noise.   

Viewing price discovery from the “who moves first” perspective, there are two 

regions in which IS and CS incorrectly attribute price discovery dominance: shaded cells 

in Quadrant 1 (and the interface of Quadrants 1 and 3) and non-shaded cells in Quadrant 

4.  These errors bear resemblance to Type I and Type II statistical errors.  In the former 

case IS and CS assign price discovery dominance to a more sluggish price series as a 

result of it being relatively less noisy and in the latter case IS and CS fail to assign price 

discovery dominance to a price series that is the first to adjust to innovations in the 

fundamental value, simply because the price series is relatively more noisy.  In a total of 

43 cells CS incorrectly attributes price discovery dominance under the “who moves first” 

view, compared to 24 cells using the IS metric, again illustrating that IS more closely 

corresponds to the “who moves first” view of price discovery than does CS.  Note, for 

comparison that ILS makes zero errors in attribution of price discovery dominance under 

this view of price discovery. 

 In addition to comparability with CS and IS, another advantage of constructing 

ILS as a share that ranges from 0 to 1 is that it does not produce extreme outlier values, 

unlike IL.  Appendix A provides the mean and standard deviation of IL in our simulation.  

Using the mean values, the attribution of price discovery dominance is essentially the 

same as for ILS, consistent with the fact that the transformation from IL to ILS is 

monotonic and does not alter whether a point estimate suggests a price series is dominant 

in price discovery.  What is different compared to ILS is that the Monte Carlo standard 
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deviations for some parameterizations of the structural model become very large relative 

to the mean, due to extreme values in IL.  For example, when price series 2 is much faster 

and much less noisy than price series 1 (the bottom left-hand corner of the grid of 

parameter values) the standard deviation of IL (79.65) is approximately four times greater 

than its mean (19.51) whereas for ILS Table 3 indicates that the standard deviation (0.07) 

is considerably smaller than the mean (0.97). 

 

4.2 Robustness tests 

 We also examine the price discovery metrics using an alternative structural model 

in which markets partially adjust to innovations in the fundamental value.  As before, the 

fundamental value of a stock is assumed to follow a random walk,  

),,0(N~        , 1 utttt uumm       (10) 

where  is the natural log of the fundamental value at time t, and ut is i.i.d..  Price series 

i responds partially to a contemporaneous innovation in the fundamental value (with 

partial response parameter 

tm

i ) and contains noise, :    tis ,

),,0(N~        , ,,1, istitititti ssump       (11) 

where  is the natural log of price series i at time t, and si,t is i.i.d. and uncorrelated 

across different price series. 

tip ,

In this alternative model the degree of adjustment to contemporaneous 

innovations in the fundamental value, ]1,0[i , reflects the speed at which a price series 

reflects new information.  With complete adjustment ( 1i ) the price series reflects new 

information instantaneously, and with the weakest adjustment ( 0i ) the price series 

only reflects new information with a delay of one period.  Therefore, the alternative 

model does not allow as much variation in speed of incorporating new information 

compared to our main model, and consequently we place more emphasis on the results 

from the main model.     

 In analyzing IS, CS and ILS using the alternative model, we follow the same 

procedure as with the main model.  We fix p1 with the parameters 5.01   and 5
1
s  

(b.p.) and we vary the parameters of p2 through the following ranges that are centered on 
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the ‘moderate’ values chosen for p1:  1.0 , ... 0.2, 0.1, ,0.02   and  10 , ... 2, 1, ,0
2
s  

(b.p.). 

 The results show a similar pattern as before: ILS is more closely related to speed 

of adjustment to innovations in the fundamental value, whereas IS and CS measure a 

combination of speed and relative avoidance of noise.6  Because the alternative model 

allows less variation in the speed of adjustment to new information the results are more 

heavily influenced by differences in noise levels.  In particular, the price series to which 

IS and CS attribute dominance in price discovery is almost entirely driven by which price 

series has the lower level of noise, and even ILS is to some extent influenced by 

differences in noise levels, although to a much lesser extent than IS and CS.  Importantly, 

our main conclusions are robust to this alternative structural model. 

 

5. Discussion and implications for existing and future price discovery studies 

Our results suggest that if one views price discovery under the common “who 

moves first” view, different levels of noise in the price series being compared cause bias 

in IS and CS as measures of relative contribution to price discovery.  The influence of 

noise on IS and CS is only a bias if the view of price discovery is “who moves first”.  

Under other views of price discovery involving combinations of leading the process of 

impounding new information and relative avoidance of noise IS and CS might be 

considered unbiased measures.  An example of when this might be the case is if the 

objective was to identify the most informative price.   

For the structural models of price formation used in our simulations (and the 

structural cointegration model used by Yan and Zivot (2010)) IS is an unbiased measure 

of a price series’ contribution to impounding new information if an additional condition 

is satisfied: the prices series being compared have an equal level of noise.  In our 

simulations this is equivalent to considering only the central bold-faced column in which 

the noise levels in p1 and p2 are equal.  For this column all three metrics correctly identify 

the price series that is the first to reflect innovations in the fundamental value. 

 The requirement of equal noise to reconcile the use of IS and CS with the “who 

moves first” view implies that studies using price series that substantially differ in their 

                                                 
6 These results are not tabulated for conciseness but are available upon request. 
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level of noise will suffer from a much larger disconnect between what they intend to 

measure and what they actually measure, compared to studies that analyze price series of 

a similar noise level.  For example, the disconnect is likely to be relatively small in 

studies that compare the contributions to price discovery of different stock exchanges or 

trading venues that have similar structure using cross-listed stocks (e.g., Hasbrouck, 

1995; Huang, 2002; Harris et al., 2002; Eun and Sabherwal, 2003; Pascual et al., 2006; 

Frijns et al., 2010; Korczak and Phylaktis, 2010; Chen and Sub Choi, 2012; Chen et al., 

2013).  This is particularly true when the studies are able to use bid-ask midpoints (or bid 

or ask quotes) from the alternative markets rather than trade prices and thereby avoid the 

potential difference in noise that could be induced by different size spreads.  Equal noise 

levels are also more likely when tick sizes across the markets are the same, when the mix 

of trader types (e.g., hedgers, speculators, institutional, retail) is similar, and when the 

liquidity of the alternative markets is similar. 

