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ABSTRACT

Boosting algorithms have attracted great attention since the
first real-time face detector by Viola & Jones through feature
selection and strong classifier learning simultaneously. On
the other hand, researchers have proposed to decouple such
two procedures to improve the performance of Boosting al-
gorithms. Motivated by this, we propose a boosting-like al-
gorithm framework by embedding semi-supervised subspace
learning methods. It selects weak classifiers based on class-
separability. Combination weights of selected weak classi-
fiers can be obtained by subspace learning. Three typical al-
gorithms are proposed under this framework and evaluated
on public data sets. As shown by our experimental result-
s, the proposed methods obtain superior performances over
their supervised counterparts and AdaBoost.

Index Terms— AdaBoost, Boosting, Semi-supervised
Discriminant Analysis, Semi-supervised Subspace Learning

1. INTRODUCTION AND BACKGROUND

As one of the most widespread of ensemble based learning
algorithms, boosting has achieved great successes. The brief
idea of boosting is to progressively combine weak classifiers
to form a strong classifier. During the process, boosting pays
more attention to those misclassified training samples [1].

Conventional boosting algorithm, e.g. AdaBoost, learns
weak classifiers and combination coefficients simultaneous-
ly. Wu et al. [2] presented that these two procedures can
be decoupled. They showed two alternatives to improve the
performance and speed of AdaBoost. Motivated by this,
Paisitkriangkrai et al. [3] proposed Greedy Sparse Linear
Discriminant Analysis (GSLDA) which selects weak classi-
fiers based on class-separability (i.e. LDA) other than train-
ing error used in AdaBoost. During weak classifier selection,
coefficients for weak classifiers combination are learned si-
multaneously through eigen-decomposition in LDA. In order
to keep the advantage of AdaBoost on re-weighting, they
applied a similar re-weighting scheme into GSLDA and pro-
posed Boosted GSLDA (BGSLDA). Better performances
than AdaBoost were obtained by BGSLDA. Note that we use

‘feature’ and ‘weak classifier’ interchangeably when decision
stump is adopted as weak classifier [4].

LDA is a popular supervised subspace learning algorith-
m. Extensive experiments show that LDA works fine with
sufficient training samples [5]. This has also been verified
by GSLDA which achieved excellent performances on face
detection with thousands of training samples. However, the
performance of LDA decreases greatly when it deals with s-
mall sample size problem [6]. We find that GSLDA also fail-
s to train a reasonable classifier with less training samples.
In this paper, unlabeled data is added to tackle the problems
above. Actually, many semi-supervised boosting algorithms
have been proposed to deal with small sample size problem
for boosting, such as SSMBoost [7].

Inspired by the success of semi-supervised learning [6, 8],
we propose a boosting-like algorithm framework by embed-
ding semi-supervised subspace learning. In this framework,
weak classifiers are selected based on class-separability other
than training error in AdaBoost and SSMBoost. That is the
selected weak classifiers can maximize between-class differ-
ence and minimize within-class differences. In particular, we
show that unlabeled data plays two roles in this framework
to support semi-supervised subspace learning and weak clas-
sifier candidates generation. Three algorithms are proposed
under this framework in which the new algorithm achieves
better than the previous ones. Experimental results show that
they achieve better performances than their supervised coun-
terparts (GSLDA/BGSLDA) and AdaBoost.

2. ALGORITHMS

In this section, we first give a brief review of Semi-supervised
Discriminant Analysis (SDA). Then we use SDA as an alter-
native criterion to train boosting-like classifiers using both la-
beled and unlabeled data. In this paper, our focus is binary
classification problems, while our methods can be extended
to multi-class scenario.

2.1. Overview of SDA

Given M labeled training samples XL = {x1,x2, · · · ,xM}
andN unlabeled samples XU = {xM+1,xM+2, · · · ,xM+N},



yi is the label, yi ∈ {+1,−1}, 1 ≤ i ≤ M . Let X =
XL

⋃
XU denote the set of all training samples. X ∈

RK×(M+N), K is the dimension of feature vectors. The
objective function of Linear Discriminant Analysis (LDA) is
to find the projection vector w which can maximize between-
class difference and minimize within-class differences [5]:

w = argmax
w

wTSbw

wTSww
(1)

where Sb is between-class scatter matrix and Sw is within-
class scatter matrix. The total scatter matrix is St = Sb+Sw.
The objective function of LDA (1) can be cast as a generalized
eigenvalue decomposition problem [9]: Sbw = λStw. The
solutions are projection vector w and eigenvalue λ.