 On the other hand, the disconnect between what researchers intend to measure 

and what the metrics used actually measure is likely to be relatively large in studies that 

compare entirely different types of markets, different asset classes, or different types of 

prices.  Examples include studies that analyze the price discovery contributions of stock 

options compared to stocks (e.g., Chakravarty et al., 2004) futures compared to spot 

markets (e.g., Booth et al., 1999; Chu et al., 1999; Covrig et al., 2004; Shastri et al., 2008; 

Mizrach and Neely, 2008; Cabrera et al., 2009; Chen and Gau, 2010; Liu and An, 2011; 

and Rittler, 2012), options compared to futures (e.g., Booth et al., 1999; Hsieh et al., 

2008; and Chen and Chung, 2012), CDS compared to bonds and stocks (e.g., Forte and 

Pena, 2009), screen-based compared to open-outcry (floor) trading (e.g., Ates and Wang, 

2005), different contract maturities (e.g., Fricke and Menkhoff, 2011), quotes compared 

to trade prices (e.g., Cao et al., 2009) and order flow from different types of traders (e.g., 

Fong and Zurbruegg, 2003; Kurov and Lasser, 2004; Anand and Subrahmanyam, 2008; 

and Anand et al., 2011).  In what follows we briefly discuss a few examples of the types 

of studies listed above and show how the insights from our simulations give rise to a 

somewhat different view of the results in some existing studies. 

 Generally, the different types of market or different asset classes studied by the 

papers listed above differ in bid-ask spreads, liquidity, and design features such as tick 
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size, contract specifications, and trading mechanism.  All of these liquidity and 

microstructure differences cause the analyzed price series to have different levels of 

noise.  This induces bias in the IS and CS metrics and can lead to misleading indications 

of which market or asset class is dominant in price discovery.  The problem is amplified 

by the use of transaction prices rather than midquotes and many studies of asset classes 

other than stocks are constrained to using transaction prices. 

 Furthermore, the need to convert prices of different contracts or asset classes so 

that they would be comparable also creates noise that differs across the price series.  For 

example, in Chakravarty et al. (2004), option prices are inverted to arrive at implied stock 

prices using lagged implied volatility, assuming that volatility remains constant over the 

lag period.  This process introduces noise in the option-implied stock price, which, all 

else equal, causes downward bias in the option market IS and results in understating the 

contribution of the options market to price discovery.  This helps explain why 

Chakravarty et al. (2004) document that the option market IS is only 17% on average 

despite the theoretical reasons to believe the options market would be the venue favored 

by informed traders.  In Mizrach and Neely (2008) the series of adjustments required to 

relate a Treasury note futures price to the spot price include conversion factors for the 

futures contracts, accrued interest over different length periods for both futures and spot 

prices, the discount rate, and splicing of different maturity futures contracts.  These 

adjustments inevitably create more noise in one or the other asset class, causing IS and 

CS to provide misleading indications of the contributions to price discovery, given that 

the authors use price discovery to mean “which of several markets tends to incorporate 

permanent changes in asset prices first” (p.1222).   

 In fact, several studies obtain results that are consistent with our finding that noise 

influences IS and CS independent of the speed at which the price series adjust to 

innovations in the fundamental value.  For example, regression estimates in Mizrach and 

Neely (2008) indicate that an increase in the relative spread of the spot market (increase 

in spot price noise) decreases the spot market IS and CS (estimated using transaction 

prices), as would be predicted by our results.  Chakravarty et al. (2004) find that option 

market IS tends to be higher when option spreads are narrow and stock spreads are wide.  

Ates and Wang (2005) find that as spreads in electronic trading decline relative to the 
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floor trading spreads (i.e., a relative decrease in noise in the electronic trading prices) the 

IS of electronic trading transaction prices increases.  However, none of these studies 

attempt to use the relations between microstructure variables and IS/CS to control for the 

bias in the price discovery metrics and try to get a clearer picture of which asset class 

leads in price discovery.  

We use four recent studies to illustrate that the use of IS and CS without proper 

regard for the impact of different noise levels on these metrics can lead to substantially 

misleading conclusions.  Table 4 reports IS, CS, and ILS estimates for the studies by 

Mizrach and Neely (2008), Rittler (2012), Hsieh et al. (2008) and Chen and Gau (2010).  

The IS and CS estimates are transposed directly from the original papers, whereas ILS is 

obtained from our calculations using equations (8) and (9).  For each study we report IS, 

CS, and ILS for only one of the two price series because the estimates for the second price 

series are simply one minus the estimate for the first price series.  All four studies aim to 

identify which market is the first to reflect new information.  Given the differences in 

noise inherent in the compared price series, only ILS will reliably identify the market that 

reacts first to new information.   

 

< Table 4 here > 

 

Mizrach and Neely (2008) analyze price discovery in the US Treasuries, 

comparing the contributions of the futures and spot markets.  They conclude that the 

Treasury futures market plays an important role in price discovery compared to the spot 

market because in the 5-year and 10-year notes the futures market typically (in all but 

two note-years) has an IS in excess of 50% (the average of the futures contract IS for the 

5-year and 10-years notes is 51% and 68%, respectively).  However, ILS tells a 

completely different story; the futures share of price discovery is below 50% for all note-

years, with an average of only 15% for the 5-year note and 26% for the 10-year note.  

This illustrates the severity of the bias in IS and CS induced by differences in the relative 

levels of noise in the two price series.  

Rittler (2012) analyzes price discovery in the European Union emissions trading 

scheme, comparing the contributions of the spot and futures markets.  He concludes that: 
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(i) the futures market is the “leader” of the price discovery process, it “incorporates 

information first and then transfers the information to the spot market”; and (ii) the 

informational leadership of the futures market becomes stronger through time.  These 

conclusions are based on the fact that the IS and CS estimates for the futures market for 

the full sample are in the order of 70% and that they increase from 2008 to 2009.  

However, the ILS estimates reveal that in fact the exact opposite is true: the futures 

market’s share of price discovery in an information leadership sense is only 31% in the 

full sample (taking the average of the two sampling frequencies) and declines 

substantially from 2008 to 2009.  Again, the choice and interpretation of the price 

discovery metric has an immense impact on the conclusions that can be drawn.   

Hsieh et al. (2008) compare the contributions to price discovery made by index 

futures and index options.  They assert that index futures dominate the price discovery 

process compared to index options because the IS and CS estimates for the futures market 

using the put-call-parity (PCP) method of imputing spot prices are 66% and 83%, 

respectively.  However, ILS again leads to vastly different conclusions; the share of price 

discovery attributable to the futures market is only 14% using the PCP method and 5% 

using the Black-Scholes method, suggesting that the index options rather than the futures 

dominate price discovery.   

Finally, Chen and Gau (2010) compare price discovery in the spot and futures 

markets for the currency pairs JPY-USD and EUR-USD.  They conclude that the spot 

market provides more price discovery than does the future market because the spot 

market IS and CS are in the range of 63% to 72%.  However, ILS reveals the opposite is 

true: the spot market’s contribution to price discovery is only 38% and 36% for the two 

currency pairs in the full sample.  Furthermore, Chen and Gau (2010) conclude that the 

price discovery role of the spot market increases through the course of a trading day 

because the IS and CS estimates increase monotonically through intraday intervals.  

Again, ILS reveals this is not the case: for JPY-USD the spot market’s contribution to 

price discovery goes from 49% at the start of the day through to 43% at the end of the 

day (non-monotonically) and for EUR-USD from 53% at the start of the day through to 

54% at the end of the day (non-monotonically).  A possible explanation for the fact that 

IS and CS increase monotonically through the day but ILS does not is that IS and CS are 
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picking up an intraday pattern in spreads, whereas ILS is not as heavily influenced by 

such microstructure frictions.  Therefore, ILS can provide a better indication of how 

informational leadership changes at intraday horizons.  

The four recent price discovery studies chosen for illustrative purposes 

demonstrate that the choice and interpretation of the price discovery metric can have 

profound effects on the conclusions about price discovery.  In fact, it can change 

conclusions to polar opposites.  There are many other studies such as the four discussed 

here for which conclusions could be reexamined by computing ILS from reported IS and 

CS estimates.  Unfortunately, however, there are also many existing studies that report 

only IS or CS estimates, prohibiting a simple reassessment of the findings. 

 The discussion and examples in this section have the following implications for 

future research.  First, it is important to choose the most appropriate price discovery 

metric for the application and interpret the estimates with regard for what the metric 

actually measures in terms of speed of adjustment to new information and relative 

avoidance of noise.  In applications where there are likely to be different levels of noise 

in the price series of interest and the researcher’s intent is to measure the “who moves 

first” or informational leadership aspect of price discovery then our simulation results 

suggest ILS is the most suitable metric.  Second, as the examples in this section illustrate 

there are many areas of price discovery research that are worth revisiting with greater 

awareness of what price discovery metrics actually measure.  This is particularly the case 

for applications in which the effects of different levels of noise are likely to be most 

severe, such as comparisons of different asset classes, types of market, sources of order 

flow and types of prices.  Third, the common practice of estimating both IS and CS for 

‘robustness’ does not overcome the potential problems in these metrics because both, to 

varying extents, measure the relative avoidance of noise and thus can obscure 

identification of informational leadership when differences in noise levels are substantial.  

It is however, still advisable to estimate both metrics, but for a different reason: the two 

metrics interpreted together allow one to disentangle informational leadership from 

relative avoidance of noise.  One way to do this is to calculate ILS from the IS and CS 

estimates.   
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6. Conclusions 

In comparing the contributions of two or more price series (markets, order flow 

sources, price types) to price discovery researchers often seek to identify which market is, 

relatively speaking, the leader in reflecting innovations in the fundamental value, i.e., 

which price series is faster in impounding new information.  The simulations reported in 

this paper indicate that the two workhorses of the price discovery literature – Hasbrouck 

information share (IS) and Harris-McInish-Wood component share (CS) – provide an 

accurate measure of this aspect of price discovery only in limited circumstances: when 

the price series being compared have similar levels of noise.  In general, price series can 

differ in the levels of noise for a number of reasons including: different bid-ask spreads; 

various microstructure frictions such as tick size, trading mechanism and contract 

specifications; conversions required to make prices from different asset classes 

comparable; different levels of liquidity; and noise trading that causes temporary 

deviations from equilibrium prices.   