From the view of manifold learning [10], above relation-
ship can be represented with matrixes. We can define matrix
W as the weight of the edge (xi,xj):

Wi,j =

{
1/Myi

, if yi = yj
0, if yi 6= yj ,

(2)

whereMyi
denotes the number of labeled samples in class yi.

Based on W, we can obtain the following Laplacian matrixes:
Lsw = I −W,Lsb = W − 1

M eeT and Lst = I − 1
M eeT

and the corresponding Sw = XLL
swXT

L,Sb = XLL
sbXT

L
and St = XLL

stXT
L, where e = (1, 1, · · · , 1)T is a M -

dimensional vector.
The performance of LDA tends to be degraded when there

are no sufficient training samples. In order to improve the per-
formance, Cai et. al [9] proposed Semi-supervised Discrimi-
nant Analysis (SDA) to prevent overfitting of LDA with less
labeled data. SDA applies p-nearest of each sample to mod-
el the relationships of all training samples including labelled
and unlabelled training samples, forming a graph. The weight
of the edge in the graph encodes this relationship, defined by
matrix S:

Sij =

{
1, if xi ∈ Np(xj) or xj ∈ Np(xi)
0, otherwise,

(3)

where Np(xi) denotes the set of p nearest neighbors of xi.
SDA defines a regularizer J(w) as:

J(w) =
∑
ij

(wTxi −wTxj)
2Sij = wTXLXTw (4)

L = D− S is the Laplacian matrix [11]. D is a diagonal
matrix with Dii =

∑
j Sij . The underlying explanation is

that if two samples are close, they are likely to be in the same
class. The objective function of SDA is:

max
w

wTSbw

wTStw + αJ(w)
= max

w

wT(XLL
sbXT

L)w

wT(XLLstXT
L + αXLXT)w

(5)
Parameter α controls the trade off between model complexity

Algorithm 1: Training Boosting-like Algorithm with Semi-
supervised Discriminant Analysis (BSDA)

Input: Training samples: X;
The number of weak classifiers: Tmax;
Parameters: α and p for SDA.

1 Initialization: H = ∅.
2 for K features do
3 1. Find a weak classifier hk (decision stump) with the

least error on labeled training samples.
4 2. Calculate the predictions of hk on all training samples

and add the predictions into H.
5 end
6 for t = 1 to Tmax do
7 Select the best weak classifier h∗

t that yields the largest
objective value in (6), and keep the projection vector wt.

8 end
Output: The strong classifier f(x) =

∑Tmax
t=1 h∗

t (x)wt.

and empirical loss. It is clear that (5) is similar to (1) except
Sw is replaced. Thus it can be solved in the same way as
(1) [9]. With this regularizer, the output of SDA, w not only
considers the discriminant power among labeled data but the
intrinsic geometrical structure among all training samples.

2.2. SDA for Boosting-like Algorithm

When training samples are insufficient, distribution of the w-
hole data cannot be modeled correctly. The selected weak
classifiers by GSLDA [3] are not discriminative and more
likely overfitted. To solve this problem, we choose SDA as
criterion instead of LDA used in GSLDA which selects weak
classifiers by taking advantage of unlabeled data.

The framework of our proposed method Boosting-like al-
gorithm with SDA (BSDA) is presented in Algorithm 1.

The first stage (lines 2 - 5) generates weak classifier can-
didates according to labeled samples only. These weak clas-
sifier candidates are to be selected and then combined to for-
m a strong classifier. We adopt decision stump [4] to train
weak classifier candidates. In the work, we train K decision
stumps based on the original labeled training set XL. The
weak classifier candidates will be generated based on the min-
imal error from labelled training samples. We denote that all
weak classifier candidates compose a weak classifier family
{hk(·) : x → {1,−1}, k = 1, ...,K}. Then, all the classi-
fication results for the training samples can be obtained and
stored in matrix H ∈ RK×(M+N) with Hk,i = hk(xi). Hk

is the k-th row of H which stores the classification results of
weak classifier hk on all training samples.