Our simulations illustrate that when the price series differ in the levels of noise, IS 

and CS both measure a combination of leadership (relative speed) in impounding new 

information and relative avoidance of noise, to different extents.  Of the two workhorse 

metrics, IS places more emphasis on informational leadership than avoidance of noise 

compared to CS and is therefore more closely related to the aspect of price discovery that 

researchers often seek to measure.  A third price discovery metric, stemming from Yan 

and Zivot (2010) and modified in this paper to be comparable to IS and CS and therefore 

termed the ‘informational leadership share’ (ILS), overcomes the susceptibility to 

different levels of noise.  It does this by combining the IS and CS metrics in such a way 

that their dependence on the level of noise cancels out, and thus it provides a more robust 

measure of the contribution of a price series to impounding new information.  In 

summary, CS values low noise relative to speed, IS values speed relative to low noise, 

and ILS values only speed. 

Our results have some important limitations.  First, we construct ILS based on the 

analytic results of Yan and Zivot (2010), which rely on three key assumptions: (i) there 

are only two price series; (ii) the structural model has only one permanent and one 

transitory shock; and (iii) the reduced form VECM errors are uncorrelated.  Under these 
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assumptions ILS measures informational leadership and is not affected by the relative 

level of noise in a price series.  However, it is not clear how reliably ILS measures 

informational leadership when these assumptions are violated.  Our simulations test ILS 

in settings, in which one of the assumptions is violated (our structural models have one 

permanent and two transitory shocks) and ILS continues to perform well in attributing 

informational leadership, but we cannot say whether this is also true of other settings.  

Second, our Monte Carlo simulations necessarily use stylized models of price formation.  

We argue that these models capture key features of actual prices and provide a series of 

examples to illustrate how our models map to real situations.  However, as with all 

stylized models, we cannot know if the underlying structure and parameterization is a 

sufficiently close representation of the true price formation processes encountered in 

empirical studies.  

 Examining the three price discovery metrics in a handful of recent empirical 

studies we find that the choice and interpretation of the price discovery metric can have a 

substantial impact on the conclusions of price discovery studies.  In four examples of 

recent studies, our computation of ILS based on the IS and CS estimates reported in the 

papers leads to substantially different, in most cases opposite, conclusions to those made 

by the studies.  For example, Rittler (2012) concludes that futures dominate price 

discovery in the EU emission trading market and that their dominance has increased 

through time, whereas ILS indicates the opposite: the spot market leads price discovery 

overall, and the contribution of the futures market to price discovery has declined through 

time.  Similarly, Hsieh et al. (2008) conclude that futures dominate options in price 

discovery for the Taiwan stock index, whereas ILS suggests that the opposite is true.  The 

choice of price discovery metric and correct interpretation of what the metric actually 

measures in the particular setting are crucial to drawing correct conclusions about 

where/how price discovery occurs.  

 Our results have implications for existing studies that use IS and/or CS metrics.  

Settings in which the levels of noise are likely to be similar across the various price 

channels (e.g., a stock trading in multiple venues of similar structure and liquidity) are 

likely to have more robust conclusions about the nature of price discovery than settings in 

which there are substantial differences in noise.  When noise levels differ significantly 
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across price channels, e.g., different asset classes, different market structures, different 

types of traders, and comparisons of quotes with transaction prices, then existing 

conclusions should be interpreted keeping in mind the effects of noise on the price 

discovery metrics.  In particular, IS and even more so CS, are likely to overstate the 

contribution to price discovery of the less noisy price series.  Where possible, computing 

ILS from reported IS and CS estimates as in our examples can be a useful way of getting 

new insights from existing studies. 

 For future research it goes without saying that the choice and interpretation of the 

price discovery metric is critically important.  In analyzing two price series for which the 

noise levels may differ if the intent is to measure the relative speed at which they 

impound new information then ILS is likely to be a suitable metric.  Furthermore, the 

illustrations of how substantially conclusions can change depending on the choice of 

metric suggest a number of previously studied settings that may be worth revisiting, 

including the role of different asset classes, market structures, types of traders, and types 

of prices.  
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Appendix A: Results for the information leadership metric 
 

Table A.1 
Estimates of the information leadership metric for various structural model parameterizations 

This table reports means and standard deviations (in parentheses) of information leadership (IL) estimated 
on 1,000 samples of simulated data.  The distribution of the IL estimates in the 1,000 samples approximates 
the sampling distribution of the IL metric and therefore the reported mean and standard deviation are Monte 
Carlo estimates of the sampling distribution’s mean and the estimator’s standard error.  The simulated data 
are generated using the following model: 

),,0(N~     ,       ),5,0(N~     ,       ),1,0(N~      , 
22 ,2,2,2,1,15,11 stttttttttttt ssmpssmpuumm   

 

where , , and  are the natural logs of fundamental value, price series 1 and price series 2, 

respectively, at time t.  The structural parameters of  are fixed.  The structural parameters of  vary: 

rows correspond to different values of the delay in , , and columns correspond to different values of 

the noise in , 

tm tp ,1

tp ,2

tp ,2

tp ,1

tp ,2

tp ,2

2

2s .  For every parameter combination (every cell in the table) 1,000 samples of 21,600 

time-series observations are simulated, the information leadership metric for  (IL2) is estimated for 

every sample, and finally the mean and standard deviation are calculated across the 1,000 samples.  Bold is 
used to indicate rows/columns in which the delay/noise of  is equal to that of .  Grey shading is 

used to indicate IL2 estimates that are greater than 1. 

tp ,2

tp ,2 tp ,1

      2s  
     

2  0 1 2 3 4 5 6 7 8 9 10 

10 0.14 
(0.01) 

0.19 
(0.01) 

0.25 
(0.02) 

0.29 
(0.02) 

0.32 
(0.03) 

0.33 
(0.03) 

0.34 
(0.04) 

0.36 
(0.04) 

0.36 
(0.05) 

0.37 
(0.05) 

0.37 
(0.05) 

9 0.17 
(0.01) 

0.24 
(0.01) 

0.31 
(0.02) 

0.36 
(0.02) 

0.39 
(0.03) 

0.41 
(0.03) 

0.42 
(0.04) 

0.43 
(0.04) 

0.44 
(0.05) 

0.45 
(0.05) 

0.45 
(0.06) 

8 0.22 
(0.01) 

0.31 
(0.02) 

0.40 
(0.02) 

0.45 
(0.03) 

0.48 
(0.03) 

0.50 
(0.03) 

0.52 
(0.04) 

0.53 
(0.04) 

0.54 
(0.05) 

0.55 
(0.06) 

0.55 
(0.06) 

7 0.30 
(0.02) 

0.41 
(0.02) 

0.51 
(0.03) 

0.57 
(0.03) 

0.60 
(0.03) 

0.63 
(0.04) 

0.64 
(0.04) 

0.65 
(0.05) 

0.66 
(0.05) 

0.67 
(0.06) 

0.67 
(0.06) 

6 0.40 
(0.02) 

0.55 
(0.03) 

0.67 
(0.04) 

0.73 
(0.04) 

0.77 
(0.04) 

0.79 
(0.05) 

0.80 
(0.05) 

0.81 
(0.05) 

0.81 
(0.06) 

0.82 
(0.06) 

0.82 
(0.07) 

5 0.28 
(0.30) 

0.66 
(0.04) 

0.91 
(0.05) 

0.97 
(0.05) 

0.99 
(0.05) 

1.00 
(0.06) 

1.01 
(0.06) 

1.01 
(0.06) 

1.01 
(0.06) 

1.01 
(0.07) 

1.01 
(0.07) 

4 15.38 
(31.54) 

1.61 
(0.72) 

1.49 
(0.12) 

1.38 
(0.10) 

1.32 
(0.08) 

1.28 
(0.07) 

1.25 
(0.07) 

1.24 
(0.07) 

1.23 
(0.07) 

1.22 
(0.07) 

1.22 
(0.08) 

3 19.91 
(107.29) 

7.65 
(7.90) 

2.45 
(0.32) 

1.94 
(0.18) 

1.71 
(0.12) 

1.61 
(0.10) 

1.54 
(0.09) 

1.49 
(0.09) 

1.46 
(0.08) 

1.44 
(0.08) 

1.43 
(0.09) 

2 15.32 
(27.80) 

18.16 
(23.07) 

4.08 
(1.73) 

2.72 
(0.34) 

2.24 
(0.19) 

2.00 
(0.14) 

1.86 
(0.12) 

1.78 
(0.11) 

1.73 
(0.10) 

1.69 
(0.10) 

1.65 
(0.10) 

1 20.69 
(97.63) 

24.69 
(35.51) 

8.10 
(8.57) 

3.85 
(0.64) 

2.91 
(0.32) 

2.47 
(0.20) 

2.23 
(0.15) 

2.10 
(0.13) 

2.01 
(0.12) 

1.95 
(0.11) 

1.90 
(0.11) 

0 19.51 
(79.65) 

28.42 
(50.68) 

18.00 
(34.28) 

5.40 
(1.30) 

3.74 
(0.52) 

3.05 
(0.29) 

2.68 
(0.20) 

2.45 
(0.16) 

2.31 
(0.14) 

2.23 
(0.13) 

2.16 
(0.12) 
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Table 1 
Estimates of component shares for various structural model parameterizations 

This table reports means and standard deviations (in parentheses) of component shares (CS) estimated on 
1,000 samples of simulated data.  The distribution of the CS estimates in the 1,000 samples approximates 
the sampling distribution of the CS metric and therefore the reported mean and standard deviation are 
Monte Carlo estimates of the sampling distribution’s mean and the estimator’s standard error.  The 
simulated data are generated using the following model: 

),,0(N~     ,       ),5,0(N~     ,       ),1,0(N~      , 
22 ,2,2,2,1,15,11 stttttttttttt ssmpssmpuumm   

 

where , , and  are the natural logs of fundamental value, price series 1 and price series 2, 

respectively, at time t.  The structural parameters of  are fixed.  The structural parameters of  vary: 

rows correspond to different values of the delay in , , and columns correspond to different values of 

the noise in , 

tm tp ,1

tp ,2

tp ,2

tp ,1

tp ,2

tp ,2

2

2s .  For every parameter combination (every cell in the table) 1,000 samples of 21,600 

time-series observations are simulated, the component share of  (CS2) is estimated for every sample, 

and finally the mean and standard deviation are calculated across the 1,000 samples.  Bold is used to 
indicate rows/columns in which the delay/noise of  is equal to that of .  Grey shading is used to 

indicate CS2 estimates that are greater than 0.5. 

tp ,2

tp ,2 tp ,1

      2s  
     

2  0 1 2 3 4 5 6 7 8 9 10 

10 0.81 
(0.01) 

0.69 
(0.02) 

0.53 
(0.02) 

0.40
(0.02) 

0.30
(0.02) 

0.23
(0.02) 

0.18
(0.02) 

0.15
(0.02) 

0.12 
(0.02) 

0.10 
(0.02) 

0.08
(0.01) 

9 0.85 
(0.01) 

0.74 
(0.01) 

0.59 
(0.02) 

0.45
(0.02) 

0.35
(0.02) 

0.27
(0.02) 

0.22
(0.02) 

0.17
(0.02) 

0.14 
(0.02) 

0.12 
(0.02) 

0.10
(0.01) 

8 0.89 
(0.01) 

0.80 
(0.01) 

0.65 
(0.02) 

0.52
(0.02) 

0.40
(0.02) 

0.32
(0.02) 