{k,w} = argmax
k,w

wT(At
LL

sb(At
L)

T)w

wT(At
LL

st(At
L)

T + αAtL(At)T)w

s.t. At =

[
At−1

Hk

]
, 1 ≤ k ≤ K, A0 = ∅

(6)



The second stage (lines 6 - 8) is used for feature selec-
tion. In each iteration t, every feature hk is picked up from
the available feature candidates and spanned in addition to
the previously selected feature(s). The training sample is de-
scribed by this spanned feature set, i.e. At in (6). Compared
with (5), we update the description X during the iterations in
(6). Matrix At−1 stores the predictions of selected weak clas-
sifiers before iteration t. Matrix At ∈ Rt×(M+N) is made up
of two parts: the predictions for labeled samples At

L ∈ Rt×M

and unlabeled samples At
U ∈ Rt×N , i.e. At = [At

L|At
U ].

The best weak classifier h∗t which yields the largest objective
value in (6) will be selected. Repeat the process until there
are Tmax selected features.

Stage 3, the output of the algorithm, is to build strong
classifier learning. When selecting best h∗t in stage 2, it-
s corresponding projection vector wTmax

is obtained as the
combination weights. The final strong classifier is f(x) =∑Tmax

t=1 h∗t (x)wt, wt denotes the t-th element in wTmax
.

2.3. SDA for Weighted Boosting-like Algorithm

From Algorithm 1, weak classifier candidates remain un-
changed during the Tmax iterations. It should be better to
obtain more informative weak classifier candidates. In BS-
DA, decision stumps are generated without considering an
important factor of AdaBoost: re-weighting scheme. [12]
showed that performances of boosting algorithms degraded
significantly if weighting scheme was omitted. During Ad-
aBoost training, each training sample is assigned a weight.
AdaBoost finds the best weak classifier with the least weight-
ed error based on training samples [1]. Then the weights
of the training samples are updated in which the misclassi-
fied samples are given larger weights. Here we apply the
re-weighting scheme to improve the performance of BSDA.

See Algorithm 2 for this Weighted Boosting-like algorith-
m with SDA (WBSDA). After selecting the best weak clas-
sifier at current iteration t in line 8, the samples weights are
updated in line 9. A new feature pool (feature candidates) will
be re-generated in lines 4 - 7 before the next iteration. That
is to say, the weak classifier family is updated in each itera-
tion, which changes H accordingly. This is a key difference
compared with BSDA in which H remains unchanged.

2.4. SDA for Semi-supervised Weighted Boosting-like Al-
gorithm (SemiWBSDA)

In section 2.2 and 2.3, unlabeled data serves as prior or under-
lying knowledge to guide subspace learning. The weights of
unlabeled samples are not updated. We will show that unla-
beled data can help generate better weak classifier candidates
through semi-supervised boosting.

For semi-supervised boosting, the objective function in
this paper adds a cost function for unlabeled data. Then this
problem can be cast as conventional boosting problem [13,

Algorithm 2: Training Steps for WBSDA
Input: Training samples: X;
The number of weak classifiers: Tmax;
Parameters: α and p for SDA.

1 Initialization: H = ∅.
2 for t = 1 to Tmax do
3 H = ∅.
4 for K features do
5 1. Find a weak classifier hk (decision stump) with

the least error on labeled training samples.
6 2. Calculate the predictions of hk on all training

samples and add the predictions into H.
7 end
8 Select the best weak classifier h∗

t that yields the largest
objective value in (6), and keep the projection vector wt.

9 Update the weights for labeled training samples [4].
10 end

Output: The strong classifier f(x) =
∑Tmax

t=1 h∗
t (x)wt.