0.25
(0.02) 

0.20
(0.02) 

0.17 
(0.02) 

0.14 
(0.02) 

0.12
(0.01) 

7 0.92 
(0.01) 

0.85 
(0.01) 

0.72 
(0.01) 

0.58
(0.02) 

0.47
(0.02) 

0.37
(0.02) 

0.30
(0.02) 

0.24
(0.02) 

0.20 
(0.02) 

0.17 
(0.02) 

0.14
(0.01) 

6 0.96 
(0.01) 

0.90 
(0.01) 

0.79 
(0.01) 

0.65
(0.02) 

0.53
(0.02) 

0.43
(0.02) 

0.35
(0.02) 

0.29
(0.02) 

0.24 
(0.02) 

0.20 
(0.01) 

0.17
(0.01) 

5 1.00 
(0.01) 

0.96 
(0.01) 

0.86 
(0.01) 

0.74
(0.02) 

0.61
(0.02) 

0.50
(0.02) 

0.41
(0.02) 

0.34
(0.02) 

0.28 
(0.02) 

0.24 
(0.02) 

0.20
(0.01) 

4 1.00 
(0.01) 

0.99 
(0.01) 

0.91 
(0.01) 

0.80
(0.02) 

0.68
(0.02) 

0.57
(0.02) 

0.47
(0.02) 

0.39
(0.02) 

0.33 
(0.02) 

0.28 
(0.01) 

0.24
(0.01) 

3 1.00 
(0.01) 

0.99 
(0.01) 

0.95 
(0.01) 

0.85
(0.02) 

0.74
(0.02) 

0.63
(0.02) 

0.53
(0.02) 

0.45
(0.02) 

0.37 
(0.02) 

0.32 
(0.01) 

0.27
(0.01) 

2 1.00 
(0.01) 

1.00 
(0.01) 

0.97 
(0.02) 

0.89
(0.02) 

0.79
(0.02) 

0.68
(0.02) 

0.58
(0.02) 

0.49
(0.02) 

0.42 
(0.02) 

0.36 
(0.02) 

0.31
(0.01) 

1 1.00 
(0.01) 

1.00 
(0.01) 

0.98 
(0.01) 

0.92
(0.02) 

0.83
(0.02) 

0.73
(0.02) 

0.63
(0.02) 

0.54
(0.02) 

0.46 
(0.02) 

0.39 
(0.02) 

0.34
(0.01) 

0 1.00 
(0.01) 

1.00 
(0.01) 

0.99 
(0.01) 

0.94
(0.02) 

0.86
(0.02) 

0.77
(0.02) 

0.67
(0.02) 

0.58
(0.02) 

0.50 
(0.02) 

0.43 
(0.02) 

0.37
(0.01) 
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Table 2 
Estimates of information shares for various structural model parameterizations 

This table reports means and standard deviations (in parentheses) of information shares (IS) estimated on 
1,000 samples of simulated data.  The distribution of the IS estimates in the 1,000 samples approximates 
the sampling distribution of the IS metric and therefore the reported mean and standard deviation are Monte 
Carlo estimates of the sampling distribution’s mean and the estimator’s standard error.  The simulated data 
are generated using the following model: 

),,0(N~     ,       ),5,0(N~     ,       ),1,0(N~      , 
22 ,2,2,2,1,15,11 stttttttttttt ssmpssmpuumm   

 

where , , and  are the natural logs of fundamental value, price series 1 and price series 2, 

respectively, at time t.  The structural parameters of  are fixed.  The structural parameters of  vary: 

rows correspond to different values of the delay in , , and columns correspond to different values of 

the noise in , 

tm tp ,1

tp ,2

tp ,2

tp ,1

tp ,2

tp ,2

2

2s .  For every parameter combination (every cell in the table) 1,000 samples of 21,600 

time-series observations are simulated, the information share of  (IS2) is estimated for every sample, 

and finally the mean and standard deviation are calculated across the 1,000 samples.  Bold is used to 
indicate rows/columns in which the delay/noise of  is equal to that of .  Grey shading is used to 

indicate IS2 estimates that are greater than 0.5. 

tp ,2

tp ,2 tp ,1

      2s  
     

2  0 1 2 3 4 5 6 7 8 9 10 

10 0.37 
(0.03) 

0.30 
(0.03) 

0.22 
(0.02) 

0.16
(0.02) 

0.12
(0.02) 

0.09
(0.02) 

0.07
(0.02) 

0.06
(0.01) 

0.05 
(0.01) 

0.04 
(0.01) 

0.03
(0.01) 

9 0.49 
(0.03) 

0.41 
(0.03) 

0.31 
(0.03) 

0.23
(0.03) 

0.17
(0.02) 

0.13
(0.02) 

0.11
(0.02) 

0.08
(0.02) 

0.07 
(0.02) 

0.06 
(0.01) 

0.05
(0.01) 

8 0.64 
(0.03) 

0.55 
(0.03) 

0.43 
(0.03) 

0.32
(0.03) 

0.25
(0.03) 

0.19
(0.02) 

0.15
(0.02) 

0.12
(0.02) 

0.10 
(0.02) 

0.08 
(0.02) 

0.07
(0.02) 

7 0.79 
(0.03) 

0.70 
(0.03) 

0.56 
(0.03) 

0.44
(0.03) 

0.34
(0.03) 

0.27
(0.03) 

0.21
(0.03) 

0.17
(0.02) 

0.14 
(0.02) 

0.12 
(0.02) 

0.10
(0.02) 

6 0.91 
(0.02) 

0.84 
(0.02) 

0.71 
(0.03) 

0.58
(0.03) 

0.46
(0.03) 

0.37
(0.03) 

0.30
(0.03) 

0.24
(0.03) 

0.20 
(0.02) 

0.17 
(0.02) 

0.14
(0.02) 

5 0.98 
(0.01) 

0.94 
(0.01) 

0.85 
(0.02) 

0.73
(0.03) 

0.61
(0.03) 

0.50
(0.03) 

0.41
(0.03) 

0.34
(0.03) 

0.28 
(0.03) 

0.24 
(0.03) 

0.20
(0.02) 

4 1.00 
(0.00) 

0.99 
(0.01) 

0.94 
(0.01) 

0.85
(0.02) 

0.74
(0.03) 

0.63
(0.03) 

0.53
(0.03) 

0.45
(0.03) 

0.38 
(0.03) 

0.32 
(0.03) 

0.27
(0.03) 

3 1.00 
(0.00) 

1.00 
(0.00) 

0.98 
(0.01) 

0.92
(0.02) 

0.83
(0.02) 

0.73
(0.03) 

0.63
(0.03) 

0.54
(0.03) 

0.47 
(0.03) 

0.40 
(0.03) 

0.35
(0.03) 

2 1.00 
(0.00) 

1.00 
(0.00) 

0.99 
(0.01) 

0.96
(0.01) 

0.89
(0.02) 

0.81
(0.02) 

0.72
(0.03) 

0.63
(0.03) 

0.55 
(0.03) 

0.48 
(0.03) 

0.42
(0.03) 

1 1.00 
(0.00) 

1.00 
(0.00) 

1.00 
(0.00) 

0.98
(0.01) 

0.93
(0.02) 

0.87
(0.02) 

0.79
(0.02) 

0.71
(0.03) 

0.63 
(0.03) 

0.56 
(0.03) 

0.49
(0.03) 

0 1.00 
(0.00) 

1.00 
(0.00) 

1.00 
(0.00) 

0.99
(0.01) 

0.96
(0.01) 

0.91
(0.02) 

0.84
(0.02) 

0.77
(0.03) 

0.69 
(0.03) 

0.62 
(0.03) 

0.56
(0.03) 
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Table 3 
Estimates of information leadership shares for various structural model parameterizations 

This table reports means and standard deviations (in parentheses) of information leadership shares (ILS) 
estimated on 1,000 samples of simulated data.  The distribution of the ILS estimates in the 1,000 samples 
approximates the sampling distribution of the ILS metric and therefore the reported mean and standard 
deviation are Monte Carlo estimates of the sampling distribution’s mean and the estimator’s standard error.  
The simulated data are generated using the following model: 

),,0(N~     ,       ),5,0(N~     ,       ),1,0(N~      , 
22 ,2,2,2,1,15,11 stttttttttttt ssmpssmpuumm   

 

where , , and  are the natural logs of fundamental value, price series 1 and price series 2, 

respectively, at time t.  The structural parameters of  are fixed.  The structural parameters of  vary: 

rows correspond to different values of the delay in , , and columns correspond to different values of 

the noise in , 

tm tp ,1

tp ,2

tp ,2

tp ,1

tp ,2

tp ,2

2

2s .  For every parameter combination (every cell in the table) 1,000 samples of 21,600 

time-series observations are simulated, the information leadership share of  (ILS2) is estimated for 

every sample, and finally the mean and standard deviation are calculated across the 1,000 samples.  Bold is 
used to indicate rows/columns in which the delay/noise of  is equal to that of .  Grey shading is 

used to indicate ILS2 estimates that are greater than 0.5. 

tp ,2

tp ,2 tp ,1

      2s  
     

2  0 1 2 3 4 5 6 7 8 9 10 

10 0.02 
(0.00) 

0.04 
(0.00) 

0.06 
(0.01) 

0.08
(0.01) 

0.09
(0.01) 

0.10
(0.02) 

0.11
(0.02) 

0.11
(0.02) 

0.12 
(0.03) 

0.12 
(0.03) 

0.12
(0.03) 

9 0.03 
(0.00) 

0.06 
(0.01) 

0.09 
(0.01) 

0.11
(0.01) 

0.13
(0.02) 

0.14
(0.02) 

0.15
(0.02) 

0.16
(0.03) 

0.16 
(0.03) 

0.17 
(0.03) 

0.17
(0.04) 

8 0.05 
(0.00) 

0.09 
(0.01) 

0.14 
(0.01) 

0.17
(0.02) 

0.19
(0.02) 

0.20
(0.02) 

0.21
(0.03) 

0.22
(0.03) 

0.23 
(0.03) 

0.23 
(0.04) 

0.23
(0.04) 

7 0.08 
(0.01) 

0.14 
(0.01) 

0.21 
(0.02) 

0.24
(0.02) 

0.27
(0.02) 

0.28
(0.02) 

0.29
(0.03) 

0.30
(0.03) 

0.30 
(0.03) 

0.31 
(0.04) 

0.31
(0.04) 

6 0.14 
(0.01) 

0.23 
(0.02) 

0.31 
(0.02) 

0.35
(0.02) 

0.37
(0.02) 

0.38
(0.03) 

0.39
(0.03) 

0.39
(0.03) 

0.40 
(0.03) 

0.40 
(0.04) 

0.40
(0.04) 

5 0.10 
(0.15) 

0.31 
(0.03) 

0.45 
(0.03) 

0.48
(0.03) 

0.50
(0.03) 

0.50
(0.03) 

0.50
(0.03) 

0.50
(0.03) 

0.51 
(0.03) 

0.51 
(0.03) 

0.50
(0.03) 

4 0.97 
(0.07) 

0.68 
(0.17) 

0.69 
(0.03) 

0.65
(0.03) 

0.63
(0.03) 

0.62
(0.03) 