14, 15, 7]. We adopt Semi-supervised MarginBoost (SSM-
Boost) [7] to generate weak classifier candidates. However,
in each round of feature selection, the weights for all training
sample including labeled and unlabeled data are updated [7]
(instead of updating labeled data only as in WBSDA). That
is, it changes the training steps in lines 5 and 9 in Algorithm
2 by considering unlabeled samples. This new feature pool
contains more informative weak classifier candidates. In this
new algorithm, unlabeled data is used for two purposes: one
is used for generating weak classifier candidates (i.e. ‘Semi-’)
and the other is for subspace learning (i.e. ‘-SDA’).

3. EXPERIMENTS

3.1. Experimental Setup

In this section, we evaluate seven algorithms, namely Ad-
aBoost [1], SSMBoost [7], GSLDA [3], BGSLDA [3] and our
proposed BSDA, WBSDA and SemiWBSDA on a handwrit-
ten digit recognition set: MNIST and a computer vision set:
face detection. The maximum number of iterations Tmax is
limited to 200. The parameters α for SDA in (6) is validated
from {2−11, 2−9, 2−7, 2−5,2−3, 2−1, 21, 23}. The number of
nearest neighbors p in SDA is set to 5. The best performance
with the highest accuracy on validation set is selected for all
algorithms for comparison. We randomly partition the train-
ing examples into disjoint sets of labeled and unlabeled sam-
ples. The size of the unlabeled partition is set to be r =50%,
75%, 85% and 95% of the number of all training examples.
The experiments are conducted for 10 times, and average test
error rates with standard deviations are reported.

MNIST: MNIST handwritten digits data set contains 10
categories of digits with 1000 for each digit. Each digit is rep-
resented by a 28 × 28 image. It has split the total data into a
training set and a test set. Sub-sets of digits ‘2’ vs. ‘3’ and ‘5’



Table 1: Classification results (test error rates (%) ± standard de-
viations) for digit ‘2’ vs. ‘3’ on the MNIST data set.

Ratio 50% 75% 85% 95%
AdaBoost 8.4± 1.8 9.7± 2.3 9.7± 3.0 17.9± 5.3
SSMBoost 8.7± 1.9 9.9± 2.3 9.2± 1.5 33.2± 21.6

GSLDA 17.2± 3.7 18.4± 6.5 16.3± 5.8 20.4± 6.3
BGSLDA 16.8± 3.0 19.3± 5.7 16.8± 6.0 17.6± 4.6

BSDA 6.9± 1.8 7.9± 2.1 8.0± 2.2 9.3± 2.1
WBSDA 6.6± 1.1 7.7± 2.2 7.6± 1.9 9.6± 2.1

SemiWBSDA 6.6±0.7 7.3±2.1 7.1±1.1 9.3 ±1.5

Table 2: Classification results (test error rates (%) ± standard de-
viations) for digit ‘5’ vs. ‘8’ on the MNIST data set.

Ratio 50% 75% 85% 95%
AdaBoost 8.7±0.8 11.4± 1.6 13.5± 4.3 20.0± 3.5
SSMBoost 9.2± 1.0 11.2± 1.4 12.8± 2.3 18.2± 2.9

GSLDA 12.9± 2.1 19.1± 3.3 21.2± 4.0 29.7± 10.0
BGSLDA 11.4± 2.6 18.3± 4.1 20.3± 2.4 30.4± 10.6

BSDA 10.3± 1.8 10.1± 1.8 10.3± 2.8 13.4±2.5
WBSDA 10.0± 1.9 10.0± 1.8 9.6± 3.1 13.9± 4.5

SemiWBSDA 9.2± 1.3 9.9±1.9 9.5±1.7 13.6± 2.1

vs. ‘8’ are used in our work for evaluating the performance
of proposed methods. 220 examples are randomly selected as
training examples (110 per class), and 200 examples are ran-
domly selected as validation ones. The original test set is used
for testing. The gray values of each image are used as sam-
ples feature. The classification errors and standard deviations
are reported in Table 1 and 2.

Face: We randomly select a set of 1000 24×24 samples
with 500 face images and 500 non-face images from [2]. 20%
of the samples are used for training; 20% are for cross valida-
tion and the rest for testing. We use Haar-like feature [4] for
its popularity in face detection. 16,233 features are uniform-
ly sampled from the whole Haar-like feature space [2]. The
classification results are shown in Table 3.