0.61
(0.03) 

0.60
(0.03) 

0.60 
(0.03) 

0.60 
(0.03) 

0.60
(0.03) 

3 0.97 
(0.08) 

0.93 
(0.11) 

0.85 
(0.04) 

0.79
(0.03) 

0.74
(0.03) 

0.72
(0.03) 

0.70
(0.02) 

0.69
(0.02) 

0.68 
(0.02) 

0.67 
(0.02) 

0.67
(0.03) 

2 0.97 
(0.06) 

0.98 
(0.08) 

0.93 
(0.06) 

0.88
(0.03) 

0.83
(0.02) 

0.80
(0.02) 

0.77
(0.02) 

0.76
(0.02) 

0.75 
(0.02) 

0.74 
(0.02) 

0.73
(0.02) 

1 0.97 
(0.06) 

0.99 
(0.05) 

0.96 
(0.07) 

0.93
(0.02) 

0.89
(0.02) 

0.86
(0.02) 

0.83
(0.02) 

0.81
(0.02) 

0.80 
(0.02) 

0.79 
(0.02) 

0.78
(0.02) 

0 0.97 
(0.07) 

0.99 
(0.03) 

0.98 
(0.07) 

0.96
(0.02) 

0.93
(0.02) 

0.90
(0.02) 

0.88
(0.02) 

0.86
(0.02) 

0.84 
(0.02) 

0.83 
(0.02) 

0.82
(0.02) 
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Table 4 
Estimates of price discovery shares for four existing studies 

This table reports information shares (IS) and component shares (CS) from four existing studies of price 
discovery.  The last two columns report our estimates of the information leadership shares (ILS) calculated 
from the given IS and CS values.  In Panel A, 5-year and 10-year refer to the 5-year and 10-year US 
Treasury notes and the price discovery metrics are reported for the futures market (relative to the spot 
market).  In Panel B the underlying traded asset is EU Allowances in the EU Emissions Trading Scheme; 
2008 and 2009 refer to the contracts with maturity December 2009 and December 2009, respectively; 
10min and 30min refer to 10 minute and 30 minute sampling frequencies; and the price discovery metrics 
are reported for the futures market (relative to the spot market).  In Panel C the underlying financial 
instrument is the Taiwan Stock Index; PCP and BS refer to the put-call-parity and Black-Scholes methods 
of calculating implied spot prices; and the price discovery metrics are reported for the futures market 
(relative to the options market).  In Panel D the underlying instruments are currency pairs; the categories 
such as 08:20-10:00 refer to intraday periods of time; and the price discovery metrics are reported for the 
spot market (relative to the futures market). 

 IS  CS  ILS 
Panel A: Mizrach and Neely (2008) 
5-year Futures  Futures  Futures 

1995 0.59  0.75  0.18 
1996 0.58  0.77  0.13 
1997 0.51  0.75  0.11 
1998 0.28  0.67  0.05 
1999 0.39  0.67  0.10 
2000 0.51  0.70  0.16 
2001 0.73  0.79  0.35 

10-year      
1995 0.72  0.80  0.29 
1996 0.72  0.80  0.28 
1997 0.70  0.78  0.30 
1998 0.50  0.73  0.12 
1999 0.61  0.78  0.17 
2000 0.71  0.82  0.23 
2001 0.83  0.85  0.41 

Panel B: Rittler (2012) 
Full sample Futures  Futures  Futures 

10min 0.69  0.72  0.42 
30min 0.58  0.73  0.21 

2008      
10min 0.65  0.59  0.63 
30min 0.52  0.51  0.52 

2009      
10min 0.69  0.80  0.23 
30min 0.60  0.91  0.02 

Panel C: Hsieh et al. (2008) 
 Futures  Futures  Futures 
PCP 0.66  0.83  0.14 
BS 0.50  0.81  0.05 

 

 36



Table 4 (continued) 
 IS  CS  ILS 
Panel D: Chen and Gau (2010) 
JPY-USD Spot  Spot  Spot 

Full sample 0.67  0.72  0.38 
08:20-10:00 0.61  0.61  0.49 
10:01-11:40 0.62  0.65  0.45 
11:41-13:20 0.66  0.65  0.52 
13:21-15:00 0.69  0.72  0.43 

EUR-USD      
Full sample 0.63  0.69  0.36 
08:20-10:00 0.54  0.52  0.53 
10:01-11:40 0.54  0.55  0.48 
11:41-13:20 0.56  0.55  0.52 
13:21-15:00 0.60  0.58  0.54 
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Figure 1.  Grid of structural model parameter combinations used in simulations. 
 
 

 38



 
Quadrant 1: p2 is slower but less noisy than p1 

 

Quadrant 2: p2 is slower and noisier than p1 

 
Quadrant 3: p2 is faster and less noisy than p1 

 

Quadrant 4: p2 is faster but noisier than p1 

 
 

Figure 2.  Samples of simulated data for four parameter combinations.  The darkest line is the common fundamental value, the 
next darkest is the price series of interest (p2) and the lightest line is the reference price series (p1). The simulated data are generated 
using the following model: 

),,0(N~     ,       ),5,0(N~     ,       ),1,0(N~      , 
22 ,2,2,2,1,15,11 stttttttttttt ssmpssmpuumm   

 

where , , and  are the natural logs of fundamental value, price series 1 and price series 2, respectively, at time t (the 

plotted values are not in logs).  For the plots in this Figure we set the following parameters: 
tm tp ,1 tp ,2

1  ,10
22  s  (Quadrant 1); 

9
2
  , s102    (Quadrant 2); 1  ,1

22  s  (Quadrant 3); and 9  ,1
22  s  (Quadrant 4). 
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