3.2. Results and Discussions

From the results above, it is shown that three proposed algo-
rithms outperform other methods in most experiments.

As mentioned before, GSLDA and BGSLDA will suffer
without enough effective training samples. Therefore, they
perform worse in our case due to the lack of training samples.

Our experiments demonstrate the importance of unlabeled
data in subspace learning. By taking the advantages of unla-
beled data, the proposed methods have lower error rates than
GSLDA and BGSLDA. In addition, we set a fixed ratio be-
tween the number of labeled and unlabeled samples, and grad-
ually increase the number of two kinds of samples. The ex-
periment is conducted on the digit ‘2’ vs. ‘3’ MNIST data set

Table 3: Classification results (test error rates (%) ± standard de-
viations) on face data set.

Ratio 50% 75% 85% 95%
AdaBoost 6.5± 1.4 8.4± 1.2 10.0± 4.0 26.0± 6.4
SSMBoost 7.9± 1.3 10.4± 1.7 9.7± 2.0 23.4± 6.5

GSLDA 12.6± 2.2 16.4± 2.0 19.5± 3.3 27.5± 5.7
BGSLDA 10.1± 1.5 13.4± 3.9 22.7± 6.6 28.3± 7.1

BSDA 6.6± 1.1 6.8± 1.6 9.4± 3.0 12.8±3.4
WBSDA 6.3± 0.7 6.7± 1.2 9.2± 3.2 12.9± 4.2

SemiWBSDA 5.9±0.9 6.0±0.8 8.9±1.2 12.9± 3.3
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Fig. 1: (a) The mean test error rates for GSLDA and BSDA with d-
ifferent size of training samples. (b) The maximum number iteration
is set to be 300.

with a ratio of 1:2. The classification results of GSLDA and
BSDA are shown in Fig. 1 (a). It is shown that 15% of the to-
tal labeled samples are enough for BSDA to achieve a stable
performance (in terms of test error rate in our case). The per-
formances of BSDA and GSLDA are similar when increasing
the number of labeled training samples to 200.

It also shows that (see Tables 1, 2 and 3) SemiWBSDA
performs best among three proposed methods because of ad-
ditional regularization introduced in SemiWBSDA for tuning
both weak classifiers creation and feature selection.

Finally, we evaluate the sensibility of our proposed meth-
ods to overfitting. We run SemiWBSDA with Tmax = 300
and 85% of unlabeled data on ‘2’ vs. ‘3’ MNIST data set. If
overfitting happens, the error rate would increase after certain
iteration. Fig. 1 (b) shows that no overfitting is observed and
the test error can still decrease after 200 iterations.

4. CONCLUSION

In this paper, we propose a boosting-like algorithm frame-
work by embedding semi-supervised subspace learning to
deal with small labeled sample size problem. Three al-
gorithms are proposed under this framework which show
the two key roles of unlabeled data. Experiments on pub-
lic data sets are verified. It is concluded that the proposed
approaches outperform their supervised counterparts (GSL-
DA/BGSLDA) and AdaBoost under different situations.



5. REFERENCES

[1] J Friedman, T Hastie, and R Tibshirani, “Additive lo-
gistic regression: a statistical view of boosting,” Ann.
Statist., vol. 28, no. 2, pp. 337–407, 2000.

[2] J Wu, S C Brubaker, M D Mullin, and J M Rehg, “Fast
asymmetric learning for cascade face detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 3, pp.
369–382, 2008.

[3] S Paisitkriangkrai, C Shen, and J Zhang, “Efficiently
training a better visual detector with sparse eigenvec-
tors,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2009, pp. 1129–1136.

[4] P Viola and M J Jones, “Robust real-time face detec-
tion,” Int. J. Comp. Vis., vol. 57, no. 2, pp. 137–154,
2004.

[5] Keinosuke Fukunaga, Introduction to statistical pattern
recognition, Academic Pr, 1990.

[6] O. Chapelle, B. Schölkopf, A. Zien, et al., Semi-
supervised learning, vol. 2, 2006.
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